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Preface

The amount of patterns extracted nowadays from Knowledge Dis-
covery and Data Mining (KDD) is rapidly growing, thus imposing
new challenges regarding their management. One of the most impor-
tant operations on the extracted pattern sets is that of dissimilarity
assessment which raises a lot of fruitful research issues and results
in a variety of important applications.

This dissertation studies several issues that arise during the pat-
tern dissimilarity assessment process. At first, we propose a generic
framework for the comparison of arbitrary complex patterns de-
fined over raw data and over other patterns. Next, we study specific
dissimilarity problems for the most popular pattern types, namely
frequent itemsets, decision trees and clusters. More specifically, for
the case of frequent itemset patterns, we study how the mining pa-
rameters affect the dissimilarity assessment process. For the case
of decision tree patterns, we propose a framework that evaluates
dissimilarity between both decision trees and classification datasets.
Finally, for the case of clusters, we propose dissimilarity measures
between clusters and clusterings, which we then employ for change
detection in dynamic populations. All the above were studied un-
der the consideration that patterns (of any type) are composed of a
structure and a measure component, which opens a field towards a
unified model for KDD results.

Irene Ntoutsi



4



Acknowledgements

He dies a slow death who quits a project before starting it, not asking

about what he doesn’t know.

No slow death for me, Pablo Neruda

My very special thanks to my advisor, Asst. Prof. Yannis
Theodoridis, for his support and guidance during all these years.
His knowledge and experience has been very supportive all those
times where specific problems seemed to be insuperable. His atti-
tude inspired me in both scientific and human level.

Much of the work in this thesis is a result of collaboration. With
Prof. Myra Spiliopoulou we worked together on cluster evolution
issues and I would like to thank her not only for her contribution
but also for her hospitality in Magdeburg. With Ilaria Bartolini,
Marco Patella and Prof. Paolo Ciaccia, we worked together on the
PANDA framework; this was my first external collaboration and I
would like to thank them a lot for their confidence. With Alexandros
Kalousis we collaborated by chance, starting from a square in Porto;
I would like to thank him for his help with decision trees.

I would like to thank my labmates in the Database Group (Kostas,
Evaggelos, Gerasimos, Elias, Nikos, Despoina, Nikos) for our coop-
eration but also for our nice and stress-free conversations.

Also, I would like to thank all the scientists I met all these years,
since they affected my way of thinking about the PhD and scientific
life. I would like to mention here the symposium in Mantaneia, the
meetings for the PANDA project, the HDMS conferences and the
summer school in Bolzano. Special thanks to Assoc. Prof. Michalis
Vazirgiannis, for his fruitful comments.

My thanks go to all my friends for being there for me and under-
standing my up and down moods. Many thanks to Spyros for a lot
of corrections in English. Special thanks to Nikos for substantially
help me, supporting me and believing in me all these years.

Finally, I would like to thank my parents and my sisters for their
endless love and care.

Irene Ntoutsi

5



6



Contents

1 Pattern Management 17
1.1 The compulsory need for patterns . . . . . . . . . . . 17
1.2 The KDD process and the Data Mining step . . . . . 18
1.3 Pattern management . . . . . . . . . . . . . . . . . . 20

1.3.1 Scientific approaches . . . . . . . . . . . . . . 20
1.3.2 Industrial approaches . . . . . . . . . . . . . . 22

1.4 Pattern dissimilarity assessment . . . . . . . . . . . . 23
1.4.1 The importance of dissimilarity assessment . . 23
1.4.2 The challenges of dissimilarity assessment . . 26

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . 28

2 Preliminaries on Patterns 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Pattern representation . . . . . . . . . . . . . . . . . 32
2.3 Decision trees . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Clusters and clusterings . . . . . . . . . . . . . . . . 37
2.5 Frequent itemsets and association rules . . . . . . . . 40
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 42

3 The Panda Framework 45
3.1 Motivation and requirements . . . . . . . . . . . . . . 46
3.2 Pattern representation in Panda . . . . . . . . . . . 48
3.3 The Panda framework for assessing dissimilarity be-

tween patterns . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Dissimilarity between simple patterns . . . . . 54
3.3.2 Dissimilarity between complex patterns . . . . 58

3.4 Implementation issues . . . . . . . . . . . . . . . . . 66
3.4.1 Basic framework classes . . . . . . . . . . . . 67
3.4.2 Implementing the application . . . . . . . . . 69

3.5 Running Panda for different pattern types . . . . . . 72
3.5.1 Application to sets of itemsets . . . . . . . . . 73
3.5.2 Application to decision trees . . . . . . . . . . 76

7



8 CONTENTS

3.5.3 Application to collections of documents . . . . 78

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 Open issues . . . . . . . . . . . . . . . . . . . . . . . 86

4 Effect of Mining Parameters 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Background on the FIM problem . . . . . . . . . . . 89

4.3 Comparing FI lattices . . . . . . . . . . . . . . . . . 91

4.3.1 Parthasarathy-Ogihara approach . . . . . . . 92

4.3.2 FOCUS approach . . . . . . . . . . . . . . . . 92

4.3.3 Li-Ogihara-Zhou approach . . . . . . . . . . . 93

4.3.4 Common background of the three approaches 94

4.4 Effect of mining parameters on dissimilarity . . . . . 95

4.4.1 Effect of minSupport threshold on dissimilarity 96

4.4.2 Effect of lattice representation on dissimilarity 98

4.5 Experimental evaluation . . . . . . . . . . . . . . . . 101

4.5.1 Comparing dissimilarity in data and FI spaces 102

4.5.2 Effect of minSupport threshold . . . . . . . . 103

4.5.3 Effect of lattice representation . . . . . . . . . 106

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Open issues . . . . . . . . . . . . . . . . . . . . . . . 109

5 A Semantic Comparison Framework 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Preliminaries on decision trees . . . . . . . . . . . . . 114

5.3 Measuring deviation using decision trees . . . . . . . 114

5.3.1 Decision tree partitioning information . . . . . 116

5.3.2 Decision tree overlay partitioning information 119

5.3.3 Dissimilarity measures for decision trees and
classification datasets . . . . . . . . . . . . . . 122

5.4 Experimental evaluation . . . . . . . . . . . . . . . . 126

5.4.1 Experimental settings . . . . . . . . . . . . . . 126

5.4.2 Qualitative evaluation of the proposed seman-
tic similarity measure . . . . . . . . . . . . . . 128

5.4.3 Quantative evaluation of the proposed seman-
tic similarity measure . . . . . . . . . . . . . . 132

5.5 Related work . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 Open issues . . . . . . . . . . . . . . . . . . . . . . . 138



CONTENTS 9

6 Similarity between Clusters 143
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 Monitoring dynamic environments . . . . . . . . . . . 146
6.3 The MONIC framework for detecting cluster transitions148

6.3.1 Cluster matching . . . . . . . . . . . . . . . . 151
6.3.2 Cluster transitions in MONIC . . . . . . . . . 152

6.4 The MONIC+ framework for tracing cluster transi-
tions for different cluster types . . . . . . . . . . . . . 157
6.4.1 Cluster matching for different cluster types . . 158
6.4.2 Type-dependent detection of transitions . . . 159

6.5 The Evolution Graph history . . . . . . . . . . . 162
6.5.1 Evolution Graph model . . . . . . . . . . 162
6.5.2 Evolution Graph construction . . . . . . . 164
6.5.3 The traceset of the Evolution Graph . . . 166
6.5.4 Evolution Graph exploitation . . . . . . . 167

6.6 The FINGERPRINT framework for summarizing clus-
ter evolution . . . . . . . . . . . . . . . . . . . . . . . 170
6.6.1 The Notion of Summary for a Trace . . . . . . 171
6.6.2 Batch Summarization of the Evolution Graph174
6.6.3 Incremental Summarization of the Evolution

Graph . . . . . . . . . . . . . . . . . . . . . 176
6.7 Experimental study . . . . . . . . . . . . . . . . . . . 177

6.7.1 Experiments on MONIC+ over synthetic data 178
6.7.2 Experiments on MONIC over the ACM H.2.8

document collection . . . . . . . . . . . . . . . 182
6.7.3 Experiments on FINGERPRINT . . . . . . . 188

6.8 Related work . . . . . . . . . . . . . . . . . . . . . . 193
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . 198
6.10 Open issues . . . . . . . . . . . . . . . . . . . . . . . 199

7 Conclusions and Outlook 201
7.1 Summary of contributions . . . . . . . . . . . . . . . 201
7.2 Discussion on future work . . . . . . . . . . . . . . . 203



10 CONTENTS



List of Figures

1.1 The KDD steps . . . . . . . . . . . . . . . . . . . . . 19
1.2 Comparing the outcome of different clusterings . . . . 25
1.3 Comparing DM outcomes with respect to a target

pattern set . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Comparing clusters (left top), association rules (left

bottom) and decision trees (right) . . . . . . . . . . . 27
1.5 Comparing clusterings . . . . . . . . . . . . . . . . . 27
1.6 Dissimilarity reasoning . . . . . . . . . . . . . . . . . 28

2.1 An example of a decision tree . . . . . . . . . . . . . 34
2.2 The attribute space partitioning achieved by the DT

of Figure 2.1 . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 An example of a small dataset (left) and the resulting

k-means clustering for k = 4 (right) . . . . . . . . . . 38
2.4 An example of a small dataset (left) and the resulting

dendrogram (right) . . . . . . . . . . . . . . . . . . . 38
2.5 Examples of the DBScan algorithm . . . . . . . . . . 39
2.6 An example of extensional-intensional cluster descrip-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 An example of a frequent itemset lattice . . . . . . . 41

3.1 Assessment of dissimilarity between (simple) patterns 55
3.2 The matching matrix between complex patterns cp1, cp2 59
3.3 1–1 Matching . . . . . . . . . . . . . . . . . . . . . . 60
3.4 N–M Matching . . . . . . . . . . . . . . . . . . . . . 60
3.5 Dynamic Time Warping (DTW) Matching . . . . . . 62
3.6 Assessment of structural dissimilarity between com-

plex patterns . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Two web sites to be matched (pages of the same bor-

derline (and color) are about the same topic) and the
structure and measure dissimilarity scores between
the matched pages. . . . . . . . . . . . . . . . . . . . 66

3.8 The Pattern class . . . . . . . . . . . . . . . . . . . . 68

11



12 LIST OF FIGURES

3.9 The Pattern class hierarcy . . . . . . . . . . . . . . . 68
3.10 Complex patterns, matchers and aggregation functions 69
3.11 Two Stock patterns (denoted by S in the figure) and

their component StockValue patterns (denoted by SV
in the figure) . . . . . . . . . . . . . . . . . . . . . . 70

3.12 Main form of the application . . . . . . . . . . . . . . 72
3.13 Comparing two SetOfStocks patterns under 1–1 match-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.14 Comparing two SetOfStocks patterns using the op-

timal HungarianMatcher (left) and the sub-optimal
GreedyMatcher(right) . . . . . . . . . . . . . . . . . 73

3.15 Visualization of matching between the two SetOfS-
tocks patterns of Figure 3.14 . . . . . . . . . . . . . . 74

3.16 The behavior of the combiner with respect to disstruct

and dismeas . . . . . . . . . . . . . . . . . . . . . . . 75
3.17 Impact of (dataset) noise on the dissimilarity of sets

of itemsets for the Hungarian and the Greedy matchers 76
3.18 Impact of (pattern space) noise on DT dissimilarity . 78
3.19 Comparing journals from the DBLP database . . . . 79

4.1 Two lattices of frequent itemsets: A (left), B (right). 91
4.2 Effect of δ increase on the lattice structure (σ = 0.1) 96
4.3 Effect of compactness level (FI, CFI, MFI) on the

lattice structure (σ = 0.1) . . . . . . . . . . . . . . . 99
4.4 Impact of dataset noise increase on FI dissimilarity:

D = T10I4D100K, σ = 0.5% (top), D = chess,
σ = 80% (bottom). . . . . . . . . . . . . . . . . . . . 103

4.5 Impact of minSupport increase δ on FI dissimilarity:
D = T10I4D100K, σ = 0.5% (top), D = chess,
σ = 90% (bottom). . . . . . . . . . . . . . . . . . . . 105

4.6 Itemsets distribution at different support levels for
(a) D = T10I4D100K, σ = 0.5% and (b) D = chess,
σ = 90% . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Impact of noise on dissimilarity for FI-CFI (dotted
lines), FI-MFI (solid lines): D = T10I4D100K, σ =
0.5% (top), D = chess, σ = 80% (bottom). . . . . . . 107

5.1 Two decision trees, DT1, DT2 . . . . . . . . . . . . . 115
5.2 The partitioning of DT1 (top), DT2 (bottom) . . . . 116
5.3 The overlay partitioning RDT1×DT2 . . . . . . . . . . . 120
5.4 Overlaying regions R1 ∈ DT1 and R3 ∈ DT2 (instance

values have been normalized) . . . . . . . . . . . . . 121
5.5 Evolution of SH(DTp, DT100) with sampling size p . . 128



LIST OF FIGURES 13

5.6 Evolution of the decision trees semantic similarity
measures with the sampling rate (first column) and
with SH (second column) . . . . . . . . . . . . . . . . 130

5.7 Evolution of the decision trees semantic similarity
measures with the sampling rate (first column) and
with SH (second column). . . . . . . . . . . . . . . . 131

6.1 The system architecture . . . . . . . . . . . . . . . . 146
6.2 Monitoring dynamic environments (window size = 2) 147
6.3 A dynamic population at two timepoints t1 (top), t2

(bottom) . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Detecting cluster transitions . . . . . . . . . . . . . . 153
6.5 Kurtosis example . . . . . . . . . . . . . . . . . . . . 157
6.6 Skewness example . . . . . . . . . . . . . . . . . . . . 157
6.7 Example of an Evolution Graph(EG) . . . . . . . 163
6.8 Evolution Graph building algorithm . . . . . . . . 165
6.9 BatchFINGERPRINT for offline summarization of the

Evolution Graph . . . . . . . . . . . . . . . . . . 175
6.10 IncrementalFINGERPRINT for online construction and

summarization of the Evolution Graph . . . . . . . . 176
6.11 Type B1 clusters (found with EM) at timepoints t1, t2

(top); t3, t4 (middle) and t5, t6 (down) . . . . . . . . . 180
6.12 Type A clusters (found with K-means) at timepoints

t1, t2; t3, t4 and t5, t6 . . . . . . . . . . . . . . . . . . 181
6.13 Cluster transitions for different values of τmatch: (a)

Survived clusters, (b) split clusters and (c) disap-
peared clusters . . . . . . . . . . . . . . . . . . . . . 185

6.14 Cluster transitions for different values of τsplit: (a)
Split clusters and (b) disappeared clusters . . . . . . 186

6.15 Network Intrusion dataset: Impact of threshold δ on
compactness gain . . . . . . . . . . . . . . . . . . . . 190

6.16 Charitable Donation dataset: Impact of threshold δ
on compactness gain . . . . . . . . . . . . . . . . . . 191

6.17 ACM H.2.8 dataset: Impact of threshold δ on com-
pactness gain . . . . . . . . . . . . . . . . . . . . . . 191

6.18 Network Intrusion dataset: Impact of δ on informa-
tion loss . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.19 Charitable Donation dataset: Impact of δ on infor-
mation loss . . . . . . . . . . . . . . . . . . . . . . . 192

6.20 ACM H.2.8 dataset: Impact of δ on information loss . 193
6.21 Network Intrusion dataset: Correlation between in-

formation loss and compactness gain . . . . . . . . . 194



14 LIST OF FIGURES

6.22 Charitable Donation dataset: Correlation between
information loss and compactness gain . . . . . . . . 194

6.23 ACM H.2.8 dataset: Correlation between information
loss and compactness gain . . . . . . . . . . . . . . . 195



List of Tables

2.1 A sample of the training set for the DT of Figure 2.1 34
2.2 A sample transaction database D . . . . . . . . . . . 40

3.1 List of symbols for Chapter 3 . . . . . . . . . . . . . 52
3.2 DBLP journals . . . . . . . . . . . . . . . . . . . . . 78

4.1 List of symbols for Chapter 4 . . . . . . . . . . . . . 92
4.2 Dataset characteristics . . . . . . . . . . . . . . . . . 101

5.1 List of symbols for Chapter 5 . . . . . . . . . . . . . 115
5.2 Description of datasets . . . . . . . . . . . . . . . . . 127
5.3 Correlation coefficient of SP Y

X
(DTp, DT100) with SH(DTp, DT100)133

5.4 Mean absolute deviation of SP Y
X

(DTp, DT100) with SH(DTp, DT100)133

6.1 List of symbols for Chapter 6 . . . . . . . . . . . . . 149
6.2 External transitions of a cluster . . . . . . . . . . . . 152
6.3 Internal transitions of a cluster . . . . . . . . . . . . 156
6.4 Observable transitions for each cluster type . . . . . . 159
6.5 Indicators for Type A cluster transitions . . . . . . . 160
6.6 Indicators for spherical clusters . . . . . . . . . . . . 160
6.7 Indicators for Type B2 cluster transitions . . . . . . . 161
6.8 Transitions for Type B1 clusters . . . . . . . . . . . . 179
6.9 Transitions for Type A clusters . . . . . . . . . . . . 182
6.10 Passforward ratios for different values of survival thresh-

old . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.11 Lifetime of clusterings . . . . . . . . . . . . . . . . . 186

15



16 LIST OF TABLES



Chapter 1

Pattern Management

In this chapter, we analyze the need for pattern management em-
phasizing on a specific aspect of the pattern management problem,
the dissimilarity assessment issue.

The chapter is organized as follows: In Section 1.1, we explain
why patterns are so popular nowadays. In Section 1.2, we overview
the basics of the KDD process emphasizing on the Data Mining
step. In Section 1.3, we present the motivation behind pattern man-
agement and overview the work performed so far in this area. In
Section 1.4, we concentrate on the pattern dissimilarity assessment
problem, where we justify its importance and present its challenges.
In Section 1.5, we outline the organization of the thesis.

Index terms pattern management, Pattern Base Management
Systems (PBMS), dissimilarity assessment problem.

1.1 The compulsory need for patterns

Due to the wide spread usage of computer devices nowadays, our
ability to produce and collect data has impressively increased. As a
result, huge amounts of data are collected from different application
domains like business, science, telecommunication and health care
systems. Also, the World Wide Web overwhelms us with informa-
tion. According to a recent survey [60], the world produces between
1 and 2 exabytes of unique information per year, which is roughly
250 megabytes for every man, woman and child on earth.

Apart from their huge quantity, modern data are also character-
ized by low level of abstraction. For example, supermarkets collect
transaction data of their customers consisting of the items purchased
by a customer in a single transaction. Telecommunication compa-

17



18 CHAPTER 1. PATTERN MANAGEMENT

nies collect calling data including details such as the time and dura-
tion of a call. Web site owners collect click-stream data from their
visitors concerning information such as the sequence of pages vis-
ited during a session and the duration of browsing a single page.
Tracking devices, e.g., GPS, periodically transmit location and time
information to main servers.

Other characteristics of the data nowadays are their high degree
of diversity (e.g., transactions of a supermarket, satellite images,
music parts) and complexity (e.g., text, image, sound, video). Fur-
thermore, data are not only produced in a centralized but also in a
distributed way, which imposes new challenges regarding their man-
agement.

Due to the above mentioned reasons, it is impossible for humans
to thoroughly investigate these data collections through a manual
process. Knowledge Discovery in Databases (KDD) and Data Min-
ing (DM) provide a solution to this problem by generating patterns
from raw data. DM constitutes actually one of the steps of the KDD
process; we overview the KDD steps in the next section concentrat-
ing mainly on the DM step.

1.2 The KDD process and the Data Mining step

Definition 1 Knowledge Discovery in Databases (KDD) is a non-
trivial procedure for the extraction of valid, previously unknown, po-
tentially useful and easily understood patterns from data [29].

This is a general definition of the KDD process. The term data
corresponds to a set of instances stemming from the problem under
investigation. It might be for example, a set of customer transac-
tions for a supermarket application, or a set of call records for a
telecommunication application. The term pattern refers to an ex-
pression in a specific language that describes some subset of the
data, e.g., “If income ≤ 10K, then the loan request is rejected”.
The discovered patterns should be valid, which means that to a cer-
tain degree they should also hold for new, previously unseen problem
instances. Patterns should also be useful and facilitate the end user
in the decision making process. And definitely, the end user should
be able to interpret patterns in an efficient and effective way.

The term KDD refers to the whole process of discovering knowl-
edge from data. It consists of five steps: i) Selection of data which
are relevant to the analysis task, ii) Preprocessing of these data,
including tasks like data cleaning and integration, iii) Transforma-
tion of the data into forms appropriate for mining, iv) Data Mining
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for the extraction of patterns, and v) Interpretation/Evaluation of
the generated patterns so as to identify those patterns that repre-
sent real knowledge, based on some interestingness measures. These
steps are depicted in Figure 1.1.

Figure 1.1: The KDD steps

The Data Mining step is in the core of the KDD process.

Definition 2 Data Mining is a step in the KDD process that consists
of applying data analysis and discovery algorithms that produce a
particular enumeration of patterns (or models) over the data [29].

Patterns can be described as compact and rich in semantics repre-
sentations of raw data [85]: compact since they provide a high level
description of the raw data characteristics and rich in semantics
since they reveal new knowledge hidden in the mass of raw data.

The main goals of the Data Mining step are prediction and de-
scription. Prediction refers to the prediction of the value of a spe-
cific attribute and is applied over new, previously unseen problem
instances, whereas description refers to the extraction of easily in-
terpretable patterns from data.

The main Data Mining tasks are classification, clustering and as-
sociation rules extraction. Classification aims at building a model
that distinguishes data into classes; this model is used for predicting
the class of objects with unknown class label. A typical classification
problem is that of loan credit assignment in a bank, where the goal
is to discover whether some loan application should be accepted or
rejected. Clustering refers to the partitioning of data into groups so
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as similar instances are placed in the same group. As a clustering ex-
ample, consider the grouping of people according to their education
and salary. Association Rules Extraction aims at discovering associ-
ations between attribute-value pairs that occur frequently together
in the data. A well known application is that of market basket anal-
ysis, where the goal is to discover the products that people tend to
buy together.

Among the most popular data mining models (or pattern types)
are decision trees, association rules, clusters and sequences.

1.3 Pattern management

Due to the wide application of KDD and DM and as a result of
data flood, the amount of patterns extracted nowadays from het-
erogeneous data sources is huge and, quite often, non-manageable
by humans. Thus, there is a need for pattern management includ-
ing issues like modeling, storage, retrieval and querying of patterns.
Pattern management is not a trivial task. Apart from the huge
amounts of the generated patterns, another reason is the large va-
riety of pattern types as a result of the different application needs
that each type tries to accomplish.

So far, the majority of the work in the data mining area mainly
focuses on efficient mining, putting aside the pattern management
problem. Recently, however, the need for pattern management has
been recognized by both scientific and industrial parts resulting in
a number of approaches towards efficient pattern management. The
main difference between scientific and industrial approaches lies in
the fact that scientific approaches try to deal with all the aspects
of the pattern management problem including both representation
and manipulation issues. On the other hand, industrial approaches
mainly focus on pattern representation and storage issues, aiming at
easy interchange of patterns between different vendor applications.
In the next subsections, we quickly overview these approaches; fur-
ther details can found in [76, 92].

1.3.1 Scientific approaches

Scientific approaches try to provide an overall solution to the pattern
management problem, providing both representation, storage and
retrieval capabilities. The basic approaches in this category are the
so-called inductive databases, 3–Worlds model and PANDA model.



1.3. PATTERN MANAGEMENT 21

Inductive databases The inductive databases framework [43],
introduced in 1996, is inspired by the idea that the data mining
process should be supported by the database technology. This is the
reason why inductive databases rely on an integrated architecture
where data and patterns are stored in the same repository.

Within the inductive databases framework, the KDD process is
considered to be a kind of extended query processing in which users
can query both data and patterns. Towards this aim, a so–called
inductive query language is used, which comprises an extension of a
database query language allowing to: i) select, manipulate and query
data as in standard queries, ii) select, manipulate and query patterns
and, iii) execute cross–over queries over patterns, i.e., queries that
associate patterns to raw data. Due to the importance of querying
in inductive databases, several query languages-extensions to SQL
have been proposed like DMQL [38], MINE–RULE [63] and MINE–
SQL [44].

3-Worlds model The 3-Worlds model (3W) [49], introduced in
2000, provides a unified framework for pattern management and, to
the best of our knowledge, it comprises the first attempt towards
discrete pattern management.

The 3W model is based on a separated architecture consisting
of three distinct worlds: i) the intensional world of patterns, ii)
the data world of data, and iii) the extensional world that deter-
mines the mappings between data and patterns. The manipulation
of each world can be performed through an algebra of choice. For
the intensional world, the authors propose the dimension algebra
which extends traditional relational algebra operators through new
operators that add significant value to data mining and analysis.
To facilitate moving in and out of the worlds, the authors propose
the so called bridge operators namely populate, mine, lookup and
refresh.

PBMS (Pattern Base Management Systems) The PBMS
model [85], introduced in 2003 in the settings of the PANDA project
[80], provides a unified framework for the representation of hetero-
geneous patterns relying on a separated architecture where data and
patterns are stored in different repositories. The different pattern
types are represented under a common schema, as quintuples of the
form pt = (n, ss, ds, ms, et): n is the name of the pattern type; ss
is the structure schema that defines the pattern space; ds is the
source schema that defines the source data space; ms is the mea-
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sure schema that describes the measures that quantify the quality
of the source data representation achieved by the patterns; et is
the expression template that describes the relationship between the
source space and the pattern space, thus carrying the semantics of
the patterns. A pattern comprises an instantiation of a pattern type.
Semantically related patterns are grouped into classes.

For the manipulation of patterns, a Pattern Manipulation Lan-
guage (PML) and a Pattern Query Language (PQL) have been pro-
posed that support queries over patterns and cross over queries be-
tween patterns and data. The basic model [85] has been extended
in [20] by adding, in pattern definition, the notions of temporal va-
lidity, semantic validity and safety. Prototype implementations of
the PANDA model appear in [19, 53, 52].

1.3.2 Industrial approaches

Industrial approaches mainly focus on pattern representation and
storage aiming at the easy interchange of patterns between different
vendor applications rather than the efficient management of these
patterns. Several specifications and standards (PMML, CWM, ISO
SQL/MM, JDMAPI) have been proposed in this category, some of
which are described bellow. Also, extensions of existing commer-
cial DBMS have been proposed like Oracle Data Mining [78], IBM
DB2 Intelligent Miner [42] and Microsoft SQL Server Analysis Man-
ager [67].

Predictive Model Markup Language (PMML) PMML [26]
is an XML-based language providing a quick and easy way for com-
panies to define data mining and statistical models using a vendor–
independent method and share these models between PMML com-
pliant applications. The structure of the models is described by an
XML Schema.

ISO SQL/MM SQL/MM [93] comprises a specification for sup-
porting data management of common data types (text, images, DM
results, etc.) relevant to multimedia and other knowledge intensive
applications. Part 6 of SQL/MM specification refers to Data Min-
ing. SQL/MM defines first-class SQL types that can be accessed
through SQL:1999 base syntax. In the case of DM models, every
model has a corresponding SQL structured user-defined type.
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Common Warehouse Model (CWM) CWM [22] is a spec-
ification that enables easy interchange of metadata between data
warehousing tools and metadata repositories in distributed hetero-
geneous environments. It consists of a number of sub–metamodels
representing common warehouse metadata in the areas of Data Re-
sources, Data Analysis (including OLAP and Data Mining) and
Warehouse Management.

Java Data Mining API (JDMAPI) Java Data Mining API [48]
addresses the need for an independent (of the underlying data min-
ing system) Java API that will support the creation, storage, access
and maintenance of data and metadata. It provides a standardized
access to data mining patterns represented in various formats, e.g.,
PMML [26].

1.4 Pattern dissimilarity assessment

So far, the importance of the pattern management problem has been
demonstrated together with the different aspects that management
involves (e.g., modeling, storage and manipulation of patterns) and
the work performed so far in the area by both scientific and indus-
trial parts.

Among the several interesting operators that might be defined
over patterns, one of the most important is that of dissimilarity as-
sessment, i.e., detecting how similar two patterns are to each other.
In the following subsections, several application examples are pre-
sented, which denote the importance of the dissimilarity assessment
problem and the challenges that it raises.

1.4.1 The importance of dissimilarity assessment

Defining similarity/distance1 operators over patterns results in a
variety of interesting applications. We briefly present some of them
below:

• Similarity queries

A straightforward application of a dissimilarity operator is to
express similarity queries over a set of patterns (or pattern
base) including k-nearest neighbor queries (i.e., find the k-most
similar pattern(s) to a query pattern) and range queries (i.e.,

1Similarity and distance are complementary notions; the generic term dissimilarity refers
to either distance or (the inverse of) similarity.
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find the most similar pattern(s) to a given pattern within a
given range). The efficient computation of dissimilarity is one
of the core issues for a PBMS [85] with applications in pattern
indexing and retrieval.

• Monitoring and change detection

Another application of dissimilarity is monitoring and detecting
changes in patterns, e.g., detect changes in customer behaviors
over time. This is especially useful nowadays since data are
highly dynamic and thus, the corresponding patterns are also
volatile and associated to some temporal semantics. Further-
more, it is usually more helpful for the end user to know how
the old patterns (which represent the current knowledge about
the problem) have been changed rather than to deal with a new
set of patterns (which represent the new knowledge about the
problem).

Change detection is also helpful for KDD synchronization, in
order to keep patterns up to date with respect to the corre-
sponding raw data (e.g., synchronizing patterns only when the
corresponding raw data have significantly changed).

• Dataset comparison

A common technique for the comparison of two datasets is to
compare their corresponding pattern sets, e.g., compare two
retail shops in terms of the buying behavior of their customers
(which might be captured through a clustering model). The
intuition behind utilizing pattern comparison for data compar-
ison, is that, to some degree, patterns preserve the information
contained in the original raw data, and therefore, dissimilarity
in pattern space could be considered as a measure of dissimi-
larity in the original raw data space.

Discovering a mapping (either exact or approximate) between
the dissimilarity in data and pattern space is really useful. For
example, we could avoid the hard task of comparing the original
datasets whenever the corresponding pattern sets are available
for comparison or even avoid the hard task of mining a dataset
whenever it is found to be similar to another dataset for which
the results of mining are already available.

• Evaluating data mining algorithms

Currently, the experimental comparison between two algorithms
(or the same algorithm with different criteria/parameters) is
limited to the visual interpretation of their results. However,
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such an evaluation could be carried out automatically by com-
paring their outcomes (Figure 1.2). Depending on the dataset
characteristics (e.g., dense vs. sparse datasets) an algorithm
might be more suitable than another. Therefore, one might
need to experiment with many algorithms and evaluate their
results in order to conclude which algorithm best fits her/his
needs.

Figure 1.2: Comparing the outcome of different clusterings

• Privacy aware data mining

There are cases where due to privacy reasons only patterns
and not the actual raw data are available. Depending on the
mining parameters, it is hard to recover the original raw data
(for example, deciding whether there is a dataset compatible
with a given set of frequent itemsets is NP-hard [64]). In this
case, we should rely on the available pattern sets in order to
compare the original datasets.

• Mining from distributed data sources

In a distributed environment, the mining is not centralized
since locally strong patterns should be also preserved. A com-
mon approach in this setting is to first cluster similar datasets
into groups and then perform mining over each group inde-
pendently [59]. The similarity between the datasets could be
evaluated in terms of their corresponding pattern sets.

• Discovering outlier or unexpected patterns

Discovering outliers or unexpected patterns constitutes another
application of dissimilarity, which is usually of great importance
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for the end user. A possible solution to this problem is to com-
pare a discovered pattern with a target one, possibly provided
by the user (Figure 1.3); patterns that significantly differ from
the target pattern might be considered as outliers.

Figure 1.3: Comparing DM outcomes with respect to a target pattern set

1.4.2 The challenges of dissimilarity assessment

In the previous section, a variety of examples has been presented
which indicate the importance of the pattern dissimilarity assess-
ment problem and motivate its further investigation.

However, defining dissimilarity operators for patterns is not an
easy task as it will be clear from the emerging challenges described
below:

Challenge 1 First of all, we should define dissimilarity operators
for the different pattern types, e.g., clusters (Figure 1.4, left top),
decision trees (Figure 1.4, right), association rules (Figure 1.4, left
bottom), frequent itemsets etc.

Challenge 2 Except for patterns defined over raw data (hereafter
called simple patterns), patterns defined over other patterns also
exist, e.g., a clustering of clusters (Figure 1.5), an association rule
over clusters, a forest of decision trees. For these patterns, here-
after called complex patterns, dissimilarity operators should also be
defined.
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Figure 1.4: Comparing clusters (left top), association rules (left bottom) and
decision trees (right)

Figure 1.5: Comparing clusterings

Challenge 3 Another interesting aspect of the dissimilarity assess-
ment problem is the semantics of the dissimilarity operators with re-
spect to the raw data from which patterns have been extracted. More
specifically, it is really useful to investigate whether dissimilarity in
pattern space depends on the dissimilarity in the original raw data
space; we refer to this problem as the dissimilarity reasoning prob-
lem (Figure 1.6).

In this thesis, we address the above mentioned challenges for
some of the most popular pattern types, namely frequent itemsets,
decision trees and clusters, whereas we also propose methods and
techniques for similarity estimation between generic and arbitrary
complex patterns like web sites and graphs.
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Figure 1.6: Dissimilarity reasoning

1.5 Outline of the thesis

The importance of the pattern management and, in particular, that
of the dissimilarity assessment problem clearly arises through the
discussion in this chapter. Although recently a lot of work has been
done in the area of pattern management, this work mainly focuses
on pattern representation, storage and querying aspects. A lot of
interesting issues are to be explored, like dissimilarity assessment,
indexing and visualization. In this thesis, we investigate different
aspects of the pattern dissimilarity assessment problem for some of
the most popular pattern types, namely frequent itemsets, decision
trees and clusters. Early versions of this discussion appears in [73,
74, 53, 92, 76, 55, 54].

In Chapter 2, we make an introduction to the basic data min-
ing pattern types studied in this thesis (namely, frequent itemsets,
decision trees and clusters) so as to make the reader familiar with
these concepts. In the same chapter, we also present a representa-
tion schema for patterns that utilizes both their extensional (i.e., in
terms of data) and intensional (i.e., in terms of patterns) description.
Early part of this work appears in [71, 75].

In Chapter 3, we present the Panda framework for the assess-
ment of dissimilarity between arbitrarily complex patterns. Panda is
capable of handling patterns defined over raw data (simple patterns)
as well as patterns defined over other patterns (complex patterns).
We instantiate Panda for basic pattern types, including frequent
itemsets, decision trees and clusters, and for more complex pattern
types, like collections of documents and web sites. This part is in
line with Challenge 2. An early version of our study has been pub-
lished in [9, 55, 54], whereas an extended version has been submitted
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in [10].
In Chapter 4, we concentrate on dissimilarity assessment between

sets of frequent itemsets. More specifically, we study how the differ-
ent mining parameters, namely the minSupport threshold used for
the generation of itemsets and the adopted frequent itemset lattice
representation (namely, frequent itemsets, closed frequent itemsets
or maximal frequent itemsets), affect the derived dissimilarity score
between two sets of itemsets. This part is in line with Challenge 1
and Challenge 3. An early version of this study appears in [69, 71],
whereas an extended version has been submitted in [77].

In Chapter 5, we concentrate on dissimilarity assessment between
decision trees and classification datasets. In particular, we present
a general similarity assessment framework based on decision tree
models, which includes as special cases i) the estimation of semantic
similarity between decision trees and ii) various forms of similar-
ity estimation on classification datasets, with respect to different
probability distributions defined over the attribute-class space of
the datasets. This part is in line with Chall enge 1 and Challenge 3.
Results have been previously published in [70, 71].

In Chapter 6, we concentrate on dissimilarity assessment between
clusters and clusterings, which are then used for change detection
and monitoring in dynamic environments. More specifically, we pro-
vide a typification of the different transitions that a cluster might
encompass, transition indicators for each transition type and a al-
gorithm for their detection. Furthermore, we study how the evo-
lution can be organized in an effective and efficient way so as to
facilitate the end user to gain more insights on the population and
to exploit the history of the population evolution. This part is in
line with Challenge 1 and Challenge 3. Part of this work appears
in [90, 89, 91, 88, 71, 54], whereas an extended version has been
submitted in [72].

We conclude our thesis in Chapter 7, where we also discuss open
issues and directions for future research.
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Chapter 2

Preliminaries on Patterns

In this chapter, we overview three popular data mining pattern types
relevant to our work, namely frequent itemsets (and their extensions,
association rules), clusters (and their groupings, clusterings) and
decision trees; our goal is to make the reader familiar with the notion
of patterns in Data Mining.

After a short introduction (Section 2.1), we describe a repre-
sentation schema for patterns based on both the extensional (i.e., in
terms of data) and intensional (i.e., in terms of patterns) description
of patterns (Section 2.2). Then we describe how the different pat-
tern types (decision trees, frequent itemsets/assoociation rules and
clusters/clusterings) can be expressed based on this schema (Sec-
tion 2.3, 2.4 and 2.5, respectively). Section 2.6 summarizes this
chapter.

Index terms data mining patterns, decision trees, frequent item-
sets, association rules, clusters, clusterings.

2.1 Introduction

Knowledge Discovery in Databases (KDD) and Data Mining (DM)
provide a solution to the information flood problem by extracting
valid, novel, potentially useful, and ultimately understandable pat-
terns from data [29]. Patterns constitute compact and rich in se-
mantics representations of raw data [85]; compact by means that
they summarize, to some degree, the amount of information con-
tained in the original raw data, and rich in semantics by means that
they reveal new knowledge hidden in the abundance of raw data.

Several pattern types exist in the literature, mainly due to the
wide heterogeneity of data and data mining applications, as well

31
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as due to the large variety of pattern extraction techniques as a
result of the different goals that a mining process tries to accomplish
(i.e., what are the data characteristics that the mining task tries to
highlight). Different data mining tasks achieve different insights
over the data: frequent itemsets capture the correlations between
attribute-value pairs, clusters reveal natural groups in data, decision
trees detect characteristics that predict (with respect to a given class
attribute) the behavior of future records, and so on.

2.2 Pattern representation

Patterns summarize raw data in a compact and semantically rich
way [94]. As such, the description of a pattern might be either
extensional, i.e., in terms of the data members participated in its
generation, or intensional, i.e., in terms of the meaning/concept
represented by the pattern. The extensional description of a pat-
tern is just an enumeration of its data members, thus it is common
for all pattern types. The intensional description of a pattern, how-
ever, reveals information about the “shape” and the semantics of
the pattern, thus it depends on the pattern type.

Regarding the intensional description of patterns, in [32] the au-
thors propose the 2-component property of patterns. According to
this property, a broad class of pattern types can be described in
terms of a structure and a measure component. The structure com-
ponent describes the structure of the patterns which are instances of
the particular pattern type; e.g., it is the “head” and the “body” in
case of an association rule pattern. The measure component relates
the patterns to the underlying raw data; e.g., it is the “support”
and the “confidence” in case of the association rule pattern. In
other words, the structural component describes the pattern space,
whereas the measure component quantifies how well the pattern
space describes the underlying raw data space.

The 2-component property of patterns has been extended in the
settings of the PANDA approach [85], where a unified model for the
representation of the different pattern types has been introduced.
This model, besides the structure and measure components, also
includes a source component that describes the dataset from which
patterns have been extracted and an expression component that
describes the relationship between the source data space and the
pattern space (c.f. Section 1.3.1).

Similar ideas appear in [49], where the authors introduce the 3-
Worlds model. In this model, patterns are described as constraints
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over the attribute space, whereas their relationships to the origi-
nal raw data space from which they have been extracted are also
preserved (c.f. Section 1.3.1).

To summarize, throughout this work we adopt the extensional-
intensional description of patterns. Regarding the extensional part,
patterns are described in terms of the data subset that contributed
in their generation (i.e., as an enumeration of the data instances).
Regarding the intensional part, the 2-component property of pat-
terns is adopted, that is, each pattern is described in terms of a
structure and a measure component.

2.3 Decision trees

Decision Trees (DTs) are very popular classification methods due to
their intuitive representation that render them easily understand-
able by humans. In this section, we provide some basic concepts on
DTs [65].

Let A = {A1, A2, ..., Am} be the set of attributes on which clas-
sification will be based (predictive attributes), where attribute Ai

has domain dom(Ai). Let C be the class attribute, i.e., the at-
tribute to be predicted, with domain dom(C) = {C1, C2, ..., Ck}
where k is the number of classes. The joint probability distribu-
tion of the predictive and the class attribute, P = dom(A1) ×
dom(A2) × · · · × dom(Am) × dom(C), is called problem distribu-
tion. The probability distribution of the predictive attributes, i.e.,
A = D(A1) × D(A2) × · · · × D(Am), is called attribute space distri-
bution.

The goal of a decision tree is to learn a predictor function f :
dom(A1)×dom(A2)×· · ·×dom(Am) → dom(C). Towards this goal,
a set of problem instances drawn from P is utilized; this is known as
the training set D. A decision tree T constructed from D provides
a classification of D instances into the Cj , j = 1 . . . k, classes based
on the values of the predictive attributes Ai, i = 1 . . .m.

Predictive attributes might be either numerical, categorical or
ordinal. The domain of a numerical attribute is an ordered set
(e.g., age, income), the domain of a categorical or nominal attribute
is a finite set without any natural ordering (e.g., colors, gender,
marital status), whereas the domain of an ordinal attribute is a set
of discrete values with an imposed order, but without any knowledge
regarding the absolute differences between values (e.g., preference
scale, severity of an injury). In practice, predictive attributes are
usually numerical.
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Regarding its structure, a decision tree consists of internal nodes
and leaf nodes. An internal node has an associated test condition
(splitting predicate) which specifies a test over some predictive at-
tribute (e.g., “Age ≥ 20”). Each branch descending from that node
corresponds to one of the possible values for this attribute. Most
common are binary predicates, i.e., predicates of the form “Yes” or
“No”. A leaf node provides the class label of the instances that fol-
low the path from the root to this node. If the instances belong to
more than one classes, this label might be the label of the majority
class. In the general case, a leaf node might be associated to some
degree to all problem classes; this degree/weight depends on the
amount of instances that fall into the leaf and belong to the specific
class.

In Figure 2.1 an example of a decision tree is depicted, which
refers to the bank loan assignment problem. There are two predic-
tive attributes: “Age” and “Income”, whereas the class attribute C
contains two values: C = {C1, C2}.

Figure 2.1: An example of a decision tree

A small part of the dataset used for the generation of the decision
tree of Figure 2.1 is depicted in Table 2.1.

Instance Age Salary Class
1 30 30K C1

2 35 10K C2

3 50 100K C1

Table 2.1: A sample of the training set for the DT of Figure 2.1

Decision tree evaluation As already stated, a DT is build upon
a training set D of problem instances drawn from the joint prob-
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ability distribution P of the predictive attributes and of the class
attribute. A “fully developed tree” will perfectly fit the training
set. However, a DT should not only fit the training set well, but
it should also predict correctly the class labels of future, previously
unseen problem instances; this property is known as the general-
ization accuracy of a DT. Overfitting the training set is a wrong
property for a DT, since it might follow every idiosyncrasy of the
training set, much of which are unlikely to occur in future problem
instances. The generalization accuracy of a DT is evaluated through
the miss-classification error (ME) measure, which is based on the
number of instances wrongly predicted by the DT model.

Ideally, we would like to know the ME of the classifier f on the
whole problem distribution P . However, since P is unknown (the
only we know are some instances drawn from it, i.e., the training
set), several techniques have been developed to estimate the miss-
classification error of a classifier f over the problem distribution P ,
namely ME(f, P ). The most common technique is the holdout test
estimate: the initial set of problem instances D is split into two
disjoint sets: the training set and the test set. The training set is
used to build the classifier, whereas the test set is used to evaluate
its performance. Usually, 1/3 of instances is used for testing and
2/3 is used for training. Other popular techniques in this category
are re–substitution estimation and V –fold cross validation.

A solution to the overffiting problem is tree pruning . Begin-
ning from the bottom DT level, the child nodes are pruned away if
the caused change in tree accuracy is less than a times the change
in tree complexity. Due to pruning, the resulting tree might not
perfectly predict its training set; this error is called re-substitution
error . Thus, a good DT should minimize both the re–substitution
error (with respect to the training set) and the miss–classification
error (with respect to an independent test set).

Attribute Space Partitioning The DT growing process can be
viewed as the process of partitioning the attribute space, i.e., the
space defined by the predictive attributes: D(A1) × D(A2) × · · · ×
D(Am), into a set of disjoint regions until each region contains in-
stances of the same class1. The border line between two neighboring
regions of different classes is known as the decision boundary. De-
cision boundaries are parallel to the attribute axis since each test
condition involves only a single attribute. Thus, decision regions are
axis parallel hyper-rectangles, also called isothetic [49].

1This holds in the extended case, since after pruning, a region might contain instances
from more than one problem classes.
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Each leaf node of the tree corresponds to a region R. A region
can be described extensionally as an enumeration of the data in-
stances that are mapped to the corresponding leaf node. A region
can be also described intensionally in terms of the corresponding
tree path, which starts from the root of the tree and results in the
corresponding leaf node. More specifically, the intensional descrip-
tion of a region consists of a structure and a measure component; the
structure component of a region is the conjunction of the conditions
across the corresponding tree path, whereas the measure component
of a region is the distribution of region instances into the different
problem classes.

The partitioning of DT presented in Figure 2.1 is depicted in
Figure 2.2.

Figure 2.2: The attribute space partitioning achieved by the DT of Figure 2.1

Let us now see how the region R1 of the DT (c.f. Figure 2.2) can
be described in terms of the extensional-intensional representation
schema. The structure component is: R1.struct = (10 ≤ Age ≤
40) ∩ (20K ≤ Income ≤ 60K), whereas the measure component is:
R1.meas = {(C1 : 20%), (C2 : 10%)}; these two measure compo-
nents comprise the intensional description of R1. The extensional
description of R1 contains the subset of the D instances that fall in
R1.

Note that the attribute space is determined by the predictive
attributes of the problem, and as such it is common for all DTs
referring to the specific classification problem. What actually dif-
ferentiates the different DTs is the partitioning they perform over
the attribute space, i.e., what are the resulting regions.

So far, we have concentrated on the representation of a specific
DT region under the adopted extensional-intensional representation
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schema. The whole DT consists of a set of regions, each region
depicted under the extensional-intensional schema as described in
this section.

Further detail on the DT partitioning can be found in Chapter
5.

2.4 Clusters and clusterings

Clustering is the unsupervised classification of data into natural
groups (called clusters) so that data points within a cluster are
more similar to each other than to data points in other clusters [47].
The term unsupervised stands for the fact that there is no a priori
knowledge about the partitioning of the data. In a more formal
definition, we can state that a clustering ζ is the partitioning of a
dataset D into clusters C1, C2, . . . , Ck such that Ci ∩ Cj = ∅ and
∪k

j=1Cj = D. This definition stands for hard clustering , where an
instance is assigned to exactly one cluster thus forming a crisp par-
titioning of the data set. A more “relaxed” definition of clustering
is that of soft clustering where an instance is allowed to belong to
different clusters based on some degree of membership.

Clustering algorithms are based on some distance function which
determines the cluster an object should be assigned to. A commonly
used distance function for numerical instances is the Euclidean dis-
tance. There is also an evaluation function that evaluates the good-
ness of the resulting clustering. Usually such a function aims at
minimizing the distance of every data point from the mean of the
cluster to which it has been assigned after the clustering process.

Clustering algorithms Due to its broad application areas, the
clustering problem has been studied extensively in many contexts
and disciplines, including Data Mining. As a result, a large num-
ber of clustering algorithms exists in the literature (see [47] for a
thorough survey). Although the different algorithms use a variety
of cluster definitions, they can be categorized into [39]:

1. Partitioning methods that partition the dataset into k groups/
clusters each one represented through a centroid like done in
k-means algorithm [39] or through a medoid like done in k-
medoids [39]. The number of clusters, k, is defined by the user.
An example of k–means results is depicted in Figure 2.3.

2. Hierarchical methods that create a hierarchical decomposition
of the dataset called dendrogram. Such a decomposition might
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Figure 2.3: An example of a small dataset (left) and the resulting k-means
clustering for k = 4 (right)

be formed either in a bottom-up or in a top-down fashion, re-
sulting in agglomerative hierarchical methods or divisive hierar-
chical methods, respectively. In both cases, a distance function
between clusters is required. Different distance functions can
be used like single linkage, complete linkage, average linkage or
centroids distance [39]. An example of a clustering dendrogram
is depicted in Figure 2.4.

Figure 2.4: An example of a small dataset (left) and the resulting dendrogram
(right)

3. Density-based methods that continue to grow a cluster as long
as the density, i.e., the number of data points, in its “neigh-
borhood” exceeds some threshold. In this category belongs the
DBSCAN algorithm [27], some examples of which are depicted
in Figure 2.5.

4. Grid–based methods that quantize the object space into a finite
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Figure 2.5: Examples of the DBScan algorithm

number of cells that form a grid structure. Algorithms of this
category are STING [98] and CLIQUE [4].

5. Model-based methods that hypothesize a model for each of the
clusters and find the best fit of the data to the given model.
Statistical approaches, like the COBWEB algorithm [39], and
neural network approaches [39] are the two major approaches
of this category.

Cluster representation The extensional description of a cluster
is straightforward; it simply consists of an explicit enumeration of
the data instances that fall into the cluster boundary. Thus, the
extensional description is common for the different cluster types.

The intensional description of a cluster though, depends on the
specific cluster type, even on the specific characteristics of the clus-
tering algorithm. For example, in case of a partitioning clustering,
the cluster can be defined by its center, as in k-means, or by its
centroid, as in k-medoids. In case of a density based clustering, the
cluster can be described in terms of its probability density function.
Note, however, that there are algorithms like the hierarchical ones,
where some intensional description of the structure of the generated
clusters is not available. In this case, only the extensional descrip-
tion of the clusters in terms of their data members is available.

Regarding the measure component of a cluster, there are several
alternative measures that could be adopted like, for example, the
cluster support (i.e., the percentage of dataset instances that fall into
the cluster) or the intra-cluster distance (i.e., the average distance
between cluster members) or the average distance of the cluster
members from its centroid or medoid.

In order to display the extensional-intensional description of a
cluster, we depict in Figure 2.6 an example of a k-means cluster-
ing. Let us consider the left cluster of this figure: Its extensional
description consists of an enumeration of its data members, i.e.,
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{(3,4), (3,8), (4,5), (4,7), (2,6)}, whereas its intensional description
consists of the cluster centroid, (3.2, 6), and, say, the number of
object-members, 5.

Figure 2.6: An example of extensional-intensional cluster description

2.5 Frequent itemsets and association rules

The Frequent Itemset Mining (FIM) problem is a core problem in
many data mining tasks, such as association rules, correlations, se-
quences and episodes. The original motivation for frequent itemsets
mining came from the need to analyze retail transaction data in or-
der to find items that are frequently purchased together. Frequent
itemsets mining and association rules mining are strongly related to
each other since frequent itemsets mining is the first step towards
association rules mining.

For the definition of the FIM problem, we follow the work by
Agrawal et al. [5]: Let I be a finite set of distinct items and D be a
database of transactions where each transaction T contains a set of
items, T ⊆ I. An example of a transaction database is depicted in
Table 2.2.

Transaction ID Transaction Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Table 2.2: A sample transaction database D
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An itemset X is a non-empty lexicographically ordered set of
items, X ⊆ I. If X contains k items, it is called k-itemset. The
frequency of X in D, equals to the number of transactions in D
that contain X, i.e., frD(X) = |{T ∈ D : X ⊆ T}|. The percentage
of transactions in D that contain X, is called the support of X in
D, suppD(X) = frD(X)

|D| (Sometimes, the support of an itemset X is

defined as the absolute number of transactions in D that contain X,
i.e., suppD(X) = frD(X)). A frequent itemset is an itemset with
support greater than or equal to a user-specified minimum support
threshold σ called minSupport, i.e., suppD(X) ≥ σ. Two itemsets
belong to the same equivalence class Fk if they share a common
k − 1 length prefix. The FIM problem is defined as finding the set
Fσ(D) of all itemsets X in D that are frequent with respect to a
given minSupport threshold σ. Let Fσ(D) be the set of frequent
itemsets extracted from D under minSupport threshold σ.

A set of frequent itemsets (FI) forms the itemset lattice L in
which the lattice property holds: an itemset is frequent iff all of its
subsets are frequent. Considering minSupport = 2 and the database
example of Table 2.2, the corresponding frequent itemset lattice is
depicted in Figure 2.7.

Figure 2.7: An example of a frequent itemset lattice

Itemset representation The extensional description of an item-
set consists of an enumeration of the transactions that support the
specific itemset. The intensional description of an itemset consists
of the set of items that form it (this comprises the structure compo-
nent) and of its support (this comprises the measure component).

As an example, let us consider the itemset ({1, 3}, #2) of Fig-
ure 2.7. Its extensional description consists of the transactions that
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support it, thus it is {100, 300} (cf. Table 2.2). Regarding its in-
tensional description, the structure component consists of the items
{1, 3}, whereas the measure component, namely the support, equals
to 2.

Association Rules Mining (ARM) The Association Rules Min-
ing problem problem was first introduced by Agrawal and Swami [5]
and was mainly motivated by the market basket analysis domain.
It is defined as follows: Let D be a database of transactions, where
each transaction consists of a set of distinct items I, called itemsets.
An association rule is a implication of the form X → Y , where
X ⊆ I, Y ⊆ I and X ∩ Y = ∅ (X and Y are itemsets). X is called
the head (or antecedent or left hand side) of the rule, whereas Y
is called the body (or consequent or right hand side) of the rule.
The rule is associated with a support s and a confidence c. A rule
X → Y is said to have support s, if s% of the transactions in D
contain X ∪ Y , whereas it is said to have confidence c, if c% of the
transactions in D that contain X also contain Y . A rule is interest-
ing or strong if its support and threshold exceed some user specified
thresholds.

The Association Rules Mining problem consists of two steps:
First, the set of frequent itemsets is extracted, and used as input to
the second step so as to extract the association rules. Association
rules provide some additional information comparing to frequent
itemsets, since they determine whether a set of itemsets implies an-
other set of itemsets.

Let us now return to the extensional – intensional description
of association rules: the extensional description of a rule consists of
an enumeration of the transactions that contribute to its generation.
For example, the extensional description of the rule 2 → 5 is the set
of instances {200, 400} from Table 2.2. The intensional description
of a rule consists of its head and body (structure component) and
its support and confidence (measure component). In our example,
head={2}, body={5}, support = 50% and confidence = 100%.

2.6 Summary

In this chapter, we presented some of the most popular pattern
types, namely decision trees, clusters/clusterings and frequent item-
sets/association rules. For the description of patterns, we employed
the extensional-intensional description schema. Based on this schema,
a pattern can be described in terms of the data from which it has



2.6. SUMMARY 43

been generated (extensional description). A pattern can also be de-
scribed in terms of the pattern space characteristics (intensional de-
scription) through a structure and a measure component; the struc-
ture component describes the pattern space, whereas the measure
component relates the pattern space to the underlying raw data
space. The extensional description comprises an analytical descrip-
tion of the pattern in terms of its data members, whereas the inten-
sional description describes the meaning/concept represented by the
pattern and how important is this meaning/concept in the underly-
ing raw data. Note that the definition of the extensional description
of a pattern is common for all pattern types (i.e., all patterns can
be described in terms of the data which support them), whereas
the intensional description depends on the pattern type itself (e.g.,
the description of a decision tree differs from the description of a
frequent itemset).

The definition of a pattern is complete if both it extensional and
intensional descriptions are available. However this is not always
feasible, due to e.g., privacy or efficiency considerations (recall Chap-
ter 1). In this work, we undertake the problem of pattern comparison
by mainly utilizing the intensional description of patterns. There
are cases however, where we also utilize the extensional description
of patterns, e.g., in monitoring clusters of arbitrary cluster types
(hierarchical, partitioning, density based). Although the complete
information of a pattern is contained in its extensional-intensional
description, there are cases where the intensional description itself
still carries much of the information represented by the pattern.
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Chapter 3

Assessing Dissimilarity
between Arbitrarily
Complex Patterns - the
Panda Framework

In this chapter we present Panda 1, a both generic and flexible
framework for assessing dissimilarity between arbitrary complex pat-
terns. Panda handles both simple and complex patterns, defined
over raw data and over other patterns, respectively.

The chapter is organized as follows: In Section 3.1, some mo-
tivating examples are presented, together with the requirements
that a generic pattern dissimilarity assessment framework should
fulfill. The adopted pattern representation model is described in
Section 3.2, whereas the pattern dissimilarity assessment process is
described in Section 3.3. In Section 3.4 we describe some implemen-
tation details, whereas in Section 3.5, we run Panda for specific ap-
plications. Related work is presented in Section 3.6. In Section 3.7,
the basics of the Panda framework are summarized, whereas in
Section 3.8, open issues and possible improvements are described.

Index terms pattern comparison, pattern comparison framework,
simple patterns, complex patterns, dissimilarity decomposition.

1Panda stands for Patterns for Next Generation Database Systems, an acronym used
for IST-2001-33058 project for the European Union, which proposed and studied the PBMS
(Pattern Base Management Systems) concept [79].

45



46 CHAPTER 3. THE PANDA FRAMEWORK

3.1 Motivation and requirements

In this section we provide some illustrative examples which, in com-
bination with the examples/applications already presented in Sec-
tion 1.4, motivate the need for a unified and flexible framework for
the comparison of patterns. These examples are not fully supported
by existing approaches, as it will be clarified in Section 3.6 where
the related work is presented.

Example 1 Consider a telecommunication company providing a pack-
age of new generation services with respect to different customer
profiles. Let us also consider a decision maker of the company who
requests a monthly report that depicts the usage of this package.

�

Such a report would be far more translatable by the decision maker
(e.g., for target marketing), if it was accompanied by the monthly
comparison of the classification of the customer profiles that use
these services; such a classification could be portrayed through de-
cision tree models, for example.

Example 2 Consider a manager of a chain of supermarkets who
wants to analyze the trends of sales in the shops of the chain. In
particular, the manager is willing to understand if there is any shop
which sales differ significantly from the sales of the other shops.

�

This analysis could be carried out in different ways: i) by looking
at the sales of single products; ii) by considering sales transactions,
i.e., shops baskets; iii) by looking at the products which characterize
each customer segment.

Example 3 A spatial data mining application analyzes the correla-
tion between the density of the population in a town and the number
of car accidents. Due to privacy considerations, the raw data are
not available, rather only the population distribution and the car
accidents distribution in the areas of the town can be used.

�

Correlation is high if the (spatial) relationships between neighboring
areas are taken into account, whereas a much lower correlation is
estimated if the two distributions are compared on a per-area basis.
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Example 4 A developer of a copy detection system has to experi-
ment with different techniques in order to select the most effective
technique for comparing multimedia documents given a feature-based
representation of the documents (e.g., a list of weighted keywords for
the text, the color distribution of the images, etc.).

�

She/he needs to setup a set of methods that consider all these fea-
tures and return a score that evaluates how similar two documents
are.

Example 5 A portal web site is characterized by high diversity since
it covers a wide variety of topics. These topics are usually predefined
and the users can just post articles on them. In practise, topics
might be close to each other or some post might refer to more than
one topic. Consider for example the topics “Databases” and “Data
Mining’ and a post regarding “Data Mining in Large Databases”. In
this case, it is not so obvious for the user where her/his post better
fits, so she/he might assign it randomly in one of the two topics or
in both of them. As a result, the portal might consist of topics that
overlap with respect to their contents.

�

To better serve users needs (e.g., search, navigation), the portal
owner should organize the material so as the topic labels are repre-
sentative of their contents. As a first step, towards this direction,
similar topics should be identified. Then, the owner should consider,
for example, whether merging of similar topics into a more general
and representative topic is meaningful. Another solution would be
the redistribution of the posts into the topics so as the topics to be
more homogenous with respect to their contents and more precise
with respect to their title/label.

The above examples suggest that a framework for pattern com-
parison should satisfy the following basic requirements:

General applicability: The framework should be applicable to ar-
bitrary types of patterns, such as association rules, histograms
and graphs. At the same time, it should not limit the com-
plexity of the considered patterns. Example 5 regarding the
comparison of web sites raises such a requirement since a web
site comprises a complex structure organized in terms of topics
and articles.
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Flexibility: The framework should allow for the definition of alter-
native dissimilarity functions, even for the same pattern type.
Indeed, personal preferences and specific constraints regard-
ing the dissimilarity assessment should be easily specifiable in
the framework2. This requirement is portrayed in Example 4,
where the user has to experiment with many configurations in
order to decide the one that is most suitable to her/his needs.

Efficiency: It should be possible to define the dissimilarity between
patterns without the need to access the underlying raw data.
The intuition behind this requirement is that the connection
to the raw data might not always be available due to efficiency
considerations (like in Example 2) or privacy considerations
(like in Example 3).

Simplicity: The framework should be built upon a few basic con-
cepts, so as its application is clear for the end user. Such a
requirement also ensures generality and extensibility for the
framework.

3.2 Pattern representation in Panda

Our approach to pattern representation builds upon the logical pattern-
base model proposed in [85] in the context of the PANDA project
[80]. However, it is only the parts of the model relevant to our
purposes that are used.

Following this model, we consider a simple system for defining
pattern types - the specific choice of types, however, does not in-
fluence our reasoning. The model assumes a set of base types, like
Int, Real, Boolean and String, and a set of type constructors,
like list(< . . . >), set ({. . .}), array ([. . .]) and tuple ((. . .)).
Let us call T the set of types including all the base types and all
the types that can be derived from them through repeated applica-
tion of the type constructors. Types to which a (unique) name is
assigned are called named types. Some simple examples of types are:

{Int} (set of integers)
XYPair = (x:Int,y:Int) (named tuple type with attributes x and y)
<XYPair> (list of XYPairs)

Definition 3 (Pattern type) A pattern type is a named pair, PT =
(SS, MS), where SS is the structure schema and MS is the measure

2Note here that dissimilarity is intuitive by its nature, thus the end user should be able to
adjust the dissimilarity assessment to her/his specific needs.
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schema. Both SS and MS are types in T . A pattern type PT is
called complex if its structure schema SS includes another pattern
type, otherwise PT is called simple.

The structure schema SS defines the pattern space by describing
the structure of the patterns which are instances of the particular
pattern type. The complexity of the pattern space depends on the
expressiveness of the typing system T . The measure schema MS
describes measures that relate patterns to the underlying raw data,
i.e., they quantify how well patterns represent these data. It is clear
that the complexity of measures also depends exclusively on T .

A pattern is an instance of a pattern type, thus it instantiates
both the structure and the measure schemes of the corresponding
pattern type. Assuming that each base type B is associated with a
set of values dom(B), it is immediate to define values for any type in
T . Depending on its pattern type, a pattern might be either simple
or complex.

Definition 4 (Pattern) Let PT = (SS, MS) be a pattern type. A
pattern p, instance of PT , is defined as p = (s, m), where p is the
pattern identifier, s (the structure of p, also denoted as p.s) is a
value for type SS, and m (the measure of p, also denoted as p.m)
is a value for type MS.

In order to show the flexibility of this representation model,
we provide three different representation schemes for clusters. We
choose clusters for our displaying purposes, because different clus-
tering algorithms result in a variety of cluster descriptions and thus,
from a modeling view, clusters are of special interest. There are
several alternative representations for clusters (c.f. Section 2.4): hi-
erarchical clustering algorithms describe clusters as sets of objects,
metric space algorithms, like k-means, describe clusters as geomet-
rical shapes, density based algorithms, like EM, describe clusters
through a probability density function and so on [39]. What is de-
scribed below does not exhaust possible representations for cluster
models. Rather, the examples below only aim at demonstrating the
functionality of our Panda framework and should not be considered
as compulsory representation schemes for clusters.

We provide three candidate modeling schemes for: (a) clusters de-
rived through some metric space clustering algorithm like k-means,
(b) clusters derived through some density based clustering algorithm
like EM and (c) clusters derived through some hierarchical cluster-
ing algorithm. In the first case, clusters are modeled as spheres (we
call them “Euclidean clusters” because of the metric space), in the
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second case clusters are described through some probability density
function (we call them “Density-based clusters”), whereas in the
third case clusters are modeled as sets of objects (we call them “Hi-
erarchical clusters”). For each one of these types, we also describe
an indicative complex pattern type.

Example 6 (Euclidean cluster and clustering types) A Euclidean
cluster in a D-dimensional space, such as the ones obtained from
the k-means algorithm [39], can be modeled through a center and
a radius, which form the structure schema of the cluster. For the
measure schema, one could consider the cluster support, i.e., the
fraction of objects that fall into the cluster, and the average intra-
cluster distance. That is:

EuclideanCluster =

(SS : (center:[Real]D
1 ,radius:Real),

MS : (supp:Real,avgdist:Real))

Assuming D = 3, a possible instance of this type could be as
follows:

p407 =

(s : (center = [0.75, 1.25, 0.46], radius = 0.24),

m : (supp = 0.13, avgdist = 0.17))

A PartitioningEuclideanClustering pattern can be defined as
the composition of cluster patterns. In particular, for a hard parti-
tioning clustering algorithm like k-means, a EuclideanClustering
pattern can be simply modeled as a set of EuclideanCluster patterns
with no measure:

PartitioningEuclideanClustering =

(SS : {EuclideanCluster},

MS : ⊥)

where ⊥ denotes the null type.

�

Example 7 (Density–based cluster and clustering types) A den-
sity based clustering algorithm, like EM [39], produces clusters that
can be described through a (say) Gaussian density function, thus
they can be represented through a mean and a standard deviation in
each dimension; these comprise the structure schema of the cluster.
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As for the measure schema, the cluster support, i.e., the amount of
the population covered by the cluster, could be considered. That is:

DensityBasedCluster =

(SS : (mean:[Real]D
1 ,stdDev:[Real]

D
1 ),

MS : (supp:Real))

Assuming D = 2, a possible instance of this type could be as
follows:

p111 =

(s : (mean = [15.5, 41.4], stdDev = [3.6, 4.7]),

m : (supp = 0.33)

A DensityBasedClustering pattern can be modeled as a set of
DensityBasedCluster component patterns with no measure:

PartitioningDensityBasedClustering =

(SS : {DensityBasedCluster},

MS : ⊥)

where ⊥ denotes the null type.

�

Example 8 (Hierarchical cluster and clustering types) A clus-
ter obtained by a hierarchical algorithm is usually described as the set
of its object members (structure schema)3. For the measure schema,
the cardinality of this set could be considered. That is:

Point =

(SS : (coords:[Real]D
1 ),

MS : ⊥)

HierarchicalCluster =

(SS : {Point},
MS : (supp:Real))

A HierarchicalClustering pattern can be modeled as a set of
HierarchicalCluster component patterns with no measure:

HierarchicalClustering =

(SS : {HierarchicalCluster},

MS : ⊥)

3Note that such a description holds only for the cases where raw data access is available.
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�

Note again that the distinction between simple and complex pat-
terns relies on whether their structure schema is defined upon other
patterns or not. In the former case, patterns are complex, e.g., a
cluster of association rules. The simplest form of complex patterns
contains a 2-level hierarchy, i.e., the complex pattern and its com-
ponent simple patterns, like in the clustering examples presented
above. The definition of complex patterns, however, allows for mul-
tiple nesting within the structure schema, thus hierarchies of any
level are supported. An indicative example is that of a Web site:
typically, the contents of a Web site are organized into categories,
each category consists of a set of pages, and each page is described
through a set of keywords. The Web site example could be placed
within the simple-complex patterns rationale of Panda as follows:
A Web site represents a complex pattern composed of other pat-
terns, namely the categories. A category also represents a complex
pattern composed of other patterns, namely the Web pages. A Web
page also represents a complex pattern which consists of other pat-
terns, namely the keywords. A keyword, finally, represents a simple
pattern, and could be described through a name (e.g., “computer”)
and a weight (e.g., 50%) that quantifies the importance or frequency
of the keyword in the Web page.

As soon as some pattern dissimilarity assessment problem can
be expressed in the rationale of simple-complex patterns, it can be
directly handled by our Panda framework.

Table 3.1 summarizes the symbols used throughout the chapter.

Symbol Description
p simple pattern
cp complex pattern
disstruct evaluates the dissimilarity of the structure components
dismeas evaluates the dissimilarity of the measure components
Combiner combines the dissimilarities of the structure and measure components
Matching type establish how the component patterns can be matched
Aggregation logic aggregates the scores of the matched component patterns

Table 3.1: List of symbols for Chapter 3
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3.3 The Panda framework for assessing dissim-
ilarity between patterns

In this section, we describe the Panda framework for assessing dis-
similarity between two patterns p1, p2, instances of the same pattern
type PT . From Section 3.2, it follows that the complexity of PT
can widely vary and is only restricted by the adopted typing system
T .

The basic principles upon which we built our framework are as
follows:

1. The dissimilarity between two patterns should yield a score
value, normalized in the [0..1] range (the higher the score, the
higher the dissimilarity).

2. The dissimilarity between two complex patterns should (recur-
sively) depend on the dissimilarity of their component patterns.

3. The dissimilarity between two patterns should be evaluated by
taking into account both the dissimilarity of their structures
and the dissimilarity of their measures.

The first principle, normalization of the dissimilarity scores, offers
a better and more intuitive interpretation of the results.

The second principle provides the whole flexibility of our Panda
framework. Note that for the case of complex patterns, one could
devise arbitrary models for their comparison. However, it is useful
and, at the same time, sufficient for practical purposes, to consider
divide and conquer solutions that decompose the “difficult” problem
of comparing complex patterns into simpler sub–problems like those
of comparing simple patterns, and then “smartly” aggregate the so-
obtained partial solutions into an overall score.

The third principle is a direct consequence of our approach that
allows for arbitrarily complex structures in patterns. Since the struc-
ture of a complex pattern might include measures of its component
patterns, neglecting the structural dissimilarity could easily result
in misleading results, like comparing two semantically contradic-
tory patterns. To deal with such cases, we introduce the notion of
combining function that combines the structure and measure dis-
similarity scores only if there exists some structural compatibility
between the patterns. Another motivation underlying this principle
arises from the need of building an efficient framework, which does
not force accessing the underlying dataset(s) in order to determine
the dissimilarity of two patterns, e.g., in terms of their common in-
stances. To this end, we utilize all the parts of information that are
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available in the pattern space, namely the structural description of
the pattern space and the qualitative measures that associate the
pattern space with the underlying raw data space.

Furthermore, for each pattern type of interest at least one dis-
similarity operator should be defined. At the same time, however, it
should be possible to define multiple operators for the same pattern
type; this might be required in order to capture different aspects of
the patterns (e.g., only the structure dissimilarity or both structure
and measure dissimilarity might be considered) or to allow different
evaluation of the same aspects (e.g., for the measure dissimilarity,
one could choose between the absolute and the relative difference
functions).

In the next subsections, we first describe how the above-stated
principles can be applied to the basic case of simple patterns (Sec-
tion 3.3.1) and then, we show how they can be generalized to the
general case of complex patterns (Section 3.3.2).

3.3.1 Dissimilarity between simple patterns

The dissimilarity between two simple patterns p1, p2 of a same sim-
ple pattern type PT is based on three key ingredients:

• a structure dissimilarity function, disstruct, that evaluates the
dissimilarity of the structure components p1.s and p2.s,

• a measure dissimilarity function, dismeas, that evaluates the
dissimilarity of the corresponding measure components p1.m
and p2.m, and

• a structure & measure combining function also called Com-
biner , Comb, that aggregates the structure and measure dis-
similarity scores into an overall score that reflects the total
dissimilarity between the compared (simple) patterns.

Consequently, the dissimilarity between two patterns is defined
as:

dis(p1, p2) = Comb(disstruct(p1.s, p2.s), dismeas(p1.m, p2.m)) (3.1)

The overall schema of the dissimilarity assessment process is de-
picted in Figure 3.1:

If patterns p1 and p2 share the same structure, then disstruct(p1.s, p2.s) =
0 and their dissimilarity solely depends on the dissimilarity of their
measures. In the general case, however, the patterns to be compared
may have different structures and two alternatives exist:
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Figure 3.1: Assessment of dissimilarity between (simple) patterns

• The structure components are somewhat “compatible” and the
structure dissimilarity score disstruct(p1.s, p2.s) is interpreted as
the “additional dissimilarity” cost one wants to charge with
respect to the case of identical structures.

• The structure components are totally unrelated (in a sense that
depends on the application at hand), i.e., disstruct(p1.s, p2.s) =
1. In this case, regardless of the measure dissimilarity score,
we also require that the overall dissimilarity score should be
the maximum one, i.e., dis(p1, p2) = 1. This restriction is en-
forced in order to prevent cases where two completely different
patterns might be considered somewhat similar due to low dif-
ferences in their measures.

Note that in Panda the structure components play the key role
during the pattern dissimilarity assessment process. This is rea-
sonable, since in order to compare the “qualitative” information of
two patterns (which is captured through their measure components)
there should be some kind of compatibility between their structures,
i.e., the patterns to be compared should be somewhat relevant.

Below we present two examples on simple pattern comparison:
comparison between frequent itemsets (relevant to the motivating
Example 2 of Section 3.1) and comparison between keywords (rel-
evant to the motivating Example 4 of Section 3.1). At first, each
pattern type is expressed in terms of a structure and a measure
component and then, the Panda blocks for dissimilarity assessment
between simple patterns, namely disstruct, dismeas and Comb, are
properly instantiated.
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Example 9 (Itemsets) Consider a dataset D described in terms of
a relation R = {I1, I2, . . . , Im}. An itemset IS derived from D can
be modeled as a simple pattern whose structure consists of a set of
items from R, i.e., IS.s = {I1, . . . , Im}, whereas its measure is the
support of the itemset, i.e., the fraction of tuples in D that contain
all the items in IS.s, thus IS.m = (supp:Real).

Let us now consider the problem of comparing two itemsets IS1,
IS2 derived from the above settings, where:

IS1 = ({bread, honey, milk}, 0.1) and IS2 = ({butter, milk}, 0.2)

• Structure dissimilarity: For the structure dissimilarity func-
tion, we could employ the overlap of their structures, i.e., how
many items the two itemsets have in common:

disstruct = 1 − IS1.s ∩ IS2.s

IS1.s ∪ IS2.s
(3.2)

In our example, this equals to 1 − 1
4

= 0.75.

• Measure dissimilarity: For the measure dissimilarity func-
tion, we could consider the absolute difference of their mea-
sures:

dismeas(IS1.m, IS2.m) = |IS1.m.supp − IS2.m.supp| (3.3)

In our example, this equals to |0.1 − 0.2| = 0.1.

• Combiner: Finally, for the combining function we could con-
sider the average value of the structure and measure dissim-
ilarity scores, as far as the itemsets structures are somewhat
relevant, i.e.,

Comb(disstruct, dismeas) =

{
1 , if disstruct = 1
avg(disstruct, dismeas) , otherwise

(3.4)
In our example, this equals to (0.75 + 0.1)/2 = 0.425.

If, at an alternative scenario, the application expert consid-
ers that structure dissimilarity is more important than measure
dissimilarity, e.g., in a 3:1 rate, the combining function would
have weighted average form:

Comb(disstruct, dismeas) =

{
1 , if disstruct = 1
3
4
∗ disstruct + 1

4
∗ dismeas , otherwise

(3.5)
In our example, this equals to 3

4
· 0.75 + 1

4
· 0.1 = 0.5875.
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�

Example 10 (Weighted keywords) A weighted keyword extracted
from a document can be represented as a pair (s = t, m = w), where
t is the keyword (structure component) and w ∈ (0, 1] is its normal-
ized weight in the document (measure component). Consider two
weighted keywords: k1 = (s = t1, m = w1) and k2 = (s = t2, m =
w2). As with the previous example, in order to define the dissimilar-
ity between two keywords, we should define how their structure and
measure components are compared and how the resulting scores are
combined.

• Structure dissimilarity: If the two keywords are identical
then, disstruct(k1, k2) = 0. When t1 �= t2, two alternatives
are conceivable: if some information about the semantics of
the keywords is available, such as a thesaurus or a hierarchi-
cal hypernymy/hyponymy ontology, such as WordNet [99], then
disstruct(k1, k2) could reflect the “semantic distance” between t1
and t2, e.g., by considering the normalized depth of their least
common ancestor (LCA) [12]. If, on the other hand, no such
information is available, one should conclude that disstruct(k1, k2) =
1.

• Measure dissimilarity: An obvious choice for the measure
dissimilarity function is the absolute measure difference, thus
dismeas(w1, w2) = |w1 − w2|.

• Combiner: Finally, a suitable combining function for this ex-
ample might be the algebraic disjunction of the corresponding
structure and measure dissimilarity scores:

dis(k1, k2) = disstruct(k1.s, k2.s) + dismeas(k1.m, k2.m)

−disstruct(k1.s, k2.s) ∗ dismeas(k1.m, k2.m)

= disstruct(t1, t2) + dismeas(w1, w2) − disstruct(t1, t2) ∗ dismeas(w1, w2)

(3.6)

where 0 ≤ disstruct ≤ 1 and 0 ≤ dismeas ≤ 1. This equation
correctly yields dis(k1, k2) = 1 when disstruct(t1, t2) = 1, and
dis(k1, k2) = dismeas(w1, w2) when disstruct(t1, t2) = 0. Fur-
thermore, for any fixed value of dismeas(w1, w2), dis(k1, k2) in-
creases monotonically with the semantic distance of t1 and t2,
i.e., disstruct(t1, t2).

�
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The above examples indicate the flexibility of the Panda frame-
work: both structure and measure dissimilarity functions, as well as
the combining function are fully modular and can be easily adapted
to specific user requirements. Due to the possibility of different
instantiations of these components, several dissimilarity configura-
tions might arise within Panda facilitating the end user to choose
the best configuration for her/his needs.

3.3.2 Dissimilarity between complex patterns

Although, in line of principle, one could define simple patterns with
arbitrarily complicated structural components, this would necessar-
ily force dissimilarity functions to be complex and hardly reusable.
Among the requirements stated in Section 3.1, this “monolithic”
approach would only comply with the efficiency requirement, failing
to address the other ones. In Panda we pursue a modular ap-
proach that, by definition, is better suited to guarantee flexibility,
simplicity, and reusability. Moreover, as it will be discussed later,
this approach does not rule out the possibility of efficient implemen-
tations.

Coherently with the Panda pattern model described in Sec-
tion 3.2, the dissimilarity of complex patterns is conceptually eval-
uated in a bottom-up fashion based on the dissimilarities of their
component patterns. The structure of complex patterns plays here
a major role, since the comparison process relies on the structure
components of the patterns to be compared.

Without loss of generality, in what follows we assume that the
component patterns, p1, p2, . . . , pN , of a complex pattern cp com-
pletely describe the structure of cp (no additional information is
present in cp.s) and that they form a set (cp.s = {p1, p2, . . . , pN}).

The structural dissimilarity between two complex patterns (cp1 =
{p1

1, p
2
1, . . . , p

N1
1 }) and (cp2 = {p1

2, p
2
2, . . . , p

N2
2 }) can be easily adapted

to specific needs/constraints by acting on two fundamental abstrac-
tions, namely:

• the matching type, which is used to establish how the compo-
nent patterns of cp1, cp2 can be matched, and

• the aggregation logic, which is used to combine the dissimilarity
scores of the matched component patterns into a single value
representing the total dissimilarity score between the structures
of the complex patterns.
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3.3.2.1 Matching type

As already stated, a complex pattern can be eventually decomposed
into a number of component patterns. Thus, when comparing two
complex patterns cp1, cp2, we need a way to associate their compo-
nent patterns. To this end, we introduce the coupling type, which
defines how the component patterns of cp1 (cp2) are matched to the
component patterns of cp2 (cp1, respectively), taking into account
specific user/application requirements.

A matching between the complex patterns cp1, cp2 can be repre-
sented through a matrix XN1×N2 = (xij); each element xij ∈ [0, 1]
(i = 1, . . . , N1; j = 1, . . . , N2) represents the (amount of) “match-
ing” between the i-th component pattern of cp1, pi

1, and the j-th
component pattern of cp2, pj

2. Such a matrix is depicted in Fig-
ure 3.2.

Figure 3.2: The matching matrix between complex patterns cp1, cp2

Essentially, a matching type is a set of constraints on the xij

coefficients so that only some of all the possible matchings are valid.
Below we describe some examples of matching types:

• 1–1 matching: In this case, each component pattern of cp1

can be matched to at most one component pattern of cp2 and
vice versa. If N1 = N2, a full matching exists between cp1

and cp2 like in Figure 3.3 (a). A partial matching might occur
if N1 �= N2 like in Figure 3.3 (b). Formally, the 1–1 matching
corresponds to the following set of constraints over the elements
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(a) Full matching (b) Partial matching

Figure 3.3: 1–1 Matching

xi,j (i = 1, . . . , N1; j = 1, . . . , N2) of matrix XN1×N2 :

xij ∈ {0, 1}
N1∑
i=1

xij ≤ 1, ∀j

N2∑
j=1

xij ≤ 1, ∀i

N1∑
i=1

N2∑
j=1

xij ≤ min{N1, N2}, ∀i, j

(3.7)

• N–M matching: In this case, each component pattern of cp1

can be matched to more than one component patterns of cp2

and vice versa. In the extreme case, each component pattern
of cp1 is matched to every component pattern of cp2 like in
Figure 3.4 (a). In the general case, however, partial matching
might occur like in Figure 3.4 (b). Formally, the N–M match-

(a) Full matching (b) Partial matching

Figure 3.4: N–M Matching

ing corresponds to the following set of constraints over the el-
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ements xi,j (i = 1, . . . , N1; j = 1, . . . , N2) of matrix XN1×N2 :

xij ∈ {0, 1}
N1∑
i=1

xij ≤ N2, ∀j

N2∑
j=1

xij ≤ N1, ∀i

N1∑
i=1

N2∑
j=1

xij ≤ N1 ∗ N2, ∀i, j

(3.8)

• EMD matching: This matching type, introduced to define
the Earth Movers Distance (EMD) [86, 57], differs from the
previous matching types in that each component pattern p is
also associated with some weight w.

As such, the complex patterns cp1, cp2 become of the form:

cp1 = {(p1
1, w

1
1), (p

2
1, w

2
1), . . . , (p

N1
1 , wN1

1 )}

cp2 = {(p1
2, w

1
2), (p

2
2, w

2
2), . . . , (p

N2
2 , wN2

2 )}
and EMD is defined as:

W (cp1, cp2, X) =

N1∑
i=1

N2∑
j=1

xijdij

where dij is some measure of dissimilarity between pi
1 and pj

2.

Formally, EMD matching corresponds to the following set of
constraints over the elements xi,j (i = 1, . . . , N1; j = 1, . . . , N2)
of matrix XN1×N2 :

xij ≥ 0
N1∑
i=1

xij ≤ wj
2, ∀j

N2∑
j=1

xij ≤ wi
1, ∀i

N1∑
i=1

N2∑
j=1

xij = min(

N1∑
i=1

wi
1,

N2∑
j=1

wj
2)
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• DTW matching: Dynamic Time Warping (DTW) is a widely
used technique for time series similarity assessment [23]. Its pe-
culiarity lies in the fact that it finds the best alignment/matching
between two time series X, Y by allowing their local deforma-
tions (stretch or shrink) across the time axis; such an alignment
is called warping path. The procedure for finding the best align-
ment involves finding all possible warping paths between X and
Y and choosing the one that minimizes their overall distance.
DTW is given by:

DTW (X, Y ) = min
∀X′,Y ′ s.t. |X′|=|Y ′|

L1(X
′, Y ′) (3.9)

where X ′, Y ′ are the new sequences resulting from the original
sequences X, Y by repeating their elements. A representative
example is depicted in Figure 3.5 (a) [23].

Sometimes, for efficiency issues, a bounded wapping window of
size w is defined that controls the distance between a time point
of X and its alignment in Y . In this case, for any coefficient
xi,j on the warping path, it should hold that |i− j| ≤ w. Such
an example is depicted in Figure 3.5 (b) [23].

(a) Unbounded DTW (b) Bounded DTW

Figure 3.5: Dynamic Time Warping (DTW) Matching

Before we complete the discussion on alternative matching types,
we should note that the dissimilarity functions, either explicitly or
implicitly, rely on some kind of matching: For example, 1–1 match-
ing is a core issue in graph comparison. Also, during distribution or
histogram comparison a 1–1 matching is employed; for example, the
Kullback-Leibler (KL) divergence measures the difference between
two distributions by comparing, for each “bucket”, its probability in
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the first and the second distribution [45]. As another example, con-
sider the hierarchical clustering technique: in the complete linkage
algorithm a kind of N–M matching is applied between the cluster
members so as to decide which clusters to merge/split at the next
step of the algorithm [39].

3.3.2.2 Aggregation Logic

In order to compute the total dissimilarity between two complex pat-
terns, the dissimilarity scores of their matched component patterns
have to be aggregated so as to obtain a single overall dissimilarity
score. In general, such an aggregation is achieved by means of an
Aggr function, which takes as input the matrix D = (dis(pi

1, p
j
2)) of

the dissimilarities of the component patterns and a matching matrix
X, i.e.,

Aggr(D, X)

Usually, the xij coefficients are used to weight the dissimilarities
of the component patterns and thus, the above function usually
takes the following form:

Aggr(dis(pi
1, p

j
2) × xij)

Among all valid matchings (as specified by the matching type),
the rationale is to pick the “best” one, i.e., the one that minimizes
the overall dissimilarity score. Thus:

disstruct(cp1.s, cp2.s) = min
X

{Aggr(D, X)} (3.10)

Conceptually, the process followed by Panda in order to com-
pute the structural dissimilarity between two complex patterns is
summarized in Figure 3.6 (it corresponds to the colorful box of Fig-
ure 3.1).

The idea is as follows:

• The “Matcher” block produces candidate matchings between
the component patterns of the complex patterns to be com-
pared; obviously, the constraints imposed by the matching type
are taken into consideration.

• The “Aggr” block aggregates the scores of the matched compo-
nent patterns, resulting in a total score for the specific match-
ing.

• The “Min” block loops through candidate matchings, choosing
the best one, i.e., the one that produces the lower dissimilarity
score.
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Figure 3.6: Assessment of structural dissimilarity between complex patterns

In case of multi-level aggregations, the dissimilarity block (the
colorful box in Figure 3.6) might encompass the recursive computa-
tion of dissimilarity between the complex patterns.

Finally, the overall dissimilarity between cp1, cp2 is as in Equa-
tion 3.1, thus it follows the same rationale as with the simple pat-
terns case.

It should be noted that Figure 3.6 only depicts the main com-
ponents of our framework for a clearer exposition of our arguments.
Actually, we do not require that the dissimilarity is computed in
this way. In particular the “Matcher” block does not need to pro-
duce all valid matchings (such a solution would be quite inefficient
in practice, since it has a prohibitive cost O(n!)). Indeed, efficient
matching algorithms can be devised for the relevant matching types
in order to quickly compute, given the constraints, the solution of
the “best matching problem” (this is represented by the dashed box
in Figure 3.6). For example, for the 1–1 coupling type, which coin-
cides with the well-known assignment problem in graph theory, the
optimal solution is given by the Hungarian algorithm [56], which
implements both the “Aggr” and the “Min” block of Figure 3.6.
For the same problem however, one could use a Greedy algorithm
(which, at each step, makes the most profitable assignment between
two component patterns) that does not result in the optimal solution
and it only implements the “Aggr” block of Figure 3.6. Hungarian
with complexity O(n3) is more expensive than Greedy with complex-
ity O(n2). The Hungarian algorithm provides the optimal solution
to the assignment problem in contrast to the less expensive Greedy
algorithm, which, however, most probably finds a local optimum.

Below we present an example of comparison between complex
patterns; in particular, we consider the problem of comparing web
sites. As already stated, a web site is a complex pattern composed
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of web pages, which in turn are also complex patterns represented
as sets of keywords. The keywords finally, play the role of simple
patterns. We start with the comparison of web pages and then
proceed with the comparison of web sites. The comparison between
keywords could be carried out as already described in Example 10.

Example 11 (Web pages) A web page wp can be modeled as a
complex pattern whose structure consists of a set of weighted key-
words extracted from wp (c.f. Example 10), wp.s = {(t1, w1), . . . , (tM , wM)}.
The measure of wp might be its Google PageRank [17], wp.m = pr.
The dissimilarity between two web pages, wp1 and wp2, might take
into account only their corresponding keywords, or it might also con-
sider the differences in their PageRank measures [17]. As for the
combining function, one could consider the algebraic disjunction of
the structure and measure dissimilarity scores. In particular, for
the structure dissimilarity between wp1, wp2 one could employ 1–1
matching between the corresponding component keywords and use the
average function to aggregate the scores of the matched component
pairs.

�

Example 12 (Web sites) Continuing Example 11, a web site ws
can be modeled as a complex pattern whose structure consists of a
graph, i.e., a set of web pages {wp1, wp2, . . . , wpN} that are con-
nected through links of the form (wpi → wpj). The dissimilarity
between two web sites, ws1 and ws2, can be computed by consider-
ing the subgraph matching (or subgraph isomorphism) problem [96],
i.e., finding whether an isomorphism exists among (subgraphs) of
ws1 and ws2.

For instance, let us consider the two web sites in Figure 3.7,
where pages of the same borderline (and color) are about the same
topic.

If dissimilarity between web pages is computed as in Example 11
and the matched pages are the ones portrayed under the same bor-
derline (and color) in Figure 3.7, where the structure and measure
dissimilarity scores between the matched pages are depicted in the
right part of this figure, and if also the aggregation function is a
simple average, then the overall dissimilarity score between the two
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Figure 3.7: Two web sites to be matched (pages of the same borderline (and
color) are about the same topic) and the structure and measure dissimilarity
scores between the matched pages.

web sites is computed as follows:

dis(ws1, ws2) = disstruct(ws1.s, ws2.s) =

dis(h1, h2) + dis(a1, a2) + dis(b1, b2) + dis(c1, c2) + dis(⊥, d2)

5
=

(0.1 + 0.2 − 0.1 ∗ 0.2) + (0 + 0.05 − 0 ∗ 0.05) + (0.05 + 0.1 − 0.05 ∗ 0.1)

5
+

(0.25 + 0.1 − 0.25 ∗ 0.1) + (1)

5
=

1.8

5
= 0.36

�
A final remark on the design of Panda frameworkis that, al-

though the comparison between patterns yields a single dissimilar-
ity score, Panda can also provide detailed information on how the
component patterns have been matched, as well as on how much
important these matchings are with respect to the global dissimi-
larity score. Such a knowledge allows the end user to gain insights
on the obtained score, e.g., to understand which are the compo-
nent patterns that mostly contribute to the increase of the pattern
dissimilarity score.

3.4 Implementation issues

The Panda framework for assessing dissimilarity between patterns
(either simple or complex) has been implemented in Java and several
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sample applications for the comparison of different pattern types
have been built around it4. In the following, we first provide an
overview of the fundamental framework classes (Section 3.4.1) and
then we briefly describe the application (Section 3.4.2).

3.4.1 Basic framework classes

The main classes are the generic Pattern class and its derivatives:
SimplePattern class and ComplexPattern class.

The Pattern class: The core of the framework implementation
is the abstract Pattern class (Figure 3.8). Each pattern has a unique
identifier, id, and belongs to a specific pattern type, which can be
returned through the getType() method.

The getDissimilarityStructure() method computes the structure
dissimilarity between the specific pattern and another input pattern;
both patterns should belong to the same pattern type. Correspond-
ingly, there exists the getDissimilarityMeasure() method for assess-
ing the measure dissimilarity between the specific pattern and a
given pattern. The getDissimilarity() method implements the com-
bining function, Comb, i.e., it combines the structure and measure
dissimilarity scores into an overall dissimilarity score.

The methods getType(), getDissimilarityStructure(), getDissimi-
larityMeasure() and getDissimilarity() are abstract and should be
specified for each class that extends the basic Pattern class. The
getDissimilarity() method uses an object of the abstract class Com-
biner that corresponds to different combining functions.

The SimplePattern class: The SimplePattern class implements
a pattern instance of the simple pattern type and extends the basic
Pattern class (Figure 3.9).

The different structure dissimilarity functions available for each
pattern type are stored in the static member PossibleStructureDis-
similarity. Several structure dissimilarity functions have been im-
plemented under the package dissimilarity.structure including Eu-
clideanDistance and JaccardDistance.

The different measure dissimilarity functions available for each
pattern type are stored in the static member PossibleMeasureDis-
similarity. Several structure dissimilarity functions have been im-
plemented under the package dissimilarity.measure including Ab-
soluteDistance and RelativeDistance.

4The code is freely available for non–commercial use. The interested users could download
it from: http://195.251.230.17/panda/index.html



68 CHAPTER 3. THE PANDA FRAMEWORK

Figure 3.8: The Pattern class

The different combining functions available for each pattern type
are stored in the static member PossibleCombiners. Several combin-
ing functions have been implemented under the package dissimilarity.combiner
including CombinerStructure that only considers the structure dis-
similarity score and CombinerWeighted that considers both struc-
ture and measure dissimilarity scores weighted according to user
specified weights.

Figure 3.9: The Pattern class hierarcy

The ComplexPattern class: The ComplexPattern class imple-
ments a pattern instance of the complex pattern type and extends
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the basic Pattern class (Figure 3.9). A complex pattern consists of
a list of simple patterns, stored in the PatternList member.

The different matching types available for each pattern type are
stored in the static member PossibleMatchers, which contains refer-
ences to Matcher objects. Several matchers have been implemented
under the package dissimilarity.matcher including MatcherHun-
garian, MatcherGreedy and MatcherMN.

The different aggregate functions available for each pattern type
are stored in the static member PossibleAggregators, which contains
references to Aggregator objects. Several aggregation functions have
been implemented under the package dissimilarity.aggregator in-
cluding AggregatorSimpleAvg that takes the average of the dissim-
ilarities of the matched component patterns, AggregatorMin that
takes the minimum of the dissimilarities of the matched component
patterns and AggregatorMax that takes the maximum of the dissim-
ilarities of the matched component patterns.

The relationships among complex patterns, matchers and aggre-
gation functions are depicted in Figure 3.10, where it is illustrated
that each pattern type uses its own Matcher and Aggregator objects,
chosen from the PossibleMatchers and PossibleAggregators lists.

Figure 3.10: Complex patterns, matchers and aggregation functions

3.4.2 Implementing the application

Our sample application allows the comparison of different pattern
types, namely frequent itemsets, clusters, time series, collections of
documents etc. In the following, we detail in the implementation
of Panda for the comparison of monthly time series data obtained
from the Italian MIB stock market [103]. We choose time series for
illustrating purposes because the visualization of the results is easier
comparing to, say, frequent itemsets.

In order for the Panda framework to work for a specific pat-
tern comparison problem, one has to represent the patterns to be
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compared according to the simple-complex rationale. Then, for the
simple patterns case, one has to define/choose the getDissimilarityS-
tructure(), getDissimilarityMeasure() and getDissimilarity() meth-
ods, whereas for the complex patterns case, one has to define/choose
the Matcher and Aggregator functions. In the following we describe
all these steps for our sample application.

3.4.2.1 Defining the pattern types

A StockValue pattern type is a simple pattern type defined as fol-
lows:

StockValue =

(SS : (month:Integer, year:Integer),

MS : ([Real]N
1 ))

A Stock pattern type is a complex pattern type composed of Stock-
Value objects:

Stock =

(SS : {TimeSeries},
MS : ⊥)

An example of two Stock patterns and their component StockValue
patterns is depicted in Figure 3.11):

Figure 3.11: Two Stock patterns (denoted by S in the figure) and their compo-
nent StockValue patterns (denoted by SV in the figure)

A SetOfStocks pattern type is a complex pattern type composed
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of Stock objects:

SetOfStocks =

(SS : {Stock},
MS : ⊥)

Defining dissimilarity between (simple) StockValue pat-
terns: The structure dissimilarity, disstruct, equals to 1, if the
structures are different, otherwise it equals to 0. The measure dis-
similarity, dismeas, equals to the absolute difference of their (nor-
malized) measures. Structure and measure dissimilarity scores are
combined (Comb function) so that if disstruct = 1, the overall dis-
tance dis to be also 1, otherwise dis = dismeas.

Defining dissimilarity between (complex) Stock patterns:
The overall dissimilarity between two Stock patterns is obtained by
averaging dissimilarities between their component StockValue pat-
terns corresponding to the same month. Thus, the Matcher block
is instantiated to 1–1 matching, whereas the Aggregation block is
instantiated to the average function.

Defining dissimilarity between (complex) SetOfStocks pat-
terns: The overall dissimilarity between two SetOfStocks is ob-
tained by averaging dissimilarities between the component Stock
patterns. Again, 1–1 matching is chosen as the Matcher between
the component Stock patterns and the average function is chosen to
be the Aggregator.

Defining the matching type: As already stated in this sample
application we employed 1–1 matching between the component pat-
terns. We experimented with two different 1–1 matching algorithms:
the optimal HungarianMatcher algorithm and the GreedyMatcher
algorithm. The former finds the optimal 1–1 matching between the
component patterns based on the Hungarian algorithm [56], whereas
the second, following a Greedy approach, pairs together at each step
the least dissimilar unmatched component patterns. The Greedy ap-
proach is faster than the Hungarian, however it might stuck in some
local optimal, i.e., it does not guarantee the optimal solution.

Defining the aggregation logic: In this application we used
average as the aggregation function.
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The application interface: The main form of the application
is illustrated in Figure 3.12. On the left side of the window, the
user can choose, among the available pattern types, the (complex)
pattern type that she/he wants to consider. After the selection of
the pattern type, the list of the available matchers and aggregation
functions for this type is displayed in the form and the user can
choose the matcher and the aggregator for her/his application.

Figure 3.12: Main form of the application

In Figure 3.14 we show the result of the comparison of two sam-
ple SetOfStocks patterns, namely the “MIB” and the “NUM” pat-
terns. The first set consists of 2 stocks (“Alitalia” and “Pirelli”),
whereas the second set consists of 3 stocks (“Mediaset”, “Stefanel”,
and “TIM”). The window shows the scores (here representing sim-
ilarity values computed as 1 − dis) for each pairing of stocks; the
best-match couplings are highlighted in pink. Finally, the overall
best-match score is shown in green in the bottom of the window.
Results obtained through the HungarianMatcher are depicted in the
left part of this figure, whereas those obtained through the Greedy-
Matcher are depicted in the right part of the figure. As it obvious
from this figure, the dissimilarity score achieved by the Hungarian
matcher is lower than the one achieved by the Greedy matcher, a
consequence of the fact that Greedy might stuck in some local op-
timal, whereas Hungarian guaranties the optimal solution.

The matched time series can be also displayed in a graphical
format (Figure 3.15), where the matched stocks are shown on the
same row along with their similarity score, whereas non-matched
stocks are displayed alone.

3.5 Running Panda for different pattern types

We have applied Panda to four application examples with the aim
of demonstrating its usefulness to a wide range of applications.
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(a) using the Hungarian matcher (b) using the Greedy matcher

Figure 3.13: Comparing two SetOfStocks patterns under 1–1 matching

Figure 3.14: Comparing two SetOfStocks patterns using the optimal Hungari-
anMatcher (left) and the sub-optimal GreedyMatcher(right)

3.5.1 Application to sets of itemsets

In this experiment, we used the synthetic dataset generator from
the IBM Quest Data Mining group [6], which is assumed to mimic
the transactions in a retailing environment to generate a dataset
D of 1000 transactions with an average transaction length of 10
attributes. For the extraction of frequent itemsets, we used the
MAFIA program [18].

In terms of the Panda representation model, an Itemset can be
modeled as a simple pattern (s = S, m = supp) where S is the
set of items that comprise the itemset (structure component) and
supp ∈ [0, 1] is the support of the itemset (measure component);
recall also Example 9. A SetOfItemsets can be modeled as a complex
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Figure 3.15: Visualization of matching between the two SetOfStocks patterns of
Figure 3.14

pattern, composed of simple Itemset patterns:

SetOfItemsets =

(SS : {Itemset},
MS : ⊥)

In order to compare itemsets (simple patterns) we should define
how their structures and measures will be compared (ie the struc-
ture and measure dissimilarity function, respectively) and how the
resulting scores will be combined (i.e., the combiner function). For
the measure dissimilarity function, we employed absolute difference:

dismeas(p
i, pj) = |pi.m − pj .m|

For the structure dissimilarity function, we used the overlap of their
items:

disstruct(p
i, pj) = 1 − |pi.s ∩ pj.s|

|pi.s ∪ pj.s|
For the combiner function we employed the following function:

Comb(pi, pj) = disstruct(p
i, pj)+

(
1 − disstruct(p

i, pj)
)
∗dismeas(p

i, pj)2
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The rationale behind this combiner is that the more similar the
two itemsets are with respect to their structures, i.e., the lower the
disstruct score, the more the measure components will contribute to
the final score, through the dismeas score. This behavior is illustrated
in Figure 3.16.

Figure 3.16: The behavior of the combiner with respect to disstruct and dismeas

In order to compare SetOfItemsets (complex patterns) we should
define how their component patterns will be matched (i.e., matching
type) and how the scores of the matched component patterns will
be aggregated (i.e., aggregation logic). For the matching type, we
have chosen 1–1 matching, whereas for the aggregation logic we
employed the average function. In particular, for the 1–1 matching,
we experimented with both the optimal Hungarian matcher [56] and
the sub-optimal Greedy matcher (recall also Section 3.3.2)

Then, we performed a controlled experiment, by introducing noise
to the initial dataset D0. In detail, at each step we modified 10%,
20%, . . . , 100% of the original transactions and, for each modified
transaction, we changed a fixed percentage (in particular, 50%) of its
items. From the result datasets (D0, D1, . . . , D10), the correspond-
ing set of frequent itemsets (P0, P1, . . . , P10) have been extracted
under a minSupport threshold of 20%. Then, we compared each
“noisy” pattern set Pi (i = 1, 2, . . . , 10), with the initial pattern set
P0. The goal was to investigate how the noise added to the data is
propagated to the dissimilarity of the corresponding patterns.

As illustrated in Figure 3.17, the dissimilarity at the pattern level
reflects the increased dissimilarity between the datasets when the



76 CHAPTER 3. THE PANDA FRAMEWORK

Figure 3.17: Impact of (dataset) noise on the dissimilarity of sets of itemsets
for the Hungarian and the Greedy matchers

amount of noise grows. Starting from a dissimilarity of zero (when
comparing P0 with itself), the dissimilarity gradually increases as the
percentage of noise added to the corresponding data set increases,
reaching almost one when the initial dataset is full of noise.

When comparing the Greedy and Hungarian matchers, it is clear
that the dissimilarity scores computed by the Hungarian matcher are
slightly lower than those computed by the Greedy matcher, since the
former provides the optimal solution to the 1–1 matching problem,
while the latter only calculates an approximated solution. However,
taking into account that the Greedy matcher is much faster than
the Hungarian matcher (25 times, in our experiments), a practical
conclusion of this case study is that the Greedy algorithm can be
safely chosen as a matcher for the comparison of sets of frequent
itemsets.

3.5.2 Application to decision trees

As already stated a decision tree partitions the attribute space into
a set of non-overlapping regions, through its leaf nodes. A Re-
gion comprises a simple pattern. The structure component of a
region, is composed of the conditions across the corresponding tree
path. These conditions are usually numeric and thus they can be de-
scribed in the form: (V alueFrom ≤ attribute ≤ V alueTo), where
attribute is some predictive attribute of the classification problem
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and V alueFrom, V alueTo are its value ranges in the specific region.
Consequently, the structure component of a region can be described
as a conjunction of such conditions. The measure component of a
region contains the percentage of problem instances that results in
this region for each of the problem classes, {(c, nc)}, where c ∈ C is
a problem class and nc is the percentage of problem instances that
result in the specific region and belong to class c.

A DT can be modeled as a complex pattern:

DT =

(SS : {Region},
MS : ⊥)

The dissimilarity between two regions (simple patterns) is de-
fined as the overlap of their corresponding hyper-rectangles. This
is actually the structure dissimilarity between the regions. We do
not consider the measure dissimilarity separately, rather we make
the assumption that the problem instances are uniformly distributed
within the attribute space and thus the volume of each region is rep-
resentative of the importance of this region in the whole attribute
space.

When comparing two decision trees (complex patterns), we em-
ploy a N − −M matching between the corresponding DT regions
and then we aggregate the scores of the matched regions using the
average function.

For our experiments, we selected the wine data set [14], which
consists of the results of a chemical analysis of 178 wines grown
in the same region in Italy but derived from three different cul-
tivars. The analysis determined the quantities of 13 constituents
found in each wine of the three cultivars. We carried out the fol-
lowing experiment: First, we induced the decision tree DT0 from
the original wine dataset. Then, we added noise to the paths/rules
composing DT0 by decreasing (increasing) of 10%, 20%, . . . , 50% the
ValueFrom (respectively ValueTo) of each attribute of each rule. As
a result, we induce a corresponding set of “noised” decision trees
(DT10, DT20, . . . , DT50). We also randomly decreased or increased
the support of each rule by the corresponding noise percentage. We
studied the impact of the noise by comparing the “noised” trees
DTi, i = {10, 20, . . . , 50} with the initial “clean” tree DT0. Intu-
itively, the more noise we add, the more dissimilar from the initial
tree the new tree would be; Figure 3.18 asserts this perception.
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Figure 3.18: Impact of (pattern space) noise on DT dissimilarity

3.5.3 Application to collections of documents

Our final experiment refers to the comparison of collections of docu-
ments. In particular, we considered the DBLP database [58], which
records, among others, the publications of a large collection of jour-
nals: each journal contains a set of articles referring to the same
general topic (the one covered by the journal) and each article is
described through a set of keywords. Keywords are compared as
in Example 10, while the 1–1 matching type and the average func-
tion aggregator were employed for the comparison of the complex
patterns.

The DBLP journals used for the experiments are listed in Ta-
ble 3.2, whereas the results of the comparison are depicted in Fig-
ure 3.19.

DBLP Journal Abbreviation
Computer Journal Comp J

Artificial Intelligence AI
Computer Networks Comp N

Computers & Graphics Comp G
Information Systems Info Sys

Computer Networks and ISDN Systems Comp Net & ISDN Sys
Computational Intelligence Comp Intell

Computer Languages Comp Lang
Distributed Computing Dist Comp
Advances in Computers Adv in Comp

Evolutionary Computation Evol Comp
Computational Complexity Comp Compl

Information Retr ieval IR

Table 3.2: DBLP journals
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Figure 3.19: Comparing journals from the DBLP database

There are some interesting conclusions that can be drawn from
this experiment:

• The Computer Journal appears to be quite similar to the other
journals (with a dissimilarity score between � 0.2 and � 0.3),
a result that is reasonable since this journal provides a wide
overview of developments in the field of Computer Science.

• On the other hand, journals like Evolutionary Computation,
Computational Intelligence, Computer Networks, ISDN Sys-
tems, and Distributed Computing are very dissimilar to each
other, probably due to the fact that they cover specific and
rather non-overlapping topics of Computer Science.

• The greatest distance calculated (� 0.5) was the one between
the Evolutionary Computation and the Distributed Computing
journals, which seem to cover quite distinct topics.
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3.6 Related work

In this section we overview approaches and techniques sharing some
common aspects with our framework, pointing out their limitations
with respect to Panda.

FOCUS framework To the best of our knowledge the only generic
framework for the comparison of patterns is FOCUS [32], which
provides a principled approach for measuring the deviation between
two datasets, in terms of the corresponding extracted pattern sets.
The rationale behind using pattern comparison for data comparison
is that patterns capture interesting characteristics of the data and
thus they can be employed for dataset comparison purposes. Three
popular pattern types, namely frequent itemsets, decision trees and
non-overlapping clusterings, are supported by FOCUS.

The central idea of FOCUS, which is also shared by Panda, is
the modeling of patterns through a structure and a measure com-
ponent (called the 2-components property of patterns). According
to FOCUS, a pattern p consists of a set of “regions” defined over
the attribute space (the structure of p) and each region is associated
to a set of measures (the measure of p). For instance, let as con-
sider a decision tree DT built upon a dataset D that is described
through the predictive attributes A = {A1, . . . , An} and the class
attribute C = {C1, . . . , Cm}. DT can be represented as a set of
regions that partition the n−dimensional space; each leaf node of
the DT corresponds to one such region. Each region is associated to
m measures, one for each problem class Cj. The region measure for
class Cj expresses the amount of the dataset instances that result
in the specific region and belong to Cj.

Both structural and measure components are taken into account
during similarity assessment. If two patterns share the same struc-
ture, then their dissimilarity is computed by aggregating (using a
function g) over all regions the deviations between regions’ measures
(computed using a difference function f). The difference function
f could be the absolute or relative difference, whereas the aggrega-
tion function g could be the sum or max function. If the structural
components are not identical, then a preliminary step is required so
as to reconcile them. This includes splitting regions until the two
structures become identical; the result is called Greatest Common
Refinement (GCR). For instance, the GCR of two decision trees is
the decision tree whose regions are obtained by intersecting the sets
of regions of the two corresponding decision trees. In general, this
requires to compute the measures of the (new) regions in the GCR
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from the underlying datasets. After that, what described for the
basic case of equal structures can be also applied.

The comparison of FOCUS with Panda reveals a number of limi-
tations that prevent using the former as a general and flexible frame-
work for pattern comparison, in the light of the requirements listed
in Section 3.1:

• FOCUS only considers patterns whose structure consists of a
two-level hierarchy, i.e., each pattern is composed of regions,
while Panda supports the recursive definition of arbitrarily
complex patterns. A number of interesting pattern types are
therefore left out by FOCUS, like the web sites comparison
discussed in Example 5. On the other hand, all pattern types
that are supported by FOCUS can also be managed by Panda.

• Because of the use of GCR, FOCUS is not flexible concerning
the matching of component patterns. This prevents comparing
patterns based on some “holistic” criterion, since FOCUS only
considers a simple aggregation of differences of measures on
the corresponding regions. This kind of 1-1 matching is not
general enough. Both examples 3 and 4 in Section 3.1 describe
scenarios that cannot be captured by FOCUS; in Example 3,
for instance, neighbor regions need to be considered, which
precludes the usage of 1 - 1 matching between regions. On
the other hand, Panda is very flexible, since a user can freely
define all the building blocks for the comparison of complex
patterns, namely: (a) how to assess the dissimilarity between
simple patterns, (b) how to match the component patterns,
and (c) how to aggregate the scores of the matched component
patterns so as to obtain the overall dissimilarity score.

• The usage of the GCR also prevents the applicability of FO-
CUS to a number of interesting patterns, where the notion of
a common refinement cannot be defined, or where a more flex-
ible definition of matching between the component regions is
required.

• Since FOCUS is concerned with the comparison of datasets, it
requires accessing the underlying data, whereas pattern com-
parison in Panda is totally processed in the pattern space.
Thus, in Panda an improvement is obtained in efficiency (be-
cause costly accesses to the raw data are avoided), generality
(because it can deal with cases where the raw data are not
available), and privacy (there is now no need to access the raw
data that may contain private information).
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From all the above it follows that Panda clearly overcomes FO-
CUS by dealing with arbitrarily complex patterns and allowing more
flexibility during the dissimilarity assessment process.

Inductive databases Within the inductive databases framework [43]
both data and patterns are stored together in order to be uniformly
retrieved and manipulated (c.f. also Section 1.3.1). The patterns
considered are mainly in the form of rules induced from these data.
In fact, rule discovery is viewed as yet another, perhaps more ex-
pressive, type of querying and this is why a number of specialized
inductive query languages have been proposed and implemented.

Most of these languages extend SQL with some primitives to
support data mining. For example, DMQL [38] is a query language
for several types of rules like association rules, generalized relations
and characteristic rules. MINE RULE [63] proposes a model that
enables a uniform description of the association rules discovery prob-
lem. MSQL [44] is a language for the generation and querying of
association rules. In all these approaches, inductive queries specify
patterns of interest using either syntactic or frequency constraints
(or both of them).

It is obvious that, within the inductive databases framework,
pattern comparison is limited to specific types of patterns, like as-
sociation rules and string patterns. Furthermore, specific types of
pattern matching are considered based on syntactic and frequency
criteria. The emphasis here is on the retrieval of patterns rather
than on their comparison. Also, the case of complex patterns is not
considered at all.

Pattern monitoring A relevant line of research is that of pattern
monitoring which aims at monitoring patterns across the time axis
and at detecting their changes.

In this category the DEMON framework [33] belongs for mining
systematically evolving data across the temporal dimension; “sys-
tematically” refers to data changes that are implied due to additions
or deletions of blocks of records, i.e., sets of records simultaneously
added to or deleted from the database. At first, the data blocks that
have been changed are detected across the time dimension and then,
they are processed by the miner in order to update the pattern base.
Efficient model maintenance algorithms are described for the case
of frequent itemsets and clusters models. However, the DEMON
framework focuses on the efficient update of models (i.e., patterns),
rather than on their comparison.
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In the same context, the PAM framework [8] aims at the effi-
cient maintenance of DM results, particularly of association rule
patterns. Patterns are modeled as temporal, evolving objects that
might exhibit changes either in their content, or in their statistical
properties. A change detector mechanism is introduced for identi-
fying changes in the statistics of the rules; statistical significance
is used to assess the strength of these changes. The core of PAM
implements the change detector and a series of heuristics so as to
identify not only significant but also interesting rule changes which
take different aspects of pattern reliability into account.

Indeed, pattern monitoring builds upon pattern comparison in
order to detect significant changes across the temporal dimension.
This indicates another applicability of the pattern dissimilarity as-
sessment problem and of our Panda framework, that of monitoring
pattern changes in dynamic environments.

Kernel methods A relevant line of research is that of kernel meth-
ods, which become increasingly popular due to the fact that they
can be utilized to perform Machine Learning tasks on complex high-
dimensional data without the burden of running algorithms directly
on these data [34]. All computations are done via kernel functions;
for such functions it is known that there exists an embedding of the
set in a linear space such that the kernel on the elements of the set
corresponds to the inner product in this space. Some traditionally
used kernels are: linear, normalized linear, polynomial, Gaussian
and matching kernel.

More relevant to our work is the research on kernel methods for
structured data. The best known kernel for the representation of
spaces that are not mere attribute–value tuples is the convolution
kernel proposed in [40]. The basic idea of convolution kernels is
that the semantics of composite objects can often be captured by a
relation between the object and its parts. The kernel on the object
is then made up from kernels defined on different parts. Other
examples of kernels on structured data include kernels on strings,
trees and graphs.

The framework proposed in [35] allows for the application of ker-
nel methods to different kinds of structured data. This approach
is based on the idea of having a powerful knowledge representation
that allows for modeling the underlying semantics of the data; this
representation formalism is achieved by using a typed syntax and
by representing individuals as terms. In [35], kernels are defined
for basic terms, assuming that atomic kernels exist for all data con-
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structors that are used. In addition, kernel modifiers are proposed
so as to customize the kernel definition to the domain at hand. Se-
mantically, this work is close to our work since both try to provide
general frameworks by relying on the component parts of the data
(structured data in this case, patterns in our case). The main differ-
ence is that Panda framework focuses on comparing the results of
the Data Mining process, whereas kernel methods constitute tools
for Data Mining tasks, like classification and regression. However,
the work on kernels might enhance Panda especially in the issue of
dissimilarity reasoning, i.e., associating dissimilarity in data space
with the dissimilarity in pattern space.

Case-based reasoning The notion of similarity is a key concept in
Case-Based Reasoning (CBR) where, given a problem to be solved,
similar problems that have been solved in the past are retrieved so
as to reuse/adapt their solution to the problem at hand [11]. Cases
are usually represented as complex structures that are recursively
built on top of simpler structures (using part-of relations). The
similarity between aggregated structures is computed by combining
similarities among base attributes [13, 25]. This is quite similar to
our approach, since cases can be seen as complex patterns that are
recursively built upon simple patterns (properties).

Similarity between simple attributes is usually computed by con-
sidering the difference among the values of the attributes; this can
be considered as the distance of the measure components in our
Panda framework. The fact that differences in attributes can arise
when attributes are chosen from a class hierarchy (due to different
semantics of nodes in the hierarchy) [13] can be accounted as a kind
of structure dissimilarity between the (base) patterns. Clearly, the
problem of matching is not relevant here, since cases share the same
structure, i.e., they have the same properties, thus only a (trivial)
1-1 matching is considered.

Ad-hoc solutions for particular cases Several ad-hoc solutions for
comparing particular pattern types exists in the literature. We do
not present these approaches in this section, since they are described
in detail in the corresponding chapters of this thesis, namely in
Chapter 4 for frequent itemsets, in Chapter 5 for decision trees and
in Chapter 6 for clusters.

The interested reader can find in [71] an extensive survey on com-
paring data mining patterns, namely frequent itemsets and associa-
tion rules, clusters and clustering and decision trees. Also, in [62] a
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survey on comparing clusterings extracted from the same dataset ei-
ther by different algorithms or by the same algorithm under different
parameters is presented.

3.7 Summary

In this chapter we presented Panda a both generic and flexible
framework for assessing dissimilarity between arbitrary complex pat-
terns. Panda is generic since patterns of arbitrary complexity are
supported and flexible since dissimilarity assessment can be eas-
ily adapted to specific user/application requirements. In Panda
patterns are modeled as entities composed of two parts: the struc-
ture component that identifies “interesting” regions in the attribute
space, e.g., the head and the body of an association rule, and the
measure component that describes how the patterns are related to
the underlying raw data, e.g., the support and the confidence of
the rule. When comparing two simple patterns, the dissimilarity
of their structure components (structure dissimilarity) and the dis-
similarity of their measure components (measure dissimilarity) are
combined (through some combining function) in order to derive the
total dissimilarity score. The problem of comparing complex pat-
terns is reduced to the problem of comparing the corresponding sets
(or lists, arrays etc.) of component (simple) patterns. Thus, com-
ponent patterns are first paired (using a specific matching type) and
their scores are then aggregated (through some aggregation func-
tion) so as to obtain the overall dissimilarity score. This recursive
definition of the dissimilarity allows Panda to handle patterns of
arbitrary complexity.

The goal of the Panda framework is to provide the end user with
a powerful framework for dissimilarity assessment able to deal with
specific user/application requirements. We do not consider here the
problem of finding the “best” measure for every dissimilarity assess-
ment problem, which of course would be utopian. What we pro-
vide are mechanisms for pattern comparison based on the concepts
of simple/complex patterns. The end user can tune the building
blocks of Panda according to her/his actual needs and experiment
with the results in order to decide which configuration is the most
appropriate measure for her/his specific application.

An early version of the results presented in this chapter has been
published in [9], whereas an extended version has been submitted
in [10].
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3.8 Open issues

Panda is a fully modular framework and several improvements/
extensions can be performed over it. A straightforward extension
is to enhance the different building blocks of Panda (e.g., disstruct,
Comb, Aggr) with new evaluation functions so as to give more al-
ternatives to the end user. A similar direction is to incorporate in
Panda new pattern types, like sequences, and thus to expand the
set of the supported pattern types.

As already stated, by instantiating the different building blocks of
Panda different dissimilarity assessment configurations arise. The
critical question is which of these configurations is suitable for some
particular problem. Already proposed schemas could be incorpo-
rated into the Panda framework, providing ready solutions to the
end user.

So far, Panda deals with the dissimilarity assessment between
patterns of the same pattern type. It is interesting however to in-
vestigate how dissimilarity between different pattern types could be
evaluated. A straightforward solution would be to convert one pat-
tern type into the other (e.g., a decision tree into as a set of rules)
and then apply the Panda framework. This solution, however, in-
troduces several limitations since such a mapping is not always possi-
ble. An alternative solution would be to define a similarity operator
on a pattern super-type, whose sub-types are the two pattern types
to be compared. More effective solutions could be also explored.



Chapter 4

Comparing Datasets using
Frequent Itemsets: the
Effect of Mining Parameters

In this chapter we investigate the problem of utilizing dissimilar-
ity between pattern sets as a measure of dissimilarity between the
original raw datasets. More specifically, we focus on frequent item-
set patterns and investigate how the mining parameters used for
their extraction affect the resulting dissimilarity score. We exam-
ine two mining parameters, namely the minSupport threshold and
the adopted lattice representation among three alternatives frequent
itemsets, closed frequent itemsets or maximal frequent itemsets).

The chapter is organized as follows: In Section 4.1, we make an
introduction to the problem. In Section 4.2, we describe the ba-
sic concepts of the Frequent Itemset Mining (FIM) problem that
are necessary for the understanding of this work. In Section 4.3,
we discuss the related work and describe a general formula under
which the different dissimilarity measures proposed in literature can
be described. In Section 4.4, we present the FIM parameters that
affect dissimilarity, namely the minSupport threshold and the com-
pactness level of the lattice representation (frequent itemsets, closed
frequent itemsets or maximal frequent itemsets). In Section 4.5, we
verify the theoretical results by experimentally evaluating the effect
of the different parameters on dissimilarity. In Section 4.6, we sum-
marize the findings of this study, whereas in Section 4.7, we outline
the emerged research issues.

Index terms frequent itemsets dissimilarity, minSupport effect,
lattice compactness level effect.

87
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4.1 Introduction

Detecting changes between datasets is an important problem nowa-
days due to the highly dynamic nature of data and the collection of
data from different data sources. A common approach for comparing
datasets is to utilize the pattern sets extracted from these datasets.
The intuition behind this approach is that, to some degree, pat-
terns condense the information contained in the original raw data.
For example, in [32], the authors measure the deviation between two
datasets in terms of the data mining models they induce, namely fre-
quent itemsets, decision trees or clusters. This comparison is used
as the basis for mining systematically evolving data [33], like the
buying habits of customers in a supermarket. In [81], the authors
measure the dissimilarity between distributed datasets (e.g., the dif-
ferent branches of a supermarket) using the corresponding sets of
frequent itemsets. The same rationale is followed by the authors
in [59].

Intuitively, it is reasonable to employ pattern comparison for data
comparison. Indeed, patterns preserve part of the information con-
tained in the original raw data (recall that by definition patterns are
compact and rich in semantics representations of raw data), however
the degree of preservation depends on the mining parameters used
for their extraction. Thus, when comparing two datasets on the
basis of their corresponding pattern sets, the resulting dissimilarity
score is subjective, with respect to the mining parameters used for
the extraction of these patterns. This is a kind of a dissimilarity
reasoning problem (recall Challenge 3 in Section 1.4).

In this chapter, we investigate the dissimilarity reasoning prob-
lem for a very popular pattern type, namely the frequent itemset
patterns and their variations, closed frequent itemsets and maximal
frequent itemsets. Frequent Itemset Mining (FIM) is a well studied
research area in DM due to its broad applications (e.g., association
rules, correlations, sequential patterns and episodes [102]). Plenty
of work has been carried out in this domain, mainly focusing on de-
veloping efficient algorithms for the FIM problem (see [41], [37] for
an overview of the area). Furthermore, algorithms for discovering
more compact representations of the frequent itemset lattice (FI),
like maximal frequent itemsets (MFI) and closed frequent itemsets
(CFI), have been also proposed in the literature, e.g., [36], [105].

To summarize, in this chapter, we investigate whether the dissim-
ilarity score between two sets of frequent itemsets is affected by the
mining parameters used for their extraction. The first parameter
that we examine is the minSupport threshold, which constraints the



4.2. BACKGROUND ON THE FIM PROBLEM 89

itemset lattice by eliminating those itemsets whose support is less
than the given threshold value. The second parameter is the lattice
compactness level (FI, CFI or MFI), which constraints the frequent
itemsets lattice by eliminating redundant itemsets based on either
the structure components (like in MFIs), or in both structure and
measure components (like in CFIs). Thus, both parameters con-
straint the frequent itemsets lattice based on either the structure or
the measure component of the itemsets or in both of them.

Our analysis shows that utilizing frequent itemsets comparison
for dataset comparison is not as straightforward as related work has
argued, a result which is verified through an experimental study and
opens issues for further research in the KDD field. The contributions
of this chapter are as follows:

• We describe the different dissimilarity measures proposed so
far in the literature ([32, 59, 81]) through a general common
dissimilarity schema according to the Panda framework pre-
sented in Chapter 3.

• We provide a theoretical analysis that shows the dependency of
dissimilarity in pattern space on the FIM settings. In particu-
lar, we prove two lemmas: Regarding the minSupport thresh-
old, our analysis shows that the larger this threshold is, the
higher the dissimilarity in pattern space is. Regarding the dif-
ferent lattice representations (FI, CFI or MFI), it turns out that
the more compact the representation achieved by the itemset
type is, the higher the dissimilarity in pattern space is.

• We verify the above theoretical results through an experimen-
tal study. The results indicate that utilizing pattern compar-
ison for data comparison is not as straightforward as argued
by related work and should only be carried out under certain
assumptions (e.g., FIM settings).

4.2 Background on the FIM problem

In Section 2.5, we have already presented some basic concepts on
the Frequent Itemsets Mining (FIM) problem. In this section, we
provider further information necessary for understanding of this
chapter.

As already stated, an itemset is frequent if its support exceeds
a user defined minSupport threshold σ, i.e., suppD(X) ≥ σ. The
set of frequent itemsets extracted from D under the minSupport
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threshold σ is defined as:

Fσ(D) = {X ⊆ I | suppD(X) ≥ σ} (4.1)

The set of frequent itemsets forms the itemset lattice L in which the
Apriori property holds: an itemset is frequent iff all of its subsets are
frequent. The Apriori property allows us to enumerate all frequent
itemsets using more compact representations like closed frequent
itemsets (CFI) and maximal frequent itemsets (MFI).

A frequent itemset X is called closed if there exists no frequent
superset Y ⊃ X with suppD(X) = suppD(Y ). The set of closed
frequent itemsets extracted from D under σ is defined as:

Cσ(D) = {X ∈ Fσ(D) : Y ⊃ X ⇒ suppD(X) > suppD(Y ), Y ∈ Fσ(D)}
(4.2)

Cσ(D) is a subset of Fσ(D) since every closed itemset is also fre-
quent.

Cσ(D) = Fσ(D)−{X ∈ Fσ(D) : Y ⊃ X ⇒ suppD(X) = suppD(Y ), Y ∈ Fσ(D)}
(4.3)

By definition, Cσ(D) is a lossless representation of Fσ(D) since both
the lattice structure (i.e., frequent itemsets) and the lattice measure
(i.e., itemset supports) can be derived from CFIs [105].

On the other hand, a frequent itemset is called maximal if it
is not a subset of any other frequent itemset. The set of maximal
frequent itemsets extracted from D under the minSupport threshold
σ is defined as:

Mσ(D) = {X ∈ Fσ(D) : Y ⊂ X ⇒ Y /∈ Fσ(D), Y ⊆ I} (4.4)

Mσ(D) is also a subset of Fσ(D) since every maximal itemset is
frequent.

Mσ(D) = Fσ(D) − {X ∈ Fσ(D) : Y ⊃ X ⇒ Y ∈ Fσ(D)} (4.5)

Maximal frequent itemsets are also closed since by definition they
cannot be extended by another frequent item to yield a frequent
itemset [105]:

Mσ(D) = Cσ(D) − {X ∈ Cσ(D) : Y ⊃ X ⇒ Y ∈ Cσ(D)} (4.6)

Unlike Cσ(D), Mσ(D) is a lossy representation of Fσ(D) since it is
only the lattice structure (i.e., frequent itemsets) that can be deter-
mined from MFIs whereas frequent itemset supports are lost [105].

By Equation 4.3, 4.5 and 4.6 it follows that:

Mσ(D) ⊆ Cσ(D) ⊆ Fσ(D) (4.7)
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In practice, CFIs can be orders of magnitude less than FIs, and MFIs
can be orders of magnitude less than CFIs [105]; see also Figure 4.3.

For illustrating purposes, let us consider the two sets of frequent
itemsets A, B depicted in Figure 4.1. Suppose that A and B were
generated under the same minSupport threshold σ from the origi-
nal datasets D and E, respectively. Each itemset is described as a
pair <structure, measure> denoting the items forming the itemset
(structure component) and the itemset support (measure compo-
nent).

Figure 4.1: Two lattices of frequent itemsets: A (left), B (right).

The question is how similar to each other A and B are. There are
many cases where the two sets might differ: An itemset, for example,
might appear in both A and B sets but with different supports, like
the itemset < a > in Figure 4.1. Or, an itemset might appear in
only one of the two sets, like the itemset < b > which appears in
A but not in B. In this case, two alternatives might occur: either
it does not actually exist in the corresponding dataset E or < b >
has been pruned due to low support (lower than the minSupport
threshold σ).

Since the generation of A, B sets depends on the FIM parameters
namely, the minSupport threshold σ used for their generation and
the adopted lattice representation (FI, CFI or MFI), we argue that
the estimated dissimilarity score also depends on these parameters.
Consequently, since dissimilarity in pattern space is often used as
a measure of dissimilarity in raw data space, the above mentioned
parameters also affect this correspondence.

Table 4.1 summarizes the symbols introduced in this section.

4.3 Comparing FI lattices

Related work ([32], [59], [81]) utilizes comparison between sets of fre-
quent itemsets for dataset comparison, by considering both structure
and measure components. In the following paragraphs we outline
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Symbol Description
D a dataset
X an itemset

suppD(X) the support of itemset X in D
σ the minSupport threshold

Fσ(D) the set of frequent itemsets in D under σ
Cσ(D) the set of closed frequent itemsets in D under σ
Mσ(D) the set of maximal frequent itemsets in D under σ

dis(A, B) dissimilarity between two set of itemsets A, B

Table 4.1: List of symbols for Chapter 4

the above related work; we exclude [14], which leaves measure com-
ponents out of consideration.

4.3.1 Parthasarathy-Ogihara approach

Parthasarathy and Ogihara [81] present a method for measuring
the dissimilarity between two datasets D and E by using the cor-
responding sets of frequent itemsets (A and B, respectively). Their
metric is defined as follows:

dis(A, B) = 1 −
∑

X∈A∩B max{0, 1 − θ ∗ |suppD(X) − suppE(X)|}
|A ∪ B|

(4.8)
In the above equation, θ is a scaling parameter that is specified by

the user and reflects how significant are the variations in the support
values. For θ = 0, the measure component carries no significance,
whereas for θ = 1, the measure component is of equal importance
with the structure component.

This measure works with itemsets of identical structure, i.e.,
those appearing in A ∩ B. Itemsets that only partially fit each
other like < ab > and < ac > are considered totally dissimilar.

For our running example (c.f. Figure 4.1), it holds that A ∩B =
{< a >}. Assuming θ = 1, it follows that dis(A, B) = 0.84 accord-
ing to Equation 4.8.

4.3.2 FOCUS approach

Ganti et al. [32] propose the FOCUS framework for quantifying the
deviation between two datasets D and E in terms of the sets of fre-
quent itemsets (A and B, respectively) they induce. The deviation
is defined as the amount of work required to transform one set into
the other. To this end, A and B are refined into their union, A∪B,
and the support of each itemset is computed with respect to both
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datasets D and E. Next, the deviation is computed by summing up
the deviations of the frequent itemsets in the union:

dis(A, B) =

∑
X∈A∪B |suppD(X) − suppE(X)|∑

X∈A suppD(X) +
∑

X∈B suppE(X)
(4.9)

FOCUS measures the dissimilarity between two sets of frequent
itemsets in terms of their union. Partial similarity is not considered
within FOCUS; in fact FOCUS tries to find itemsets of identical
structures. More specifically, if an itemset X appears in A with
suppD(X) but not in B, then the corresponding data set E of B is
queried so as to retrieve suppE(X).

An upper bound on dissimilarity is provided for the case of fre-
quent itemsets [32], which involves only the induced models and
avoids the expensive operation of querying the original raw data
space. In this case, if an itemset X does not appear in B, it is
considered to appear but with zero measure, i.e., suppE(X) = 0. In
the following, we consider the upper bound case, since we are inter-
ested on how patterns (i.e., frequent itemset sets) capture similarity
features contained in the original raw datasets.

For our running example (c.f. Figure 4.1), it holds that A∪B =
{< a >, < b >, < c >, < ab >, < ac >}, resulting in dis(A, B) =
0.64 according to Equation 4.9.

4.3.3 Li-Ogihara-Zhou approach

Li et al [59] propose a dissimilarity measure between datasets based
on the set of maximal frequent itemsets (MFIs) extracted from these
datasets. Their metric is defined as follows: Let A = {Xi, suppD(Xi)}
and B = {Yj, suppE(Yj)} where Xi, Yj are the MFIs in D, E respec-
tively. Then the dissimilarity between A and B is defined as:

dis(A, B) = 1 − 2I3

I1 + I2

(4.10)

where

I1 =
∑

Xi,Xj∈A

d(Xi, Xj), I2 =
∑

Yi,Yj∈B

d(Yi, Yj), I3 =
∑

X∈A,Y ∈B

d(X, Y )

and

d(X, Y ) =
|X ∩ Y |
|X ∪ Y | ∗ log(1 +

|X ∩ Y |
|X ∪ Y |) ∗ min(suppD(X), suppE(Y ))

I3 can be considered as a measure of “mutual information” between
A and B sets, whereas the fraction 2

I1+I2
serves as a normalization

factor.
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This measure works with the average dissimilarity between pairs
of MFIs from A and B sets. Partial similarity is considered within
this approach; that is, itemsets that have some common part in
their structure are compared and their score is aggregated to the
total dissimilarity score, dis(A, B).

For our running example (c.f. Figure 4.1), dis(A, B) = 0.58 ac-
cording to Equation 4.10.

4.3.4 Common background of the three approaches

All approaches express the dissimilarity between two sets of frequent
itemsets as an aggregation of the dissimilarities of their component
itemsets1:

dis(A, B) =
∑

X∈A,Y ∈B

dis(X, Y ) (4.11)

where dis(X, Y ) is the dissimilarity function between two simple
frequent itemsets, defined in terms of their structure and measure
components, as follows:

dis(X, Y ) = f(disstruct(X, Y ), dismeas(X, Y )) (4.12)

The function disstruct(X, Y ) evaluates the dissimilarity between the
structure components (i.e., frequent itemsets) of X, Y , whereas the
function dismeas(X, Y ) evaluates the dissimilarity between their mea-
sure components (i.e., supports). Finally, the function f aggregates
the corresponding structure and measure dissimilarity scores by
summing them up into a total dissimilarity score.

All approaches ([81], [32], [59]) follow the same rationale of Equa-
tion 4.11 and differentiate only on how disstruct(X, Y ) and dismeas(X, Y )
are evaluated and on how their scores are combined through the ag-
gregation function f.

• In case of the Parthasarathy-Ogihara measure, Equation 4.12
can be written as:

dis(X, Y ) = max{0, 1 − disstruct(X, Y ) − θ ∗ dismeas(X, Y )}

where

disstruct(X, Y ) =

{
0 , if X = Y
1 , otherwise

dismeas(X, Y ) =

{
|suppD(X) − suppE(Y )| , if X = Y
0 , otherwise

1In this formula, we do not consider the normalization factor.
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• In case of the FOCUS measure, Equation 4.12 can be written
as:

dis(X, Y ) = (1 − disstruct(X, Y )) ∗ dismeas(X, Y )

where

disstruct(X, Y ) =

{
0 , if X = Y
1 , otherwise

dismeas(X, Y ) =

⎧⎨
⎩

|suppD(X) − suppE(Y )| , if X, Y ∈ A ∩ B and X = Y
suppD(X) , if X ∈ A − B
suppE(Y ) , if Y ∈ B − A

• Finally, for the Li-Ogihara-Zhu measure, Equation 4.12 can be
written as:

dis(X, Y ) = disstruct(X, Y )∗log(1+disstruct(X, Y ))∗dismeas(X, Y )

where

disstruct(X, Y ) =
|X ∩ Y |
|X ∪ Y |

dismeas(X, Y ) = min{suppD(X), suppE(Y )}

The fact that all approaches follow a general rationale is also
confirmed by the experiments (Section 4.5), where, although the
dissimilarity scores vary, a similar behavior is exhibited by all ap-
proaches.

We could express all these measures in terms of the PANDA
framework terminology (c.f. Chapter 3): itemsets correspond to
simple patterns whereas sets of itemsets correspond to complex pat-
terns. The dissimilarity between two simple patterns (i.e., itemsets)
for each approach is given as described in this section. For the
comparison of complex patterns (i.e., sets of frequent itemsets) all
approaches employ the sum function as the aggregation function.
Regarding the matching type, Parthasarathy-Ogihara and FOCUS
employ 1 − 1 matching between the component itemsets, whereas
Li-Ogihara-Zhou employs M −N matching between the component
itemsets of the two sets to be compared.

4.4 Effect of mining parameters on dissimilarity

In the following subsections, we investigate how the dissimilarity
between two sets of frequent itemsets depends on the minSupport
threshold σ used for their generation and on the adopted lattice
representation (FI, CFI or MFI). We start with a single dataset from
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which we extract patterns under different mining parameters and
then we compare the resulting pattern sets with the initial pattern
set (i.e., the one extracted from the initial dataset).

4.4.1 Effect of minSupport threshold on dissimilarity

Let σ, σ + δ (0 < σ, δ < σ + δ ≤ 1) be two minSupport thresholds
applied over a data set D and let Fσ, Fσ+δ be the corresponding
sets of frequent itemsets produced by (any) FIM algorithm. The
difference set Fσ − Fσ+δ contains all those itemsets whose support
lies between σ and σ + δ:

Z ≡ Fσ − Fσ+δ = {X ⊆ I | σ ≤ supp(X) < σ + δ} (4.13)

In Figure 4.2, an example is depicted which illustrates how the
resulting lattice is affected by the increase δ in the minSupport
threshold value. As it is shown in this figure, as δ increases the
resulting lattice is reduced, which is an obvious behavior. Note
however, that two values δ, δ′ might result in the same lattice even if
δ < δ′, that is, the pruning function is not monotonic. For example,
the pruning effect on the lattice of Figure 4.2 for δ = 0.05 and
δ′ = 0.1 is the same.

Figure 4.2: Effect of δ increase on the lattice structure (σ = 0.1)

Below, we show how each of the presented measures is affected
by the increase δ in the minSupport value.

Lemma 1 For either the Parthasarathy-Ogihara, or FOCUS or Li-
Ogihara-Zhou approach, it holds that the larger the increase in the
minSupport threshold value δ is, the larger the computed dissimi-
larity score, dis(Fσ, Fσ+δ), is.

Proof:
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Parthasarathy-Ogihara approach: From Equation 4.8 and since Fσ∩
Fσ+δ = Fσ+δ, it holds that:

dis(Fσ, Fσ+δ) = 1 −
∑

X∈Fσ∩Fσ+δ
max{0, 1 − θ ∗ |suppD(X) − suppD(X)|}

|Fσ ∪ Fσ+δ|

= 1 −
∑

X∈Fσ+δ
max{0, 1 − 0}
|Fσ|

⇒ dis(Fσ, Fσ+δ) = 1 − |Fσ+δ|
|Fσ|

(4.14)

From the above equation, it arises that the larger the increase
in the minSupport threshold value δ is, the smaller the enumera-
tor |Fσ+δ| is (c.f. Equation 4.13) and thus the greater the distance
between the two sets is.

FOCUS approach: Recalling Equation 4.9 and Equation 4.13, it
holds that2:

dis(Fσ, Fσ+δ) =

∑
X∈Fσ∪Fσ+δ

|suppD(X) − suppD(X)|∑
X∈Fσ

suppD(X) +
∑

X∈Fσ+δ
suppD(X)

(4.15)

=

∑
X:σ≤suppD(X)<σ+δ suppD(X)

2 ∗
∑

X∈Fσ
suppD(X) −

∑
X:σ≤suppD(X)<σ+δ suppD(X)

For simplicity, let C =
∑

X:σ≤suppD(X)<σ+δ suppD(X); that is C con-
siders all those itemsets whose support values lie in-between σ and
σ + δ. Thus:

⇒ dis(Fσ, Fσ+δ) =
C

2 ∗
∑

X∈Fσ
suppD(X) − C

(4.16)

In the above equation, if the value of δ increases, the numerator C
will also increase whereas the denumerator will decrease (c.f. Equa-
tion 4.13 as well). Thus, as δ increases, the dissimilarity also in-
creases.

2The notation in this equation might confuse the reader, so we provide some further ex-
planation. In particular, the term

∑
X∈Fσ∪Fσ+δ

|suppD(X) − suppD(X)| corresponds to the

sum of the absolute differences of the two supports of itemsets in D, due to thresholds σ and
σ + δ, respectively. In fact, it corresponds to the sum of the supports of all those itemsets
which appear in the difference set Fσ − Fσ+δ. As far, as this set is not empty, this term is
> 0.
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Li-Ogihara-Zhou approach: From Equation 4.10 and Equation 4.13,
it holds that:

I1 + I2 =
∑

X,Y ∈Fσ

d(X, Y ) +
∑

X,Y ∈Fσ+δ

d(X, Y )

= 2 ∗
∑

X,Y ∈Fσ

d(X, Y ) −
∑

X:σ≤supp(X)<σ+δ
Y :σ≤supp(Y )<σ+δ

d(X, Y )

I3 =
∑

X∈Fσ
Y ∈Fσ+δ

d(X, Y ) =
∑

X,Y ∈Fσ

d(X, Y ) −
∑

X:σ≤supp(X)<σ+δ
Y :σ≤supp(Y )<σ+δ

d(X, Y )

For simplicity, let G =
∑

X:σ≤supp(X)<σ+δ
Y :σ≤supp(X)<σ+δ

d(X, Y ); that is G con-

siders all those itemsets whose support values lie in-between σ and
σ + δ. Thus:

⇒ dis(Fσ, Fσ+δ) = 1− 2I3

I1 + I2

= 1− 2(I1 − G)

2I1 − G
=

G

2I1 − G
(4.17)

From the above equation, it arises that as δ increases, the enu-
merator G also increases, whereas the denumerator (2I1 − G) de-
creases (c.f. Equation 4.13 as well). Thus, dissimilarity increases as
δ increases.

To summarize, Equation 4.14, 4.16 and 4.17 prove Lemma 1.

4.4.2 Effect of lattice representation on dissimilarity

Let Fσ(D), Cσ(D), Mσ(D) be the sets of frequent, closed frequent
and maximal frequent itemsets, respectively, extracted from D un-
der (fixed) minSupport threshold σ. In this subsection, we study
how the adopted lattice representation affects dissimilarity.

In Figure 4.3, an example is depicted which illustrates the effect of
the different representations (FI, CFI, MFI) in the lattice structure.
These figures affirm Equation 4.7, which states that the greater the
compactness level is, the “smaller” the resulting lattice will be.

Below, we show for each of the presented measures, how they are
affected by the adopted lattice compactness level (FI, CFI, MFI).

Lemma 2 For either the Parthasarathy-Ogihara, or FOCUS or Li-
Ogihara-Zhou approach, it holds that the more compact the addopted
lattice representation (MFIs vs CFIs vs FIs) is, the larger the com-
puted distance is.

Proof:



4.4. EFFECT OF MINING PARAMETERS ON DISSIMILARITY 99

Figure 4.3: Effect of compactness level (FI, CFI, MFI) on the lattice structure
(σ = 0.1)

Parthasarathy-Ogihara approach: From Equation 4.8, and since Fσ∩
Cσ = Cσ, Fσ ∩ Mσ = Mσ, it holds that:

dis(Fσ, Cσ) = 1 −
∑

X∈Fσ∩Cσ
max{0, 1 − θ ∗ |suppD(X) − suppD(X)|}

|Fσ ∪ Cσ|

= 1 −
∑

X∈Cσ
max{0, 1 − 0}
|Fσ|

= 1 − |Cσ|
|Fσ|

(4.18)

also:

dis(Fσ, Mσ) = 1 −
∑

X∈Fσ∩Mσ
max{0, 1 − θ ∗ |suppD(X) − suppD(X)|}

|Fσ ∪ Mσ|

= 1 −
∑

X∈Mσ
max{0, 1 − 0}
|Fσ|

= 1 − |Mσ|
|Fσ|

(4.19)

From the above two equations, for the Parthasarathy-Ogihara
measure it holds that:

dis(Fσ, Cσ) ≤ dis(Fσ, Mσ) (4.20)

FOCUS approach: Recalling Equation 4.9, and since Fσ ∪ Cσ =
Fσ, Fσ ∪ Mσ = Fσ, it holds that:

dis(Fσ, Cσ) =

∑
X∈Fσ∪Cσ

|suppD(X) − suppD(X)|∑
X∈Fσ

suppD(X) +
∑

X∈Cσ
suppD(X)

(4.21)

=

∑
X∈Fσ−Cσ

suppD(X)

2 ∗
∑

X∈Fσ
suppD(X) −

∑
X∈Fσ−Cσ

suppD(X)
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also:

dis(Fσ, Mσ) =

∑
X∈Fσ∪Mσ

|suppD(X) − suppD(X)|∑
X∈Fσ

suppD(X) +
∑

X∈Mσ
suppD(X)

(4.22)

=

∑
X∈Fσ−Mσ

suppD(X)

2 ∗
∑

X∈Fσ
suppD(X) −

∑
X∈Fσ−Mσ

suppD(X)

where Fσ − Cσ is given by Equation 4.3 and Fσ − Mσ is given by
Equation 4.5.

From the above two equations, for the FOCUS measure it holds
that:

dis(Fσ, Cσ) ≤ dis(Fσ, Mσ) (4.23)

Li-Ogihara-Zhou approach: From Equation 4.10, it holds that:

I1 + I2 =
∑

X,Y ∈Fσ

d(X, Y ) +
∑

X,Y ∈Cσ

d(X, Y )

= 2 ∗
∑

X,Y ∈Fσ

d(X, Y ) −
∑

X,Y ∈Fσ−Cσ

d(X, Y ) = 2 ∗ I1 −
∑

X,Y ∈Fσ−Cσ

d(X, Y )

I3 =
∑

X∈Fσ
Y ∈Cσ

d(X, Y ) =
∑

X,Y ∈Fσ

d(X, Y ) −
∑

X,Y ∈Fσ−Cσ

d(X, Y )

= I1 −
∑

X,Y ∈Fσ−Cσ

d(X, Y )

For simplicity, let K =
∑

X,Y ∈Fσ−Cσ
d(X, Y ). Thus:

dis(Fσ, Cσ) = 1 − 2(I1 − K)

2I1 − K
=

K

2I1 − K
(4.24)

Similarly for the FI-MFI comparison case, it holds that:

I1 + I2 =
∑

X,Y ∈Fσ

d(X, Y ) +
∑

X,Y ∈Mσ

d(X, Y )

= 2 ∗
∑

X,Y ∈Fσ

d(X, Y ) −
∑

X,Y ∈Fσ−Mσ

d(X, Y ) = 2 ∗ I1 −
∑

X,Y ∈Fσ−Mσ

d(X, Y )

I3 =
∑

X∈Fσ
Y ∈Mσ

d(X, Y ) =
∑

X,Y ∈Fσ

d(X, Y ) −
∑

X,Y ∈Fσ−Mσ

d(X, Y )

= I1 −
∑

X,Y ∈Fσ−Mσ

d(X, Y )
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For simplicity, let L =
∑

X,Y ∈Fσ−Mσ
d(X, Y ). Thus:

dis(Fσ, Mσ) = 1 − 2(I1 − L)

2I1 − L
=

L

2I1 − L
(4.25)

From Equation 4.24 and Equation 4.25, for the Li-Ogihara-Zhou
measure it holds that:

dis(Fσ, Cσ) ≤ dis(Fσ, Mσ) (4.26)

Equations 4.20, 4.23 and 4.26 prove Lemma 2.
Consequently, Sections 4.4.1 and 4.4.2 prove the dependency of

the dissimilarity measures between sets of frequent itemsets, on
the mining parameters used for their extraction, namely on the
minSupport threshold and on the adopted lattice representation
(FI, CFI or MFI).

4.5 Experimental evaluation

To evaluate the theoretical results presented in Sections 4.4.1 and 4.4.2,
we experimented with the different dissimilarity measures (Parthasarathy-
Ogihara, FOCUS, Li-Ogihara-Zhu) on datasets from the frequent
itemset mining dataset repository [30].

For the experiments we used both synthetic and real datasets
that are further characterized either as dense or as sparse 3. The
dataset characteristics are described in Table 4.2. For the extraction
of the FI, CFI, MFI sets we used the MAFIA program [18].

dataset # trans. # items |avg. trans.| type type
T10I4D100K 100,000 1,000 10 sparse synthetic

chess 3,196 76 37 dense real
connect 67,557 130 43 dense real

Table 4.2: Dataset characteristics

For the FOCUS approach (c.f. Section 4.3.2), we used the up-
per bound of the dissimilarity measure proposed by the authors
without re-querying the original raw data space. This decision, as
already mentioned, is justified by the fact that we are interested on
how patterns (i.e., frequent itemsets) capture the similarity features
contained in the original raw data. For the Parthasarathy-Ogihara
approach (c.f. Section 4.3.1), we used θ = 1, considering that both
structure and measure components contribute equally to the final
dissimilarity score.

3Market basket data are usually sparse, in contrary to telecommunications and cencus data
that are dense.
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4.5.1 Comparing dissimilarity in data and FI spaces

The first set of experiments evaluates the argument that dissimilar-
ity in pattern space can be adopted to discuss dissimilarity in data
space. In particular, we select a popular representation, FI, and a
specific minSupport threshold σ for their generation, while we mod-
ify the dataset by adding different proportions of noise. Then, we
compare the dissimilarity measured in the FI space with respect to
the dissimilarity enforced (by adding noise) in the original raw data
space.

The scenario is the follows: Starting with an initial dataset D and
for a specific minSupport threshold σ, we extracted Fσ(D). Then, at
each step, we modified an increased number 0%, 5%, . . . , 50% of the
transactions of D. The selection of the transactions to be affected
was performed in a random way, and for each selected transaction
we modified a certain percentage (in particular, 50%) of its items.
The modification we made was that the selected item values were
reset to 0 (in a preprocessing step both datasets of the experiments
where transformed into binary format). As such, the derived pattern
sets Fσ(Dp%) were subsets of the initial pattern sets Fσ(D0%). Then,
we compared the noised pattern sets Fσ(Dp%) with the initial “un-
noised” pattern set Fσ(D0%).

Regarding the generation of the pattern sets, we used σ = 80%
for the dataset D = chess and σ = 0.5% for the dataset D =
T10I4D100K. The choice of these values was based on the cardi-
nality analysis presented in [102]. The results for the two datasets
are illustrated in Figure 4.4.

As illustrated in these figures, for both the sparse and the dense
datasets, as the dataset becomes noisier, the distance between the
initial pattern set and the new (“noisy”) pattern set becomes larger,
for all the dissimilarity measures. Moreover, if we consider that the
dissimilarity in data space is the edit distance between the original
and the noisy dataset, we can see that none of the approaches cap-
tures in pattern space the dissimilarity that appears in the original
raw data space.

A comparative study of these figures shows that the effect of noise
is more destructive in the case of the dense datasets like chess. In
Figure 4.4 (bottom), the dissimilarity increases quickly up to the
upper bound (i.e., dissimilarity = 1). This can be explained by the
fact that small changes in a dense dataset may cause critical changes
in the produced FI lattice. On the other hand, this is not the case
for a sparse datasets like T10I4D100K, which appears to be more
robust in the increase of the dataset noise as it is shown in Figure 4.4
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Figure 4.4: Impact of dataset noise increase on FI dissimilarity: D =
T 10I4D100K, σ = 0.5% (top), D = chess, σ = 80% (bottom).

(top).

4.5.2 Effect of minSupport threshold

In this section, we evaluate the effect of the minSupport threshold
on the computed dissimilarity score.
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The scenario is as follows: For each dataset D, we fixed the
initial minSupport threshold σ and varied the increase δ in the
minSupport values in the range δ0, δ1, . . . , δn(σ + δi ≤ 1). Then, we
generated the corresponding FIs for the different minSupport val-
ues, namely σ+δ0, σ+δ1, . . . , σ+δn. After that, we compared FIσ+δi

with the initial FIσ+δ0 . We chose the σ, δ values for the different
datasets based on the cardinality analysis presented in [102]. Since
our analysis does not depend on specific support values we chose pa-
rameters that yield a reasonable amount of patterns, that is: in case
of the D = T10I4D100K dataset, we choose σ = 0, 5% for the ini-
tial support and the values 0%, 0.5%, . . . , 4.5% for the minSupport
increase δ, whereas in case of the D = chess dataset, we choose
σ = 90% for the initial support and the values: 0%, 1%, . . . , 9% for
the minSupport increase δ.

The results for the two datasets are illustrated in Figure 4.5. As
it is shown in these charts, the larger the increase in the minSupport
threshold value δ is, the larger the dissimilarity between the corre-
sponding pattern sets is, and this holds for all dissimilarity measures.

More comments on the results: Both Parthasarathy-Ogihara and
FOCUS are based on some kind of 1−1 matching between (identical)
itemsets of the two sets. They differ in the fact that Parthasarathy-
Ogihara considers only those itemsets that appear in the set in-
tersection (A ∩ B), whereas FOCUS considers also itemsets that
appear in (A − A ∩ B) and (B − A ∩ B), that is, it considers item-
sets in the set union (A ∪ B). If an itemset appears in one of the
two sets, Parthasarathy-Ogihara will increase the total dissimilarity
score by 1 (in absolute value), whereas FOCUS will increase the
total score by the support value of the specific itemset. This is the
reason why FOCUS results in lower dissimilarity scores comparing
to Parthasarathy-Ogihara. On the other hand, the Li-Ogihara-Zhou
approach follows a different rationale than Parthasarathy-Ogihara
and FOCUS: It performs a M-N matching between the itemsets of
the two sets and considers partial similarity between itemsets.

Note also the difference in the behavior depending on the dataset
characteristics (dense, sparse). The minSupport effect in case of the
dense datasets like chess (Figure 4.5, bottom) is smoother compar-
ing to the sparse datasets like T10I4D100K ((Figure 4.5, top)). This
is probably due to the fact that in a dense dataset the itemsets are
spread more smoothly at the different support levels comparing to a
sparse dataset. This is affirmed in Figure 4.6 where the distribution
of the number of itemsets at the different support levels is depicted
for each dataset.
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Figure 4.5: Impact of minSupport increase δ on FI dissimilarity: D =
T 10I4D100K, σ = 0.5% (top), D = chess, σ = 90% (bottom).

To summarize, experiments in this subsection have confirmed our
theoretical analysis (Lemma 1, Section 4.4.1) regarding the depen-
dency of the dissimilarity scores between two pattern sets of frequent
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(a) (b)

Figure 4.6: Itemsets distribution at different support levels for (a) D =
T 10I4D100K, σ = 0.5% and (b) D = chess, σ = 90%

itemsets on the minSupport threshold that was used for their gen-
eration. Indeed, as the minSupport becomes more “selective”, the
dissimilarity increases. Generalizing this result, we can state that
the more “selective” the minSupport threshold is, the less informa-
tive the set of frequent itemsets becomes with respect to the original
raw data space. Thus, when comparing two datasets in terms of the
corresponding pattern sets, the dissimilarity score is subjective to
the minSupport threshold used for the generation of frequent item-
sets patterns.

4.5.3 Effect of lattice representation

In this section, we study the effect of the different lattice repre-
sentations on dissimilarity. More specifically, we set the value of
the minSupport threshold parameter σ to a fixed value and cal-
culate the dissimilarity scores between the different lattice repre-
sentations under the same noise level, i.e., dis(Fσ(Dp%), Cσ(Dp%)),
dis(Fσ(Dp%), Mσ(Dp%)). The results for FI - CFI and FI - MFI
dissimilarity cases are illustrated in Figure 4.7.

These charts point out the dependency of the dissimilarity scores
on the adopted compactness level of the frequent itemsets lattice.
As illustrated in these figures, CFIs can well capture the behavior
of FIs whereas MFIs cannot; this is true for all the datasets.

However, the degree of difference between FI-CFI and FI-MFI
dissimilarities scores seems to be subject to the dataset character-
istics (sparse vs. dense). More specifically, in case of the sparse
dataset T10I4D100K, CFIs manage to fully capture the behavior
of FIs at every noise level while MFIs smoothly approximate FIs
as the dataset becomes more noisy (c.f. Figure 4.7, top). On the
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Figure 4.7: Impact of noise on dissimilarity for FI-CFI (dotted lines), FI-MFI
(solid lines): D = T 10I4D100K, σ = 0.5% (top), D = chess, σ = 80% (bot-
tom).

other hand, in case of the dense dataset chess, CFIs are still close
to FIs although they do not fully capture their behavior (c.f. Figure
4.7, bottom). As shown in these figures, the differences in FIs-CFIs,
FIs-MFIs are more “strong” in case of the dense datasets.
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To summarize, experiments in this subsection show that the adopted
representation for the frequent itemsets lattice affects the derived
dissimilarity scores, thus confirming the theoretical analysis regard-
ing the dependency of dissimilarity on the lattice representation
(Lemma 2, Section 4.4.2). In addition, it seems that CFIs are very
good representatives for FIs, whereas this is not the case for MFIs.
It turns out that the more compact the representation of the pattern
space is, the less informative this space becomes with respect to the
initial data space from which patterns have been extracted.

4.6 Summary

In this chapter, we investigated whether dissimilarity between sets of
frequent itemsets could serve as a measure of dissimilarity between
the original datasets from which these pattern sets have been ex-
tracted through some FIM algorithm. We presented the parameters
that affect the problem, namely the minSupport threshold used for
itemsets generation and the compactness level of the lattice repre-
sentation (frequent itemsets, closed frequent itemsets and maximal
frequent itemsets). Both theoretical analysis and experimental re-
sults confirmed that the more “restrictive” the mining parameters
are, the larger the dissimilarity between the two sets is, for all the
approaches proposed so far in the literature.

This result declares that utilizing pattern comparison for data
comparison is not as straightforward as related work has argued,
but is subjective to the mining parameters used for the extrac-
tion of patterns. A possible explanation for the similar behavior
of the different measures w.r.t. the mining parameters is that they
all follow the same generic schema (c.f. Section 4.3.4). More specif-
ically, all measures rely either on the union or on the intersection
of the sets of itemsets to be compared. However, the choice of the
minSupport threshold value and of the compactness level (FI, CFI
or MFI) strongly affect the resulting set of itemsets. Also, as shown
in the experiments a small change in the dataset might result in
very different sets of itemsets. All these facts indicate that, when
utilizing pattern comparison for data comparison, one should also
take into account the mining parameters used for the extraction of
patterns. A reasonable choice when comparing two datasets would
be to use those sets of itemsets extracted at the lowest minSupport
threshold value and at the less compact lattice representation level
(i.e., FIs); such sets are most probable to carry more of the informa-
tion contained in the original raw datasets. Especially for the lat-
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tice representation level, the behavior of CFIs turns out to be very
close to that of FIs, thus one could employ CFIs for the dataset
comparison. However, such a choice also depends on the dataset
characteristics (dense, sparse); as it raises from the experiments,
dense datasets are less robust to the mining parameters and dataset
variations comparing to sparse datasets.

Early versions of this study appear in [69, 71], whereas an ex-
tended version has been submitted in [77]

4.7 Open issues

An open issue is the “discovery” of a dissimilarity measure that
would be more robust to the mining parameters and would better
preserve the original raw data space characteristics in the pattern
space. From the current study, it seems that a M-N comparison be-
tween the itemsets of the two sets is more stable than a 1-1 compar-
ison. Also, the results are more stable when one takes into account
the itemsets that appear in the union of the two sets to be com-
pared instead of those appearing in the set intersection. However,
instead of looking at itemsets appearing in the union or in the inter-
section of the two sets, several other alternatives exist. For example,
one could employ a spectrum-like approach by considering for the
comparison the set of k-itemsets, e.g., all 2-itemsets, instead of all
itemsets; this might be a more reasonable and unbiased reflection of
the composition of the underlying datasets.
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Chapter 5

Estimating Similarity
between Decision Trees
(and Classification
Datasets) - A Semantic
Comparison Framework

In this chapter, we present a general framework for similarity esti-
mation between either decision trees or classification datasets. Our
approach exploits the information provided by the partitioning that
each decision tree performs over the attribute space of the dataset
from which it has been induced. We demonstrate the usefulness and
applicability of our framework in estimating the semantic similarity
between decision tree models induced from different subsamples of
classification datasets. We evaluate the performance of our semantic
similarity measures with respect to the empirical semantic similarity
measure, which is estimated on the basis of independent hold-out
test sets.

The chapter is organized as follows: In Section 5.1 we make an
introduction to the problem. In Section 5.2, we describe the basic
concepts of the decision tree models that are necessary for the un-
derstanding of this work. In Section 5.3, we describe our similarity
framework. In Section 5.4, we experimentally evaluate the proposed
semantic similarity measures between decision tree models. In Sec-
tion 5.5, we present the related work. In Section 5.6, we summarize
the work, whereas in Section 5.7 we discuss the emerged research
issues.

111
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Index terms decision tree dissimilarity, semantic similarity, struc-
tural differences.

5.1 Introduction

Decision trees (DT) are among the most popular learning paradigms
in the area of Data Mining thanks to a number of attractive prop-
erties, such as scalability to large datasets and relative easiness of
interpretation by end users, provided of course that their size does
not exceed certain limits.

On the other hand, decision tree models are also well known for
their instability ; small changes in the training dataset may result
in completely different decision trees, which might contain different
tests on the predictive attributes or even different predictive at-
tributes. Note however, that two decision trees, though structurally
different, may describe the same concept, i.e., they may be semanti-
cally similar. Intuitively, two decision trees should be semantically
similar, if they have been learned from datasets that come from the
same generating distribution.

Semantic similarity in the presence of structural differences might
result for a variety of reasons, such as, superficially different tests
on attributes which are in fact equivalent, different attributes that
convey the same information due to attribute redundancy, or simply
because, the same concept can be described in many different ways
which are nevertheless semantically equivalent. To capture the de-
gree of semantic similarity between decision trees we need a measure
of the semantic similarity of the concepts that they describe.

There is a plethora of reasons for which the definition of semantic
similarity measures between decision trees is required. By far, the
most important is being able to report to the end users whether the
differences observed in decision trees induced from different train-
ing sets (which however are thought to come from the same data
generating distribution) are only structural and do not correspond
to semantic differences, or whether the concepts described by the
decision trees are indeed semantically different. In the latter case,
a quantification of this semantic difference would be useful.

Moreover, the availability of a similarity measure on classification
models makes it possible to apply a number of standard mining tasks
on classification models rather than on raw data, resulting in what
we could call meta-analysis or meta-mining tasks. For example, the
semantic similarity measures can be used to cluster different sites
into groups of similar behavior according to the decision tree models
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learned locally on each of the sites; e.g., clustering the different
branches of a bank according to the credit strategy they adopt (as
this is expressed by the decision tree model extracted locally at each
branch).

Also, in case of dynamic data like data streams, similarity could
be employed in order to monitor the evolution of the induced de-
cision tree models across the time axis. A crucial question in this
case is whether the concept, which is captured in the decision tree
models, remains (about) the same or there are concept shifts in
the population. Based on such information, a telecommunication
company, for example, could adapt its billing strategy on time.

Similarity could be also employed in order to study the effect of
the decision tree learning parameters, like pruning level or induction
algorithm, on the resulting decision tree models. As another appli-
cation, consider the comparison of a decision tree model extracted
from the data to a golden standard decision tree model (recall Fig-
ure 1.3), so as to know how far away is the extracted (real) model
from the expected (possibly artificial) model.

In this chapter, we propose a general similarity estimation frame-
work that includes as special cases: i) the estimation of semantic
similarity between decision trees and, ii) the estimation of similar-
ity between classification datasets based on the different probability
distributions that rule these sets, namely the marginal probability
distribution of the attributes, the joint attribute-class probability dis-
tribution and the attribute-conditional class probability distribution.
The framework is based on the comparison of the partitionings that
the decision trees define over a given attribute space considering
the probability distribution of the data space over that partition-
ing. Similar ideas have been previously used for dataset compari-
son [32, 97, 82], however, to the best of our knowledge, this is the first
time that the semantic similarity between decision trees, on which
we focus in this work, is explored. Depending on the available in-
formation regarding the probability distribution that generated the
data, we get different instantiations of the decision tree semantic
similarity measure. To evaluate the proposed decision tree semantic
similarity measures we compare them with the empirical seman-
tic similarity, which is estimated by applying the decision trees on
independent test sets.
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5.2 Preliminaries on decision trees

In this section, we provide some basic concepts on decision tree mod-
els that are necessary for the understanding of this chapter. More
general information on the DT models can be found in Section 2.3.

Consider a classification problem described through a vector of
predictive attributes A = (a1, a2, ..., am) and a class attribute C.
Each attribute ai has domain d(ai) and the domain of the class
attribute is d(C) = {c1, c2, ..., ck}, where k is the number of classes.
Predictive attributes might be either numeric, categorical or ordinal;
usually, numeric attributes are considered [65].

The cartesian product SA = d(a1)×d(a2) · · ·×d(am) describes the
attribute space, whereas the cartesian product S(A,C) = SA × d(C)
defines the attribute-class space.

The goal of a decision tree model, is to learn a prediction function
f : S(A) → dom(C). Towards this goal, a dataset D of problem
instances, known as training set, is provided as input to the deci-
sion tree induction algorithm. The training set D should be drawn
from the joint distribution P (A, C) of the predictive attributes A
and the class attribute C, so as to be representative of the classifi-
cation problem at hand. Definitely, the choice of D is crucial since
it affects the generalization accuracy of the extracted decision tree
over future, previously unseen problem instances.

Let U(A) be the uniform distribution over the attribute space
and P (A) =

∑
C P (A, C) be the marginal distribution of attributes,

also defined over the attribute space.
As a running example for the comparison problem, let us con-

sider the decision trees illustrated in Figure 5.1. Both trees refer
to the same classification problem, which is described through two
predictive attributes and one class attribute. The predictive at-
tributes are Age and Income with domains (10 ≤ Age ≤ 70) and
(20K ≤ Income ≤ 100K), respectively. The values for the class
attribute C are, e.g., C1 = “HighRisk′′, C2 = “LowRisk′′.

Table 5.1 summarizes the symbols used throughout this chapter.

5.3 Measuring deviation using decision trees

A decision tree DT induced from a training set D partitions the
attribute space into a set of non–overlapping regions RDT = {ri|i =
1 . . . |RDT |}, through its leaf nodes. The partitionings of the deci-
sion trees of our running example (c.f. Figure 5.1) are depicted in
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Figure 5.1: Two decision trees, DT1, DT2

Symbol Description
DT decision tree
RDT the partitioning of DT
A predictive attributes
C class attribute
SA attribute space
S(A,C) attribute - class space
U(A) uniform distribution over SA

P (A) distribution of predictive attributes
P (A, C) joint distribution of the predictive attributes and the class attribute
P (C|A) conditional distribution of the class attribute given the predictive attributes

Table 5.1: List of symbols for Chapter 5

Figure 5.2.

The partitioning RDT defined by the decision tree DT can be
considered as an approximation of the joint class-attribute distribu-
tion P (A, C), in the form of a histogram (Section 5.3.1). Each bin
of the histogram corresponds to a region of the partitioning, and
respectively, to a leaf node of the decision tree. Different decision
trees result in different partitionings; in Section 5.3.2, we show how
to derive the overlay partitioning of two decision trees and how to
estimate its statistics, for each dataset, depending on whether we
have access to the original raw datasets or not. Based on the overlay
partitioning, we define various similarity measures between decision
trees and classification datasets (Section 5.3.3).
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Figure 5.2: The partitioning of DT1 (top), DT2 (bottom)

5.3.1 Decision tree partitioning information

Each region r ∈ RDT is characterized by a structure and a measure
component that are directly derived from the decision tree.

Structure component The structure component of the region is
defined as the conjunction of the test conditions on the attributes
along the corresponding tree path from the root to the leaf node
associated with that region:

r.s = {∧ti(ai), i = 1...m}

Test conditions are usually numeric and can be expressed in the
form: t(a) = mina(r) ≤ a ≤ maxa(r) denoting the min and max
values of attribute a in region r.

Let us also define the length of a test condition on an attribute
a as: |t(a)| = maxa(r) − mina(r) and the length of the domain of
a as: |dom(a)| = maxa −mina. Note here that if an attribute a is
not included in the structure component r.s of a leaf node, i.e., no
test on that attribute has been included in the path from the root
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to the leaf node during the training phase, then the test condition
on that attribute is: t(a) = mina ≤ a ≤ maxa, that is, the attribute
a can take any value from its domain within the region r. Thus,
the structure component of a region contains test conditions over
all (i.e. m) predictive attributes of the problem.

Measure component The measure component of a region is de-
fined as the number of training set instances that fall into this region
for each of the problem classes and, it depends on the training set
D used for the induction of the decision tree:

r.mD = [nc1, nc2 , . . . , nck
]

where nci
, i = 1 . . . k is the number of instances that fall into region

r and belong to class ci.
The total number of instances in region r, can be easily obtained

by summing up the number of instances in r for each of the problem
classes; thus, the size of the measure component is:

|r.mD| =
∑

1≤i≤k

nci

The class label assigned to r, is the label of the majority class:

r.cl = arg max
ci

r.mD

For example, the region r1 of DT1 (c.f. Figure 5.2) can be described
as:

r.s = {(10 ≤ Age ≤ 40) ∧ (20 ≤ Income ≤ 60)}
r.mD = [nc1 = 20, nc2 = 10]

As it also arises from this example, both r.s and r.mD are di-
rectly derivable from the decision tree, without any further post–
processing.

Region probability, P(r): A region describes a decision area of
the problem. The probability of a region represents the probability
that some instance x will follow the corresponding decision tree path.
Formally, this probability is given by:

P (r) ≡ Pr(x ∈ r) =

∫
r

P (A)dA

where P (A) is the probability density function of the instances.
However, since we do not have access to the exact form of P (A),
we should use the data to make an estimation of it.
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More specifically, if we consider the training set D used for the
induction of the decision tree DT , we can make a training set de-
pendent estimate of P (r) as follows1:

PD(r) =
|r.mD|
ND

(5.1)

This is simply the percentage of the training set instances (ND) that
fall in r (|r.mD|).

The vector:
PD(A) = [PD(ri)|ri ∈ RDT ] (5.2)

is an approximation of P (A), from the dataset D. One can think of
this vector as a histogram, where the bins are defined by the regions
of RDT .

Joint region-class probability, P(r, c): Apart from P (A), we
can also approximate P (A, C) by exploiting the measure component
of the regions, which describe the distribution of the training set
instances within the different problem classes.

The joint region-class probability of observing a region r under a
class c is given by:

PD(r, c) =
r.nc

ND

(5.3)

This is simply the percentage of the training set instances (ND) that
fall into region r and belong to class c (r.nc); this estimation also
depends on the training set D.

The vector:

PD(r,C) = [PD(r, cj), j = 1 . . . k]

describes the joint region-class probability distribution in r. One
can think of this vector as a one dimensional histogram with k bins,
one for each class.

The matrix:

PD(A,C) = [PD(ri, cj)|ri ∈ RDT , cj ∈ C] (5.4)

in which each row corresponds to a region ri ∈ RDT and each col-
umn to a class cj ∈ C, is an approximation of the joint distribution
P (A, C) from the dataset D in the form of a multidimensional his-
togram; the bins of the histogram are defined by RDT × C.

1We denote the actual distribution by P and its estimation by P.
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Conditional class-region probability, P(c|r): Furthermore, the
measure component can provide us with an estimate of the condi-
tional probability of a class c given the region r:

PD(c|r) =
r.nc

|r.mD|
This is simply the percentage of the region instances (|r.mD|) that
belong to class c (r.nc).

The vector:

PD(C|r) = [PD(cj|r), j = 1 . . . k]

describes the class conditional distribution in region r. One can
think of this vector as a one dimensional histogram with k bins, one
for each problem class.

The matrix:

PD(C|A) = [PD(cj|ri)|ri ∈ RDT , cj ∈ C] (5.5)

in which each row corresponds to a region ri ∈ RDT and each column
to a class cj ∈ C, is an approximation of P (C|A) from the dataset
D in the form of a multidimensional histogram; the bins of the
histogram are defined by RDT × C.

5.3.2 Decision tree overlay partitioning information

Let RDT1 and RDT2 be the partitionings defined by the decision trees
DT1 and DT2, respectively. Overlaying the two partitionings, a finer
partitioning RDT1×DT2 arises, where each region r in it is the result
of overlaying some region ri ∈ RDT1 with some region rj ∈ RDT2 ,
that is r = ri ∩ rj . Figure 5.3 displays the overlay partitioning of
the DT1, DT2 partitionings illustrated in Figure 5.2.

The goal is to estimate the region probability P (r), the joint
region-class probability P (r, c) and the class conditional probability
P (c|r) for each region r ∈ RDT1×DT2 and each class c ∈ C. To this
end, we rely on the observation that each region r in the overlay is
also a hyper-rectangle and thus it can be also described through a
structure and a measure component.

In Figure 5.4, we appose the result of overlaying for the regions
R1 ∈ DT1 and R3 ∈ DT2.

Structure component of the overlay regions The structure
component of the overlay region ri ∩ rj is easily defined through the
intersections of the DT regions that participate in its formation:

ri ∩ rj.s := {∧ti(ai), i = 1 . . .m}
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Figure 5.3: The overlay partitioning RDT1×DT2

t(a) := min
a

(ri ∩ rj) ≤ a ≤ max
a

(ri ∩ rj)

min
a

(ri ∩ rj) := max(min
a

(ri), min
a

(rj))

max
a

(ri ∩ rj) := min(max
a

(ri), max
a

(rj))

If maxa(ri ∩ rj) ≤ mina(ri ∩ rj), the overlay region ri ∩ rj is not
defined since the regions are disjoint.

Measure component of the overlay regions On the other
hand, the estimation of the measure component of ri ∩ rj is dataset
dependent; the obvious choices for the dataset are D1, D2 and
D1 ∪D2. However, even if we do not have anymore access to any of
these datasets, we can still estimate the measure component of the
overlay regions based on the measure components of the regions of
the original partitionings RDT1 and RDT2 . We refer to the first case
as the data dependent probability estimation and to the second case
as the pattern dependent probability estimation; we analyze both
cases below.

• Data dependent probability estimation: If we have ac-
cess to the original raw datasets, we can get the exact mea-
sure of the overlay regions by simply projecting each dataset
D ∈ {D1, D2, D1 ∪ D2} on RDT1×DT2 .

Thus, by projecting D1 on RDT1×DT2 we can have the exact
measure ri ∩ rj .mD1 :

ri ∩ rj .mD1 =
|t ∈ ri ∩ rj, t ∈ D1|

ND1

(5.6)
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Figure 5.4: Overlaying regions R1 ∈ DT1 and R3 ∈ DT2 (instance values have
been normalized)

Similarly, by projecting D2 on RDT1×DT2 we can have the exact
measure ri ∩ rj.mD2 :

ri ∩ rj .mD2 =
|t ∈ ri ∩ rj , t ∈ D2|

ND2

(5.7)

Finally, by projecting D1 ∪ D2 on RDT1×DT2 we can have the
exact measure ri ∩ rj .mD1∪D2:

ri ∩ rj.mD1∪D2 =
|t ∈ ri ∩ rj , t ∈ D1 ∪ D2|

ND1 + ND2

(5.8)

• Pattern dependent probability estimation: Even if we
do not have access to the original raw datasets, we can still
make an estimation of the expected measure for each region
ri∩rj ∈ RDT1×DT2 using the measure components of the original
regions ri ∈ RDT1 and rj ∈ RDT2 . The expected measure of
ri ∩ rj according to D1 is:

ri ∩ rj.mD1 = ri.mD1

V (ri ∩ rj)

V (ri)
(5.9)

where the term
V (ri∩rj)

V (ri)
stands for the relative volume of the

intersection region ri ∩ rj with respect to the volume of the
region ri. Since the regions established by a decision tree are
axis parallel hyper-rectangles it holds that:

V (r) =
∏
ai

|t(ai)|
|dom(ai)|
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The term |t(ai)|
|dom(ai)| represents the relative importance of at-

tribute ai in region r. If we assume a uniform distribution U(A)
of the instances over the attribute space then V (r) = P (r). In
Equation 5.9, though, we adopt a middle assumption, namely
that the D1 instances are uniformly distributed within the re-
gion ri of RDT1 , instead of being uniformly distributed within
the whole attribute space.

Following the same rationale as in Equation 5.9, the expected
measure of ri ∩ rj according to the dataset D2 is:

ri ∩ rj .mD2 = rj.mD2

V (ri ∩ rj)

V (rj)
(5.10)

Note that this estimation also assumes that the D2 instances
are uniformly distributed within the region rj of DT2.

Finally, if we assume that the two datasets come from the same
distribution P (A), we can get the expected measure of ri ∩ rj

according to the union dataset, D1 ∪ D2:

ri ∩ rj .mD1∪D2 = ri ∩ rj .mD1 + ri ∩ rj.mD2

So far, we have shown how we can estimate the probabilities of
the overlay regions depending on whether we have access to the
original raw datasets or not. As with the single decision tree par-
titioning case (c.f. Section 5.3.1), we can use these estimations to
approximate the distributions P (A), P (A, C), P (C|A). Depending
on which dataset, D ∈ {D1, D2, D1 ∪ D2}, we use to calculate the
measures of the overlay regions, we get the corresponding estima-
tions of PD(A),PD(A,C) and PD(C|A) under the RDT1×DT2 par-
tition. To distinguish between the case where the measure compo-
nents are computed by accessing the original raw datasets (Equa-
tions 5.6, 5.7) or under the uniform region distribution assumption
(Equations 5.9, 5.10), we use the superscripts Q and U respectively.

5.3.3 Dissimilarity measures for decision trees and classi-
fication datasets

In the previous section we described methods for the estimation of
PD(A), PD(A,C) and PD(C|A) under the RDT1×DT2 partition and
for the different datasets D ∈ {D1, D2, D1∪D2}. These estimations
can be used to compute similarities between either decision trees or
classification datasets.

Before we proceed with the definition of the actual similarity
measures, we first provide a similarity function between histograms,
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since all our estimations come in the form of histograms. Let P, Q
be the probability density estimations for a random variable X from
two different populations. Let P, Q come in the form of histograms
and both histograms are defined over the same bins.

The affinity coefficient between P and Q is given by:

s(P, Q) =
∑

i

√
PiQi

The resulting score is in the [0 − 1] range.
Based on the affinity coefficient and the different estimations of

the overlay partition statistics, we can now define a number of sim-
ilarity measures between decision trees and datasets:

Case a: We can measure the similarity of two datasets D1, D2

with respect to their attribute space probability distributions
PD1(A), PD2(A) by directly computing their affinity coefficient:

s(PD1(A),PD2(A)) (5.11)

This similarity measure can be used to determine if the two
datasets were generated from the same distribution P (A). The

estimations PDi
(A), i = {1, 2} can be either PQ

Di
(A) or PU

Di
(A)

depending on whether raw data access is allowed or not.

Case b: We can measure the similarity of two decision trees DT1,
DT2 with respect to their predictions. This is a measure of
their semantic similarity, i.e., how similar are the concepts they
describe, and corresponds to the percentage of times that both
DTs produce the same predictions on instances drawn from a
given attribute space probability distribution.

We first define the vector:

I(C|A) = [I(ri.cl, rj.cl)|ri ∩ rj ∈ RDT1×DT2 ]

which indicates whether the two DTs agree or disagree in their
predictions over the regions of the overlay partition RDT1×DT2 .
I(ri.cl, rj.cl) returns 1 if the predictions of the two DTs regard-
ing the region ri∩rj are the same, i.e., if ri.cl = rj.cl, otherwise
it returns 0. The inner product 2:

S(DT1, DT2) = I(C|A)′P(A) (5.12)

computes the similarity in the predictions of DT1, DT2 under
the P (A) distribution. The similarity score equals to the sum

2We denote by X′ the inverse of matrix X.
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of the probabilities of the ri ∩ rj regions for which the trees
agree in their predictions.

One issue that arises here is which estimation of P (A) we should
employ. Possible choices include:

• the uniform distribution, U(A). In this case the agreement
will be examined over all possible input worlds. Under
this assumption, the probability of a region ri ∪ rj is given
by its hyper-volume. Thus, the similarity between two
DTs equals to the total volume of the regions in which
the two decision trees agree in their predictions. In this
case, Equation 5.12 gives the semantic similarity between
the two decision trees as it was defined by Turney [95].
Note however that, for this estimation, we do not require
the generation of an artificial test set drawn from U(A), as
required in [95].

• a dataset dependent distribution PD(A), where D can be
one of the D1, D2 and D1 ∪ D2 datasets. In this case,
instances are assumed to follow the distribution of the
dataset D ∈ {D1, D2, D1 ∪ D2}. The union, D1 ∪ D2,
is the most appropriate choice if the trees are generated
from datasets following the same distribution and we are
interested in evaluating their similarity under that distri-
bution.

• finally, P (A) might be a distribution that is different from
the distributions that rule the training sets.

Case c: We can also measure the similarity of two datasets with
respect to the attribute conditional probability distribution of
the class attribute P (C|A) that the decision trees, which were
induced from these datasets, impose over the attribute space.
We first define the vector:

S(C|A) =

[s(PD1(C|A)[ri, ],PD2(C|A)[rj , ])|
ri ∩ rj ∈ RDT1×DT2 ]

S(C|A) has the same structure as I(C|A), but the 0/1 similar-
ity function I(., .) has been replaced by s(., .), which computes
the similarity of the attribute conditional class distributions of
the region ri∩rj in the datasets D1 and D2. The inner product:

S(D1, D2) = S(C|A)′P(A) (5.13)
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provides a measure of the similarity of the two datasets with
respect to their attribute conditional class distributions under
an attribute space that follows the P (A) distribution.

Note here that this measure is similar to the measure em-
ployed in [82] in order to rank the changing regions between
two datasets. In fact, the approach followed in [82] is equiva-
lent to introducing a distance measure of the form:

D(D1, D2) = D(C|A)′P(A)

where D(C|A) has the same structure as S(C|A) but the simi-
larity function is replaced by the Euclidean distance and P (A)
is approximated by:

P(A) =
1

2
(PD1(A) + PD2(A))

However, the authors in [82] not go so far as to define the
D(D1, D2). They rather define the product of D(C|A) and
P (A), i.e., the vector consisting of the pairwise products of the
coordinates of the two vectors, and use that in order to rank
regions according to their level of change from one dataset to
the other.

Case d: Finally, we can measure the similarity of the joint attribute-
class probability distribution of the two datasets PD1(A, C),
PD2(A, C) by simply applying the affinity coefficient:

s(PD1(A,C),PD2(A,C)) (5.14)

PDi
(A,C) is the estimation of PDi

(A, C) under the overlay
partition. Note here that if the two datasets came from the
same P (A) distribution then it can be easily shown that this
measure is equivalent to S(D1, D2) given in Equation 5.13. In
fact this is the approach that was followed by FOCUS [32] for
measuring dataset deviation. The difference lies in the fact that
instead of the affinity coefficient, FOCUS employs a difference
function f (e.g. absolute or relative difference) to compute
the measure similarity within each region and an aggregation
function g (e.g. sum or max) to aggregate the scores of the
overlay regions into an overall score.

In this section we presented a general framework for similarity
estimation between either decision trees or classification datasets.
Under this framework, we can estimate the similarities of classifica-
tion datasets with respect to a number of probability distributions:
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i) the attribute space distribution P (A) (Equation 5.11), ii) the
joint attribute-class distributions P (A, C) (Equation 5.14) and iii)
the class attribute conditional distribution P (C|A) (Equation 5.13).
We can also use this framework in order to estimate the semantic
similarity between decision trees (Equation 5.12) under different as-
sumptions for the attribute space probability distribution; It is this
direction that we are going to explore and evaluate in more detail
in the next experimental section.

5.4 Experimental evaluation

The semantic similarity of any two classification models M1, M2 is
defined as the fraction of times that the two models produce the
same predictions over instances generated from a given attribute
space probability distribution P (A). Turney [95] defined a seman-
tic similarity measure for classification models, called agreement, as
the probability that they will produce the same predictions over all
possible instances drawn from the uniform distribution on the at-
tribute space, U(A). Turney estimates the agreement between two
classification models empirically, by applying both of them on a test
set DH of instances drawn from the U(A) distribution, and comput-
ing the percentage of times that they produce the same predictions.
The argument for employing U(A), instead of the distribution P (A)
that generated the data, was that the agreement of two concepts
should be examined over all possible input worlds.

We believe that in a real world application what is more impor-
tant is not the similarity of the DTs in all possible worlds, but rather
their similarity in the world the data come from. So, unlike [95], in
order to estimate the semantic similarity, we draw the DH dataset
from P (A), which is the distribution that rules the attribute space.
We denote by SH(DT1, DT2) the semantic similarity between DT1

and DT2; this similarity is empirically estimated on the DH dataset
by applying the two decision trees on DH and computing the num-
ber of times that they produce the same predictions. SH(DT1, DT2)
provides the ground truth to which we will compare the proposed
DT semantic similarity measures.

5.4.1 Experimental settings

We need a systematic way to generate decision trees that exhibit
varying degrees of semantic similarity. To this end, we randomly di-
vide a given dataset D in two parts, a training set DT used during
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Dataset # of instances # of attributes # of classes
mfeat-factors 2,000 21 10
mfeat-fourier 2,000 76 10
mfeat-karhunen 2,000 64 10
mfeat-zernike 2,000 47 10
segment-challenge 2310 19 7
waveform-5000 5,000 40 3

Table 5.2: Description of datasets

the model construction phase, and a test set DH used as the hold
out set for the computation of SH (|DH | = 1

3
|D|). Then, we cre-

ate random sub-samples of the DT of size p (p = 5% . . . 95%) with
a step of 5%. On each sub-sample DTp, a decision tree is trained
and compared to the decision tree that was created on the complete
training set, DT100. Then, we compute the semantic similarity be-
tween the complete DT and the sampled one, i.e., SH(DTp, DT100),
on the hold out set DH .

We experimented with six different datasets, a short description
of which is given in Table 5.2. The different mfeat datasets are
versions of the same pattern recognition problem in which the goal
is to classify handwritten numerals. The versions correspond to
different features used to describe the numerals: in mfeat-factors,
attributes are profile correlations, in mfeat-zernike zernike moments,
in mfeat-karhunen Karnhunen-Love coefficients and in mfeat-fourier
fourier coefficients of the character shapes [46]. Waveform-5000 is
an artificial dataset where classes correspond to different types of
waves [16]. In the segment-challenge dataset [14], features are high
level descriptors of regions of images and the goal is to classify each
region to the correct class, e.g., sky, grass.

First of all, we should verify that the procedure we employed for
the generation of the different decision trees DTp indeed results in
trees that exhibit varying levels of semantic similarity with respect
to DT100. We expect SH(DTp, DT100) to increase as p increases and
approaches 100%, since the training set Dp used in the construction
of DTp becomes more and more similar to the training set D100 used
in the construction of DT100. This is indeed the case as one can see
in Figure 5.5, where we plot SH as a function of the sampling size p;
there is a smooth increase in the values of SH as p increases towards
100%. The goal of the experimental evaluation that we present
in this section is to examine how the different semantic similarity
measures that we propose correlate with SH .
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Figure 5.5: Evolution of SH(DTp, DT100) with sampling size p

5.4.2 Qualitative evaluation of the proposed semantic sim-
ilarity measure

The decision tree semantic similarity measure S(DT1, DT2) that we
propose (Equation 5.12) depends on the estimation of the P (A) dis-
tribution that rules the attribute. In fact, the computation of simi-
larity makes sense for a given world, in which a specific distribution
P (A) holds for the attribute space. Then, S(DT1, DT2) is simply
the sum of the probability densities, under the chosen P (A), of the
ri∩rj regions in which the two decision trees agree. As already men-
tioned, under the uniform distribution assumption this sum equals
to the sum of the hypervolumes of these regions. Moreover, under
that assumption S(DT1, DT2) provides the semantic similarity of
Turney [95] without having to apply the learned models on the hold
out set. We will not further examine the uniform assumption as
a possible estimation for P (A). Instead, we will experiment with
three different instantiations of S(DT1, DT2) that differ with re-
spect to the estimation of P (A) they employ. In particular, we will
investigate the following estimations for P (A):

• P U
D1∪D2

: this is the estimation of P (A) that we get when the
measure components are computed under the uniform region
distribution assumption, as in Equations 5.9, 5.10.

• P Q
D1∪D2

: this is the estimation of P (A) that we get when the



5.4. EXPERIMENTAL EVALUATION 129

measure components are computed from the direct application
of the overlay partition RDTp×DT100 on the Dp and D100 datasets.

• P Q
H : this is the estimation of P (A) that we get from the direct

application of the overlay partition RDTp×DT100 on the hold out
set DH .

Each of these estimations, P Y
X , of P(A) results in a different in-

stantiation of S(DT1, DT2) which we denote by SP Y
X

(DT1, DT2). We

should note that the order in which the different P Y
X are listed re-

flects an increasing amount of knowledge about the P (A) distribu-
tion that rules the computation of the semantic similarity SH which
we use in order to evaluate the proposed similarity measures. P U

D1∪D2

assumes the less knowledge about P (A); to estimate the measure
components of the overlay tree, it only relies on the analysis of the
structures of the respective decision trees, under the assumption of
a uniform within region distribution. P Q

D1∪D2
requires querying D1

and D2 in order to estimate the measure components of the overlay
tree; as a result, its estimation of P (A) is more precise than the one

provided by P U
D1∪D2

. Finally, P Q
H has complete knowledge of P (A),

as this knowledge underlies in the DH dataset, since we derive it by
querying DH . As a result, SP Q

H
(DT1, DT2) will correlate perfectly

with SH . In that sense, SP Q
H

represents the ideal behavior that we

get when we have knowledge of the true P (A).
For each SP Y

X
(DTp, DT100) we show how its value varies with re-

spect to the sample size p, in the first column of Figures 5.6, 5.7.
All the measures exhibit a similar pattern; similarity increase as p
increases. More particular, SP Q

D1∪D2

and SP Q
H

have a very regular

behavior, with an almost steady increase of values and small fluctu-
ations. In case of the SP U

D1∪D2
similarity, the trend is also increasing

but here the fluctuations can be considerably larger, as it happens
in the mfeat-zernike, mfeat-factors, segment-challenge, mfeat-fourier
datasets. SP Q

D1∪D2

is constantly overestimating decision tree similar-

ity compared to SP Q
H

, while SP U
D1∪D2

considerably underestimates it;

recall here that SP Q
H

reflects the ideal behavior.

In the second column of Figures 5.6, 5.7, we see how the three
different versions of SP Y

X
(DTp, DT100) correlate with the actual eval-

uation measure SH(DTp, DT100). As it was expected, SP Q
H

correlates

perfectly since its estimation of P (A) is taken from the DH dataset
on which SH(DTp, DT100) is computed. Consequently, SP Q

D1∪D2

is

constantly overestimating SH(DTp, DT100), while SP U
D1∪D2

is consid-
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Figure 5.6: Evolution of the decision trees semantic similarity measures with
the sampling rate (first column) and with SH (second column)



5.4. EXPERIMENTAL EVALUATION 131

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Percentage

SPH
Q(DTp, DT100)

SPD1UD2
Q (DTp, DT100)

SPD1UD2
U (DTp, DT100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SH(DTp,DT100)

SPH
Q(DTp, DT100)

SPD1UD2
Q (DTp, DT100)

SPD1UD2
U (DTp, DT100)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Percentage

SPH
Q(DTp, DT100)

SPD1UD2
Q (DTp, DT100)

SPD1UD2
U (DTp, DT100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SH(DTp,DT100)

SPH
Q(DTp, DT100)

SPD1UD2
Q (DTp, DT100)

SPD1UD2
U (DTp, DT100)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Percentage

SPH
Q(DTp, DT100)

SPD1UD2
Q (DTp, DT100)

SPD1UD2
U (DTp, DT100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SH(DTp,DT100)

SPH
Q(DTp, DT100)

SPD1UD2
Q (DTp, DT100)

SPD1UD2
U (DTp, DT100)

Figure 5.7: Evolution of the decision trees semantic similarity measures with
the sampling rate (first column) and with SH (second column).
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erably underestimating it. The performance of SP Q
D1∪D2

is quite close

to the ideal performance of SP Q
H

with the most notable cases being

segment-challenge and mfeat-factors, while the highest discrepancy
appears in the case of mfeat-karhunen. Note here that datasets Dp,
DT and DH are all drawn from the same P (A) distribution. The dis-
crepancy between the behavior of SP Q

D1∪D2

and SP Q
H

can be explained

by the inaccuracy in the sampling procedure. As the number of in-
stances increases, the behaviors of SP Q

D1∪D2

and SP Q
H

will converge

since the estimations of P (A) that the two methods employ will
also converge. Alternatively, if we use repeated sampling over the
DH , DT and Dp datasets and subsequently average over the different
samples, the two measures would also converge. On the other hand,
the behavior of SP U

D1∪D2
will be similar to that of SP Q

H
only to the

level that the assumption of a within region uniform distribution is
a valid assumption for the P (A) that rules DH ; nevertheless, as it is
apparent for the datasets we have considered here, this is far from
being a valid assumption.

5.4.3 Quantative evaluation of the proposed semantic sim-
ilarity measure

In order to quantify the behavior of each of the SP Y
X

(DTp, DT100) we

computed their Pearson correlation coefficient with SH(DTp, DT100).
The results are depicted in Table 5.3, where it seems that SP Q

D1∪D2

exhibits a very strong correlation with SH(DTp, DT100). For most
of the datasets, the correlation is higher than 0.9, with the notable
exception of waveform-5000 for which a low correlation coefficient is
recorded. SP U

D1∪D2
has also a strong correlation with SH(DTp, DT100)

although not as strong as SP Q
D1∪D2

, again with the remarkable excep-

tion of waveform-5000 for which it exhibits its highest correlation
value.

The Pearson correlation coefficient is an estimate of the lin-
ear correlation of two values, nevertheless it does not indicate how
good predictor one variable is for the other. This is especially true
in our case, since the pattern of linear correlation of any given
SP Y

X
(DTp, DT100) with SH(DTp, DT100) changes from dataset to dataset

as it is obvious from Figures 5.6, 5.7. In order to estimate the
predictive value of the various SP Y

X
(DTp, DT100) with respect to

SH(DTp, DT100), we compute their Mean Absolute Deviation (MAD).
The MAD of two variables a and b for which we have N paired ob-
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dataset SP U
D1∪D2

SP Q
D1∪D2

SP Q
H

mfeat-factors 0.692 0.971 0.993
mfeat-fourier 0.852 0.927 0.999
mfeat-karhunen 0.858 0.910 0.999
mfeat-zernike 0.869 0.911 0.987
segment-challenge 0.831 0.951 0.986
waveform-5000 0.969 0.712 0.998

Table 5.3: Correlation coefficient of SP Y
X

(DTp, DT100) with SH(DTp, DT100)

dataset SP U
D1∪D2

SP Q
D1∪D2

SP Q
H

mfeat-factors 0.504 0.063 0.014
mfeat-fourier 0.301 0.114 0.015
mfeat-karhunen 0.279 0.158 0.013
mfeat-zernike 0.316 0.108 0.022
segment-challenge 0.289 0.016 0.005
waveform-5000 0.120 0.140 0.003
Average 0.302 0.1 0.012

Table 5.4: Mean absolute deviation of SP Y
X

(DTp, DT100) with SH(DTp, DT100)

servations is given by:

MAD(a, b) =

N∑
i

|ai − bi|
N

,

The MAD results are given in Table 5.4. These results indicate the
good predictive performance of SP Q

D1∪D2

, its average error (MAD)

in predicting SH(DTp, DT100) is 0.1. The performance of SP U
D1∪D2

is

considerably worse, its average MAD is roughly 0.3.
The goal of the current section was to compare and evaluate a

number of different instantiations for a decision tree semantic simi-
larity measure. The different instantiations are the result of different
assumptions or different ways of estimating the attribute space dis-
tribution under which the semantic similarity computation will take
place. In fact, the semantic similarity computation of two decision
trees makes sense if we can assume a specific probability distribution
P (A) ruling the attribute space. The overlayed tree provides a par-
tition of the full attribute space, the agreement or disagreement of
the two decision trees in a given segment of that partition is more or
less important depending on the density of that region under P (A).
If, for example, the two decision trees disagree on a given region
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this is not going to affect their similarity, even if the volume of the
region is large, as far as the probability density of that region under
P (A) is zero. Alternatively, if we do not want to assume a specific
attribute space distribution and we want to compute similarity un-
der all possible worlds we should make the assumption of a uniform
distribution on the attribute space, a case that is also covered by
our framework.

In order to evaluate our semantic similarity measures, we used
the semantic similarity empirically estimated on a separate hold-out
set. The performance of the different instantiations of the semantic
similarity measures depends on how different was the estimation of
P (A) used in them from the P (A) that rules the hold-out set, on
which the semantic similarity was computed. In fact, the choice
of the appropriate P (A) should be done based on the knowledge
of the application domain. If we know that our learning problem
is ruled by a specific P (A), then it is that P (A) that should be
“plugged” in the decision tree similarity measure. Alternatively, if
no such knowledge exists, we can estimate P (A) from the datasets
from which the decision trees were constructed, as it was done in
the SP Q

D1∪D2

semantic similarity measure.

5.5 Related work

Although decision tree induction is an extensively studied research
area, limited work has been carried out on the problem of decision
tree comparison and more precisely on the computation of semantic
similarity between decision trees; the only notable exception is [95].
Recently, several approaches have been proposed that utilize deci-
sion tree models for dataset comparison, e.g., [32, 82].

Turney [95], presented a framework for evaluating the stability
of a classification algorithm, namely the degree to which it gener-
ates repeatable results, when trained on different datasets drawn,
though, from the same probability distribution. The intuition is
that, since the datasets come from the same distribution, the al-
gorithm should induce approximately the same concepts from both
datasets. To quantify stability, Turney introduces a semantic mea-
sure of similarity called agreement. The agreement of two classifiers
is defined as the probability that they will produce the same predic-
tion for some random instance drawn from the probability distribu-
tion that generated the datasets of the classifiers. Turney estimates
the agreement of two classifiers empirically, by applying both of
them on artificial test sets of instances drawn from U(A), the uni-
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form distribution over the attribute space. Note that, according to
Turney, agreement is measured over instances drawn from U(A) and
not from P (A, C), the joint attribute-class distribution; the under-
lying reason is that agreement should be examined over all possible
input worlds. As justified in [95], by using U(A) any statistical re-
lationships between attributes that are implicit in the distribution
P (A, C) are eliminated. Recall that the agreement, as examined
by Turney [95], requires the evaluation of the decision trees with
respect to instances drawn from the distribution U(A).

Recently, several change detection methods have been proposed
that utilize decision tree models for dataset comparison. The intu-
ition behind these approaches is that decision tree models capture
interesting characteristics of the datasets and thus, they can be em-
ployed in order to compare the original datasets. All the methods
in this category follow the same rationale: they use the decision
tree models extracted from the datasets to be compared in order to
induce a “finer” model and then, they compare the distributions of
the two datasets over this (common) “finer” structure. Below, we
describe some representative approaches in this category.

In [32], Ganti et al. propose the FOCUS framework (already de-
scribed in Section 3.6). Decision trees are among the models consid-
ered within this framework. Initially, a finer structure, the so-called
Greatest Common Refinement (GCR), is obtained by overlaying the
partitionings that the two decision trees define over the attribute
space. Next, the GCR is populated with instances from the D1, D2

datasets and thus, the number of instances that fall in each region
of the GCR is computed, for each dataset; this requires querying
the original datasets D1, D2. Then, the deviation between the two
datasets is computed by aggregating, for each region in the GCR,
the difference in the number of tuples that result in this region for
each dataset. As it arises from the description, FOCUS requires
access to the original datasets in order to estimate their deviation.

In [97], Wang and Pei consider the problem of quantifying changes
between two datasets D1, D2 with class labels. The idea is to assign
a signature to each dataset and then to compare the datasets on the
basis of their corresponding signatures. The challenge is to find a
good signature that would be used as the (common) basis for the
comparison. The straightforward solution is to use as signature the
partitioning that one of the two decision trees, which are extracted
from these datasets (e.g., the partitiong of the decision tree DT1

that is extracted from D1), defines over the attribute space. How-
ever, as the authors justify, this approach is flawed, since the distri-
bution that generated the D1 dataset, from which DT1 is extracted,
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might be quite different from the distribution that generated the D2

dataset. Thus, such a comparison would be subjective with respect
to the dataset D1 used for the extraction of the decision tree signa-
ture over which the comparison would take place. For this reason,
the authors propose to use as signature an arbitrary tree structure
that partitions the multidimensional problem space into a number
of bins. Indeed, instead of a single partitioning the authors propose
to use multiple partitionings, each of which is independently and
randomly partitioned. They propose two ways to create random
partitionings: random forests and random histograms. The authors
suggest using random histograms as the common structure (i.e., sig-
nature) for the comparison, since they are most diverse comparing to
random forests; as a measure of diversity, the authors use the num-
ber of the different attribute combinations. Diversity is a desired
property since it guaranties larger exploration of the problem space
and thus it ensures that the signature can “fit” any dataset. The
next step, after the construction of the (common) signature over
which the comparison would take place, is the population of this
signature with instances from both datasets. Then, the distance be-
tween the two datasets is computed by aggregating their distances
over each one of the N -random histograms. For the comparison of
two random histograms, the Manhattan distance is employed. Note
that this method requires access to the original datasets in order to
estimate their deviation.

Recently, Pekerskaya et al. [82] propose a method for mining
changing regions from access-constrained data sets. A region is char-
acterized as changing if it appears under different class labels in the
two datasets. The goal is to find such regions and to order them
according to their degree of change, without, however, accessing the
original raw datasets; this requirement might be imposed due to
privacy concerns or due to the un-availability of the original raw
datasets (e.g., in data streams, old data are forgotten after some
time points). The authors justify that the partitioning that a de-
cision tree defines over the attribute space does not consist a good
approximation for the dataset distribution. To this end, they extend
the traditional decision tree model by further splitting each leaf node
of the decision tree into a set of clusters, through some clustering
algorithm. The new model, called cluster-embedded decision tree,
provides a better approximation of the dataset distribution com-
paring to the approximation of the (simple) decision tree model.
After extracting the cluster-embedded decision tree structure for
each dataset, the overlay of the two structures is computed and its
statistics are estimated without, however, re-querying the original
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raw datasets, as in FOCUS [32]. Rather, the authors approximate
the measure components of the overlay regions for each dataset by
employing the statistics of the corresponding cluster-embedded de-
cision trees. The assumption that takes place during the estimation
is that instances are uniformly distributed within each cluster of the
cluster-embedded decision tree structure. Note that this method
requires the generation of the cluster-embedded decision tree struc-
tures instead of the (simpler) traditional decision tree models.

There is a considerable amount of work on comparing tree struc-
tures based on the edit distance, e.g., [106]. These approaches are
based on counting the number and the cost of edit operations (in-
sert, delete, update) that are required in order to convert one tree
into the other. However, they work with symbolic trees where the
nodes are labeled with symbols from a given alphabet. In decision
trees, the nodes are more complex since they include conditions over
the symbols-attributes and furthermore, each decision tree path is
assigned an importance factor, which is determined by the number
of instances that follow this path.

In this work, we present a general framework for similarity es-
timation that includes as special cases the estimation of semantic
similarity between decision trees, as well as various forms of simi-
larity estimation on classification datasets with respect to different
probability distributions defined over the attribute-class space of
the datasets. The similarity estimation is based on the partitions
induced by the decision trees on the attribute space of the datasets.
We use the proposed framework in order to estimate the seman-
tic similarity of decision trees induced from different subsamples of
classification datasets; we evaluate its performance with respect to
the empirical semantic similarity, which we estimate on the basis of
independent hold-out test sets.

5.6 Summary

In this chapter, we presented a general framework for the estimation
of similarity within a classification problem setting. More specifi-
cally, we employ decision tree models in order to estimate either
their similarity or the similarity of the datasets that were used for
their induction. The decision tree similarity is computed in terms
of the agreement of the class predictions they return over the at-
tribute space and, it corresponds to the decision tree semantic simi-
larity [95]. The computation of dataset similarity can be carried out
on the basis of their attribute space probability distribution P (A),
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their attribute-class joint probability distribution P (A, C) or their
attribute conditional class probability distribution P (C|A). All the
above comprise special cases of our similarity estimation framework.

Through this work, we mainly concentrated on the estimation
of the semantic similarity between decision trees, i.e., the degree to
which the decision trees agree in their predictions over the attribute
space. The critical point in the computation of the decision tree sim-
ilarity is the selection of an appropriate attribute space probability
distribution P (A) under which the similarity estimation would take
place. The choice of P (A) reflects our belief about the real world
on which the decision trees would be applied. If no prior knowledge
exists, the uniform distribution U(A) could be selected for P (A)
thus examining the decision tree semantic similarity over all possi-
ble input worlds.

We experimented with different ways of estimating the attribute
space probability distribution P (A) and we compared the result-
ing instantiations of the decision tree semantic similarity measure
with the actual semantic similarity, as this was established by the
application of the decision trees on an independent hold-out test
set. Depending on the knowledge we have about the P (A) distri-
bution that rules the independent hold-out test set, the computed
decision tree semantic similarity is a more or less good predictor of
the actual semantic similarity. More specifically, when P (A) is com-
puted by querying the actual datasets, the corresponding decision
tree similarity SP Q

D1∪D2

is a very good predictor of the true semantic

similarity. Actually, we expect the value of SP Q
D1∪D2

to converge to

the real value of the semantic similarity as the size of the datasets
increases, since the estimated P(A) will converge to the true P (A).

We believe that the greatest contribution of a decision tree se-
mantic similarity measure is the potential that it offers to determine
whether the observed differences between two decision trees are sim-
ply superficial structural differences or they reflect real semantic dif-
ferences on the described concepts, and moreover, to quantify these
differences. This is a problem that deplores decision trees due to
their high sensitivity to changes in the underlying training dataset.

Early versions of this study has been previously published in [70,
71].

5.7 Open issues

The availability of a semantic similarity measure for classification
models, here decision trees, allows us to perform a number of stan-
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dard data mining tasks, not anymore over raw data, but rather over
the classification models extracted from these data. This is a kind
of meta-mining or meta-analysis. Below we present some relevant
research directions.

Clustering of decision tree models Using the semantic mea-
sure of similarity we could group a set of decision trees into a number
of clusters and find the representative decision tree for each cluster.
Decision trees within a cluster should be semantically similar, that
is (to some degree) they should agree in their predictions regarding
the classification problem they describe. A typical application of
this scenario is distributed data mining (recall the bank example in
Section 5.1).

As with the traditional clustering of raw data, clustering of deci-
sion trees involves the following steps: i) the definition of a dissim-
ilarity measure between decision trees, ii) the choice of a clustering
algorithm and iii) the definition of some quality criteria for the eval-
uation of the resulting clusterings. For the i) step, one could employ
the semantic similarity measure proposed in this work.

Monitoring decision tree evolution in dynamic environments
Since nowadays data are mainly dynamic (e.g., data streams, sen-
sor data) except for extracting some model from a static dataset,
there is also the need to monitor how the models extracted from a
dynamic dataset change over time.

In the case of classification models, like decision trees, the goal is
to find how the decisions represented by the induced decision tree
models change over time: Do old decisions hold in the new data?
Or there is some concept drift in the decision making process? Also,
such questions might focus on a specific class or decision area of the
problem: Are there any regions whose decisions (i.e., class label)
remain (about) the same across the evolution axis? Are there any
regions that change enduringly from time to time?

Indeed, monitoring involves some distance function to estimate
the similarity between successive models. However, further issues
should be considered, like efficiency in terms of decision trees storage
and comparison, effective presentation to the user etc.

Simplification of decision tree ensembles A decision tree en-
semble (or decision tree forest) is a collection of decision trees refer-
ring to the same classification problem. In an ensemble, the decision
trees are grown independently; when a new instance is coming, the
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predictions of the individual decision trees of the ensemble are com-
bined so as to predict its class label.

Using ensembles, instead of simple decision tree models, is more
accurate since in an ensemble there are better possibilities to explore
the whole problem space. Thus, the generalization accuracy of the
ensemble classifier over future, previously unseen problem instances
is higher comparing to the accuracy of a simple decision tree. How-
ever, an ensemble model is more complex comparing to the simple
decision tree model. Consequently, it is more difficult for the user to
apprehend the decisions of an ensemble, since she/he has to consider
all the component decision tree models. The idea is to simplify the
ensemble by reducing the number of decision trees that the user has
to investigate through some clustering procedure.

Another alternative to the simplification of decision tree ensem-
bles, is the construction of the overlayed tree from all the component
decision trees of the ensemble. Each region of the overlayed tree
will be labeled according to the labels of the corresponding regions
of the original trees. The overlayed tree will have the same pre-
dictive power as the ensemble, since it will make exactly the same
predictions, however its partitions will be much finer than the par-
titions of the original trees thus having a larger complexity than its
constituents. Nevertheless, it is possible to simplify the overlayed
decision tree by applying standard pruning techniques.

The apparent advantage of having a single decision tree, or a
small set of decision trees, instead of the full ensemble is the much
easier interpretation of the learned model.

Effect of mining parameters One interesting application is study-
ing the effect of the different mining parameters on the resulting
decision tree models. For example:

• How similar, with respect to their decisions, are two decision
trees extracted from the same dataset but under different deci-
sion tree induction algorithms? If, for example, two algorithms
give similar results, then one could use the less expensive (or
more user friendly) algorithm for her/his purposes.

• Or, how a specific algorithm parameter affects the resulting
decision tree models? If the parameter does not affect the de-
cisions of the trees, one could use for this parameter the lowest
value (or the larger value, depending on the parameter) so as
to gain in performance, e.g., in running time.

• Or, how the pruning level, which is applied in order to avoid
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over-fitting of the decision tree to the training data, affects the
agreement of the resulting decision tree models? If, for exam-
ple, a pruned (and thus smaller) tree makes the same decisions
with a larger tree, one should use the first since it is simpler
and thus, it is much easier for the end user to understand it.

In all these cases, some measure of similarity should be employed
in order to quantify the similarity between the decisions of the two
models.

Error estimation The idea of a representative decision tree for
a set of decision trees could also be useful in a classification error
estimation scenario. Typically, in error estimation a re-sampling
technique is applied resulting in a number of different models, the
final result is an estimation of the classification performance of the
algorithm and not that of a single tree. The question is which model
to choose among the different models that were produced; one solu-
tion would be to choose the median model, i.e., the one that abstains
the smaller distance from all the other models.
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Chapter 6

Estimating Similarity
between Clusters (and
Clusterings) - Change
Detection and Exploitation
in Dynamic Environments

In this chapter, we employ comparison between either clusters or
clusterings, as a means for monitoring and detecting changes in a
dynamic environment.

The chapter is organized as follows: Problem settings and moti-
vation are presented in Section 6.1. The adopted model of evolving
data is described in Section 6.2. In Section 6.3, we present the
MONIC framework for modeling and tracking of cluster transitions,
upon clusters defined independently of the cluster type (i.e., hier-
archical, partitioning, density based). MONIC is extended into
MONIC+ (Section 6.4), which further exploits the special charac-
teristics of each cluster type. Cluster transitions are maintained
in an Evolution Graph (Section 6.5), where nodes represent clus-
ters that are observed at different timepoints, while edges denote
cluster transitions. In Section 6.6, cluster evolution is summarized
through the FINGERPRINT framework that suppresses less infor-
mative cluster transitions subject to preciseness and compactness
criteria. Experimental study on MONIC , MONIC+ and FINGER-
PRINT is presented in Section 6.7.2. Related work is presented in
Section 6.8. We conclude our study in Section 6.9, whereas in Sec-
tion 6.10 we describe further improvements and open issues.
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Index terms cluster transitions, cluster monitoring, change de-
tection, cluster summarization, dynamic environments.

6.1 Introduction

Data streams are used in many modern applications and impose new
challenges for data management because of their size and high de-
gree of variability. One of these challenges is the efficient detection
and monitoring of changes in the underlying population. For exam-
ple, changes in the patterns known to a network intrusion detection
system may indicate that intruders test new attacks and abandon
old, already known (and blocked) intrusion patterns. In general,
monitoring of change is essential for applications demanding long–
term prediction and pro-action.

Cluster models are commonly used as a tool for studying the
dynamics of a population. In recent years actually, due to the dy-
namic nature of data, it has been recognized that clusters upon the
data of many real applications are affected by changes in the under-
lying population of customer transactions, user activities, network
accesses or documents. A lot of research has been devoted in adapt-
ing the clusters to the changed population. Recently, research has
expanded to encompass tracing and understanding of the changes
themselves, as means of gaining insights on the population and sup-
porting strategic decisions. Consider, for example, a business ana-
lyst who studies customer profiles; understanding how such profiles
change over time would allow for a long-term proactive portfolio
design instead of reactive portfolio adaptation.

For the categorization and tracing of cluster changes upon accu-
mulating datasets we propose the MONIC (for monitoring clusterings)
framework. MONIC takes as input an accumulating data collec-
tion, the records of which are subject to ageing, as is typical in
data stream applications. The records are clustered at consecutive
data points and their evolution is monitored. To this purpose, we
first define a set of cluster transitions, like survival, split and ab-
sorption, and then we propose transition indicators incorporated in
a transition detection algorithm for their detection. MONIC dif-
ferentiates from existing approaches for pattern change detection
(e.g., [1, 33, 61]), since it is independent of the clustering algorithm;
in MONIC , transitions rely on the cluster members. To exploit
the special features of each cluster type, we extend MONIC into
MONIC+ that also considers the cluster type (hierarchical, parti-
tioning, density based) and thus, is cluster dependent.
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Then, we model changing clusters in an Evolution Graph,
consisting of sequences of transitions from the first time a cluster
was detected to the time it was dissolved. Such a graph contains a
wealth of information regarding the evolution of the underlying pop-
ulation. There are several exploitation capabilities upon this graph
like querying or studying the stability of the underlying population
by observing the lifetime of clusters and clusterings.

However, since evolution is a permanent characteristic of data
streaming, the long-term perusal requires a representation that high-
lights remarkable changes while suppressing trivial pattern pertur-
bations so as to help the end user to understand population evo-
lution at a glance. To this end, we present the FINGERPRINT
framework that condenses this graph into a “fingerprint”, a struc-
ture in which similar clusters are summarized, subject to preciseness
and compactness criteria.

The maintenance and summarization of cluster changes (pattern
changes, in general) upon a stream is a new problem. Summariza-
tion of data (rather than patterns), however, has been studied ex-
tensively. Popular summarization methods include histograms and
wavelets; there is much work on the efficient maintenance of these
structures and on the adaptation of their contents when data change
(e.g., [87]). But, these methods do not show how the data change
nor do they maintain the changes themselves. There is also research
on storing, modifying and querying patterns in inductive or con-
ventional databases (e.g., [9, 19]). These approaches, though, have
not been designed for patterns over streams and, although there is
provision for modifying patterns when new data arrive, there are no
solution for the maintenance of their changes over time. However,
since in a dynamic environment patterns accumulate as the period of
monitoring increases, the requirements for the efficient maintenance
and exploitation of their evolution history becomes crucial.

To summarize, we consider a dynamic environment of evolving
data and we use cluster models as a mean of analyzing these data.
Our proposal is threefold:

• First, the MONIC /MONIC+ frameworks detect transitions
between clusters of consecutive time points.

• Then, both clusters and their transitions are organized into a
graph structure, named Evolution Graph, that contains the
whole history of the population evolution.

• Finally, the FINGERPRINT framework provides the summa-
rization of these transitions in some condensed and informative
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way.

These three components comprise the necessary infrastructure for
studying the evolution of a population in a dynamic environment.
The architecture of our approach is illustrated in Figure 6.1. As
it is shown in this figure, the end user can access each of these
components getting different kind of information over the evolving
population.

Figure 6.1: The system architecture

6.2 Monitoring dynamic environments

It is assumed that the data stream consists of a set of data records
d1, . . . , dn arriving at time stamps t1, . . . , tn, where di (i = 1 . . . n) is
the substream of data records arrived at the interval (ti−1, ti]. Old
data may be subject to a data ageing function that assigns lower
weights to all or some of the past data records, as is often the case
for topic detection and tracking methods [7].

Definition 5 (Data ageing function) Let t1, . . . , tn be the sequence
of timepoints under observation and let di, i = 2, . . . , n be the set
of data records accumulated from ti−1 until ti, while d1 is the initial
dataset, so that di∩dj = ∅ for i �= j. A data ageing function assigns
a weight age(x, ti) ∈ [0, 1] to data record x at ti, for each x ∈ ∪i

l=1dl

and for each ti.

age : ∪i
l=1dl × {t1 . . . , tn} → [0, 1] (6.1)

This function covers sliding windows (the weights of records outside
the window are zero) but also more elaborate schemes, e.g., [68]
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which considers re-appearances of each record and assigns higher
weights to recurring records.

Let D1, D2, . . . , Dn be the actual datasets seen at t1, . . . , tn time-
points; note that, depending on the ageing function, Di might con-
tain, except for the di data records, data records from the past.
The weights assigned by the ageing function determine the impact
of each record upon clustering ζi ≡ ζi(∪i

l=1dl, age, ti). We are in-
terested in studying the population evolution across the time axis.
To this end, we rely on the clustering models ζ1, ζ2, . . . , ζn extracted
from the corresponding D1, D2, . . . , Dn datasets. In Figure 6.2, the
considered model of the dynamic environment is depicted.

Figure 6.2: Monitoring dynamic environments (window size = 2)

The set of features used for clustering may also change during
the period of observation, thus allowing for the inclusion of new
features and the removal of obsolete ones. To handle such dynamic
feature spaces, as well, we assume re–clustering rather than cluster
adaptation at each timepoint, so that transitions can be detected
even when the underlying feature space changes, i.e., when cluster
adaptation is not possible. Moreover, this approach allows both
changes in existing clusters and new clusters to be monitored.

A clustering over a dataset can be observed as a partitioning
of the dataset into homogeneous groups. We concentrate on hard
clustering, in which each object belongs to exactly one cluster, as
opposed to soft clustering, where an object is associated with each
cluster by a probability or possibility value.

Our goal is to trace/monitor a cluster found at some timepoint ti
among the clusters of the next timepoint tj . Since this depends on
the notion of cluster itself, we should first introduce a typification
of clusters.
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Clustering algorithms use a variety of cluster definitions [39]. We
propose the following typification that facilitates the study of clus-
ters as changing objects :

Definition 6 (Type A clusters:) Clusters are discovered upon a
dataset - independent metric space. A cluster is a geometric object,
e.g. a sphere like in K-means. Cluster changes are observed over
the static metric space as geometric transformations.

Definition 7 (Type B1 clusters:) There is no metric space or it
depends on the contents of the dataset at each timepoint. A clus-
ter is defined extensionally as a set of data records. Hierarchical
algorithms which build dendrograms and express clusters as sets of
proximal data points belong to this type. These algorithms use a
metric space to derive a clustering on a dataset, but this space is
data-dependent, in the sense that the addition of a new record might
change the border of a cluster, even if this record does not belong to
the cluster at all.

Definition 8 (Type B2 clusters:) A cluster is defined intension-
ally as a distribution. For a cluster X of type B2, we denote its
cardinality as card(X), its mean as μ(X) and its standard deviation
as σ(X). The Expectation-Maximization (EM) algorithm belongs to
this category.

Several combinations of the base types are possible, e.g., when
both the dataset and its statistics are used (types B1+B2). Note
also, that each cluster can be described as a set of objects (i.e., type
B1); this is a generic definition that holds for every cluster type.

Table 6.1 summarizes the symbols used throughout the chapter.

6.3 The MONIC framework for detecting clus-
ter transitions

In Figure 6.3, we visualize the challenge of understanding cluster
changes in a dynamic environment: We depict clusters at two time-
points, denoting with a + (red) color the records that have been
added at each timepoint. Old records are forgotten, using a time
window of size 2. The clusters at each timepoint can be easily seen.
It is also apparent that changes have occurred. However, it is much
more challenging to find the same cluster again and to categorize
and trace the changes upon it: “Did some clusters disappear? Or
were they rather absorbed by others? When is a cluster the same
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Symbol Description
age() the age function (Def. 5)
di the dataset seen during (ti−1, ti]
Di the dataset on ti considering function age()
ζi the clustering at ti based on Di

|A| cardinality of set A
overlap(X, Y ) the overlap between clusters X and Y (Def. 9)
τ ≡ τmatch the match threshold (0.5 < τ ≤ 1) (Def. 10)
τsplit the split threshold (τsplit < τ) (Sec. 6.3.2.1)
ĉ the label of a cluster c (Section. 6.5.1.1)
T ≡ trace(c) the trace of an emerging cluster c (Def. 17)
lifetime(c) the lifetime of cluster c (Def. 18)
lifetime(ζ) the lifetime of clustering ζ (Def. 19)
survivalRatio(ζ) the survival ratio for clustering ζ (Eq. 6.9)
absorptionRatio(ζ) the absorption ratio for clustering ζ (Eq. 6.9)
passforwardRatio(ζ) the passforward ratio for clustering ζ (Eq. 6.9)
X̂ the virtual center of a subtrace X (Def. 23)
ILoss trace(T, S) information loss due to the replacement of a trace

T by a summary S (Equation 6.10).
CGain trace(T, S) compactness gain due to the replacement of a trace

T by a summary S (Equation 6.11).

Table 6.1: List of symbols for Chapter 6

and when does it mutate?” To detect such transitions, we propose
the MONIC framework for the i) categorization and ii) tracing of
cluster changes upon accumulating datasets.

The MONIC framework takes as input two consecutive cluster-
ings extracted from the (evolving) population and outputs the tran-
sitions between their component clusters. The first step in detecting
such transitions is to trace a cluster found at some timepoint among
the clusters of the next timepoint; to this end, we employ the no-
tions of cluster overlap and cluster match (Section 6.3.1). Then,
we present the different transitions that a discovered cluster might
encompass; we distinguish between external transitions that refer to
changes in the whole clustering (Section 6.3.2.1) and internal tran-
sitions that refer to changes in a specific cluster (Section 6.3.2.2). In
Section 6.3.2.1, we present an algorithm for the detection of these
transitions.

Our aim with MONIC is to provide a framework for cluster tran-
sition detection that is independent of the clustering algorithm. To
this end, we adopt the definition of clusters as sets of objects (Defi-
nition 7), which, as already stated, holds for the different clustering
methods. Later on, however, we extend MONIC into MONIC+ (Sec-
tion 6.4) that also considers the special characteristics of each cluster
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Figure 6.3: A dynamic population at two timepoints t1 (top), t2 (bottom)

type and thus, is cluster type dependent.
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6.3.1 Cluster matching

Consider a cluster X discovered at a timepoint ti as part of the
corresponding clustering ζi. A cluster transition is a change ef-
fected upon this cluster, when we observe it at a later timepoint
tj (tj > ti). The first step in identifying such a transition is the
detection of the cluster X in the corresponding clustering ζj – if
it is still existent. Hence, we define the notion of (non-symmetric)
overlap and of (best) match for a cluster, before we proceed with
the presentation of cluster transitions.

Definition 9 (Cluster overlap) Let ζi, ζj (i �= j) be two cluster-
ings derived at the timepoints ti, tj, respectively, and let X ∈ ζi, Y ∈
ζj be two clusters. The overlap of X to Y is the normalized sum of
the weights of their common records:

overlap(X, Y ) =

∑
a∈X∩Y age(a, tj) × weight(a)∑

x∈X age(x, tj) × weight(x)
(6.2)

That is, the overlap of X to Y depends on the amount of the survived
in tj X members that belong to cluster Y .

We can now define for each cluster found at a timepoint ti, its
best match at a later timepoint tj.

Definition 10 (Cluster match) Let X be a cluster in the cluster-
ing ζi at timepoint ti and Y be a cluster in the clustering ζj at time-
point tj > ti. Further, let τ ≡ τmatch ∈ (0.5, 1] be a threshold value.
Y is a match for X in ζj subject to τ , i.e., Y = matchτ (X, ζj) if
and only if:

1. Y has the maximum overlap to X among all clusters in ζj, i.e.,
overlap(X, Y ) = maxY ′∈ζj

{overlap(X, Y ′)} and

2. overlap(X, Y ) ≥ τ .

If there is no such Y ∈ ζj, then matchτ (X, ζj) = ∅.

By Definition 10, ζj can contain at most one match for each
cluster in ζi, although the same cluster in ζj can be the match of
more than one clusters in ζi. We restrict the threshold τ to the
interval (0.5, 1] to stress that a cluster is a match only if it contains
more than a half of the pivot cluster members (e.g., more than a
half of its members, if the members are weighted equally).
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6.3.2 Cluster transitions in MONIC

In MONIC, a cluster transition at a given timepoint is a change
experienced by a cluster that has been discovered at an earlier time-
point. Such a transition may concern its relationship to the rest of
the clustering, i.e., be external to it, or it may concern the content
and form of the cluster, i.e., be an internal transition. We first de-
fine these types of transitions and then introduce heuristics for their
detection.

6.3.2.1 Detecting external transitions

The external transitions of cluster X ∈ ζi with respect to ζj at tj > ti
are defined in Table 6.2: A cluster may disappear, be split into
multiple clusters, be absorbed by another larger cluster or survive,
whereupon internal transitions may occur.

A cluster X ∈ ζi survives in ζj if (a) there is a match for it in ζj

subject to τ and (b) this match does not cover any further cluster of
ζi. If the match covers at least one further cluster in ζi, then X has
been absorbed . If no match exists, then a split may have occurred:
The contents of X are in more than one clusters of ζj. Then, the
overlaps must be no less than τsplit (obviously: τsplit < τ), to prevent
degenerate cases. Moreover, all those clusters together must form a
match for X. If none of these cases occur, then X has disappeared .
Emerging clusters are detected after tracing all external transitions
for each cluster in ζi: They are the clusters in ζj that are not the
result of external transitions.

Transition Notation Indicator

the cluster survives X → Y Y = matchτ (X, ζj) AND � ∃Z ∈
ζi \ {X} : Y = matchτ (Z, ζj)

the cluster is split into
multiple clusters

X
⊂→ {Y1, . . . , Yp} ∀u = 1 . . . p :

overlap(X, Yu) ≥ τsplit AND
overlap(X,∩p

u=1Yu) ≥ τ AND
(� ∃Y ∈ ζj \ {Y1 . . . , Yp} : overlap(X, Y ) ≥ τsplit)

the cluster is absorbed X
⊂→ Y Y = matchτ (X, ζj) AND ∃Z ∈

ζi \ {X} : Y = matchτ (Z, ζj)
the cluster disappears X → � none of the other cases holds
a new cluster has
emerged

� → X

Table 6.2: External transitions of a cluster

In Figure 6.4 we present our transition detector algorithm, named
detectT ransitions() that discovers the external transitions of clus-
ters discovered at ti (clustering ζ i ≡ ζi in the figure) with respect
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to the clusters discovered at a consecutive time point tj (tj > ti)
(clustering ζ j ≡ ζj in the figure).

detectTransitions()
Input: ζ i, ζ j
Output: cluster transitions between ζ i to ζ j
BEGIN
1 overlap = computeOverlaps(ζ i, ζ j) //Matrix of overlaps
2 FOR X ∈ ζ i
3 splitCandidates = splitUnion = deadList = splitList = absorptionList

=absorptionSurvivals = absorptionCandidates = ∅;
4 survivalCandidate = NULL;
5 FOR Y ∈ ζ j
6 Mcell = overlap(X,Y);
7 IF Mcell ≥ τ match THEN
8 IF g(X,Y) > g(X,survivalCandidate) THEN
9 survivalCandidate = Y;
10 ENDIF
11 ELSEIF Mcell ≥ τ split THEN
12 splitCandidates += Y;
13 splitUnion = splitUnion ∪Y ;
14 ENDIF
15 ENDFOR
16 IF survivalCandidate == NULL OR splitCandidates == ∅
17 THEN deadList += X; //X → �
18 ELSEIF splitCandidates �= ∅ THEN
19 IF overlap(X,splitUnion) ≥ τ match THEN
20 FOR Y ∈ splitCandidates
21 splitList += (X,Y);
22 ENDFOR //X ⊂→ splitCandidates
23 ELSE deadList += X; //X → �
24 ENDIF
25 ELSE absorptionSurvivals += (X,survivalCandidate);
26 ENDIF
27 ENDFOR
28 FOR Y ∈ ζ j
29 absorptionCandidates = makeList(absorptionSurvivals,Y);
30 IF cardinality(absorptionCandidates) > 1 THEN
31 FOR X ∈ absorptionCandidates
32 absorptionList +=(X,Y); //X ⊂→ Y
33 absorptionSurvivals -= (X,Y);
34 ENDFOR
35 ELSEIF absorptionCandidates == X THEN
36 survivalList +=(X,Y); //X → Y
37 absorptionSurvivals -= (X,Y);
38 ENDIF
39 ENDFOR
END

Figure 6.4: Detecting cluster transitions
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The algorithm first computes a matrix of overlaps between the
clusters of the two clusterings (line 1). Since this is an expensive
computation we perform it once in advance and whenever the over-
lap between two clusters is needed we retrieve the appropriate cell
of the overlap matrix. Then, for each cluster X ∈ ζi, the detector
performs some initializations (the variables are explained later) and
retrieves its overlap to each cluster of ζj (line 6). The detector looks
first for clusters in ζj that match X (lines 7–10). In line 8, the best
match for X is selected. So, each cluster in ζi has at most one sur-
vival candidate. If X has none, clusters overlapping with it for more
than τsplit < τmatch are found (lines 11–14). If neither exist, then X
is marked as disappeared (lines 16–17).

The case of cluster split detection involves building a list of split
candidate clusters (line 12). As specified in Table 6.2, these clus-
ters, when taken together, must form a match for cluster X. The
operation of “taking the clusters together” (line 13) refers currently
to simple set union of the records, i.e., weights are not taken into
account at that point. However, weights are still considered in the
overlap test performed at line 19. If this test succeeds, cluster X
is marked as split (line 21), otherwise it is marked as disappeared
(line 23).

The cases of absorption and survival are initially treated together:
ζi clusters and their survival candidates are added to a list of ab-
sorptions and survivals (line 25). When all ζi clusters are processed,
this list is completed (line 27). Then, for each ζj cluster Y , the de-
tector extracts from this list all ζi clusters for which Y is a survival
candidate (line 28). If this sublist contains more than one clusters,
then these have been absorbed by Y : They are marked as such (lines
31–32) and removed from the original list (line 33). Otherwise, the
single member of the sublist is a cluster X that has survived as Y
(line 36). Again, the original list is updated (line 37).

An optimization is performed on the split detection test (line
19): Since, due to the hard clustering assumption considered in our
problem settings, the clusters in ζj cannot have common members,
it holds that:

∑
a∈X∩(∪p

u=1Yu)

age(a, tj) =

p∑
u=1

∑
a∈X∩Yu

age(a, tj)

This allows us to perform the split test from the individual inter-
section values in the overlap matrix and without any further com-
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putations, that is:

overlap(X,∪p
u=1Yu) =

p∑
u=1

overlap(X, Yu)

Algorithm complexity The complexity of Algorithm 6.4 for de-
tecting cluster transitions includes the cost of computing the over-
lap matrix between the component clusters of the two clusterings
(which, as already stated, takes place once at the beginning of the
algorithm) and the cost of the actual transition detection process.

Regarding the transition detection process, as it turns out from
the discussion in the previous section, it requires O(|ζi| ∗ |ζj|) com-
plexity. Regarding the construction of the overlap matrix, the cost is
O(|Di|∗|Dj|), where Di(Dj) is the clustering dataset at ti(tj). Thus,
the total cost of the algorithm is O(|ζi|∗|ζj|+|Di|∗|Dj|). Practically
it turns out that the algorithm is quadratic to the cardinality of the
datasets involved in the clustering process.

6.3.2.2 Detecting internal transitions

Survived clusters may undergo internal changes, e.g., size shrink or
expand. In Table 6.3, we have grouped the internal transitions as
changes in size, compactness and location. The transitions inside a
group are mutually exclusive, but transitions of different groups can
be combined. For example, a cluster X ∈ ζi survived at a cluster
Y ∈ ζj can become larger and more compact at the same time. It
is important to point out here, that there are transitions, like the
size transition, that can be detected based directly on the cluster-
members, whereas there are other transitions, like compactness and
location, that require the computation of statistics over the data
members.

The two indicators for the detection of size transitions compare
the datasets of X and Y , rather than computing their intersection.
The weights of the individual cluster members are thereby taken
into account. However, while the weights used to compute the clus-
ter overlap are those computed for timepoint tj , the size transition
indicators consider the weights of the members of X at the original
timepoint ti. This is reasonable because the size transition should
consider the importance of the individual cluster members at ti vs.
tj .

The compactness transitions cannot be traced by observing the
data records directly, so we resort to studying derivative values over
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Group Transition Notation Indicators

1. Size transition
1a. the cluster shrinks X ↘ Y

∑
x∈X f(x, ti) >∑
y∈Y f(y, tj) + ε

1b. the cluster expands X ↗ Y
∑

y∈Y f(y, tj) >∑
x∈X f(x, ti) + ε

2. Compactness transition
2a. the cluster becomes more

compact
X

•→ Y σ(Y ) < σ(X) − δ

2b. the cluster becomes less
compact (more diffuse)

X
�→ Y σ(Y ) > σ(X) + δ

3. Location transition (cluster shift) X · · · → Y I1. |μ(X) − μ(Y )| > τ1

I2. |γ(X) − γ(Y )| > τ2

(c.f. Eq. 6.5 below)
4. no change X ↔ Y

Table 6.3: Internal transitions of a cluster

the data distribution. The indicator σ appearing in Table 6.3 is the
standard deviation :

σ(X) =

√√√√ 1

N

N∑
i=1

(xi − μ(X))2 (6.3)

where μ(X) is the mean value of X: if the standard deviation has
decreased by more than some small value δ, then the cluster has
become more compact; if it has increased by more than δ, the cluster
has become more diffuse. The threshold δ is intended to prevent
insignificant changes to be taken as compactness transitions. Other
aggregate values over the distribution can be used instead of the
standard deviation, like kurtosis:

kurtosis(X) =

1
card(X)

∑
x∈X(x − μ(X))4(

1
card(X)

∑
x∈X(x − μ(X))2

)2 − 3 (6.4)

while a significance test can be used instead of the threshold δ. In
Figure 6.5, we show an example of two distributions with different
kurtosis values; the distribution on the right has higher kurtosis
comparing to the distribution on the left [83].

In the special case of a static metric space, the transitions in
Table 6.3 can be detected by studying the topological properties
of the cluster. In the metric space, a cluster can also shift inside
this space. In the absence of a metric space, it is still possible to
detect location transitions as shifts in the distribution: indicator I1
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Figure 6.5: Kurtosis example

detects shifts of the mean μ(X) (within half a standard deviation,
c.f. Definition 10), while I2 traces changes in the skewness γ(X):

γ(X) =

1
card(X)

∑
x∈X(x − μ(X))3(

1
card(X)

∑
x∈X(x − μ(X))2

) 3
2

(6.5)

The skewness indicator becomes interesting for clusters where
the mean has not changed but the distribution exhibits a longer or
shorter tail on either side of it. In Figure 6.6, we show an example
of two distributions with different skewness values; the distribution
on the left has negative skewness, whereas the distribution on the
right has positive skewness [84].

Figure 6.6: Skewness example

6.4 The MONIC+ framework for tracing cluster
transitions for different cluster types

The MONIC framework (Section 6.3) detects transitions on clus-
ters represented as sets of objects (Definition 7). In this section,
we extend MONIC to MONIC+ that furthermore covers the spe-
cial characteristics associated with the different cluster types, thus
allowing us to capture cluster–type–specific transitions.
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We first define the notion of cluster overlap/similarity for differ-
ent cluster types (Section 6.4.1). Then (Section 6.4.2), we describe
the different transition that each cluster type supports, as well as
indicators for their detection.

6.4.1 Cluster matching for different cluster types

In Section 6.3.1, we introduced the notions of cluster overlap and
cluster match in order to detect whether a cluster found at some
timepoint ti also exists at a next timepoint tj . However, the defi-
nition of cluster overlap in that section refers to clusters described
as sets of objects, i.e., Type B1 clusters (Definition 7). Here, we
define the notion of cluster overlap for different cluster types. In
particular, we define a generic cluster overlap function, which we
then instantiate for different cluster types.

Definition 11 (Cluster overlap) Let ζi be the clustering discov-
ered at timepoint ti and ζj the one discovered at tj , j �= i. We define
a function overlap() that computes the similarity or overlap of a
cluster X ∈ ζi towards a cluster Y ∈ ζj as a value in [0, 1] such that
(i) the value 1 indicates maximum overlap, while 0 stands for no
overlap and (ii) it holds that

∑
Y ∈ζj

overlap(X, Y ) ≤ 1.

Cluster overlap is defined asymmetrically. After this generic defi-
nition of the overlap function, we specify overlap() for each cluster
type.

Definition 12 (Overlap for Type A Clusters) Let ζi, ζj be two
clusterings of Type A clusters, derived at ti < tj respectively. For
two clusters X ∈ ζi and Y ∈ ζj, the overlap of X to Y is the
normalized intersection of their areas:

overlap(X, Y ) =
area(X) ∩ area(Y )

area(X)
(6.6)

Definition 13 (Overlap for Type B1 Clusters)

As in Definition 9.

Definition 14 (Overlap for Type B2 Clusters) Let ζi, ζj be two
clusterings of Type B2 clusters, derived at ti < tj respectively. For
two clusters X ∈ ζi and Y ∈ ζj, the overlap of X to Y is defined in
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terms of the proximity of their means:

overlap(X, Y ) =

{
1 − |μ(X)−μ(Y )|

σ(X)
, |μ(X) − μ(Y )| ≤ σ(X)

0 , otherwise
(6.7)

For each cluster found at a timepoint ti, we can find its best match
at a later timepoint tj using the Cluster match function (c.f. Defi-
nition 10).

6.4.2 Type-dependent detection of transitions

The detection of external transitions in MONIC+ is as in MONIC (c.f.
Section 6.3), but some steps must be implemented differently de-
pending on the cluster type.

The observable transitions for each cluster type are depicted in
Table 6.4. All external and internal transitions can be detected
for clusters in a metric space (Type A). For clusters defined exten-
sionally (Type B1), compactness and location transitions cannot be
observed directly, because concepts like proximity and movement
are not defined. However, when one derives the intensional defini-
tion of a cluster, both transitions become observable as changes in
the cluster density function; we refer to this as Type B1+B2. Con-
versely, the intensional definition of a cluster (Type B2) does not
allow for the detection of splits and absorptions, which in turn can
be found by studying the cluster members (Type B1+B2).

Transitions
External Internal transitions

Cluster type Size Compactness Location
A. metric space Yes Yes Yes Yes
no metric space
B1. extensional Yes Yes No No
B2. intensional survival Yes Yes Yes
B1+B2. Yes Yes Yes Yes

Table 6.4: Observable transitions for each cluster type

Transition Indicators for Type A Clusters. Let ζi, ζj be the
clusterings at timepoints ti < tj and let X ∈ ζi be the cluster under
observation. The transition indicators proposed in Table 6.5 use
the type-specific definition of cluster overlap (Definition 12) and the
derived definition of cluster match (Definition 10).
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External cluster transitions are detected by computing the area
overlap between cluster X and each candidate in ζj. To detect
a split, we customize the split test of the Algorithm 6.4. More
specifically, we compute the overlap between the area of X and that
of all split candidates Y1, Y2, . . . , Yp. Since these candidates cannot
overlap, we use the following equation to perform the split test:

area(X) ∩ area(∪p
u=1Yu) =

p∑
u=1

area(X) ∩ area(Yu) (6.8)

Step Transition Indicator

1 Survival or Absorption ∃Y ∈ ζj : area(X)∩area(Y )
area(X) ≥ τ

2 X
⊂→ Y ∃Z ∈ ζi \ {X} : area(Z)∩area(Y )

area(Z) ≥ τ

3 X → Y � ∃Z ∈ ζi \ {X} : area(Z)∩area(Y )
area(Z) ≥ τ

4 X
⊂→ {Y1, . . . , Yp} ∃Y1, . . . , Yp ∈ ζ1 :

(∀Yu : area(X)∩area(Yu)
area(X) ≥ τsplit) ∧ area(X)∩area(∪p

u=1Yu)
area(X) ≥ τ

5 X → � derived from the above
6 X ↗ ↘ Y B1 indicators & B2 indicators
7 X

•�→ Y geometry-dependent & B2 indicators
8 X · · · → Y geometry-dependent & B2 indicators

Table 6.5: Indicators for Type A cluster transitions

The detection of internal transitions translates into tracing the
movements of a cluster in a static metric space. In Table 6.6, we
propose indicators for spherical clusters, as produced by e.g., K-
Means and K-Medoids algorithms. We can further use indicators
for Type B1 and B2 clusters.

Transition Indicator

X · · · → Y d(center(X),center(Y ))
min{radius(X),radius(Y )} ≥ τlocation

X
•→ Y avgx∈X(d(x, center(X)) > avgy∈Y (d(y, center(Y )) + ε

X
�→ Y avgy∈Y (d(y, center(Y )) > avgx∈X(d(x, center(X)) + ε

Table 6.6: Indicators for spherical clusters

The first heuristic in Table 6.6 detects location transitions by
checking whether the distance between the cluster centers exceeds
a threshold τlocation; we normalize this distance on the size of the
smallest radius. The second heuristic states that a cluster has be-
come more compact if the average distance from the cluster center
was larger in the old cluster than in the new one – subject to a
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small threshold value ε. The third heuristic for clusters becoming
less compact is the reverse of the second one.

Transition Indicators for Type B1 Clusters. Transition in-
dicators for type B1 clusters have been already described in Sec-
tion 6.3, where the MONIC framework has been presented. So, we
do not further elaborate here on this cluster type. Just to note here
that all external transitions can be detected for clusters of type B1,
whereas, regarding the internal transitions, only the size transition
can be detected directly from the cluster-members.

Transition Indicators for Type B2 Clusters. We consider
again a cluster X ∈ ζi. To detect size transitions, we used the
heuristic for Type B1 clusters (c.f. Table 6.3). For the other oberv-
able transitions (c.f. Table 6.4), we use the indicators in Table 6.7.
The first one states that a cluster survives if there is a match for
it, subject to a τ ∈ (0.5, 1] (c.f. Definition 10): The indicator de-
mands that μ(X) and μ(Y ) are closer than half a standard deviation.
Since clusters of the same clustering do not overlap, we expect that
no more than one cluster of ζj satisfies this condition.

Step Transition Indicator

1 X → Y ∃Y ∈ ζj : 1 − |μ(X)−μ(Y )|
σ(X) ≥ τ

2 X → � negation of the above
3 X ↗ ↘ Y B1 indicators in Table 6.3
4 X · · · → Y h1. |μ(X) − μ(Y )| > τh1

h2. |γ(X) − γ(Y )| > τh2 (c.f. Equation
6.5)

5 Compactness
X

•→ Y σ(Y ) < σ(X) + ε (c.f. Equation 6.3)
X

�→ Y σ(X) < σ(Y ) + ε (c.f. Equation 6.3)

Table 6.7: Indicators for Type B2 cluster transitions

An absorption transition for X ∈ ζi implies finding a Y ∈ ζj

that contains X, Z ∈ ζi. Similarly, a split transition corresponds
to finding clusters that contain subsets of X. However, this implies
treating the clusters as datasets (Type B1). So, we only consider
survival and disappearance for B2-clusters.

To detect compactness transitions, we use the difference of the
standard deviations of the clusters X, Y . For location transitions,
we use two heuristics that reflect different types of cluster shift: h1
detects shifts of the mean (within half a standard deviation, c.f.
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Definition 10), while h2 traces changes in the skewness γ() (c.f.
Equation 6.5). Heuristic h2 becomes interesting for clusters where
the mean has not changed but the distribution exhibits a longer or
shorter tail.

6.5 The Evolution Graph history

The MONIC framework (and consequently, MONIC+), detects
transitions between clusterings discovered at consecutive timepoints.
As the period of observation increases, more and more clusters and
transitions between these clusters are accumulated, thus building
the history of the population evolution.

We model this history of population evolution in a graph struc-
ture, the so-called Evolution Graph EG ≡ G(V, E), that spans
the whole period of population monitoring (n timepoints). The
set of nodes V corresponds to the set of clusters seen during this
time period: V = {ζ1, . . . , ζn}, where each clustering ζi ∈ V con-
tains the clusters discovered at the corresponding timepoint ti, i.e.,
ζi = {c1, c2, . . . , c|ζi|}. The set of edges E contains the cluster tran-
sitions: ∀e = (c, c′) ∈ E there is a timepoint ti, 1 ≤ i < n such
that c ∈ ζi and c′ ∈ ζi+1. By this specification of the Evolution
Graph, the edges connect nodes/clusters found at adjacent time-
points.

An example of an Evolution Graph is depicted in Figure 6.7,
where the drawing of the edges indicates the semantics of the tran-
sitions. A dotted (green) edge denotes a split of the source cluster to

multiple target clusters (e.g., c12
⊂→ {c22, c23}). A dashed (orange)

edge describes an absorption; the source clusters are contained in

the target cluster (e.g., {c23, c24} ⊂→ c33). A solid (blue) edge in-
dicates a survival; the source cluster has survived into the target
cluster (e.g., c11 → c21). Nodes without any incoming edge corre-
spond to new appearing clusters (e.g., cluster c11), whereas nodes
without any outgoing edge correspond to disappeared clusters (e.g.,
cluster c43).

6.5.1 Evolution Graph model

We first describe the semantics of the graph nodes (Section 6.5.1.1)
and then the semantics of the graph edges (Section 6.5.1.2) based
on which we deploy the Evolution Graph model.
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Figure 6.7: Example of an Evolution Graph(EG)

6.5.1.1 Semantics of the graph nodes

A node c ∈ V represents a cluster found at timepoint ti, i.e., belong-
ing to clustering ζi. A node in the evolution graph is adorned with
a label ĉ that summarizes its members in some intensional form.
Many elaborate summarized representations exists in literature, for
example the cluster summaries of [31], the micro–clusters of [2] and
the droplets over text data proposed in [3]. We choose two sim-
ple representations: the cluster centroids for clusters over arbitrary
numerical data and the cluster topics for clusters over text data.

Definition 15 (Centroid as label) Let c be a cluster in an m-
dimensional space of numerical properties. Its centroid is the vector
of the mean values ĉ :=< μ1 . . . μm >, where μl is the average of the
data records values across the lth-dimension, 1 ≤ l ≤ m.

For the case of centroid–based labels, we assume that the data values
have been normalized, thus all mean values are in the [0..1] range.

For clusters over texts, we rather model a cluster label as the set
of the most frequent keywords in it. Stopwords and common words
are removed at a preprocessing step, thus the remaining keywords
are those that actually characterize the cluster content.
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Definition 16 (Keyword-based label) Let c be a cluster of text
documents, where each document di ∈ c is a vector in the feature
space of the keywords {k1, . . . , km}. The cluster label is defined as
ĉ :=< wk1, . . . , wkm >, where wkl

is (a) the frequency of the lth-
keyword within c, if this frequency exceeds a boundary b, or (b)
zero, otherwise.

6.5.1.2 Semantics of the graph edges

An edge e = (c, c′) ∈ E denotes that a cluster c ∈ ζi has been
evolved into a cluster c′ ∈ ζi+1 of the next timepoint. Evolvement
means that among the clusters of ζi+1, the cluster c′ is the one most
similar to the cluster c. The succession encompasses different cases,
e.g., c′ might be much larger than c or even might have absorbed c
and more clusters from ζi, or c might have been split into multiple
smaller clusters in ζi+1 or the cluster centroid might have shifted to a
different location from ti to ti+1. We design the semantics of cluster
evolvement according to our MONIC framework (c.f. Section 6.3).

More specifically, an edge is drawn from c to c′ in our Evolution
Graph if the evolvement of c into c′ was due to some survival, split
or absorption transition. Each edge e = (c, c′) ∈ E is adorned with
a label e.ExtTransition that describes the (external) transition type
between c ∈ ζi and c′ ∈ ζi+1 as one of {survival , split , absorption}.
If a cluster in ζi has no outgoing edge, it has disappeared. If a cluster
in ζi+1 has no ingoing edge, it is a new cluster. In the case of inter-
nal transitions, e is also adorned with a label e.IntTransition that
describes the internal transitions that the cluster has encompassed
and its values, e.g., {(size shrink, 20%) (more compact, 10%)}.

6.5.2 Evolution Graph construction

The Evolution Graph is built incrementally as the clustering
results arrive at t1, . . . , tn. When a new clustering ζi arrives at ti, i >
1, MONIC (or MONIC+ )is applied on the previous clustering ζi−1

and the current one ζi: transitions between clusters of ζi−1, ζi are
detected and an edge is added to the Evolution Graph for each
detected transition, adorned with relative information.

The Evolution Graph building algorithm is depicted in Fig-
ure 6.8.

The algorithm adds the nodes/clusters of ζi (denoted as ζ i in
this figure) into the Evolution Graph and assigns labels to them
(line 2). If this is the first clustering added to the Evolution
Graph, no further actions are required. Otherwise (lines 3–7), the
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buildEG()
Output: EG = G(V , E)
BEGIN
1. WHILE a new clustering ζ i arrives at t i BEGIN
2. EG.addNodes(ζ i.nodes); //add ζ i clusters in EG
3. IF (i > 1) THEN

j = i − 1; //for notation
4. E ji=detectTransitions(ζ j, ζ i); //detect transitions
5. EG.addEdges(E ji); //add transition edges
6. EG.updateNodes(ζ j.nodes); //remove redundant information from ζ j
7. ENDIF;
8. END;
9. return EG;
END

Figure 6.8: Evolution Graph building algorithm

transitions of clustering ζi with respect to the previous clustering
ζi−1, already in EG, are detected and added to the graph. For the
detection of transitions the MONIC transition detection algorithm
(c.f. Algorithm 6.4) is invoked (line 4). If MONIC finds survivals,
splits or absorptions in ζi, the corresponding edges are added and
adorned with information on the transition type (line 5). If some of
the external transitions are survivals, the corresponding edges in EG
are also adorned with information regarding the (possible) internal
transitions (size, compactness, location).

MONIC uses the cluster contents for transition detection. Hence,
we retain this information until the next timepoint only. The nodes
inserted at ti−1 are updated (line 6): The label of each node is
computed and stored, while the data themselves are not retained.

Algorithm Complexity We turn now our attention to the com-
plexity of the above presented algorithm. Adding a new cluster-
ing ζi into the Evolution Graph imposes the following costs:
i) the computation of centroid labels for its cluster-members and
ii) the computation of transitions between this clustering (ζi) and
the clustering of the previous timepoint (ζj). Let cost(c) be the
cost of computing the centroid label of a cluster c. Then, the
centroid labels computation for clustering ζi costs: |ζi| ∗ cost(c).
The cost of detecting transitions between ζi, ζj is the MONIC cost:
O(|ζi|∗ |ζj|+ |Di|∗ |Dj|) (recall Section 6.3.2.1). Thus, the computa-
tional cost for adding clustering ζi into the evolution graph becomes:

addCost = O(|ζi| ∗ |ζj| + |Di| ∗ |Dj| + |ζi| ∗ cost(c))

Thus, if we consider an observation period of n timepoints, the
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building cost becomes:

EGbuildCost = (n − 1) ∗ addCost

There is also the evolution graph storage cost, which refers to
the space requirements for storing cluster labels, i.e., centroids, and
their transitions. For a timepoint i, we should store the centroids
of the clusters of the corresponding clustering ζi as well as the clus-
ter transitions between this clustering and the previous timepoint
clustering, tj. If |centroid| is the storage cost of a cluster centroid
summary, then the storage cost for the ζi cluster centroid summaries
is |ζi| ∗ |centroid|. If |edge| is the storage cost for an edge, then the
storage cost for the transitions between ζi and ζj is: |ζi|∗|ζj|∗|edge|.

Considering the n-timepoints observation period, the storage cost
becomes:

EGstorageCost =
∑

i=1...n

|ζi|×|centroid|+
∑

i=1...n−1,j=i+1

|ζi|×|ζj|×|edge|

In the above formula, the first term corresponds to the cost of
storing the cluster centroid labels, whereas the second term corre-
sponds to the cost of storing the cluster transitions.

Note that during Evolution Graphconstruction, we should
also store the contests of the most recent clustering, ζj. This is
because, in order to find transitions of the next incoming clustering
ζi with respect to clustering ζj, the contents of ζj should be available.
This cost is O(|Dj|), where Dj are the data members of ζj.

6.5.3 The traceset of the Evolution Graph

Let ti, 1 ≤ i ≤ n, be a timepoint of the evolution period. There
might be clusters “shaped” for the first time at this timepoint, that
is, they do not comprise survivals from the previous timepoint ti−1;
we call them emerged clusters. By this definition, emerged clusters
might be either new appearing clusters at ti or the results of split
or absorption transitions from ti−1.

For an emerged cluster, we form its cluster trace as follows:

Definition 17 (Cluster Trace) Let c be an emerged cluster at ti.
The sequence ≺ ci ·ci+1 · ·ck � of clusters discovered at ti, ti+1, . . . , tk,
1 < k ≤ n is the cluster trace of c, trace(c), if ci ≡ c and for each
cj, j > 1 there is an edge e = (cj−1, cj) such that e.transition =
survival . Furthermore, the last cluster of this sequence, namely ck

does not survive at the next time point tk+1.
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That is, the trace of c consists of consecutive cluster survivals of
c from the first time it was shaped, i.e., ti, until the time it was
resolved, i.e., tm. Note that, since c is an emerged cluster at ti, it
might be either the result of some cluster split or cluster absorp-
tion transition from ti−1 or it might correspond to a new appearing
cluster at ti. Also note that, since cm does not survive at the next
timepoint, it might be split, absorbed or disappeared at the next
timepoint.

The notion of cluster trace allows us to detect the path of a cluster
within the evolving population from the first time it was “shaped”
till the time it was resolved. We denote by TEG the traceset of EG.
The traceset TEG of our sample EG (depicted in Figure 6.7) consists
of the following sequences:

• trace ≺ c11c21c31c41c51 �, indicating that the cluster c11 first
appearing in t1 has survived across all five timepoints,

• trace ≺ c22c32c42c52 � of the cluster c22, one of the clusters to
which c12 has been split and

• two-node traces ≺ c13c24 � and ≺ c33c43 �.

The other clusters c12, c23, c24 only existed for a single timepoint
and therefore built no traces. Thus:

TEG = {≺ c11c21c31c41c51 �,≺ c22c32c42c52 �,≺ c13c24 �,≺ c33c43 �}

To extract the traceset of the Evolution Graph one can start
scanning the graph from the beginning of the observation period
and build cluster traces according to Definition 17.

6.5.4 Evolution Graph exploitation

The Evolution Graph contains the whole history of cluster change,
thus is can be exploited for detecting and understanding changes in
the underlying stream population. Below we present two such ex-
ploitation capabilities: the first one allows the user to gain insights
on the population stability along the period of observation by study-
ing the lifetime of clusters and clusterings (Section 6.5.4.1), whereas
the second provides the user with query capabilities over the history
of population evolution (Section 6.5.4.2).

6.5.4.1 Lifetime of clusters and clusterings

Cluster transition detection delivers insights on both the evolution
of individual clusters and on the overall conformance of a clustering
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with the underlying population. Intuitively, if most clusters in a
clustering survive from one period to the next, then the population
is rather stationary and the clustering is rather short–term. If other
cluster transitions (e.g., splits) are frequent though, this signals that
the population is volatile and that the clustering does not describe
it well.

We define (a) the lifetime of a cluster and (b) the lifetime of a
clustering so as to get clues about the stability of the clusters and
the clusterings on the evolving data stream. Consequently, those
values allow us to study the stability across the time axis of the
population under observation.

Definition 18 (Lifetime of a cluster) Let C be a cluster and ti
be the first timepoint where it emerged (as part of clustering ζi).
The lifetime of C is the number of timepoints, in which C has sur-
vived. We define (i) a strict lifetime lifetimeS as the number of
consecutive survivals without internal transition, (ii) a lifetime un-
der internal transitions lifetimeI for which all survivals are counted
and (iii) a lifetime with absorptions lifetimeA that further counts
absorptions of C.

By the above definition, the lifetime of a cluster is at least 1,
referring to the clustering where it first appeared. We compute
cluster lifetime in a backward fashion: We start with ζn and set the
lifetime of its clusters to 1. At an earlier timepoint ti, the strict
lifetime of cluster X is 1 if X did not survive in ti+1. If there is a
Y ∈ ζi+1 with X ↔ Y , then lifetimeS(X) = lifetimeS(Y ) + 1.
If there is a Y ∈ ζi+1 with X → Y , then the lifetime of X under
internal transitions is lifetimeI(X) = lifetimeI(Y ) + 1. If there is

a Y ∈ ζi+1 with either X → Y or X
⊂→ Y , then the lifetime of X

with absorptions is lifetimeA(X) = lifetimeA(Y ) + 1.
Note also that lifetimeI(c) = |trace(c)|, that is the lifetime un-

der internal transitions for a cluster c equals to the length of its
trace (c.f. also Definition 17).

The counterpart of cluster lifetime for clusterings is an aggrega-
tion over the lifetimes of all clusters in the same clustering.

Definition 19 (Clustering Lifetime) Let ζ be a clustering. Its
lifetime L(ζ) is the median of the lifetime with absorption values
among the clusters in it:

L(ζ) = medianC∈ζ{lifetimeA(C)}
In this definition, we use the weakest definition of cluster lifetime,
allowing for internal transitions and absorptions. To prevent the
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dominance of a few short-lived or a few long-lived clusters, we use
the median lifetime instead of the average.

The clustering lifetime is a long-term property. However, in most
cases, clusterings are short-lived, even if some of their clusters sur-
vive over several timepoints. We define therefore a short-term ver-
sion of clustering lifetime, based on the ratio of clusters in it that
survive in the next timepoint.

Definition 20 (Survival Ratio) Let ζi be the clustering at time-
point ti for i = 1, . . . , n − 1. The survival ratio is the portion of
clusters in ζi that survived (possibly with internal transitions) in
ζi+1:

survivalRatio(ζi) =
|{X ∈ ζi|∃Y ∈ ζi+1 : X → Y }|

|ζi|

The survival ratio only considers those clusters that have been
survived at the next timepoint. We relax the notion of survival
by also considering the clusters that have been absorbed by some
cluster at the next timepoint, thus we define the notion of absorption
ratio.

Definition 21 (Absorption Ratio) The absorption ratio of ζi is
the portion of its clusters that became absorbed by clusters of ζi+1:

absorptionRatio(ζi) =
|{X ∈ ζi|∃Y ∈ ζi+1 : X

⊂→ Y }|
|ζi|

Considering both survival and absorption ratios, the passforward
ratio arises, which can be consider as a measure of the persistence
of the population at the next timepoint.

Definition 22 (Passforward Ratio) The passforward ratio of ζi

is the portion of its clusters that survived or became absorbed by
clusters of ζi+1, i.e., the sum of the survival ratio and the absorption
ratio.

passforwardRatio(ζi) = survivalRatio(ζi) + absorptionRatio(ζi)

The passforward ratio indicates the extent to which a clustering
describes the accumulated data of the next timepoint. If the pass-
forward ratio is low, then the clustering lifetime is also low, although
some clusters in it may have survived for several further timepoints.
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6.5.4.2 Evolution Graph querying

The Evolution Graph contains a wealth of information regarding
the evolution of the underlying population. Different queries might
be imposed over the Evolution Graph so as to facilitate the end
user to gain insights in the population and its evolution.

Some indicative queries are as follows:

• Forward History Queries: How does X evolves after ti?
Answer sketch: Start from X and follow its outgoing edge(s)
until its descendant(s) disappears.

• Backward History Queries: How did X emerge?
Answer sketch: Start from X and follow its ingoing edge(s)
until its ancestor(s) appears for the first time.

• Comparison Queries: What other clusters have a similar
forward history of transitions or backward history, or both as
X?
Answer sketch: Use the history of X as the query object and
check whether the sequence of transitions that X has encom-
passed agrees with the sequence of transitions encompassed by
some other cluster.

• Impact Queries: Which clusters and at which timepoints have
most influenced X into its current shape and content?
Answer sketch: Assign an importance factor to each cluster
Y participating in the history of X based on factors like: the
overlap of Y with respect to its outgoing cluster/node on the
history of X, the distance of Y (in terms of the number of the
in–between edges) between Y and X etc. Order clusters with
respect to this importance factor.

6.6 The FINGERPRINT framework for sum-

marizing cluster evolution

The Evolution Graph captures the whole history of the popu-
lation under observation and allows the study of cluster transitions
and the inspection of cluster interrelationships. However, as the pe-
riod of observation increases the graph grows significantly and its
manual exploitation by the end user becomes difficult. Who could
comprehend for example a graph containing 1000’s of nodes/clusters
and their transitions? Definitely, such a vast of information can be
hardly understood by the end user and thus there is a need for
summarizing the graph in a compact yet informative way.
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To this end, we exploit the fact that the graph is redundant. More
specifically, the graph contains information about each change and
also information about clusters that did not change at all or change
slightly. Hence, we summarize the Evolution Graph in such a
way so that cluster transitions are reflected but redundancies are
omitted. To this end we summarize traces, i.e., sequences of clus-
ter survivals, into some condensed form which we call fingerprint.
The summaries of all traces in the Evolution Graph constitute the
FINGERPRINT of the Evolution Graph.

We choose to summarize traces, i.e., survival transitions, because
a survival indicates that the source cluster is somehow similar to the
target cluster. On the contrary, some split, absorption or disappear-
ance transition, indicates that some important change has occurred
in the source cluster population; such a change should be announced
to the end user instead of being suppressed. The same holds for the
new appearing clusters; they should be reported to the end user
since they reveal the formation of new groups in the population.

We first model the notion of summary for a trace and measure
the loss in the accuracy of the trace due to the summarization pro-
cess, as well as the compactness of the summary with respect to the
original trace (Section 6.6.1). Then we propose different summa-
rization techniques for summarizing traces into fingerprints taking
into account both information loss and compactness gain criteria.

6.6.1 The Notion of Summary for a Trace

The summarization process is applied over cluster traces, as defined
in Definition 17. Each trace T is traversed and the “removable”
nodes are identified: These are the nodes that can be replaced by a
smaller number of derived nodes, which are called “virtual centers”
and are defined below.

Definition 23 (Virtual Center) Let ≺ c1 . . . cm � be the trace of
an emerged cluster c, trace(c) and let X =≺ cj . . . cj+k � be a sub-
trace of this trace, i.e. a subsequence of adjacent nodes in the trace

(k ≤ m − 1, j ≥ 1). We define the “virtual center” of X, X̂ as a
derived node composed of the averages of the labels of the nodes in
X:

X̂[i] =
1

|X|
∑
ci∈X

ĉ[i]

where ·[i] is the ith dimension and ĉ denotes the label of cluster c.

We use the notation c �→ X̂ to indicate that cluster c ∈ X has been
“mapped to” the virtual center X̂.
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If labels are centroid-based (Definition 15), X̂ is the center of the
centroids of the clusters in X. If labels are keyword-based (Defini-

tion 16), X̂ contains the average frequencies of all frequent keywords
in the clusters of X.

After introducing the virtual center as the summary of a subtrace,
we define the summary of a trace: It consists of a sequence of nodes,
each node being either an original cluster or a virtual center that
summarized a subtrace.

Definition 24 (Trace Summary) Let T =≺ c1 . . . cm � be a trace.
A sequence S =≺ a1 . . . ak � is a “summary” of T if and only if (a)
k ≤ m and (b) for each ci ∈ T there is an aj ∈ S such that either
ci = aj or ci �→ aj, i.e. ci belongs to a subtrace that was summarized
to the virtual center aj.

There are several possible summarizations of a trace, each one
corresponding to a different partitioning of the trace into subtraces
and consequently producing different virtual centers. We are inter-
ested in summarizations that achieve high compactness gain while
keeping information loss minimal. We generalize these objectives
into functions measuring “compactness gain” and “information loss”,
as explained below.

The replacement of a subtrace X by its virtual center X̂ results
in compactness gain, since less nodes are stored, but also in loss of
information, since the original clusters are replaced by a “virtual
center”. We model the information loss of each original cluster c ∈
X as its distance from the virtual center X̂ to which it has been
assigned after the summarization:

ILoss cluster(c, X̂) = dist(ĉ, X̂) (6.9)

where dist(ĉ, X̂) is the distance between the label of the original

cluster ĉ and that of the virtual center X̂.
The information loss for a cluster/node is now aggregated at the

level of the trace, to which the node belonged. The compactness
gain is also defined for traces, as follows:

Definition 25 Let T be a trace and S be a summary of this trace.
The “information loss” of T towards S is:

ILoss trace(T, S) =
∑
c∈T

ILoss cluster(c, ac) (6.10)

where ac ∈ S corresponds to either the virtual center to which c is
mapped after the summarization or to the cluster c itself. In the
latter case, ILoss cluster(c, ac) = 0.
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The “compactness gain” of T towards S is the decrease in the
number of nodes and edges that need to be stored:

CGain trace(T, S) = (|T |−|S|)+(|T |−1−(|S|−1))
|T |+|T |−1

= 2×(|T |−|S|)
2×|T |−1)

≈ |T |−|S|
|T |

(6.11)

where |T | is the number of nodes in T and |T | − 1 the number of
edges among its nodes (similarly for S).

Next, we define the “fingerprint” of a trace as a summary, the
virtual centers of which are proximal to the original cluster labels,
subject to a distance upper boundary δ, so that the information loss
effected through the replacement of a cluster by a virtual center is
kept low.

Definition 26 (Fingerprint for a Trace) Let T be a trace and S
be a summary of T . S is a “fingerprint” of T if and only if:

(C1) For each node c ∈ X that is replaced by a virtual center a ∈ S
it holds that dist(ĉ, a) ≤ δ and

(C2) for each (sub)trace ≺ c1·. . .·ck � of T that has been summarized
into a single virtual center a it holds that ∀i = 1l, dots, k − 1 :
dist(ĉi, ĉi+1) ≤ δ.

By this definition, S is a fingerprint of T if it has partitioned T
into subtraces of clusters that are similar to each other (condition
C2 ) and each such subtrace has a virtual center that is close to all
its original nodes (condition C1 ).

Once traces are summarized to fingerprints, the Evolution
Graph can also be summarized, resulting in compactness gain and
information loss at the graph level.

Definition 27 Let EG be an Evolution Graph and TEG be its
traceset. For each trace T ∈ TEG, let ST be its fingerprint (Def. 26),
subject to a threshold δ on the distance among centroids. The set
SEG := {ST |T ∈ TEG} is the “fingerprint of the Evolution Graph”.
It effects a compactness gain CG(EG,SEG) and an information loss
IL(EG,SEG):

CG(EG,SEG) =
∑

T

CGain trace(T, ST ) (6.12)

IL(EG,SEG) =
∑

T

ILoss trace(T, ST ) (6.13)
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We next present the algorithm BatchFINGERPRINT that creates
the fingerprint of an Evolution Graphby partitioning traces in
such a way that their fingerprints can be built. This algorithm re-
quires that the Evolution Graphis first constructed and stored as
a whole. Then, we present an online algorithm, IncrementalFINGERPRINT,
that builds the fingerprints of the traces incrementally as new clus-
ter transitions are detected. In this case, the fingerprint of the
evolution is built directly, without requiring the construction of the
Evolution Graphfirst.

6.6.2 Batch Summarization of the Evolution Graph

The algorithm BatchFINGERPRINT summarizes an Evolution Graph EG
by identifying its traces, building a fingerprint for each trace and
substituting the traces in EG with their fingerprints. BatchFINGERPRINT
satisfies the two conditions of Definition 26 by applying two heuris-
tics on each (sub)trace T :

• Heuristic A: If T contains adjacent nodes that are in larger dis-
tance from each other than δ, then the pair of adjacent nodes
c, c′ with the maximum distance is detected and T is then par-
titioned into T1, T2 so that c is the last node of T1 and c′ is the
first node of T2.

• Heuristic B: If T satisfies condition (C2) but contains nodes
that are in larger distance from the virtual center than δ, then
T is split as follows: The node c that has the maximum distance
from the virtual center of T , vcenter(T ), is detected and T is
partitioned into T1, T2 so that c is the last node of T1 and its
successor c′ is the first node of T2.

Heuristic A deals with violations of condition (C2) and Heuristic B
deals with violations of condition (C1) for (sub)traces that already
satisfy (C2). We show the algorithm in Figure 6.9.

BatchFINGERPRINT creates a fingerprint of the Evolution Graph by
traversing the graph, extracting its traces (line 1, condition C2 ) and
summarizing each of them (line 4). The “produced” fingerprints of
the traces are added to the fingerprint graph FEG (line 5). This
operation encapsulates the attachment of a summarized trace to the
graph by redirecting the ingoing/outgoing edges of the original trace
towards the ends of the summarized trace.

BatchFINGERPRINT invokes summarize HeuristicA which recur-
sively splits the trace into subtraces according to Heuristic A until
(C2) is satisfied. If the trace consists of only one node, then this
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BatchFINGERPRINT(EG)
Input: the Evolution Graph˜EG
Output: FEG, a fingerprint of EG
1. traverse the EG and extract its traces into T ;
2. FEG = ∅;
3. for each trace T ∈ T do
4. FT = summarize HeuristicA(T );
5. FEG.addTrace(FT );;
6. end-for
7. return FEG;

summarize HeuristicA(T )
Input: a trace T
Output: a fingerprint of the trace
1. if |T | == 1 then return T ;
2. if C b is not satisfied then
3. find c ∈ T such that

∀(y, z) ∈ T 1 : dist(y, z) < dist(c, c next) and
∀(y, z) ∈ T 2 : dist(y, z) < dist(c, c next) ;
//(c, c next) is the most dissimilar pair of consecutive nodes in T

4. split T into T 1 =≺ c 1, . . . , c � and T 2 =≺ c next, . . . , c k �;
5. FT 1 = summarize HeuristicA(T 1);
6. FT 2 = summarize HeuristicA(T 2);
7. return ≺ FT 1 · FT 2 �;
8. else return summarize HeuristicB (T );
9. endif

summarize HeuristicB(T )
Input: a trace T
Output: a fingerprint of the trace
1. v = vcenter(T );
2. if ∀y ∈ T : dist(y, v) < δ then //Condition C1
3. return v;
4. else
5. find c ∈ T such that dist(c, v) = max{dist(y, v)|y ∈ T};
6. split T into T 1 =≺ c 1, . . . , c � and T 2 =≺ c next, . . . , c k �;
7. FT 1 = summarize HeuristicB (T 1);
8. FT 2 = summarize HeuristicB(T 2);
9. return ≺ FT 1 · FT 2 �;
10. endif

Figure 6.9: BatchFINGERPRINT for offline summarization of the Evolution
Graph

node is returned (line 1). Otherwise, we test whether the trace con-
tains nodes whose labels are further off each other than the threshold
δ (line 2). If (C2) is satisfied, then summarize HeuristicB is invoked
(line 8): It checks for condition (C1) and returns the fingerprint of
the (sub)trace input to it. If (C2) is violated, the trace is partitioned
according to Heuristic A (lines 3,4) and summarize HeuristicA is
invoked for each partition (lines 5, 6). Finally, the summarized
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(sub)traces are concatenated (line 7) and returned. This concatena-
tion operation restores or redirects the edges across which the split
(line 4) was performed.

The recursive function summarize HeuristicB operates similarly.
It takes as input a (sub)trace T that has more than one nodes and
satisfies condition (C2). It builds the virtual center for T according
to Definition 23. It then checks condition (C1) by comparing the
distance of the virtual center from each node to δ (line 2). If δ is not
exceeded, the virtual center is returned (line 3). Otherwise, T is split
at the node that has the highest distance from the virtual center,
according to Heuristic B (lines 5, 6). The summarize HeuristicB is
invoked for each partition (lines 7, 8). The returned fingerprints are
concatenated into the fingerprint of T .

6.6.3 Incremental Summarization of the Evolution Graph

The batch summarization algorithm of Figure 6.9 requires as in-
put the complete Evolution Graph, before building its finger-
print. This is resource-intensive, since the graph is growing contin-
uously. We have therefore designed IncrementalFINGERPRINT, an
algorithm that summarizes the traces incrementally and does not
require the a priori construction of the Evolution Graph. We
show IncrementalFINGERPRINT in Figure 6.10.

IncrementalFINGERPRINT(FEG) Input: FEG // the fingerprint built so far
ζ // the most recent clustering, build at timepoint t i − 1
ξ // the current clustering, build at the current timepoint t i

Output: FEG // the updated fingerprint

1. E i=MONIC(ζ, ξ);
2. for each edgee = (x, y) ∈ E i do
3. if e.extT rans �= ‘‘survival’’ then
4. FEG.addNode(y);
5. FEG.addEdge(e);
6. else if dist(x.label, ŷ) ≥ τ then // C2 is violated
7. FEG.addNode(y);
8. FEG.addEdge(e);
9. else
10. v = vcenter (x, y);
11. FEG.replaceNode(x, v);
12. endif
13. end-for
14. return FEG;

Figure 6.10: IncrementalFINGERPRINT for online construction and summariza-
tion of the Evolution Graph
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IncrementalFINGERPRINT invokes MONIC (line 1), which com-
pares the current clustering ξ (timepoint ti) to the most recent one ζ
(timepoint ti−1), identifies the cluster transitions and returns them
as a set Ei of labeled edges, according to Section 6.4. The source of
each edge corresponds to a node that is already in the fingerprint
graph FEG. It is stressed that MONIC operates on the clusterings
rather than the cluster labels retained in the nodes of the fingerprint
graph. So, from line 2 on, IncrementalFINGERPRINT transfers in-
formation about the detected transitions in the FEG, summarizing
survivals wherever possible. The result is an already summarized
version of the Evolution Graph.

For each edge e = (x, y), IncrementalFINGERPRINT examines
whether e is a survival transition (line 3), i.e. whether e is part of
a trace. If not, FEG is expanded by adding the cluster y and the
edge e (lines 4, 5). We do not add the whole cluster; we only retain
its label (cf. Subsection 6.5.1.1).

If e = (x, y) does belong to a trace, IncrementalFINGERPRINT
checks whether the labels of x and y are similar to each other, ac-
cording to condition (C2) of Definition 26 (line 6). Since cluster x
has already been added to FEG, we access its label x.label directly,
while the label of cluster y must be computed as ŷ. If condition
(C2) is not satisfied, the FEG is expanded by y and e as before.
If finally, C2 is satisfied, then y and e do not need to be added to
FEG. Instead, x and y are summarized into their virtual center v
(line 10) and the node x is replaced by v (line 11). This means that
all edges pointing to x are redirected to v.

IncrementalFINGERPRINT does not need to check for condition
(C1) of Definition 26, because the distance of the virtual center
of two nodes is less than the distance between the two nodes as a
whole; the latter is less than τ by virtue of condition (C2). This
incremental algorithm operates locally, treating pairs of adjacent
nodes only, instead of whole traces. However, it has the advantage of
not requiring the a priori construction of the Evolution Graph.

6.7 Experimental study

We have applied MONIC+ on a synthetic, automatically generated
dataset (Section 6.7.1). Also, we have applied MONIC on a real
document collection, the ACM Library section H.2.8 on “database
applications” from 1997 until 2004 (Section 6.7.2). The goal of the
experiments with the synthetic dataset was to demonstrate the po-
tentiality of our framework and to display the kind of transitions
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that it can detect; thus, we used a 2D dataset, which can be eas-
ily visualized. The goal of our experiments with the real data was
to acquire insights on cluster evolution and change in the cluster-
ings, and to study the impact of the parameters on the transition
discovery process.

We have also tested FINGERPRINT summarization algorithms
on three public datasets and measured the compactness gain and in-
formation loss for different values of the centroid similarity threshold
δ (cf. Definition 26) that governs the summarization process (Sec-
tion 6.7.3).

6.7.1 Experiments on MONIC+ over synthetic data

We have tested MONIC+ on a synthetic stream of data records, in
which we have imputed cluster transitions (Section 6.7.1.1). We re-
port here on results for type B1 (Section 6.7.1.2) and type A clusters
(Section 6.7.1.3).

6.7.1.1 Generation of an accumulating dataset

We used a data generator that takes as input the number of data
points M , the number of clusters K, as well as the mean and stan-
dard deviation of the anticipated members of each cluster. The
records were generated around the mean and subject to the standard
deviation, following a Gaussian distribution. We fixed the standard
deviation to 5 and used a 100×100 workspace for two-dimensional
datapoint. The stream was built according to the scenario below
(c.f. Figure 6.3).

- t1: Dataset d1 consists of points around the K1 = 5 centers (20,20),
(20, 80), (80, 20), (80, 80), (50, 50).

- t2: Dataset d2 consists of 40 datapoints, distributed equally across
the four corner-groups of d1 data.

- t3: Dataset d3 consists of 30 points around location (50,40) and
30 points around (50,60).

- t4, . . .: At each of t4, t5, t6 timepoints we added 30 points around
t4 :(20,50), t5 :(20,30) and t6 :(20,40).

For data ageing, we used a sliding window of size w = 2. Hence,
at each timepoint ti, i > 1, the dataset under observation was Di =
di ∪ di−1.

MONIC+ traces cluster transitions upon clusterings already
found by the algorithm. However, some algorithms can discover
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the optimal number of clusters, while others require it as input.
In the latter case, the discovery of the external transitions is in-
fluenced. Since our objective is to show the functionality of our
framework rather than to evaluate the algorithms, we gave as input
to K-means [100] the optimal number of clusters as suggested by
EM [100]. Hierarchical algorithms require a similar tuning: We had
to specify the number of clusters or the layer of the dendrogram to
be returned. Since the optimization criteria of the Type B1 cluster-
ing algorithm are not relevant for the post-clustering monitoring we
perform, we have rather used the clusters delivered by EM as sets.

For a real application, we recognize that algorithms demanding
the number of clusters as input will indeed imped the detection of
external transitions. Nonetheless, internal transitions may indicate
the existence of external ones. For example, if a cluster increases
in size, becomes more diffuse and its center moves, then it may be
worth testing whether it now covers the area of two clusters. In
such a case, the expert should launch the algorithm with alternative
values for the expected number of clusters.

6.7.1.2 Clustering and transition detection for type B1 clus-
ters

We have generated and monitored B1 clusters upon the datasets
D1, . . . , D6 using the indicators introduced in the MONIC frame-
work (Section 6.3). We have set τ ≡ τmatch = 0.5, τsplit = 0.2 and
ε = 0.003.

The clusterings results ζi, i = 1 . . . 6 are depicted in Fig. 6.11.
This figure depicts the clusters at each timepoint but delivers little
information about the impact of new data and of data ageing. In Ta-
ble 6.8, the changes in the population are reflected in the discovered
transitions.

Cluster Transitions
t2 C11 ↗ C21 C12 ↗ C22 C13 ↗ C23 C14 ↗ C24 C15 → C25

t3 C21 → C31 C22 → C32 C23 → C33 C24 → C34 C25 ↗ C35

t4 C31 → � C32 → � C33 → � C34 → � C35
⊂→ {C45, C46}

� → C41 � → C42 � → C43 � → C44 � → C47

t5 C41 → � C42 → � C43 → � C44 → � C45 → C53

� → C51 C46 → C54 C47 → C52

t6 C51
⊂→ C61 C52

⊂→ C61 C53 → � C54 → �

Table 6.8: Transitions for Type B1 clusters

As one can see, there exist both external and internal transitions.
By juxtaposing the clusters in this table with the visualization in
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Figure 6.11: Type B1 clusters (found with EM) at timepoints t1, t2 (top); t3, t4
(middle) and t5, t6 (down)

Fig. 6.11, we can see that MONIC has correctly mapped the old clus-
ters to the new ones, identifying survivals with or without internal
transitions, absorptions and splits. Some clusters have experienced
multiple internal transitions, e.g. C12 has expanded and shifted into
C22, which furthermore, is more compact than its predecessor. There
are also new clusters found at t4 and t5.

6.7.1.3 Transitions of Type A Clusters

We have generated and monitored type A clusters upon the datasets
D1, . . . , D6 using as K the optimal number of clusters found by the
EM algorithm.

The clusterings results ζi, i = 1, . . . , 6 are depicted in Fig. 6.12;
they are different from the EM clusters, thus implying also different
cluster transitions. We have used the indicators in Table 6.5, setting
τ = 0.5 and τsplit = 0.2. For the size transition, we have used the
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Figure 6.12: Type A clusters (found with K-means) at timepoints t1, t2; t3, t4
and t5, t6

B1 indicator in Table 6.3 with ε = 0.003. For the other internal
transitions, we have used the indicators for spheres in Table 6.6 with
τlocation = 0.1 (location transitions) and ε = 0.001 (compactness
transitions).

The transitions found by MONIC+ are shown in Table 6.9 and
reveal that most clusters are unstable, experiencing all types of in-
ternal transitions, or they disappear, giving place to new (unstable)
clusters. Even in the absence of a visualization (which might be dif-
ficult for a real dataset in a multi-dimensional feature space), these
transitions indicate the cluster instability and the need for closer
inspection of the individual clusters.

Comparing the transitions of clusters extracted through K-means
(Figure 6.12) and EM (Figure 6.11), one can observe that K-means
clusters experience more transitions, which is justified by the fact
that K-means results in less stable clusters.
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Cluster Transitions
t2 C11 → � C12

⊂→ C23 C13
⊂→ C23 C14 → � C15 · · · •→↗ C25

� → C21 � → C22 � → C24

t3 C21 → � C22 → � C23 → C32 C24 → � C25 → �
� → C31 � → C33 � → C34 � → C35

t4 � → C41 � → C47 C33 → � C34 → � C35 · · · �→↘ C45

� → C42 C32
⊂→ {C43, C44}

C31 · · · •→↘ C46

t5 C41 → � C47 → � C43 → � C44 → � C45 · · · •→↘ C54

C46
⊂→ {C52, C53}

C42 · · · �→↗ C51

t6 C52 → � C53 → � C54 → � C51
•→↗ C61

Table 6.9: Transitions for Type A clusters

6.7.2 Experiments on MONIC over the ACM H.2.8 doc-
ument collection

We first describe the ACM H2.8 dataset (Section 6.7.2.1) and then
we present our results (Section 6.7.2.2).

6.7.2.1 Section H2.8 of the ACM digital library

ACM library section H2.8 “Database applications” contains publica-
tions on (1) data mining, (2) spatial databases, (3) image databases,
(4) statistical databases, (5) scientific databases categorized in the
corresponding classes. It further contains (6) uncategorized doc-
uments, i.e., those assigned in the parent class “database applica-
tions” only, as well as those documents from other parts of the ACM
library, which have one of the subarchive’s classes as secondary class.
In the latter case, the documents are treated identically to those
have one of the first five classes as primary class.

We have considered those documents from 1997 to 2004 that have
a primary or a secondary class in H2.8, i.e., one of the six classes
above. For each document, we have considered the title and the
list of keywords; we omitted the abstracts because they are only
available for late periods; also, the keywords themselves should be
adequate for class separation.

Before proceeding with the experiments, some remarks on the
H.2.8 collection are due. This collection is unbalanced with respect
to the six classes; the class “Data Mining” is larger than all the
others together. Many clustering algorithms have difficulties with
such data distributions. Moreover, this class grows faster than the
others, while some of the smallest classes stagnate.
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We have designed several alternative feature spaces, ranging from
the whole set of words to a small list of frequent words. We have also
considered alternative weighting schemes, including the embedded
mechanism of CLUTO [51] and the entropy-based feature weighting
function proposed in [15]. Best results were acquired for a feature
space consisting of the 30 most frequent words with TFxIDF term
weighting and for the method of [15]. We have opted for the former,
computationally simpler approach.

For clustering, we have experimented with Expectation–Maximization
[101], with a hierarchical clusterer using single linkage, with CLUTO
and with bisecting K-means. Best results were obtained with bi-
secting K-means for K=10 (rather than 6), so our experiments were
performed with this setting.

Document import, vectorization and clustering was done with
the DIAsDEM Workbench open source text mining software [24].
To deal with data ageing, we applied a sliding window of size 2,
i.e., documents older than two time periods acquired zero weight.
The cluster transitions found by MONIC are presented in the next
subsubsection.

6.7.2.2 Cluster transitions and impact of thresholds

We have first varied the threshold τmatch from 0.45 (rather than
0.50) to 0.7 in steps of 0.05 and depicted the number of clusters
that experienced internal or external transitions. For values of τmatch

larger than 0.7, there were hardly cluster survivals, so we omit these
values. For cluster splitting, we have set τsplit = 0.1. The results are
illustrated in Fig. 6.13.

In Fig. 6.13(a) we can see that the number of surviving clus-
ters drops as τmatch becomes more restrictive. The number of splits
and disappearing clusters in Fig. 6.13(b), respectively (c) increases
accordingly. At the same time, all surviving clusters experience
changes in size. Furthermore, we have not detected any absorption
transitions. Hence, the passforward ratio is equal to the survival
ratio for all clusterings.

A comparison of the numbers for each timepoint, Fig. 6.13(a),
(b), (c), reveals that the clusters in early clusterings tend to disap-
pear and be replaced by new ones (more disappearances than splits),
while the trend reverses in late clusterings: The clusters in recent
timepoints are rather split than scattered. This might be explained
by the increasing volume of the document collection: The number of
documents inserted at each timepoint increases rapidly at the late
timepoints, so that unstable clusters may be split by the clusterer
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in large chunks instead of being dissolved and rebuilt.
To check this hypothesis, we analyzed the influence of the thresh-

old τsplit upon the number of splits and disappearances, as shown
in Fig. 6.14. We have varied τsplit from 0.1 to 0.35 with a step of
0.05, setting τmatch = 0.5. As expected, large values of τsplit result
in a higher number of disappearing clusters. However, the numbers
of splits at late timepoints indicate that splits are only possible if
the value of τsplit is small. Hence, the clusters are not split into
large chunks, they are indeed dissolved and rebuilt. For example,
the dominant class “Data Mining” grows substantially in the recent
timepoints but is not homogeneous enough to produce clusters with
a long lifetime.

6.7.2.3 Lifetime of clusters and clusterings

At the next step, we studied the persistence of the clusterings over
time. We first computed the passforward ratios (c.f. Definition 22).
The results are listed in clusters for simplicity; since K = 10, the
relative numbers are trivial to compute. It is apparent from this ta-
ble that the clusterings at some timepoints show a high, respectively
low, passforward ratio, independently of the τmatch values: The low
passforward ratio at timepoint 2002 indicates a drastic change in
the documents between 2001 and 2002 (window size = 2), that has
been preceded by a rather stable period of two years; the clusterings
of 2000 and 2001 have quite high passforward ratios.

τ 1999 2000 2001 2002 2003 2004
0.45 4 7 7 1 5 4
0.50 4 5 7 1 3 4
0.55 3 3 3 0 2 3
0.60 3 2 3 0 1 1
0.65 3 0 1 0 0 1
0.70 2 0 1 0 0 0

Table 6.10: Passforward ratios for different values of survival threshold

The rather low passforward ratio of the clusterings is reflected
in the lifetimes of the individual clusters. We have studied cluster
lifetime according to . To this purpose, we have set τmatch = 0.5 and
τsplit = 0.1 and have computed the lifetime with internal transitions
for the clusters, lifetimeI : Since all survived clusters experience in-
ternal transitions, the strict lifetime is 1 for all of them. Since no
absorptions have occurred, the lifetime with absorptions is equal to
lifetimeI for all clusters. The results are presented in the table be-
low. The second column shows the lifetimes of all clusters in each
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Figure 6.13: Cluster transitions for different values of τmatch: (a) Survived
clusters, (b) split clusters and (c) disappeared clusters

clustering.

The third column in Table6.11 is the lifetime of the clusterings
according to . It is obvious that all timepoints are characterized by
short-lived clusterings, although some of them contain rather stable
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Figure 6.14: Cluster transitions for different values of τsplit: (a) Split clusters
and (b) disappeared clusters

Timepoint Lifetimes of clusters Lifetime L
1998 {4,1,4,1,4,1,2,1,1,1} 1
1999 {4,1,4,1,1,4,1,2,1,3} 1
2000 {4,1,4,1,3,2,4,3,2,1} 2
2001 {4,1,4,2,4,2,3,2,1,1} 2
2002 {1,1,3,1,1,1,1,1,1,1} 1
2003 {3,1,1,1,1,1,1,2,3,1} 1
2004 {3,3,1,2,1,1,2,1,1,1} 1

Table: Lifetime of clusterings

individual clusters.

6.7.2.4 Clusters vs Classes of the ACM Library

So far, we have studied evolution of the clusters in H.2.8 without
considering the real ACM classes. To this purpose, we juxtapose
the transitions and cluster lifetimes found by MONICo the “real”,
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observable evolution of H.2.8. To do so, we have labeled each cluster
with its two most frequent words and mapped these labels/“topics”
to the ACM classes. For cluster transition detection, we have set
τ = 0.5 and τsplit = 0.1 and concentrated on splits, disappearances
and cluster lifetime with internal transitions (lifetimeI), since there
were no strict survivals and no absorptions. On this basis, we have
checked whether cluster transitions correspond to comprehensible
topic evolutions. The results are as follows:

• There is always one cluster without a label, hereafter denoted
as “cluster 0”. The clusterer places in this cluster all records
that cannot be accommodated elsewhere. By nature, this unin-
formative cluster has a high lifetime of 4 timepoints. However,
it does not survive the population shift at timepoint 2002; at
this timepoint it is dissolved and rebuilt.

• Each clustering contains two or three clusters on data min-
ing, the dominant class. In the first 4 timepoints, we find a
growing cluster on “association rules”. In 2002, it is split into
a smaller cluster with the same label and an unlabeled noisy
cluster (other than cluster 0):

C19984 ↗ C19999 ↗ C20006 ↗ C20014

⊂→ {C20027 , C20029}

where denote as Cyw the identifier of the “association rules”
cluster in year y, w = 1 . . . 9 1.
The small cluster C20027 disappears in 2003 (C20027 → �). One
of the emerging clusters of 2004 (� → C20043) has again the
label “association rules”.

• The other clusters on data mining have less specific labels, such
as “knowledge discovery” or “data mining”. Their lifetime does
not exceed 3 timepoints, during which they experience splits
and size transitions.

• At the early timepoints, there are clusters labeled “spatial”
and “image” (later: “image retrieval”). The labels appear in
several periods but are associated with different clusters, so the
cluster lifetime is low. Clusters associated to classes other than
“Data Mining” appear only until 2002.

• The number of clusters with a label is large in the clusterings
of the early timepoints and decreases in the clusterings of the

1Cluster identifiers are generated by the clustering algorithm at each timepoint. They do
not indicate transitions.
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late timepoints. The labels of the late timepoints are shorter
and less informative (“model”, “data”). Clusters that can be
associated to classes other than “Data Mining” appear only at
the early timepoints.

Hence, MONICetected a remarkable shift in the accumulating
H2.8 section between 2001 and 2002, signaled by an increased num-
ber of cluster splits and disappearances. The history of H.2.8 con-
tains at least one event that may explain this shift: Starting with
KDD’2001, the proceedings of the conference and of some adjoint
workshops are being uploaded in the ACM Digital Library, enrich-
ing the H.2.8 section with a lot of documents on many subtopics of
data mining.

The results are indicative of the types of transitions that may be
caused by a population shift in an unlabeled dataset and of the po-
tential of detecting and understanding shifts through the monitoring
of cluster transitions.

6.7.3 Experiments on FINGERPRINT

We first describe the datasets used in the experiments and provide
some example traces and their fingerprints. Then, we discuss the
findings for each dataset.

6.7.3.1 Datasets

We experimented with two numerical datasets, the Network In-
trusion dataset and the Charitable Donation dataset, used also in
the stream experiments of [2], and with the documentset ACM
H2.8 used in the experiments of MONIC(c.f.ection6.7.2.1). The
first dataset is rapidly evolving, the second one is relatively stable,
while the third one evolves in an unbalanced way – one of the classes
grows faster than the others.

The Network Intrusion dataset (KDD Cup’99) contains TCP
connection logs from two weeks of LAN network traffic (424,021
records). Each record corresponds to a normal connection or an at-
tack. The attacks fall into four main categories: DOS (i.e., denial-
of-service), R2L (i.e., unauthorized access from a remote machine),
U2R (i.e., unauthorized access to local superuser privileges), and
PROBING (i.e., surveillance and other probing). So, we set the
number of clusters to 5, including the class of normal connections.
We used all 34 continuous attributes for clustering and removed one
outlier point, as in [2]. We turned the dataset into a stream by sort-
ing on the data input order. We assumed a uniform flow in speed
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of 2000 instances per time period. For data ageing, we assumed a
sliding window of 2 time periods/timepoints.

The Charitable Donation dataset (KDD Cup’98) contains infor-
mation (95,412 records) on people who have made charitable dona-
tions in response to direct mailings. Clustering identifies groups of
donors with similar donation behavior. Similar to [28], we used 56
out of the 481 fields and set the number of clusters to 10. As with
the previous dataset, we used the data input order for streaming
and assumed a uniform flow with 200 instances per time period.
For data ageing, we used a sliding window of size 2.

The ACM H2.8 subarchive has been already described in Sec-
tion6.7.2.1, we use here the same settings. Just recall that it evolves
in an unbalanced way: The category (1) is larger than all the others
together and grows faster than the others.

6.7.3.2 Example traces and fingerprints

To highlight the behavior of the summarization algorithms on real
data, we depict here some traces from the ACM H2.8 dataset and
their fingerprints, as produced by our summarization algorithms.

In 1998, we observe a new cluster with the label “information
systems”. Its trace is trace(c19982) =≺ c19982c19996c20003 �, where
the notation cyi

refers to the ith cluster of year y, with i = 1 . . . 9
(cluster 0 is the garbage cluster) 2. The cluster centroids contain the
terms “information” and “system” with the following frequencies:
ĉ19982 =< information(0.96), system(0.61) >,
ĉ19996 =< information(0.88), system(0.74) > and
ĉ20003 =< information(0.76), system(0.78) >.
Both summarization algorithms condense this trace into a single
virtual center. The batch algorithm creates this new node v in one
step v̂ =< information(0.87), system(0.71) >,
while the incremental first summarizes c19982 and c19996 into a virtual
center v̂0 =< information(0.92), system(0.68) >,
and then summarizes v0 and c20003 into

v̂′ =< information(0.84), system(0.73) >.
A further cluster that emerged in 1998 had the one-term label

< analysis(1.0) >. In 1999, it was split into two clusters, one
labeled < mining(1.0), datum(0.74) > and one cluster with no la-
bel (garbage cluster). The former survived for two periods, thus
resulting in the trace ≺ c19998c20004c20016 �. The information de-

livered without summarization is the sequence c19989

⊂→ {c19994 ,≺
2Cluster identifiers are generated by the clustering algorithm at each timepoint
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c19998c20004c20016 �}; the summarization delivers the fingerprint c19989

⊂→
{c19994 , v} instead.

6.7.3.3 Compactness Gain and Information Loss

In Figures6.15, 6.16 and 6.17, we show the compactness gain achieved
by the batch and the incremental summarization methods for each
of the three datasets, considering different values of the centroid
distance threshold δ. The values for the different dimensions of the
centroids are between 0 and 1, so we vary δ in this range as well.

We can see in the figures that the two algorithms achieve similar
compactness gain, although IncrementalFINGERPRINThows slightly
lower values for most values of δ in the Network Intrusion dataset.
Obviously, the compactness gain increases for larger values of δ,
because less proximal centroids can be merged.

Figure: Network Intrusion dataset: Impact of threshold δ on compactness gain

The total compactness gain for each dataset depend of course
on the number of survivals per se: Among the total of 1,195 clus-
ters/nodes generated for the Network Intrusion dataset, 400 nodes
participate in traces; the compactness gain achieved by both algo-
rithms are in the range [0.21, 0.33] of the total size of the Evolution
Graph. The Evolution Graph of the Charitable Donation dataset
contained 4,770 clusters, of which 614 were involved in traces; the
compactness gain over the whole graph were thus no more than 7%.
For the ACM H2.8 subarchive, 24 out of 70 nodes were involved in
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Figure: Charitable Donation dataset: Impact of threshold δ on compactness
gain

Figure: ACM H.2.8 dataset: Impact of threshold δ on compactness gain

traces, so that the compactness gain over the whole graph ranged
between 9% and 33%.

In Figures6.18, 6.19 and 6.20, we depict the information loss
effected upon the three datasets when summarizing incrementally
versus in batch. For the Charitable Donation and the ACM H2.8
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datasets, the information loss incurred by the incremental algorithm
is slightly higher than for BatchFINGERPRINTut follows the same
curve for different values of δ. For the Network Intrusion dataset,
the performance difference is dramatic: While BatchFINGERPRINTchieves
a very low information loss (lower than for the other datasets), the
incremental algorithm performs very poorly.

Figure: Network Intrusion dataset: Impact of δ on information loss

Figure: Charitable Donation dataset: Impact of δ on information loss
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Figure: ACM H.2.8 dataset: Impact of δ on information loss

Comparing the compactness gain and information loss values for
the datasets Charitable Donation and ACM H2.8, we can say that
both algorithms summarize the traces in a similar way, although the
batch algorithm manages to summarize slightly more nodes (higher
compactness gain) and more similar ones (lower information loss).
This is also reflected in Figure6.22 and Figure6.23, where we de-
pict the joint curves of information loss and compactness gain: The
curves of the two algorithms are almost identical.

The performance difference between the two algorithms is made
more clear in the joint curves shown in Figure6.21. One explanation
for the performance of IncrementalFINGERPRINTight be the volatil-
ity of the dataset: The number of survivals is relatively low and it
is likely that the survived clusters were unstable and not very sim-
ilar to each other. Hence, IncrementalFINGERPRINTroduced vir-
tual centers that were not very close to the original pairs of cen-
troids, while BatchFINGERPRINTanaged to build better virtual cen-
ters among multiple adjacent centroids. More experimentation is
needed here, though. In particular, it is necessary to highlight the
quality of the original clusters and its impact on the compactness
gain and information loss.

6.8 Related work

Research relevant to our work can be categorized into cluster mon-
itoring methods and cluster summarization methods.
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Figure: Network Intrusion dataset: Correlation between information loss and
compactness gain

Figure: Charitable Donation dataset: Correlation between information loss and
compactness gain

Monitoring methods Relevant to our work is the research on
methods for cluster change detection and spatiotemporal clustering.
We also discuss methods on the specific subject of topic evolution
[61,,,66].
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Figure: ACM H.2.8 dataset: Correlation between information loss and com-
pactness gain

Cluster change detection The FOCUS change detection frame-
work [32] compares two datasets and computes a deviation measure
between them, based on the data mining models they induce. Clus-
ters compose a special case of models, described as non-overlapping
regions described through a set of attributes (structure component)
and corresponding to a set of raw data (measure component). How-
ever, the emphasis in this work is on comparing datasets, not in
understanding how a cluster has evolved inside a new clustering.

In [62], Meila provides an overview of the related work on com-
paring different clustering results produced from the same dataset
under different mining parameters, e.g.,ifferent algorithms or differ-
ent parameters over the same algorithm. The comparison process
relies on criteria based on i) counting pairs, ii) cluster matching and
iii) variation of information. The counting pairs criteria are based
on counting the pairs of points on which the two clusterings agree
(i.e.,lace them in the same cluster). The cluster matching criteria
are based on finding for each cluster of the first clustering its best
match at the second clustering, where the best match is evaluated
based on the number of common points between the two clusters.
Recently, Zhou et al [107], proposed a new measure in this category
that also considers the distance between cluster centroids in order
to yield more intuitive results. The variation of information criteria
measure the amount of information that is lost or gained when mov-
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ing from one clustering to the other. Note however that all these
methods refer to the comparison of (different) clusterings extracted
though from the same dataset and thus cannot be applied in the
general case of different datasets [71].

Spatiotemporal clustering In spatiotemporal clustering, a clus-
ter is a densification in a time-invariant trajectory.

Aggarwal[1] models clusters through kernel functions and changes
as kernel density changes at each spatial location of the trajectory.
The emphasis is on computing change velocity and finding the loca-
tions with the highest velocity–the epicenters. Three different types
of change are considered in this work: i) data coagulation that corre-
sponds to connected regions in the data which have velocity density
larger than a user defined threshold, ii) data dissolution that corre-
spond to connected regions whose velocity density is smaller than a
user defined threshold and iii) data shift to other locations.

Yang et al[104] detect formation and dissipation events upon clus-
ters of spatial scientific data. Their framework supports four types
of spatial object association patterns (SOAP), namely Star, Clique,
Sequence, and minLink, which are used to model different interac-
tions among spatial objects. Such methods however, assume that
the feature space does not change. Thus, they cannot be used for
dynamic feature spaces, e.g.n text stream mining, where features
are usually frequent words. Furthermore, hierarchical clustering al-
gorithms cannot be coupled with such a method.

Kalnis et al[50] propose a special type of cluster change, the mov-
ing cluster, whose contents may change while its density function
remains the same during its lifetime. They find moving clusters
by tracing common data records between clusters of consecutive
timepoints. Our MONICramework for transition detection is more
general, since it encompasses several cluster transition types, allows
for the ageing of old objects and does not require that the density
function of a moving cluster is invariant.

Topic evolution Cluster change detection is also relevant to topic
evolution in text streams, as dealt with in [66,,,61], where a topic is
a cluster label, consisting of the dominant words inside the cluster.

In [66], Moringa and Yamanishi propose a topic analysis system
that fulfills three relative tasks, namely i) topic structure identifica-
tion that identifies what kind of main topics exist and how important
they are, ii) topic emergence detection that detects the emergence
of a new topic and iii) topic characterization that identifies the char-
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acteristics of each main topic. All tasks are formalized in terms of
a finite mixture model.

In[61], Mei and Zhai propose a method for discovering and sum-
marizing the evolutionary patterns of themes in a text stream. The
authors detect the themes at each period and use the KL divergence
measure to find coherent themes over time, i.e.,hemes with similar
labels. This way a topic evolution graph is built that can be used
to trace theme transitions and to analyze the theme life cycles.

These methods are applicable whenever a human–understandable
cluster label can be extracted and traced. Cluster labeling is not
feasible for all applications though. For this reason, the proposed
framework MONICetects cluster transitions rather than cluster label
transitions.

Summarization methods The summarization of observed clus-
ter transitions over a stream of data has not been adequately ad-
dressed in the literature, since research results on capturing cluster
changes have only emerged in the last years. Relevant to our work
is the research on the summarization of streams of data records (as
opposed to streams of values) and on the identification, characteri-
zation and representation of pattern changes.

Summarization for a set of transactions with categorical attributes
is studied by Chandola and Kumar[21]. In one of their methods, the
derive summaries by clustering the transactions, extracting the fea-
ture/value pairs supported by all transactions in a cluster and using
them as cluster summaries. They do not address the issue of cluster
change upon a stream, but propose two metrics that characterize
the output of the summarization algorithm, “compaction gain” and
“information loss”. Quite naturally, our metrics are similarly moti-
vated and have similar names. However, they summarize static data
using clusters, while we summarize evolving clusters upon a stream.

Summarization and change are considered by Ipeirotis et al [45],
who study changes of database content summaries. They define
as “content summary” for a database a set of keywords, weighted
on their importance within the database. Meta-search services use
such summaries to select appropriate databases, towards which they
issue keyword-based queries. The reliability of such a summary de-
teriorates as the contents of the database change over time. So, the
authors propose methods to quantify and detect summary changes.
This study addresses both the issue of summarization over the evolv-
ing database and the discovery of changes. However, the mainte-
nance of the summaries themselves in a condensed form is beyond
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the scope of their work. On the other hand, the proposed FINGER-
PRINTframework emphasizes on the summarization of the discov-
ered population transitions.

The discovery and representation of cluster changes for text streams
are studied by Mei and Zhai [61]. They apply soft clustering with
mixture models at each time period, extract the representative keyword-
list (the “theme”) for each cluster, and then monitor the evolution
of these lists by tracing divergences between a current keyword list
and past ones. Theme transitions are maintained on a “theme evo-
lution graph”, which is then used to extract the life cycle of themes
(by means of Hidden Markov Models).

Agrawal et al [2] propose the CluStream framework for cluster-
ing of evolving data streams. The clustering process is split into an
online and an offline task: The online component stores summary
statistics (the so-called micro-clusters) periodically and the offline
component uses them for the formation of the actual clusters (the
macro-clusters) over a user-specific time horizon. Micro-clusters can
be observed as cluster summaries and are indeed designed to reduce
space demand. Nonetheless, CluStream focuses on combining them
into clusters rather than in summarizing them. Also, the informa-
tion loss effected through summarization is not discussed.

Cluster summarization and evolution are addressed in CACTUS
[31] and DEMON [33]. CACTUS clusters categorical data and de-
rives cluster summaries, while DEMON is responsible for data evo-
lution and monitoring in time, detecting and highlighting systematic
data changes. With these two components, it is possible to study
the evolution of data summaries, similarly to the evolution of text
summaries studied in [61]. However, the modeling and maintenance
of the observed changes are not studied in either component.

6.9 Summary

In this chapter we studied change detection and monitoring issues in
a dynamic environment based on the the clustering models extracted
from the environments through some DM algorithm. More specif-
ically, we have proposed the MONICand MONIC+frameworks for
change detection and monitoring in dynamic environmnets in terms
of the extracted clustering models, the Evolution Graphmodel
for the organization of the evolution history and the FINGER-
PRINTframework for the summarization of change in some con-
densed yet informative way.

The MONICframework is designed for arbitrary types of clusters.
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It encompasses a cluster transition model, a transition detection al-
gorithm and accompanying heuristics, operating upon a very generic
model of clusterings over an accumulating dataset. We have applied
MONICon a subarchive of the ACM library and have shown how
cluster transitions give insights to the underlying data population
and its shifts.

We have extended MONICinto the MONIC+framework which
employs heuristics that exploit the particular characteristics of dif-
ferent cluster types, such as topological properties for clusters over
a metric space and descriptors of data distribution for clusters de-
fined as distributions. Our experiments show that our framework
can provide useful insights on the evolution of the observing popu-
lation and also, that our transition model and transition heuristics
can reveal different forms of cluster evolution.

We have organized cluster changes in an Evolution Graphwhich
models the whole history of population evolution. We have pre-
sented two exploitation capabilities over such a graph: querying of
the evolution and studying of the stability of the population based
on the lifetime of clusters and clusterings.

We have also studied the effective summarization of cluster changes
over a stream of data records. We have proposed two algorithms for
the summarization of the Evolution Graphinto FINGERPRINT
a condensed representation in which less informative cluster transi-
tions are suppressed. We derived functions that measure the effected
information loss and compactness gain and we presented heuristics
that drive the summarization process. We have implemented FIN-
GERPRINTin two versions: The batch algorithm summarizes the
Evolution Graphas a whole, while the online version creates the
graphs fingerprint incrementally, during the process of cluster tran-
sition discovery. We have run experiments on three real datasets
and have seen that the incremental algorithm achieves similar com-
pactness gain as BatchFINGERPRINT, but the information loss may
be much higher.

Part of this work appears in [90],[89],[91],[88],[71], whereas an
extended version has been submitted in [72].

6.10 Open issues

A straightforward extension is to enrich MONIC(consequently, MONIC+)
framework by incorporating more transition types and transition in-
dicators.

Our experiments have shown that cluster monitoring can deliver
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valuable insights on the evolution of the underlying data. The low
passforward ratio at a specific timepoint can act as an alert for the
end user and require careful inspection of the participant clusterings.
So far, the overhead of this inspection is left to the user, however it
would be useful to facilitate her/him by detecting, for example, the
dimensions/features that are highly responsible for these transitions.

The evaluation of a framework like MONIC(or MONIC+) upon
real data is a major challenge. Although datasets for the evalua-
tion of data stream clustering algorithms emerge, a gold standard
of data with clusters in transition is still missing. It is interesting for
someone to focus on methods generating synthetic datasets for clus-
ter transition detection and on criteria for the evaluation of cluster
transition detectors upon them.

The experiment with K-means has shown that the transitions
found by MONIC+can be used as alerts for cluster instability. This
functionality should be further investigated.

Regarding the FINGERPRINTframework, so far we have concen-
trated on the summarization of cluster survivals. However, there are
also other transitions that a cluster might encompass like absorp-
tion and split. It would be interesting to extend the summarization
to include other cluster transitions as well, so that only the most
informative changes are delivered to the end user.



Chapter 7

Conclusions and Outlook

In this chapter we summarize the contents of this thesis, and suggest
future work arising from its findings.

7.1 Summary of contributions

Due to the wide application of Knowledge Discovery in Databases
(KDD) and as a result of data flood that appears nowadays, the
amount of patterns extracted from heterogeneous data sources (e.g.,
business, science, telecommunications, Web) is huge and, quite of-
ten, non-manageable by humans. Thus, there is a need for effi-
cient pattern management including issues like modeling, storage,
retrieval and querying of patterns.

An important issue that relates to several aspects of the pattern
management problem, is that of dissimilarity assessment, i.e.,valuating
how similar to each other two patterns are. Dissimilarity assessment
comprises a complicated problem. First of all, there exist many dif-
ferent pattern types for which we should define dissimilarity mea-
sures. Furthermore, there exist patterns defined over raw data, the
so called simple patterns as well as patterns defined over other pat-
terns, the so called complex patterns. Moreover, patterns preserve
the semantics of the raw data from which they have been extracted,
however the degree of preservation depends on the mining param-
eters. All these parameters comprise the dissimilarity problem a
difficult yet challenging problem.

We rely on the information contained in each pattern in order to
evaluate the dissimilarity between two patterns. Such an informa-
tion is either intensional, i.e., description of the concept represented
by the pattern, or extensional, i.e.,n enumeration of the data mem-
bers participating in the pattern formation.

201



202 CHAPTER. CONCLUSIONS AND OUTLOOK

Through this thesis, we dealt with different aspects of the pattern
dissimilarity assessment problem, in particular:

• We proposed the Pandaframework for comparing both sim-
ple and complex patterns, defined over raw data and over other
patterns, respectively. In Panda, the problem of dissimilar-
ity assessment between complex patterns is decomposed to the
problem of comparing their component simple patterns. Thus,
patterns of any complexity can be easily handled as far as they
can be expressed in the simple-complex rationale of Panda.

• We investigated the dissimilarity reasoning problem, i.e.,hether
dissimilarity between two pattern sets can serve as a measure
of dissimilarity between their corresponding datasets. In par-
ticular, we focused on the case of frequent itemset patterns
and studied the effect of the minSuppport threshold and of the
itemset lattice representation, namely frequent itemsets, closed
frequent itemsets and maximal frequent itemsets, on such an
association. Our theoretical and experimental findings suggest
that such a correspondence is subjective to the mining param-
eters used for the extraction of patterns.

• We exploited the information provided by the decision tree pat-
terns in order to compare either decision trees or classification
datasets. In particular, our approach exploits the information
provided by the partitioning that each decision tree performs
over the attribute space of the dataset from which it has been
induced. We demonstrated the usefulness and applicability of
our framework in estimating the semantic similarity between
decision tree models induced from different subsamples of clas-
sification datasets.

• Finally, we compared clusters and clustering and showed an-
other application of similarity assessment, that of cluster moni-
toring. We studied cluster monitoring as a means of monitoring
the evolution of a dynamic population across the time axis. To-
wards this aim we proposed the MONICnd MONIC+rameworks
for the categorization and detection of cluster transitions. We
organized clusters and their transitions into a graph structure,
called Evolution Graph, that contains the whole history
of the population evolution. Since, as the observation period
increases this graph becomes huge and thus un-manageable by
the end user, we proposed the FINGERPRINTramework for an
effective summarization of these transitions. Together, MONIC
MONIC+nd FINGERPRINTrameworks provide the necessary
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infrastructure for monitoring and maintaining changes in a dy-
namic environment.

7.2 Discussion on future work

Several research issues arise from this thesis, as outlined below.

• Our Pandaframework for the comparison of arbitrary complex
patterns provides the necessary infrastructure for dissimilarity
assessment by instantiating the appropriate building blocks for
the specific case at hand. However, such an instantiation is
not an easy task. In general, discovering the best dissimilarity
function for a specific problem is not an easy task and is actu-
ally subjective. Thus, it would be useful and at the same time
challenging to discover best configurations of Pandafor specific
dissimilarity assessment problems. One solution towards this
direction is to incorporate in Pandaalready proposed in the
literature best solutions for particular cases.

• In Chapter 4 we saw the dependency of dissimilarity on the
mining parameters and we conclude that associating dissimilar-
ity in pattern space with the dissimilarity in the corresponding
raw data space is not so straightforward; rather, it depends on
the mining parameters. Thus, an open issue is the “discovery”
of a dissimilarity measure that would be more robust to the
mining parameters and would better preserve the original raw
data space characteristics in the pattern space.

• In Chapter 6 we show the application of pattern dissimilarity
measures on monitoring, for the case of cluster and clustering
patterns. An open direction is monitoring in terms of other
pattern types like frequent itemsets and decision tree models.

• The availability of dissimilarity measures between patterns, al-
lows us to perform a number of standard data mining tasks,
not anymore over raw data, but rather over the patterns ex-
tracted from these data, i.e.,eta-mining tasks. As an example,
let us consider clustering of decision tree models in order to
discover groups of decision trees with similar characteristics.
It would be interesting to apply our dissimilarity measures for
such tasks.

• The methods proposed in this thesis refer to the comparison
of patterns of the same pattern type. It is interesting to inves-
tigate how dissimilarity between patterns of different pattern
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types can be evaluated. A straightforward solution towards
this direction is to convert one type into the other and perform
the comparison over this (common) type. More elegant solu-
tions however, could be investigated. In general, finding a type
independent dissimilarity assessment schema between patterns
is useful from both research and application purposes.
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