
P. Bozanis and E.N. Houstis (Eds.): PCI 2005, LNCS 3746, pp. 14 – 24, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Database Support for Data Mining Patterns

Evangelos Kotsifakos, Irene Ntoutsi, and Yannis Theodoridis

Department of Informatics, University of Piraeus,
80 Karaoli-Dimitriou St, GR-18534 Piraeus, Greece

{ek, ntoutsi, ytheod}@unipi.gr

Abstract. The need of extracting useful knowledge from large collections of
data has led to a great development of data mining systems and techniques. The
results of data mining are known as patterns. Patterns can also be found in other
scientific areas, such as biology, astronomy, mathematics etc. Today require-
ments impose the need for a system that efficiently manipulates complex and
diverse patterns. In this work, we study the problem of the efficient representa-
tion and storage of patterns in a so-called pattern-base Management System.
Towards this aim we examine three well known models from the database do-
main, the relational, the object-relational and the semi-structured (XML) model.
The three alternative models are presented and compared based on criteria like
generality, extensibility and querying effectiveness. The comparison shows that
the semi-structure representation is more appropriate for a pattern-base.

1 Introduction

Data mining comprises a step of the knowledge discovery process and is mainly con-
cerned with methodologies for extracting knowledge artifacts, i.e. patterns, from large
data repositories. Decision trees, association rules, clusters are some well known
patterns coming from the data mining area. Patterns can also be found in other areas,
such as Mathematics (e.g. patterns in sequences, in numbers, in graphs, in shapes
etc.), Geometry, Signal Processing etc. [11]. Nowadays, databases are huge, dynamic,
come from different application domains and a lot of different and complex patterns
can be extracted from those. In order for someone to be able to exploit the informa-
tion these patterns represent, an efficient and global (general) Pattern Base Manage-
ment System (PBMS) for handling (storing / processing / retrieving) patterns is be-
coming necessary for a lot scientific areas apart from data mining [8]. Scientists of
every field have their special needs for pattern creation and management and a PBMS
approach would be the solution to the custom-per-problem application that they have
to build.

The area of pattern representation and management is recent, and there are only
few efforts. PMML [7], SQL/MM [4], CWM [2], JDMAPI [5], PQL [3] are systems
developed for storing data mining and statistical patterns. PMML of the data mining
Group (DMG) is the most popular approach. Using XML documents it provides a
quick and easy way for applications to define predictive models and share these

 Database Support for Data Mining Patterns 15

models between PMML compliant applications. PMML defines a variety of specific
mining patterns such as decision trees, association rules, neural networks etc. but does
not support custom pattern types. PMML version 3.0 provides more patterns and
some functions for data preprocessing [7].

The above approaches concentrate mostly on the definition of data mining and sta-
tistical models-patterns and the exchange of a set of patterns with specific characteris-
tics between applications rather than on the creation of a general system for the repre-
sentation and management of different pattern types. Pattern storage and querying
techniques as well as pattern-to-data mapping are not among their capabilities.

Recently, two research projects, CINQ [1] and PANDA [10], defined the problem
of pattern storage and management and proposed some solutions. CINQ aims at
studying and developing query techniques for inductive databases, i.e. databases that
store the raw data along with the patterns produced by these data collections [1]. On
the other hand, PANDA [10] aims to the definition and design of a PBMS for the
efficient representation and management of various types of patterns that arise from
different application domains (not only from data mining). Patterns will reside and be
managed (indexing, querying, retrieving) in the PBMS just like primitive data reside
and are managed in the DBMS. Different types of patterns will be efficiently man-
aged (generality) and new pattern types will be easily incorporated (extensibility) in
the PBMS. A very critical decision regarding to the PBMS is whether it should be
build from scratch or as an additional layer on top of a DBMS.

The scope of this work is to deal with the problem of pattern representation and
storage following the later approach (i.e. working on top of a DBMS). Towards this
aim, we examine three well known DBMS approaches: the relational, the object-
relational and the semistructured (XML) model.

2 Patterns and Pattern-Bases

We adopt the PANDA project approach as it tries to incorporate all kinds of patterns.
The pattern concept is the cornerstone of the PBMS. A pattern is a compact and rich
in semantics representation of raw data. A pattern-base is a collection of persistently
stored patterns. A PBMS is a system for handling patterns, defined over raw data and
organized in pattern-bases, in order to efficiently support pattern matching and to
exploit pattern-related operations generating nontrivial information [10]. A PBMS
treats patterns just like a DBMS treats raw data.

In order to efficiently manage patterns, a PBMS should fulfill some requirements
[10]:

• Generality: The PBMS must be able to manage different types of patterns coming
from different application domains.

• Extensibility: The PBMS must be extensible to accommodate new kinds of pat-
terns introduced by novel and challenging applications.

• Exploitation of patterns special characteristics: The PBMS should take into
account the special features of patterns so as to improve several operations, like
indexing and query processing.

16 E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis

• Constraint implementation: The PBMS should implement the constraints defined
in the logical pattern model as well as validate patterns in line with these con-
straints.

• Reusability: PBMS must include constructs encouraging the reuse of what has
already been defined.

The PANDA consortium has defined a logical model for the PBMS [8], which con-
sists of three basic entities: pattern type, pattern and class defined as follows:

Definition 1. (Pattern Type): A pattern type is a quintuple pt = (n, ss, ds, ms, f),
where n is the pattern type name, ss is the structure schema that describes the struc-
ture of the pattern type (in an association rule for example the structure consists of
head and body), ds is the source schema that describes the dataset from which patterns
of this pattern type are constructed, ms is the measure schema that defines the quality
of the source data representation achieved by patterns of this pattern type and f is the
formula that describes the relationship between the source space and the pattern
space.

An example of the association rule pattern type is presented below:

n: AssociationRule
ss: TUPLE(head: SET(STRING), body: SET(STRING))
ds: BAG(transaction: SET(STRING))
ms: TUPLE(confidence: REAL, support: REAL)
f: head U body ⊆ transaction

Definition 2. (Pattern): A pattern p, is an instance of a pattern type pt, and has the
corresponding values for each component. An example of an association rule pattern,
instance of the AssociationRule pattern type defined above, is the following:

pid: 413
s: (head={‘Boots’}, body={‘Socks’, ’Hat’})
d: ‘SELECT SETOF(article) AS transaction FROM sales GROUP BY transactionId’
m: (confidence=0.75, support=0.55)
e: {transaction: {‘Boots’, ‘Socks’, ‘Hat’} ⊆ transaction}

Definition 3. (Class): A class c, over a pattern type pt, is defined as a triple c = (cid,
pt, pc) where cid is the unique identifier of the class, pt is the pattern type and pc is a
collection of patterns of type pt.

A class is defined for a given pattern type and contains only patterns of that type.
Each pattern must belong to at least one class. The relationships between the three
basic entities of a PBMS, i.e. pattern types, patterns and classes, are shown in the
figure below:

classtype-of

1..
belongs-to

pattern
type n..

contains
1..instance-of

pattern

Fig. 1. Relationships between pattern types, patterns and classes

 Database Support for Data Mining Patterns 17

3 Physical Representation in a Pattern-Base

For the representation and storage of the contents of a pattern-base, we examine three
traditional DBMS approaches: the relational, the object-relational and the semistruc-
tured (XML) model using the entities presented in the previous section.

Next, we present each approach and give some representative queries that point out
the advantages and disadvantages of each one. For the implementation we have used
Oracle 9i DBMS. This comparison aims to examine the applicability of the logical
model in current DBMS technology and is based on qualitative rather than quantita-
tive criteria. The primary goal is to examine whether a PBMS can be built based on
the three models presented and which one is the more efficient on supporting the
patterns special characteristics.

3.1 Relational Approach

Our main concern during the design and implementation of the pattern-base was to
satisfy the three basic requirements of the logical model: generality, extensibility and
pattern characteristics exploitation [10]. The relational schema is depicted in Fig 2:

Fig. 2. The relational schema of the pattern-base

Various pattern types are stored in the table patternTypes, patterns are stored in the
table patterns and pattern classes are stored in table classes. The table patternClasses
relates patterns with classes (a class contains one or more patterns of the same class
and every pattern belongs to at least one class).

Below we present only some representative queries due to space limitations. The
queries will be first described in natural language and then in SQL-like syntax:

RQ1) Find the structure (respectively, the source, the measure or the expression)
of the association rules belonging to class Association_Rule_1.

18 E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis

select patterns.structure from classesr
inner join patternclasses on classesr.cid = patternclasses.cid
inner join patterns on patternclasses.pid = patterns.pid
where (classesr.cname='Association_Rule_1');

RQ2) Find all association rules belonging to class Association_Rule_1 whose
structure contains “org” or whose coverage is greater than 0.7.

select pid from classesr
inner join patternclasses on classesr.cid = patternclasses.cid
inner join patterns on patternclasses.pid = patterns.pid
where (classesr.cname='Association_Rule_1') AND
(INSTR(SUBSTR(structure,INSTR(measure,'body'),length(measure)),'ORG')
>0 OR substr(measure,10,instr(measure,'(')-10)>0.007);

RQ3) Return the head and body parts of the structure of patterns that they belong
to class Association_Rule_1.

Select Substr(structure,1,instr(structure,'body')-2) as head,
Substr(structure,instr(structure,'body')) as body from classesr
inner join patternclasses on classesr.cid = patternclasses.cid
inner join patterns on patternclasses.pid = patterns.pid
where (classesr.cname='Association_Rule_1');

The relational approach is characterized by simplicity and ease of implementation.
However, it has a lot of disadvantages that arise from the fact that this approach does
not take into account the underlying structure of pattern components (structure, meas-
ure, etc.) and treats them as simple texts/ strings. This fact makes querying a complex,
time consuming and mostly ineffective process.

3.2 Object-Relational Approach

The object-relational model manages to deal with the basic drawback of the relational
model, by defining different objects and attributes for each pattern component and
exploiting inheritance. In that way it is less complex and more efficient since query-
ing is simpler.

The basic idea of the object-relational model (a part of it) is depicted in the fol-
lowing schema. At the root of the object relational model stands the Pattern entity,
which contains generic information about the pattern, such as the pattern identifier,
the pattern formula and the pattern source. At the next level of the tree, the Pattern
is specialized, according to the pattern type it belongs to, for example to associa-
tion rules patterns, to clusters patterns etc. These entities differ according to their
structure and measure components but they also have some attributes in common,
those inherited by the Pattern entity. For example, object Association Rule Pattern
contains every attribute from object Pattern and it also has the attribute Structure
that consists of a head and a body. This object can be further specialized based on
the measure component. As it seems in Fig. 3 in the object Association Rule Pat-
tern 1 the Measure component consists of confidence and support, whereas in the
object Association Rule Pattern 2 the Measure component consists of coverage,
strength, lift and leverage.

 Database Support for Data Mining Patterns 19

Pattern
ID,

Assoc. Rule Pattern
Struc

Cluster Pattern
…..

Assoc. Rule Pattern 2
Measure (co rage)

Assoc. Rule Pattern 1
Measu

Expression,

…ture(HEAD, BODY)

re(confidence, support) verage, strength, lift, leve

Fig. 3. The basic idea of the object-relational approach

Below we present some representative queries for the object-relational model:

ΟQ1) Find the expression (respectively, the ID, the source, the measure or the
structure) of patterns.

select expression from hr.tbl_patterns p;

ΟQ2) Find the body of the structure of association rule patterns

select p.id, value(e) from hr.tbl_patterns p,
table(treat(value(p) as hr.assrule_pattern).structureschema.body) e ;

ΟQ3) Find the confidence of the measure of association rule patterns.

select p.id, treat(value(p) as
hr.assrule_pattern_1).measureschema.confidence as
confidence from hr.tbl_patterns p;

The object-relational approach overcomes some of the relational approach limitations
due to the capability of modeling complex entities as objects. It also exploits the simi-
larities among objects through inheritance. The object-relational model is more flexi-
ble and efficient from the relational model but it requires exact definition of any new
object and of its components.

3.3 Semi-structured (XML) Approach

Unlike traditional databases, in an XML base the format of the data is not so rigid.
This property is valuable in our case since patterns come from different application
fields having thus different characteristics. For the XML implementation, we have to
create an XML schema for each pattern type. Patterns of a specific pattern type will
be the XML documents (instances) of the XML schema of this type.

For example, the association rules pattern type is described through the schema
“association_rule.xsd” (Fig. 4), whereas the XML document “pattern-
association_rules.xml” (Fig. 5) contains patterns of the association rule pattern type
schema.

20 E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis

Fig. 4. association_rule.xsd

<assoc_rules ptype="association_rule">
<pattern id="1"> <name>rule 1</name>
<structure>

 <head>
<s_clause>
 <attrib_name>buys</attrib_name>
 <attrib_value>scarf</attrib_value>
</s_clause>

 </head>
 <body>

<s_clause>
 <attrib_name>buys</attrib_name>
 <attrib_value>gloves</attrib_value>
</s_clause>

 </body>
</structure>
<source>SELECT * FROM orders</source>
<measure>

 <m_clause>
<measure_name>support</measure_name>
<measure_value>0.35</measure_value>

 </m_clause>
 <m_clause>

<measure_name>confidence</measure_name>
<measure_value>0.75</measure_value>

 </m_clause>
</measure>

<expression>
{buys="hat",buys="cap",buys="gloves"}
</expression>

 </pattern>

Fig. 5. association_rule.xml

Below we present some representative queries for the XML model in ORACLE
XML-SQL syntax:

XQ1) Find the structure (respectively, the source, the measure or the expression)
of the association rule patterns belonging to class “class1”.

 Database Support for Data Mining Patterns 21

select
 extract(value(y),'//pattern[@id="'||extract(value(e),
'pid/text()')||'"]/structure') as structures from assoc_rules y,
classes x, TABLE(XMLsequence(extract(value(x),
'class[@name="class1"]//pids/pid'))) e where exists-
Node(value(y),'//pattern[@id="'||extract(value(e),'pid/text()')||'"]/
structure') = 1

XQ2) Return all patterns of a specific pattern type.

select distinct extracValue(value(y),'//pattern[@id="'||
extract(value(e),'pid/text()')||'"]/name/text()') as pattern_name
from assoc_rules y, classes x,
TABLE(XMLsequence(extract(value(x),
'class[@ptype="association_rule"]//pids/pid'))) e

XQ3) Find all the different measures(inside the measure component) of the asso-
ciation rules.

select distinct extractValue(value(r),
'//m_clause/measure_name/text()') as measures from assoc_rules y,
classes x,TABLE(XMLsequence(extract(value(x),'//pids/pid'))) e,
TABLE(XMLsequence(extract(value(y),'//pattern[@id="'||
extract(value(e),'pid/text()')||'"]//m_clause'))) r;

XQ4) Find patterns with the maximum value of the measure lift from patterns be-
longing to “class1”.

select extract(value(aa),'//pattern/name/text()') as pattern_names
from assoc_rules aa, (select max(extractvalue(value(val),'//text()'))
as maximum_lift from assoc_rules a,
TABLE(xmlsequence(extract(value(a),'//m_clause[measure_name="Lift"]
/measure_value'))) val) xxx
where existsNode(value(aa),
'//m_clause[measure_name="Lift"][measure_value="'||
xxx.maximum_lift||'"]') = 1

With XML pattern-base, the definition of a new pattern type is easy (extensibility).
Furthermore, it is possible to create a proper XML schema for a pattern type, general
enough to include every variation of patterns of this type (generality). The XML
schema affects also the effectiveness of querying. Queries like “find all the different
measures of the association rules”, can be easily implemented, unlike the relational
and object-relational approaches.

4 A Qualitative Comparison

In this section we present the criteria for the comparison of the three alternative repre-
sentations and the conclusions we reached.

1. Pattern-Base Implementation Complexity

All the three models we presented can be easily implemented. The simplest model is
the relational, where both the pattern-base construction and insert operations can be
performed in an easy and fast way. The object relational model is slightly more diffi-
cult since it requires the definition of different objects for each pattern type (and each
of its variations). Insert operations are also more difficult as it should be different for
each pattern type and its variations. Finally, the difficulty of the XML model is the

22 E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis

fact that its success depends straightforward on the quality (generality) of the XML
schema for each pattern type. However, after creating the proper schema insert opera-
tions can be easily performed. Furthermore, if this schema is general enough, varia-
tions of patterns belonging to a specific pattern type can be easily supported through
this pattern type schema.

2. Constraint Implementation

The basic constraints imposed by the logical model [8] are the following: (a) every
pattern is an instance of one pattern type, (b) every pattern belongs to at least one
class, (c) a pattern class should contain only patterns of the same pattern type.
These constraints can be easily implemented in the relational model through the for-
eign key constraints. In the object relational model these constraints are supported
directly by the definition of the pattern type, for example it is impossible to assign a
cluster into the association rule pattern type. In the XML model, finally, the imple-
mentation of constraints are supported by the DBMS with mechanisms that associate
XML documents.

3. Pattern Characteristics Exploitation

According to the logical model [8], every pattern consists of five basic components:
name, structure, source, measure and formula. However, different pattern types dif-
ferentiate on some of these components, e.g. in structure or measure. If we exploit the
special characteristics of each pattern type we can improve operations like indexing
and querying. The relational model does not exploit the underlying structure of pat-
terns as it considers every pattern component as a string. Whereas, both object-
relational and XML models take into account the special characteristics of pattern
component according to the pattern type.

4. Query Effectiveness

The pattern-base does not aim only at the storage of patterns but mainly at their easy
management, so the effectiveness of querying is an important criterion. From the
representative queries we gave above for each implementation, it is obvious that in
the relational model query construction is a complex and time consuming process (it
is all about string manipulation formulas). The rest two models exploit the underlying
pattern structure, thus queries are expressed more easily.

5. Extensibility

Extensibility is the ability to incorporate a new pattern type in the pattern-base; the
easier this process is the more extensible the system is. The relational model is very
extensible; a new pattern type is simply a new record in the table pattern types. The
object-relational model requires the creation of new objects for every new pattern
type and its components (the same stands also for the variations of a pattern type).
That means that more than one association rule schema maybe required to incorporate
the differences in the structure of each association rule. In the XML model a new
schema is required for each new pattern type, but on the other hand, since this schema
exists and is general enough, variations of patterns of this type can be easily incorpo-
rated without any modification.

 Database Support for Data Mining Patterns 23

6. Pattern validation

The validity check during insert/ update operations in the pattern-base is critical. With
the term validity we mean that each pattern in the pattern-base should follow its pat-
tern type definition. The above criteria is violated in the relational model, whereas it
stands for both XML and object relational models because of the XML schemas and
the objects’ definition respectively.

The conclusions of the evaluation are summarized in the table below:

Table 1. Comparison results

 Relational
pattern-base

Object-relational
pattern-base

XML
pattern-base

Implementation Complexity High Medium High

Constraint Implementation Yes Yes Yes

Pattern characteristics exploitation No Yes Yes

Query effectiveness Low Medium Medium

Pattern validation No Yes Yes

Extensibility High Medium High

From the above table it is clear that the XML pattern-base implementation is the best
among the three choices. There are however some points (e.g. query effectiveness)
that it is not so efficient. This raises the question whether a special querying language
designed exclusively for patterns is needed, like the one proposed in [9].

5 Conclusions and Future Work

Since patterns are compact and rich in semantics representations of raw data [10],
they share some common characteristics, but also differentiate according to the type
they belong to. Moreover, there are also variations between patterns of the same type.

Patterns nature requires a data-oriented approach whereas traditional databases fol-
low a structure-oriented direction. For the pattern representation problem a semi-
structured model is more appropriate than a relational or an object-relational schema.
Using XML for the implementation of the pattern-base, we could achieve to build a
more complete and general PBMS. There are some points however, where XML
suffers such as query efficiency. To deal with efficiency problems a composite model
that will be based on both XML and object-relational models should be examined or
XML query methods should be developed. Although PMML is an XML-based lan-
guage and tends to support more and more pattern types, a more general aspect should
be adopted. Patterns should be defined per application or scientific area, so the system
should be open to user extensions. Pattern querying and data-to-pattern mapping are

24 E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis

issues that PMML is not currently taking into account, though important in order to
create a more complete PBMS.

References

1. CINQ (Consortium on Discovering Knowledge with Inductive Queries). http://www.cinq-
project.org.

2. CWM (Common Warehouse Model). http://www.omg.org/cwm.
3. Information Discovery Data Mining Suite. http://www.patternwarehouse.com/

dmsuite.htm.
4. ISO SQL/MM Part 6. http://www.sql-99.org/SC32/WG4/Progression_Documents/

FCD/fcd-datamining-2001-05.pdf, 2001.
5. Java Data Mining API, http://www.jcp.org/jsr/detail/73.prt.
6. PANDA (Patterns for Next-generarion Database Systems). http://dke.cti.gr/panda.
7. PMML (Predictive Model Markup Language). http://www.dmg.org/pmml-v3-0.html.
8. Rizzi S., Bertino E., Catania B., Golfarelli M., Halkidi M., Terrovitis M., Vassiliadis P.,

Vazirgiannis M., Vrahnos E.. Towards a logical model for patterns. Proc. ER Conference,
Chicago, IL, USA, 2003.

9. Terrovitis M., Vassiliadis P., Skiadopoulos S., Bertino E., Catania B., Maddalena A. Mod-
elling and Language Support for the Management of Pattern-Bases. Proc. SSDBM Confer-
ence, Santorini, Greece, 2004.

10. Theodoridis Y., Vazirgiannis M., et al. A manifesto for pattern bases. PANDA Technical
Report TR-2003-03, 2003. Available at http://dke.cti.gr/panda.

11. Vazirgiannis M., Halkidi M., Tsatsaronis G., Vrachnos E., et al. A Survey on Pattern Ap-
plication Domains and Pattern Management Approaches. PANDA Technical Report TR-
2003-01, 2003. Available at http://dke.cti.gr/panda.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

