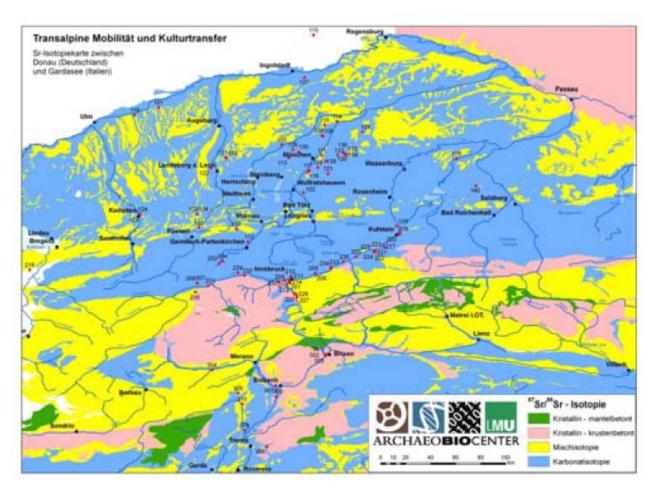
Empirically exploring the effect of oxygen on the isotopic mapping of cremated and uncremated bones of a Central European Alpine passage.

Markus Mauder, Eirini Ntoutsi, Gisela Grupe, Peer Kroeger

6th International Symposium on Biomolecular Archaeology 27. - 30.8.2014, Basel, Switcherland

Outline

- A short overview of our project and the important of isotopic fingerprinting
- Employing data mining for isoscaping
- Studying the effect of oxygen on the extracted models
- Discussion and outlook


Transalpine mobility and cultural transfer project

- An interdisciplinary project of the Archaebiocenter, LMU, Munich
- Research Unit of the German Science Foundation, DFG (FOR 1670)

- Goal: Establishment of an isotopic fingerprint for bioarchaeological finds, especially cremations, and its application to archaeological and cultural-historical problems.
- <u>Reference region</u>: the transalpine Inn-Eisack-Etsch-Brenner passage. Specific archaeological contexts from Late Bronze Age until Roman times.
- Project www: http://www.for1670-transalpine.uni-muenchen.de

Isotopic mapping

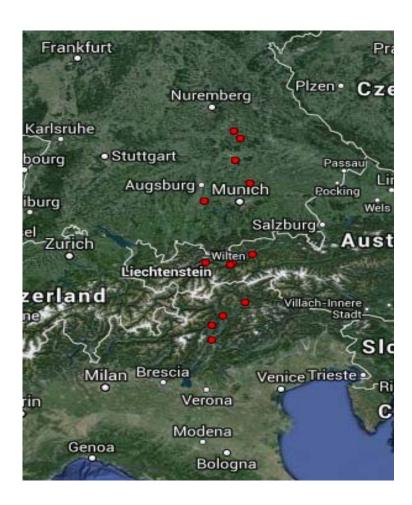
- Samples: animal findings
- Isotopes considered: Strondium, Lead, Oxygen

Building an isotopic fingerprint

- Isoscaping is a task of paramount importance in order to
 - describe/ "understand" an area
 - predict the most probable (spatial) origin of new samples
- Two data mining approaches towards this goal:
 - 1) The supervised way:

Given the locality of the samples, can we generate a model that captures the key characteristics of the localities and is able to predict the locality of new samples?

- Spatial coordinates of the samples are also part of the model.
- The list of localities (problem classes) is predefined.


2) The unsupervised way

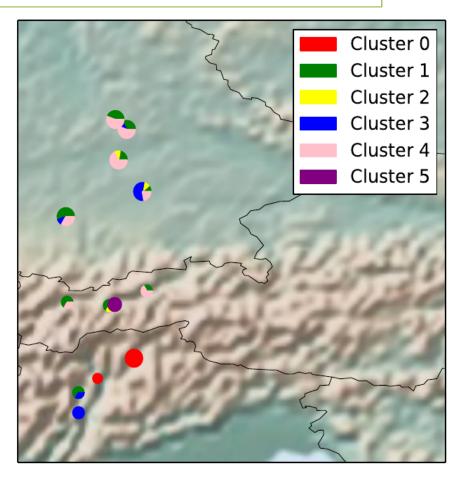
Can we group samples based solely on their isotopic values and check how the extracted *isotopic-clusters* are *spatially scattered*?

- Only isotopic values of the samples are used for clustering.
- Their coordinates are used for spatial validation/ exploration.

Our data

- Dataset consists of ~100 samples
- Each sample described in terms of:
 - Spatial coordinates (lat, long)
 - 3 isotopes (Sr, Pb, O) and
 - 7 isotope ratios
 - 87Sr/86Sr
 - 208Pb/204Pb
 - 207Pb/204Pb
 - 206Pb/204Pb
 - 208Pb/207Pb
 - 206Pb 207Pb
 - 180PO4

Geographic distribution of the samples


Unsupervised learning

How do the *clusters of isotopic-similar samples* correlate with the actual locations of the samples?

Settings

- All 7 isotope features used for clustering
- Assumption that data are generated by Gaussian mixture models
- EM algorithm to estimate the model parameters
- Cluster population

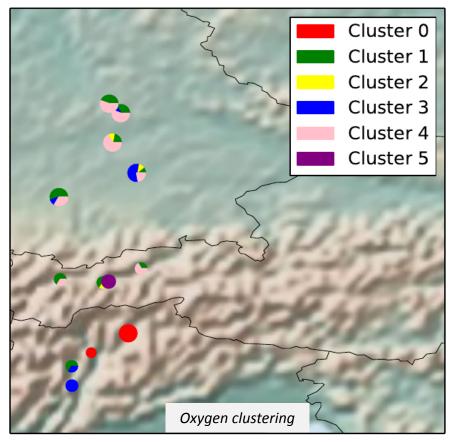
```
0 14 (15%)
1 29 (30%)
2 3 (3%)
3 16 (17%)
4 27 (28%)
5 7 (7%)
```

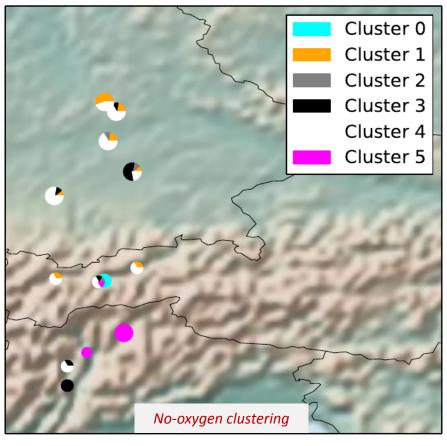

Detected clusters versus locations of the samples

Supervised learning

Are region-specific models good predictors for the origin of new samples?

Settings

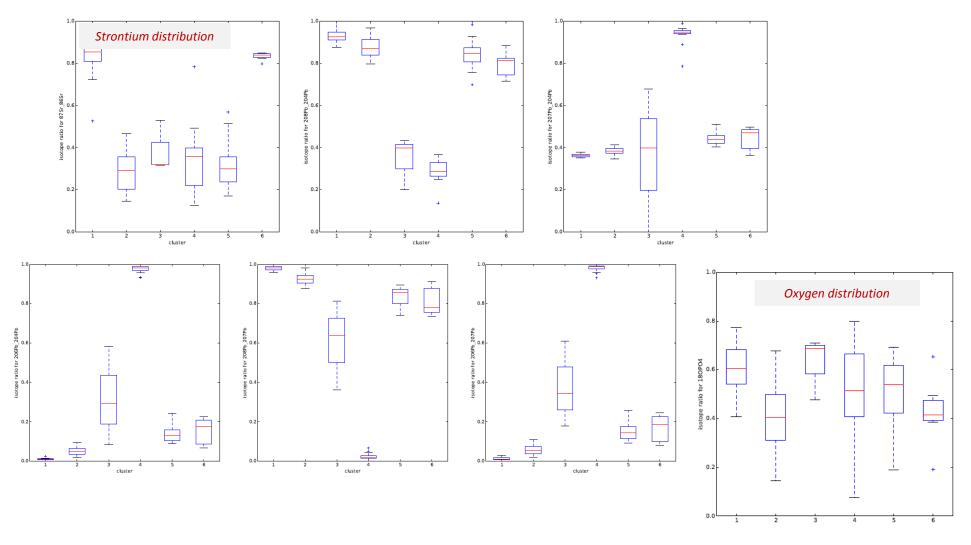

- The data were categorized into classes "north", "middle", "south" Alps based on sample coordinates.
- 10-fold cross validation (9 folds for training, 1 for testing)
- A kNN classifier is built upon the training set
- The model is evaluated upon the test set


TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area
0.833	0.115	0.837	0.833	0.832	0.868

The effect of oxygen

- The problem: Oxygen is sensitive to cremation, in contrast to strontium and lead
- Question: Is oxygen necessary for our analysis?
 - Quality might get lower of course but how worse?
- Why are interested in this?
 - A practical issue: we have a small uncremated sample set (~100 instances), it would be great if we can increase it by including uncremated samples.
 - A research question: how important is oxygen for fingerprinting?
 - A broader research question (for Data Mining): stability of data mining models under reduced feature spaces.
- Methodology:
 - Repeat the experiments by omitting oxygen
 - Find out how and where the with and without oxygen results "differ".
 - the ``differ" term depends on the Data Mining task per se

Unsupervised learning


0	14	(15%)
1	29	(30%)
2	3	(3%)
3	16	(17%)
4	27	(28%)
5	7	ı	7%)

Detected clusters versus locations of the samples

Migration table		no-oxygen clustering					
Wilgiation	table	cluster 0	cluster 1	cluster 2	cluster 3	cluster 4	cluster 5
Oxygen	cluster 0	0	0	0	0	0	1.0
clustering	cluster 1	0	0	0	0	0.97	0.03
	cluster 2	0	0	1.0	0	0	0
	cluster 3	0	0	0	1.0	0	0
	cluster 4	0	0.56	0	0	0.44	0
	cluster 5	1.0	0	0	0	0	0

0	7	(7%)
1	15	(16%)
2	3	(3%)
3	16	(17%)
4	40	(42%)
5	15	(16%)

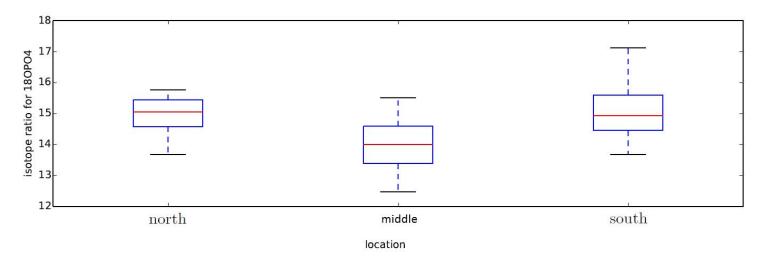
Isotope distribution per cluster (Oxygen case)

Supervised learning

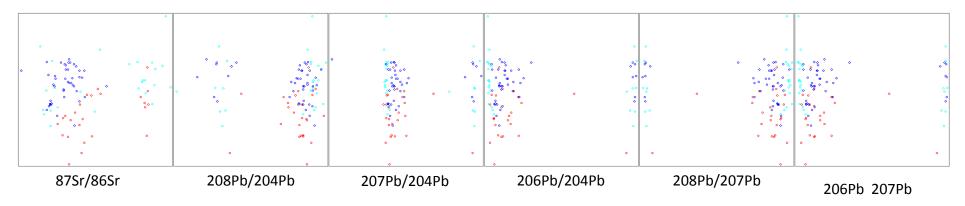
Are region-specific models good predictors for the origin of new samples?

Settings

- The data were categorized into classes "north", "middle", "south" Alps based on sample coordinates.
- 10-fold cross validation (9 folds for training, 1 for testing)
- A kNN classifier is built upon the training set
- The model is evaluated upon the test set


Evaluating the oxygen effect

Experiments with and without oxygen


	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area
Oxygen	0.833	0.115	0.837	0.833	0.832	0.868
No oxygen	0.76	1.168	0.768	0.76	0.759	0.785

How oxygen is correlated to other isotopes and location

Oxygen isotope by location

Oxygen correlation to other attributes

Discussion on the findings and next steps

- Our sample is to small to make general statements
 - ~100 samples
 - Even less for the unsupervised case, since 10% is kept out for model testing
- Our initial analysis seems promising though
- Both supervised and unsupervised learning show that the omission of oxygen does not completely destroy the mining models, models are stable to a certain extend.
 - In the unsupervised case, most of the clusters of the oxygen case "survive" to the non-oxygen case.
 - In the supervised case, still acceptable performance scores
 - Lower scores are to be expected due to information loss incurred by oxygen omission
- A real crash test though would be the evaluation of models performance when the cremated samples are available.
- Combination of uncremated and cremated samples for model improvement.

Thank you for your attention

Questions?