
 - 1 -

Nearest Neighbor Search on Moving Object Trajectories

Elias Frentzos, Kostas Gratsias, Nikos Pelekis, Yannis Theodoridis

Laboratory of Information Systems

Department of Informatics

University of Piraeus

Hellas

Technical Report Series

UNIPI-ISL-TR-2005-2

April 2005

 - 2 -

Nearest Neighbor Search on Moving Object Trajectories

Elias Frentzos
†
, Kostas Gratsias, Nikos Pelekis, Yannis Theodoridis

Department of Informatics

University of Piraeus

Piraeus, Hellas

URL: http://isl.cs.unipi.gr/db

E-mail: {efrentzo, gratsias, npelekis, ytheod}@unipi.gr

Abstract

Nearest Neighbor (NN) search has been in the core of spatial and spatiotemporal database

research during the last decade. The literature on NN query processing algorithms so far deals

with either stationary or moving query points over static datasets or future (predicted) locations

over a set of continuously moving points. With the increasing number of Mobile Location

Services (MLS), the need for effective k-NN query processing over historical trajectory data has

become the vehicle for data analysis, thus improving existing or even proposing new services.

In this paper, we investigate mechanisms to perform NN search on R-tree-like structures storing

historical information about moving object trajectories. The proposed branch-and-bound

algorithms vary with respect to the type of the query object (stationary or moving point) as well

as the type of the query result (continuous or not), thus resulting in four types of NN queries.

We also propose novel metrics to support our search ordering and pruning strategies. Using the

implementation of the proposed algorithms on a member of the R-tree family for trajectory data

(the TB-tree), we demonstrate their scalability and efficiency through an extensive experimental

study using synthetic and real datasets.

1. Introduction

With the integration of wireless communications and positioning technologies, the concept of Moving Object

Databases (MOD) has become increasingly important, and has posed a great challenge to the database

community. In such implicitly formulated location-aware environments, moving objects are continuously

changing locations; nevertheless existing DBMSs are not well equipped to handle continuously changing data.

Emerging location-dependent services call for new query processing algorithms and techniques to deal with

both the spatial and temporal domains. Examples of these new services include traffic monitoring, nearby

information accessing and enhanced 911 services.

Unlike traditional databases, MODs have some distinctive characteristics: First of all, spatio-temporal

queries are continuous in nature. In contrast to snapshot queries, which are invoked only once, continuous

†

Contact author’s address: 80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece. Tel: +30-2104142449, Fax: +30-2104142264
.

 - 3 -

queries require continuous evaluation as the query result becomes invalid after a short period of time. Secondly,

we typically have to deal with vast volumes of historical data which correspond to a large number of mobile and

stationary objects. As a consequence, querying functionality embedded in an extensible DBMS that supports

moving objects has to present robust behavior in the above mentioned issues.

An important class of queries that is definitely useful for MOD processing is the so-called k nearest

neighbor (k-NN) queries, where one is interested in finding the k closest trajectories to a predefined query object

Q. To our knowledge, in the literature such queries primarily deal with either static ([RKV95], [CF98], [HS99])

or continuously moving query points ([SR01], [TPS02]) over stationary datasets, or queries about the future

positions of a set of continuously moving points ([BJKS02], [TP02], [ISS03]). Apparently, these types of

queries do not cover NN search on historical trajectories.

 The challenge accepted in this paper is to describe diverse mechanisms to perform k-NN search on R-

tree-like structures [MNPT05] storing historical information. To illustrate the problem, consider an application

tracking the positions of rare species of wild animals. Such an application is composed of a MOD storing the

location dependent data, together with a spatial index for searching and answering k-NN queries in an efficient

manner. Experts in the field would be advantaged if they could pose a query like “find the nearest trajectories of

animals to some stationary point (lab, source of food or other non-emigrational species) from which this species

passed during March”. Now imagine that the expert’s will is to pose the same query with the difference that the

query object Q is not a stationary point but a moving animal moving from location P1 to P2 during a period of

time. This query gives us rise to deduce a more generic query where the expert may wish to set another

trajectory of the same or relative class of species as the query object Q. It is self-evident that by these types of

queries an expert may figure out motion habits and patterns of wild species or deviations from natural

emigration, which could be interrelated with environmental and/or ecological changes or destructions. Having in

mind that users of MODs are usually interested in continuous types of queries, the two previously discussed

queries are extended to their continuous counterparts. In their continuous variation, each query returns a time-

varying number (the nearest distance depends on time) along with a collection of trajectory ids and the

appropriate time intervals for which each moving object is valid {i1[t1,t2), i2[t2,t3), …}.

x

t

y
Q1

O1 O2

Q2

O3 O6 O4 O5

t1

t4

t2

t6

t3

t5

Figure 1: Continuous and non-continuous point and trajectory NN queries over moving objects trajectories

To make the previous example more intelligible, Figure 1 illustrates the trajectories of six moving

animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1 and Q2) representing two sources of food.

 - 4 -

Now, consider the following queries demonstrated in Figure 1 (Queries 2 and 4 are the continuous counterparts

of Queries 1 and 3, respectively):

Query 1. “Find which animal was nearest to the stationary food source Q1 during the time period [t1,t4]”,

resulting to animal O1.

Query 2. “Find which animal was nearest to the stationary food source Q2 at any time instance of the time

period [t1,t4]”, resulting to a list of objects: O2 for the interval [t1,t3); O1 for the interval [t3,t4].

Query 3. “Find which animal was nearest to animal O3 during the time period [t2,t6]”, resulting to O2.

Query 4. “Find which animal was nearest to animal O6 at any time instance of the time period [t2,t6]”, resulting

to a list of objects: O5 for the interval [t2,t5); O4 for the interval [t5,t6].

Posing the problem in a more human-centric context, consider an application analyzing the dynamics of

urban and regional systems. The intention here is to assist the development of spatio-temporal decision support

systems (STDSS) aimed at the planning profession. Such a case requires similar methodologies for

comprehending, in space and time, the interrelations of the life courses of individuals. The life courses of most

individuals are built around two interlocking successions of events: a residential trajectory and an occupational

career. These patterns of events became more complex during last decades, creating new challenges for urban

and regional planners. We believe that an expert may take advantage of the features provided by our nearest

neighbor query processing algorithms and utilize them for analyzing human life courses.

To the best of our knowledge, this is the first work on continuous k-NN query processing over historical

trajectories of moving objects. Outlining the major issues that will be addressed in this paper, our main

contributions are as follows:

• We propose a set of four query processing algorithms to perform NN search on R-tree-like structures

storing historical information about moving objects. The description of our branch-and-bound traversal

algorithms for different queries depends on the type of the query object as well as on whether the query

itself is continuous or not. The algorithms are generalized to find the k nearest neighbors.

• We propose novel metrics to support our search ordering and pruning strategies. More specifically, the

definition of the minimum distance metric MINDIST between points and rectangles, initially proposed in

[RKV95] and extended in [TPS02], is further extended in order for our algorithms to calculate the

minimum distance between trajectories and rectangles.

• We conduct a comprehensive set of experiments over synthetic and real datasets demonstrating that the

algorithms are highly scalable and efficient in terms of node accesses and pruned space.

The rest of the paper is structured as follows. Related work is discussed in Section 2, while Section 3

introduces, at an abstract level, the set of k-NN algorithms over moving object trajectories, as well as the metrics

that support our search ordering and pruning strategies. Sections 4 and 5 constitute the core of the paper

describing in detail the query processing algorithms to perform NN search over historical trajectory information

(Section 4) together with their continuous counterparts (Section 5). Section 6 presents the results of our

experimental study and Section 7 provides the conclusions of the paper and some interesting research directions.

2. Related Work

In the last decade, NN queries have fueled the spatial and spatiotemporal database community with a series of

interesting noteworthy research issues. An affluence of methods for the efficient processing of NN queries for

 - 5 -

static query points already exist, the most influential probably being the branch-and-bound R-tree traversal

algorithm proposed by Roussopoulos et al. [RKV95] for finding the nearest neighbor of a single stationary

point. The algorithm utilizes two metrics, MINDIST and MINMAXDIST, in order to implement tree pruning

and ordering. Specifically, starting from the root of the tree, the algorithm identifies the entry with the minimum

distance from the query point (with the use of the above metrics). The process is recursively repeated until the

leaf level is reached, where the first candidate nearest neighbor is found. Returning from this recursion, only the

entries with a minimum distance less than the distance of the nearest neighbor already found are visited. The

above process was generalized to support k-NN queries.

Later, Cheung and Fu [CF98] proved that, given the MINDIST-based ordering, the pruning obtained by

[RKV95] can be preserved without the use of MINMAXDIST metric (the calculation of which is computational

expensive).

The first algorithm for k nearest neighbor search over a moving query point was proposed in [SR01]. The

algorithm assumes that sites (landmark points) are static and their locations (known in advance) are stored in an

R-tree-like structure. A discrete time dimension is assumed, thus a periodical sampling technique is applied on

the trace of the moving query point. The location of the query point that lies between two consecutive sampled

locations is estimated using linear or polynomial splines. Executing a Point Nearest Neighbor (PNN) query for

every sample point of the query trace is highly inefficient, so the proposed algorithm adopts a progressive

approach, based on the observation that when two query points are close, the results of the k-NN search at these

locations have to be related. Therefore, when computing the result set for a sample location, the algorithm tries

to exploit information provided by the result sets of the previous samples. The basic drawback of this approach

is that the accuracy of the results depends on the sampling rate. Moreover, there is a significant computational

overhead.

A technique that avoids the drawbacks of sampling relies on the concept of time-parameterized (TP)

queries [TP02]. TP queries retrieve the current result at the time the query is issued, the validity period of the

result and the change (i.e. the set of objects) that causes the expiration of the result. Given the current result and

the set of objects that affect its validity, the next result can be incrementally computed. The significance of TP

queries is two-fold: i) as stand-alone methods, they are suitable for applications involving dynamic

environments, where any result is valid for a certain period of time, and ii) they lie at the core of more complex

query mechanisms, such as the Continuous NN (CNN) queries. The main disadvantage of using TP queries for

the process of a CNN query is that several NN queries are required to be performed. Thus, the cost of the

method is prohibitive for large datasets.

Using the TPR-tree (Time Parameterized Tree) structure [SJLL00], Benetis et al. [BJKS02] presented

efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for moving objects. (An RNN query

returns all the objects that the query object is the nearest neighbor of.) The proposed algorithm was the first to

address continuous RNN queries, since previous existing RNN algorithms were developed under the assumption

that the query point is stationary. The algorithms for both NN and RNN queries in [BJKS02] refer to future

(estimated) locations of the query and data points, which are assumed to be continuously moving on the plane.

In the same paper, an algorithm for answering CNN queries is also proposed.

Tao et al. [TPS02] also studied CNN queries and proposed an R-tree based algorithm (for moving query

points and static data points) that avoids the pitfalls of previous ones (false misses and high processing cost).

 - 6 -

The proposed tree pruning heuristics exploit the MINDIST metric presented in [RKV95]. At each leaf entry, the

algorithm focuses on the accurate calculation of the split points (the points of the query segment that

demonstrate a change of neighborhood). A theoretical analysis of the optimal performance for CNN algorithms

was presented and cost models for node accesses were proposed. Finally, the CNN algorithm was extended for

the case of k neighbors and trajectory inputs.

Based on the TP queries presented in [TP02], Iwerks et al. [ISS03] described a technique that focuses on

the maintenance of CNN queries (for future predicted locations) in the presence of updates on moving points,

where the motion of the points is represented as a function of time. A new approach was also presented, which

filters the number of objects to be taken into account when maintaining a future CNN query.

Shahabi et al. [SKS03] presented the first algorithm for processing the k-NN queries for moving objects

in road networks. Their proposed algorithm, which utilizes the network distance between two locations instead

of the Euclidean, is based on transforming the road network into a higher dimensional space, in which simpler

distance functions can be applied. Using this embedding space, efficient techniques are proposed for finding the

shortest path between two points in the road network. The above procedure, which is utilized in the case of static

query points, is slightly modified in order to support the case of moving query points.

Acknowledging the advantages of the above fundamental techniques, in this paper we present the first

complete treatment of historical NN queries over moving object trajectories, handling both stationary and

moving query objects.

3. Problem Statement and Metrics

We first define the NN queries that are considered in this paper. Subsequently, we present the heuristics utilized

by our algorithms to implement the metrics needed to formulate our ordering and pruning strategy.

3.1 Problem Statement

Let D be a database of N moving objects with objects ids {O1, O2, …, ON}. The trajectory Ti of a moving object

Oi consists of Mi 3D-line segments {
1i

L ,
2i

L , …,
iMi

L }. Each 3D line segment Lj is of the form ((xj-start, yj-start, tj-

start), (xj-end, yj-end, tj-end)), where t0 ≤ tj-start < tj-end ≤ now. Obviously, as we treat only historical moving object

trajectories, each partial linear movement is temporally restricted between t0, the beginning of the calendar, and

now, the current time point.

We have already stated that NN queries search for the closest trajectories to a query object Q. In our case,

we distinguish two types of query objects: Qp, a point (x, y) that remains stationary during the time period of the

query Qper[tstart, tend], and QΤ , a moving object with trajectory T. Furthermore, the MOD is indexed by an R-tree

like structure such as the 3D R-tree [TVS96], the STR-tree or the TB-tree [PJT00]. Having in mind the previous

discussion, we define the following two types of NN queries:

• NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that remains stationary

during a time period Qper, and returns the closest to Qp point pc from which a moving object Oi passed

during the time period Qper, as well as the implied minimum distance.

• NN_QT (D, QT, Qper) query is similar to the previous with the difference being upon the query object Q

which in the current case is a moving object with trajectory T.

 - 7 -

The extensions of the above queries to their continuous counterparts vary in the output of the algorithms.

In the continuous case, each query returns a time-varying real number, as the nearest distance depends on time.

We introduce the following two types of CNN queries:

• CNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time period Qper returns a

list of triplets consisting of the time-varying real value Ri along with a moving object Oi (belonging in

database D) and the corresponding time period [ti-start, ti-end) for which the nearest distance between Qp

and Oi stands. These time-varying real values Ri are, in any time instance of their lifetime, smaller or

equal to the distance between any moving object Oj in D and the query point Qp. The time periods [ti-

start, ti-end) are mutually disjoint and their union forms Qper.

• Similarly, CNN_QT (D, QT, Qper) differs, compared to the previous, upon the query object Q which in

the current case is a moving object with trajectory T. These time-varying real values Ri are, in any time

instance of their lifetime, smaller or equal to the distance between any moving object Oj and the query

trajectory QT. The time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.

The above four queries are generalized to produce the corresponding k-NN queries. The generalization of

the first two queries is straightforward by simply requesting the 1-st, 2-nd, …, k-th nearest point – with respect

to a query point or a query trajectory – from which a moving object Oi passed during the time period Qper,

excluding at the same time points belonging to a moving object already marked as the j-th nearest (1 ≤ j < k).

The continuous queries are generalized to produce k-CNN requesting to provide with k lists of {Ri, [ti-start, ti-end),

Oi} triplets. Then, for any time during the time period Qper, the i-th list (1 ≤ i ≤ k) will contain the i-order NN

moving object (with respect to the query point or the query trajectory) at this time instance.

To exemplify the proposed k-NN extensions, let us recall Figure 1. Searching for the 2-NN versions of

the four queries (Query 1, 2, 3 and 4) presented in Section 1, we will have the following results:

• Query 1 (non-continuous): O1 (1
st
 NN) and O2 (2

nd
 NN)

• Query 2 (continuous): 1-NN list includes O2 for the interval [t1,t3) and O1 for the interval [t3,t4]; 2-NN

list includes O1 for the interval [t1,t3) and O2 for the interval [t3,t4]

• Query 3 (non-continuous): O2 (1
st
 NN) and O4 (2

nd
 NN)

• Query 4 (continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for the interval [t5,t6]; 2-NN

list includes O4 for the interval [t2,t5) and O5 for the interval [t5,t6].

3.2 Metrics

We exploit on the definition of the minimum distance metric (MINDIST) presented in [RKV95] between points

and rectangles, in order to calculate, on the one hand, the minimum distance between line segments and

rectangles and, on the other hand, the minimum distance between trajectories and rectangles that are needed to

implement the above discussed algorithms.

Initially, in [RKV95], Roussopoulos et al. defined the Minimum Distance (MINDIST) between a point P

in the n-dimensional space and a rectangle R in the same space as the square of the Euclidean distance between

P and the nearest edge of R, if P is outside R (or zero, if P is inside R).

In the sequel, Tao et al. [TPS02] proposed a method to calculate the MINDIST between a 2D line

segment L and a rectangle M (Figure 2). They initially determine whether L intersects M; if so, MINDIST is set

to zero. Otherwise, they choose the shortest among six distances, namely the four distances between each corner

 - 8 -

point of M and L (d1, d2, d3, d4) and the two minimum distances from the start and end point of L to M (d5, d6).

Therefore, the calculation of MINDIST between a line segment and a rectangle involves an intersection check,

four segment-to-point MINDIST calculations and two point-to-rectangle MINDIST calculations.

 M

L
d1

d5

d6

d4

d3

d2

Figure 2: Calculating MINDIST between a line segment and a rectangle [TPS02]

In this paper, we propose a more efficient method to calculate MINDIST between a line segment L and a

rectangle M (Figure 3). As before, if L intersects M, then MINDIST is obviously zero. Otherwise, we

decompose the space in four quadrants using the two axes passing through the center of M and we determine the

quadrants Qs and Qe in which the start (L.start) and the end (L.end) point of L lie in, respectively.

M

L

d1

d3

d2

M

L

d1

d3

d2

d4

M

L

d1

d2

Case 1: L.start and L.end belong to the same

quadrant

Case 2: L.start and L.end belong to

adjacent quadrants

Case 3: L.start and L.end belong to non

adjacent quadrants

Figure 3 The proposed calculation method of MINDIST between a line segment and a rectangle

Then, MINDIST is the minimum among:

• Case 1 (the two end points of the line segment belong to the same quadrant (Qs)): (i) MINDIST between

the corner of M in Qs and L, (ii) MINDIST between L.start and M or (iii) MINDIST between L.end and M.

• Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (i) MINDIST between the

corner of M in Qs and L, (ii) MINDIST between the corner of M in Qe and L, (iii) MINDIST between

L.start and M or (iv) MINDIST between L.end and M.

• Case 3 (L.start and L.end belong to non adjacent quadrants Qs and Qe, respectively): two MINDIST

between the two corners of M, that do not belong in either Qs or Qe, and L.

M

T

d1

d4

d2

d3
d5

d6

d7

d8

Figure 4: The proposed calculation method of MINDIST between a route (projection of a trajectory on the

plane) and a rectangle

This method utilizes a smaller number of (point-to-segment and point-to-rectangle) distance calculations

compared to the corresponding algorithm in [TPS02]. Finally, we extend the above algorithm in order to

calculate MINDIST metric between a the projection of a trajectory T on the plane (usually called route) and a

 - 9 -

rectangle M (Figure 4). Since a route can be viewed as a collection of 2D line segments, the MINDIST between

a route of a trajectory and a rectangle can be computed as the minimum of all MINDIST between the rectangle

and each line segment composing the route. The efficiency of this calculation can be enhanced by simply not

computing twice, with respect to the query rectangle, the quadrant and the MINDIST of the end and the start of

adjacent line segments.

4. NN Algorithms over trajectories

In this section we describe in details the algorithms answering the four types of NN queries presented in Section

3.1 and, then, we generalize them in order to support the respective k-NN queries.

 4.1. NN algorithm for stationary query objects (points)

The NN algorithm for stationary query objects (PointNNSearch algorithm, illustrated in Figure 5, provides

the ability to answer NN queries for a static query object Qp, during a certain query time period Qper[tstart, tend].

The algorithm uses the same heuristics as in [RKV95] and [CF98], pruning the search space according to Qper.

Algorithm PointNNSearch(node N, 2D point Q, time period Qper, struct Nearest)

 1. IF N Is Leaf

 // Iterate through leaf entries computing actual Euclidean distance from

point Q
 2. FOR i = 1 to N.EntriesCount

 3. E = N.Entry(i)

 // If entry is (fully or partially) inside the period
 4. IF Qper Overlaps (E.TS, E.T E)

 // Compute entry’s spatial extent inside the period
 5. nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE))

 // Compute Entry’s actual distance from Q. Update Nearest if necessary
 6. Dist = Euclidean_Dist_2D(Q, nE)

 7. IF Dist < Nearest.Dist

 8. Nearest.Entry = nE

 9. Nearest.Dist = Dist

10. END IF

11. END IF

12. NEXT

13. ELSE

 // Generate Node’s branch list with entries overlapping the query period
14. BranchList = GenBranchList(Q, N, Qper)

 // Sort active branch List by MinDist
15. SortBranchList(BranchList)

 // Iterate through active branch List
16. FOR i = 1 TO BranchList.Count

17. E = N.Entry(i)

 // Visit Child Nodes
18. NN = E.ChildNode

19. PointNNSearch(NN, Q, Qper, Nearest)

 // Apply MinDist heuristic to do pruning
20. PruneBranchList(BranchList)

21. NEXT

22. END IF

Figure 5: Historical NN search algorithm for stationary query points (PointNNSearch algorithm)

 - 10 -

The algorithm accesses the tree structure (which indexes the trajectories of the moving objects) in a

depth-first way pruning the tree nodes according to Qper rejecting those being fully outside it. At leaf level, the

algorithm iterates through the leaf entries checking whether the lifetime of an entry overlaps Qper (Line 4); if the

temporal component of the entry is fully inside Qper, the algorithm calculates the actual Euclidean distance

between Q and the (spatial component of the) entry; otherwise, if the temporal component of the entry is only

partially inside Qper, a linear interpolation is applied so as to compute the entry’s portion being inside Qper (Line

5) and calculate the Euclidean distance between Q and the portion of that entry. When a candidate nearest is

selected, the algorithm, backtracking to the upper level, prunes the nodes in the active branch list (Line 20)

applying the MINDIST heuristic [RKV95] [CF98].

4.2. NN algorithm for moving query objects (trajectories)

PointNNSearch algorithm can be modified in order to support the second type of NN query where the query

object is a trajectory of a moving point (TrajectoryNNSearch algorithm, illustrated in Figure 7). At the

leaf level, the algorithm calculates the minimum horizontal Euclidean Distance between each leaf entry and

each query trajectory segment using the Min_Horizontal_Dist function (Line 10) computing the

minimum horizontal Euclidean Distance between two 3D line segments. The formulization of the horizontal

Euclidean Distance Function between two 3D line segments and the calculation of its minimum value needed

for the algorithm can be found in Appendix A. In addition, for each segment of trajectory Q and before

calculating its distance from the current entry we first check whether its temporal extent overlaps the temporal

extent of the bounding rectangle of node N.

Algorithm genTrajectoryBranchList(node N, trajectory Q)

 1. FOR i = 1 TO N.EntriesCount

 2. E = N.Entry(i)

 // If entry is (fully or partially) inside the trajectory lifetime
 3. IF (Q.TS, Q.T E) Overlaps (E.TS, E.T E)

 // Compute trajectory’s spatial extent inside E’s lifetime
 4. nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE))

 // Compute MinDist between the resulted trajectory and the rectangle
 5. Dist=MinDist_Trajectory_Rectangle(nQ, E)

 // Add the rectangle along with its calculated distance in the list
 6. List.Add(nQ, Dist)

 7. END IF

 8. NEXT
 9. RETURN List

Figure 6: Generating Branch List of Node N against Trajectory Q

At the non-leaf levels, the algorithm utilizes the GenTrajectoryBranchList function (pseudo-

code in Figure 6) instead of GenBranchList . GenTrajectoryBranchList(node N, Trajectory Q)

utilizes the MinDist_Trajectory_Rectangle metric introduced in Section 3.2 in order to calculate the

MINDIST between the query trajectory and the rectangle of each entry of the node. Here, we have to point that

we do not calculate the MinDist_Trajectory_Rectangle against the original query trajectory Q, but

against the part of Q being inside the temporal extent of the bounding rectangle of N, and therefore (if

necessary) we have to interpolate to produce the new query trajectory nQ.

 - 11 -

Algorithm TrajectoryNNSearch(node N, trajectory Q, time period Qper, struct

Nearest)

 1. Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 2. IF N Is Leaf

 3. FOR j = 1 to Q.Entries

 4. QE=Q.Entry(j)

 5. IF (QE.Ts, QE.Te) Overlaps (N.TS, N.T E)

 6. FOR i = 1 to N.EntriesCount

 7. E = N.Entry(i)

 8. IF (QE.Ts, QE.Te) Overlaps (E.TS, E.T E)

 9. nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE))

10. Dist = Min_Horizontal_Dist(QE, nE)

11. IF Dist < Nearest.Dist

12. Nearest.Entry = nE

13. Nearest.Dist = Dist

14. END IF

15. END IF

16. NEXT

17. END IF

18. NEXT

19. ELSE
20. BranchList = GenTrajectoryBranchList(Q, N)

21. SortBranchList(BranchList)

22. FOR i = 1 TO BranchList.Count

23. E = N.Entry(i)

24. NN = E.ChildNode

25. nQ = Interpolate(Q, Max(Q.TS NN.TS), Min(Q.TE NN.TE))

26. TrajectoryNNSearch(NN, nQ, Nearest)

27. PruneBranchList(BranchList)

28. NEXT

29. END IF

Figure 7: Historical NN search algorithm for moving query points (TrajectoryNNSearch algorithm)

4.3. Extending to k-NN algorithms

In the same fashion as in [RKV95], we generalize the above two algorithms to searching the k-nearest neighbors

by considering the following:

• Using a buffer of at most k (current) nearest objects sorted by their actual distance from the query object

(point or trajectory)

• Pruning according to the distance of the (currently) furthest nearest object in the buffer.

• Updating the distance of each moving object inside the buffer when visiting a node that contains an entry of

the same object closer to the query object.

5. CNN Algorithms over trajectories

The continuous counterparts of the previously described algorithms are also of branch-and-bound type.

5.1. CNN algorithm for stationary query objects (points)

We begin the description of the algorithms with the third type of NN query, which searches for the nearest

moving objects to a stationary query point at any time during a given time period. ContPointNNSearch

algorithm used to process this type of query is illustrated in Figure 8.

 - 12 -

Algorithm ContPointNNSearch(node N, 2D point Q, Period Qper, List Nearests, Roof)

 1. IF N Is Leaf

 2. FOR i = 1 to N.EntriesCount

 3. E = N.Entry(i)

 4. IF Qper Overlaps (E.TS, E.T E)

 5. nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE))

 6. MovingDist = ConstructMovingDistance(nE, Q)

 7. IF MovingDist.Dmin < Roof

 8. UpdateNearests(Nearests, MovingDist, Roof)

 9. END IF

10. END IF

11. NEXT

12. ELSE
13. BranchList = GenBranchList(Q, N, Qper)

14. SortBranchList(BranchList)

15. PruneContBranchList(BranchList, Nearests, Roof)

16. FOR i = 1 TO BranchList.Count

17. E = N.Entry(i)

18. NN = E.ChildNode

19. ContPointNNSearch(NN, Q, Qper, Nearests, Roof)

20. PruneContBranchList(BranchList, Nearests, Roof)

21. NEXT

22. END IF

Figure 8: Historical CNN search algorithm for stationary query points (ContPointNNSearch algorithm)

All the continuous algorithms use a MovingDist structure (Figure 8, Line 6), storing the parameters of

the distance function (calculated using the methodology described in Appendix A), along with the entry’s

temporal extent and the associated minimum and maximum of the function during its lifetime. We also store the

actual entry inside the structure in order to be able to return it as the query result. The

ConstructMovingDistance function simply calculates this structure (e.g. the parameters of the distance

function a, b, c, and the minimum Dmin and maximum Dmax of the function inside the lifetime of the entry).

An interesting point of the algorithm is exposed in Line 8, where the Nearests structure is introduced.

Nearests is a list of adjacent “Moving Distances” temporally covering the period QPer. Roof is the

maximum of all moving distances stored inside the Nearests list and is used to quickly reject those entries (and

prune those branches at the non-leaf level) having their minimum distance greater than Roof (consequently,

greater than all moving distances stored inside the Nearests list). In Appendix A, we present in detail how we

maintain the Nearests list.

When at non-leaf levels, the ContPointNNSearch algorithm in its backtracking applies the pruning

algorithm PruneContBranchList , which prunes the branch list using the MINDIST heuristic: First, it

compares the MINDIST of each entry with Roof and then it calculates the maximum distance inside the

Nearests list during the entry’s lifetime. Then, it prunes all entries having MINDIST greater than the one

calculated.

5.2. CNN algorithm for moving query objects (trajectories)

The fourth type of NN query is the continuous version of the NN query where the query object is the trajectory

of a moving point. The algorithm ContTrajectoryNNSearch , used to process this type of query is

illustrated in Figure 9.

 - 13 -

Algorithm ContTrajectoryNNSearch (node N, Trajectory Q, time period Qper, List

Nearests, Roof)

 1. Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 2. IF N Is Leaf

 3. FOR j = 1 to Q.Entries

 4. QE=Q.Entry(j)

 5. IF (QE.Ts, QE.Te) Overlaps (N.TS, N.T E)

 6. FOR i = 1 to N.EntriesCount

 7. E = N.Entry(i)

 8. IF (QE.Ts, QE.Te) Overlaps (E.TS, E.T E)

 9. nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE))

10. MovingDist = ConstructMovingDistance(nE, QE)

11. IF MovingDist.Dmin < Roof

12. UpdateNearests(Nearests, MovingDist, Roof)

13. END IF

14. END IF

15. NEXT

16. END IF

17. NEXT

18. ELSE
19. BranchList = GenTrajectoryBranchList(Q, N)

20. SortBranchList(BranchList)

21. PruneContBranchList(BranchList, Nearests, Roof)

22. FOR i = 1 TO BranchList.Count

23. E = N.Entry(i)

24. NN = E.ChildNode

25. nQ = Interpolate(Q, Max(Q.TS, NN.TS), Min(Q.TE, NN.TE))

26. ContTrajectoryNNSearch(NN, nQ, Nearests, Roof)

27. PruneContBranchList(BranchList, Nearests, Roof)

28. NEXT

29. END IF

Figure 9: Historical CNN search algorithm for moving query points (ContTrajectoryNNSearch algorithm)

It differs from ContPointNNSearch algorithm at two points only: Firstly, at leaf level, the algorithm

ConstructMovingDistance calculates the “Moving distance” between two moving points, instead of one

moving and one stationary in the non-continuous case (Line 10). As in TrajectoryNNSearch , we perform a

loop through all the 3D line segments of the query trajectory Q and, for each segment of Q and before

processing the leaf entries, we first check whether the lifetime of Q overlaps the temporal extent of the bounding

rectangle of N (Line 8). Secondly, at the non-leaf level, the GenBranchList is replaced by the

GenTrajectoryBranchList introduced in the description of TrajectoryNNSearch algorithm (Line

19).

5.3. Extending to k-CNN algorithms

The two continuous algorithms can be also generalized to searching the k- nearest neighbors by considering the

following:

• Using a buffer of at most k current Nearests Lists

• Pruning according to the distance of the furthest Nearests Lists in the buffer – therefore Roof is

calculated as the maximum distance of the furthest Nearests List

 - 14 -

• Processing each entry against the i-th list (with i increasing, from 1 to k) checking whether it qualifies to be

in a list

• Testing each moving distance, replaced by a new entry in the i-th list, against the (i+1)-th list to find

whether it qualifies to be in a list.

6. Performance Study

The above illustrated algorithms can be implemented in any R-tree-like structure storing historical moving

object information such as the 3D R-tree [TVS96], the STR-tree [PJT00] and the TB-tree [PJT00]. Among

them, we have chosen to implement the algorithms using the TB-tree due to its proven efficiency regarding

historical trajectory information, as demonstrated in [PJT00]. In our implementation, we set a page size of 4096

bytes and a (variable size) buffer fitting the 10% of the index size, thus leading to a maximum of 1000 pages.

The experiments were performed in a PC running Microsoft Windows XP with AMD Athlon 64 3GHz

processor, 512 MB RAM and several GB of disk size.

6.1. Datasets

While several real spatial datasets are around for experimental purposes, this is not true for the moving object

domain. Nevertheless, in this paper, we provide a set of real-world datasets for experimentation purposes. In

particular, in our experiments we have used two real datasets from a fleet of trucks and a fleet of school buses

(illustrated in Figure (a) and (b), respectively). The two real datasets consist of 276 (112203) and 145 (66096)

trajectories (entries in the index), respectively. The performance study was not limited to real data. We have also

used synthetic datasets generated by the GSTD data generator [TSN99] in order to achieve a scalability in the

volumes of the datasets. A snapshot of the generated data using GSTD is illustrated in Figure (c). The synthetic

trajectories generated by GSTD correspond to 20, 50, 100, 250, 500 and 1000 moving objects resulting in

datasets of 30K, 75K, 150K, 375K, 750K and 1500K entries (the position of each object was sampled

approximately 1500 times). Regarding the rest parameters of the GSTD generator, the initial distribution of

points was Gaussian while their movement was ruled by a random distribution.

(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data

Figure 10: Snapshots of real and synthetic spatiotemporal data

Table 1 illustrates summary information about the number of pages occupied by the index for each

dataset and will be used in the following sections so as to produce a percentage of the pruning done in the search

space.

 - 15 -

 # trajectories # entries index size in pages

 (of 4096 bytes each)

Real Data (Trucks) 276 112203 835

Real Data (Buses) 145 66096 466

GSTD 20 20 30277 205

GSTD 50 50 75717 507

GSTD 100 100 151482 1010

GSTD 250 250 378803 2521

GSTD 500 500 757360 5040

GSTD 1000 1000 1514844 10073

Table 1: Summary dataset information

6.2. Results on the Search Cost of the non-continuous algorithms

The performance of the proposed algorithms was measured in terms of node accesses. Several queries were used

in order to evaluate the performance of the proposed algorithms over the synthetic and real data. In particular,

we have used the following query sets:

• Q1, Q2: the PointNNSearch algorithm was evaluated with two sets of 500 NN queries increasing the

number of moving objects over the GSTD datasets. The queries used a random point in the 2D space and a

time period of 1% (5%) of the temporal dimension for Q1 (Q2).

• Q3, Q4: the TrajectoryNNSearch algorithm was evaluated with two sets of 500 NN queries increasing

the number of moving objects over the GSTD datasets. The 500 query objects (trajectories) were produced

using GSTD also employing a Gaussian initial distribution and a random movement distribution. Then, in

Q3 (Q4) we used a random 1% (5%) part of each trajectory as the query trajectory.

• Q5, Q6: two sets of 500 k-NN queries over the real Trucks dataset increasing the number of k with fixed

time and increasing the size of the time interval (with fixed k=1) respectively. For the PointNNSearch

algorithm we used a random point in the 2D space with a 5% of time as query period, while for

TrajectoryNNSearch algorithm we used a random part of a random trajectory belonging to Buses

dataset, temporally covering 1% of time.

Figure 9 illustrates the average number of node accesses per query for the query sets Q1-Q4 evaluating

PointNNSearch and TrajectoryNNSearch algorithms. In particular, Figure 9(a) shows the average

number of node accesses per query using the point query sets Q1 and Q2, while Figure 9(b) shows the average

number of node accesses per query using the trajectory query sets Q3 and Q4. As it is clearly illustrated, the

performance of the algorithm depends linearly on the dataset cardinality and degrades (more pages are accessed)

as the cardinality grows. It is worth to point out that comparing query sets Q1 and Q2, the algorithm accesses

more pages in query set Q1, although the lifetime of Q2 is greater than that of Q1 (5% against 1% of the total

time). This observation can be explained bearing in mind that decreasing the query temporal extent, the

expected nearest distance increases, resulting in fewer pruned nodes in the backtracking procedure of the

algorithm. As expected, TrajectoryNNSearch tends to be much more expensive than the

PointNNSearch .

 - 16 -

0

5

10

15

20

25

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q1

Q2

0

50

100

150

200

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q3

Q4

0

0.5

1

1.5

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q1

Q2

0

0.5

1

1.5

2

2.5

3

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q3

Q4

(a) (b) (c) (d)

Figure 9: Node Accesses and % searched space in queries Q1-Q4 increasing the number of moving objects

The results in Figure 9(c) and (d) demonstrate the percentage of the indexed space actually used for

searching. As illustrated, in all cases, increasing the index size, the percentage of the space to be searched

decreases, resulting (for over 1000 moving objects) in a 0.20% of the whole index space for point NN queries

and in a 1.2% - 2% for trajectory NN queries.
Τ

o make the results more readable, we have to point out that a

range search over the index with zero spatial and 1% temporal extent would lead to a searching among the 10%

of the whole indexed space – showing that the pruning performed by our algorithms is much more efficient than

a sequential search. The conclusion gathered from the previous observations is that the algorithms presented

show high pruning ability, well bounding the space to be searched in order to answer NN queries.

0

20

40

60

80

0 5 10
k

N
o
d
e
 a

c
c
e
s
s
e
s

Q5-PointNNSearch

Q5-TrajectoryNNSearch
0

20

40

60

80

100

120

140

0 0.05 0.1
T

N
o
d
e
 a

c
c
e
s
s
e
s

Q6-PointNNSearch

Q6-TrajectoryNNSearch

(a) (b)

Figure 10: Node Accesses in queries (a) Q5 increasing the number of k and (b) Q6 increasing the query

temporal extent

The performance of the two non-continuous NN algorithms increasing the number of k is shown in

Figure 10(a) against Buses dataset. Clearly, the number of node accesses needed for the processing of a k-NN

query increases linearly with k. Figure 10(b) illustrates the average number of node accesses per non-continuous

point and trajectory query increasing the temporal extent against the real “trucks” dataset. It is clear that the cost

of TrajectoryNNSearch tends to increase with greater rate than the increase of PointNNSearch . This

observation can be easily explained since when increasing the temporal interval, the spatial extent of the query

trajectory also increases leading to a greater spatial space to be searched.

6.3. Results on the Search Cost of the continuous algorithms

In coincidence with the experiments conducted for the non-continuous algorithms, the continuous NN search

algorithms were evaluated with the following query sets:

• Q7, Q8: the ContPointNNSearch algorithm was evaluated with two sets of 500 NN queries increasing

the number of moving objects over the GSTD datasets like what was done for query sets Q1 and Q2.

 - 17 -

• Q9, Q10: the ContTrajectoryNNSearch algorithm was evaluated with two sets of 500 NN queries

increasing the number of moving objects over the GSTD datasets like what was done for query sets Q3 and

Q4.

• Q11, Q12: two sets of 500 k-CNN queries over the real dataset of buses increasing the number of k with

fixed time and increasing the size of the time interval (with fixed k=1) respectively. For the

ContPointNNSearch algorithm we used a random point in 2D space with a 5% of time as query period,

while for ContTrajectoryNNSearch algorithm we used a random part of a random trajectory

belonging to the buses dataset, temporally covering 1% of time.

Figure 11 illustrates similar results as in Figure 9, regarding the continuous counterpart of the NN

algorithms, thus, illustrating the average number of node accesses per query for the queries sets Q7- Q10. In

particular, Figure 11(a) presents the average number of node accesses per query using the

ContPointNNSearch against query sets Q7 and Q8 while Figure 11(b) presents the average number of node

accesses per query using the ContTrajectoryNNSearch against query sets Q9 and Q10. Again, the

performance of the algorithms linearly depends on the dataset cardinality and degrades (more pages are

accessed) as the cardinality grows. Figure 11(c) and (d) show the accessed index part as a percentage of the

indexed space, illustrating that in all cases, increasing the index size the percentage of the space to be searched

decreases, resulting (for over 1000 moving objects) in a 0.50% of the whole index space for point CNN search

and in a 2.5% - 3 % for trajectory CNN search.

0

10

20

30

40

50

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q7

Q8

0

50

100

150

200

250

300

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q9

Q10

0

0.5

1

1.5

2

2.5

3

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q7

Q8

0

1

2

3

4

5

6

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q9

Q10

(a) (b) (c) (d)

Figure 11: Node Accesses and % pruned space in queries Q7-Q10 increasing the number of moving objects

A comparison between the non-continuous NN algorithms with their continuous counterpart (e.g. Figure

9 vs. Figure 11), shows that the continuous algorithms are much more expensive than the non-continuous ones.

This conclusion was expected since the continuous algorithms do not utilize a single distance to prune the search

space; instead they use a list of moving distances, which in general stores greater distances than the minimum.

Actually, the non-continuous algorithms prune the search space with the minimum possible distance stored

inside the Nearests list, therefore performing pruning much more efficiently than their continuous counterpart.

The performance of the continuous NN algorithms increasing the number of k is illustrated in Figure

12(a) for the real Buses dataset. The number of node accesses required for the processing of a k-NN query

increases linearly with k. Figure 12(b) illustrates the average number of node accesses per continuous point and

trajectory query increasing the temporal extent for Trucks dataset. Presenting the same behavior as with the non-

continuous queries, the performance of ContTrajectoryNNSearch tends to degrade with greater rate than

that of the ContPointNNSearch , having the same explanation (by increasing the temporal interval, the

spatial extent of the query trajectory also increases leading to a greater spatial space to be searched).

 - 18 -

0

20

40

60

80

100

0 5 10
k

N
o
d
e
 a

c
c
e
s
s
e
s

Q11-ContPointNNSearch

Q11-ContTrajectoryNNSearch

0

40

80

120

160

200

240

0 0.05 0.1
T

N
o
d
e
 a

c
c
e
s
s
e
s

Q12-ContPointNNSearch

Q12-ContTrajectoryNNSearch

(a) (b)

Figure 12: Node Accesses in queries (a) Q11 increasing the number of k and (b) Q12 increasing the query

temporal extent

7. Conclusion and Future Work

NN queries have been in the core of the spatial and spatiotemporal database research during the last decade. The

majority of the algorithms processing such queries so far mainly deals with either stationary or moving query

points over static datasets or future (predicted) locations over a set of continuously moving points. In this work,

acknowledging the contribution of related work, we presented the first complete treatment of historical NN

queries over moving object trajectories stored on R-tree like structures. Based on our proposed novel metrics,

which support our searching and pruning strategies, we presented algorithms answering the NN and CNN

queries for stationary query points or trajectories and generalized them to search for the k nearest neighbors. The

algorithms are applicable to R-tree variations for trajectory data, among which, we used the TB-tree for our

performance study due to its proven efficiency regarding historical trajectory information. Under various

synthetic datasets (which were generated by the GSTD data generator) and two real trajectory datasets, we

illustrated that our algorithms show high pruning ability, well bounding the space to be searched in order to

answer NN and CNN queries. The pruning power of our algorithms is also verified in the case of the k-NN and

k-CNN queries (for various values of k).

As such, future work includes the development of algorithms to support distance join queries (“find pairs

of objects passed nearest to each other (or within distance d from each other) during a certain time interval

and/or under a certain space constraint”). A second research direction includes the development of selectivity

estimation formulae for query optimization purposes investing on the work presented in [TSP03] for predictive

spatiotemporal queries.

Acknowledgements

Research partially supported by the Archimedes and Pythagoras EPEAEK II Programmes of the Greek Ministry

of National Education and Religious Affairs. We are grateful to Emphasis Telematics S.A. for providing the real

Buses and Trucks datasets.

References

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G., and Saltenis, S., Nearest Neighbor and Reverse Nearest

Neighbor Queries for Moving Objects. Proceedings of IDEAS, 2002.

[CF98] Cheung, K.L., and Fu, A.,W., Enhanced Nearest Neighbour Search on the R-tree. SIGMOD Record,

vol. 27(3), pp. 16-21, September 1998.

 - 19 -

[HS99] Hjaltason, G., and Samet, H., Distance Browsing in Spatial Databases, ACM Transactions in

Database Systems, vol. 24(2), pp. 265-318, 1999.

[ISS03] Iwerks, G.S., Samet, H., and Smith, K., Continuous K-Nearest Neighbor Queries for Continuously

Moving Points with Updates, Proceedings of VLDB, 2003.

[MNPT05] Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., and Theodoridis, Y., R-trees: Theory and

Applications, Springer-Verlag, 2005.

[PJT00] Pfoser D., Jensen C. S., and Theodoridis, Y., Novel Approaches to the Indexing of Moving Object

Trajectories, Proceedings of VLDB, 2000.

[RKV95] Roussopoulos, N., Kelley, S., and Vincent, F., Nearest Neighbor Queries, Proceedings of ACM

SIGMOD, 1995.

[SJLL00] Saltenis, S., Jensen, C. S., Leutenegger, S. and Lopez, M., Indexing the Positions of Continuously

Moving Objects, Proceedings of ACM SIGMOD, 2000.

[SKS03] Shahabi, C., Kolahdouzan, M., and Sharifzadeh, M., A Road Network Embedding Technique for K-

Nearest Neighbor Search in Moving Object Databases, GeoInformatica, vol. 7(3), pp. 255-273, 2003.

[SR01] Song, Z., and Roussopoulos, N., K-Nearest Neighbor Search for Moving Query Point, Proceedings

of SSTD, 2001.

[TP02] Tao, Y., and Papadias, D., Time Parameterized Queries in Spatio-Temporal Databases, Proceedings

of ACM SIGMOD, 2001.

[TPS02] Tao, Y., Papadias, D., and Shen, Q., Continuous Nearest Neighbor Search, Proceedings of VLDB,

2002.

[TSN99] Theodoridis, Y., Silva, J. R. O., and Nascimento, M. A., On the Generation of Spatio-temporal

Datasets, Proceedings of SSD, 1999.

[TSP03] Tao, Y., Sun, J., and Papadias, D., Analysis of predictive spatio-temporal queries, ACM Transactions

on Database Systems vol. 28(4), pp. 295-336, December 2003.

[TVS96] Theodoridis, Y., Vazirgiannis, M., and Sellis, T., Spatio-temporal Indexing for Large Multimedia

Applications. Proceedings of ICMCS, 1996.

APPENDIX A

1. Calculation of the minimum horizontal distance between two 3D line segments

The Euclidean horizontal distance function between two 3D line segments is:

2 2
() ()Dist Q P Q Px x y y= − + − (1)

where ()
1 2 1

Q Q Q Q t
x x x x
= + − ∆ , ()

1 2 1
Q Q Q Q t

y y y y
= + − ∆ , ()

1 2 1
P P P P t
x x x x
= + − ∆ and

()
1 2 1

P P P P t
y y y y
= + − ∆ . Replacing , , ,

y y
Q Q P P

x x
in (1), we get

2 2
(() ()) (() ())

1 2 1 1 2 1 1 2 1 1 2 1
Dist Q Q Q t P P P t Q Q Q t P P P t

x x x x x x y y y y y y
= + − ∆ − − − ∆ + + − ∆ − − − ∆

In the sequel, we use the square of the Euclidean distance for sake of readiness.

 - 20 -

2 2 2
(() ()) (() ())

1 2 1 1 2 1 1 2 1 1 2 1
Dist Q Q Q t P P P t Q Q Q t P P P t

x x x x x x y y y y y y
== + − ∆ − − − ∆ + + − ∆ − − − ∆

))
2 2

(() () (() ()
2 1 2 1 1 1 2 1 2 1 1 1

Q Q P P t Q P Q Q P P t Q P
x x x x x x y y y y y y

− − == − + ∆ + − + − + ∆ + −

2 2 2
(() ())

2 1 2 1 2 1 2 1
Q Q P P Q Q P P t

x x x x y y y y
= − − + + − − + ∆ +

2 2
2(()() ()()) () ()

2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1
Q Q P P Q P Q Q P P Q P t Q P Q P

x x x x x x y y y y y y x x y y
− − − − − + −+ − + + − + ∆ +

Setting

2 2
() ()

2 1 2 1 2 1 2 1
Q Q P P Q Q P P

x x x x y y y y
Α = − − + + − − + (2)

2(()() ()())
2 1 2 1 1 1 2 1 2 1 1 1

Q Q P P Q P Q Q P P Q P
x x x x x x y y y y y y

Β = − − + − + − − + − (3)

2 2
() ()

1 1 1 1
C Q P Q P

x x y y
= − + − (4)

and replacing ∆t according to the following formula 1

2 1t

t t
t

t

−
∆ =

−
, the Euclidean horizontal distance function of

two 3D line segments is computed as follows:

2
Dist

222 1 1 1()
2 2 22 1 2 1() () ()2 1 2 1 2 1

A B At At Bt
t t C

t t t tt t t t t t
= + − + − +

− −− − −

, (5)

where A, B, C are defined by formulas (2), (3), (4), respectively.

As proved before, the square of the Euclidean horizontal distance function between two 3D line segments

has the quadratic form
2

()P t At Bt C= + + , which generally has the minimum value

2

min 4

B
P C

A
= −

for
2

B
t

A
= − . Therefore, in our case

2

2 21()
2 22 1 ()1 1 2 1

2 4min 2 1()2 1
2()2 1

t

t

B At

tAt Bt t t
Dist C

Att t

t t

−
− −

= − + −
−−

−

 (6)

for

2 1()
2 2 1()2 1

2
2

()2 1

At B

t tt t

A

t t

t

−
−−

−

= (7)

where A, B, C are defined by formulas (2), (3), (4), respectively.

We have to note that formula (6) can be used in case where t calculated by formula (7) is inside the query

time period Qper[tstart, tend]. Otherwise, we distinguish between the following two cases:

1. if t ≤ tstart, then the minimum horizontal distance is provided by formula (5) by setting t = tstart

2. if t ≥ tend, then the minimum horizontal distance is provided by formula (5) by setting t = tend.

2. Update Nearests List

The pseudo-code of the UpdateNearests function, which is responsible for the maintenance of the Nearests

List, is presented in Figure 14. In particular, the algorithm iterates through the elements of the active Nearests

list searching for those elements temporally overlapping the checked entry (CM). When such an element is

 - 21 -

found, the algorithm applies linear interpolation in both entries (the checked and the one already on the list)

producing two new entries having the same temporal extent (M and T). Then, it compares the two distance

functions in order to determine whether the entry already on the list is to be replaced or not. Figure 13

graphically explains all the possible comparisons between the parabolas of two “Moving Distance” functions.

D i s t a n c e
M

M . D M A XM . D M I N T . D M A XT . D M I N
T

D i s t a n c e
M

M . D M A XM . D M I N T . D M A XT . D M I N
T

D i s t a n c e
M T

R 1
R 2

T ST E D i s t a n c e
MTR 1R 2T ST E

D i s t a n c e
MTR 1R 2T ST E

M . D M A XM . D M I N T . D M A XT . D M I N M . D M A XM . D M I N T . D M A XT . D M I NM . D M A XM . D M I N T . D M A XT . D M I N

D i s t a n c e
M

M . D M A XM . D M I N T . D M A XT . D M I N
TR 1 = R 2

a) U p d a t e N e a r e s t s A l g o r i t h m % l i n e 5 b) U p d a t e N e a r e s t s A l g o r i t h m % l i n e 1 0 c) U p d a t e N e a r e s t s A l g o r i t h m % l i n e 1 2

d) U p d a t e N e a r e s t s A l g o r i t h m % l i n e 1 6 e) U p d a t e N e a r e s t s A l g o r i t h m % l i n e 1 8 f) U p d a t e N e a r e s t s A l g o r i t h m % l i n e 2 5

Figure 13: Graphical illustration of UpdateNearests Algorithm Comparisons

Figure 13(a) corresponds to line 5 of the algorithm presented in Figure 14, where the maximum distance

of M is smaller than the minimum of T, leading to the replacement of T with M. Otherwise, after computing the

discriminant of the difference between the distance functions of M and T, we have to distinguish among three

different cases:

• The discriminant is less than zero, meaning that the two functions M and T are asymptotic and they do not

intersect (Line 9); we only have to check their minimum in order to determine which is the global minimum

(see Figure 13(b))

• The discriminant is equal to zero, meaning that the two functions osculate in their common minimum (Line

11); we only have to check their maximum in order to determine the global minimum (see Figure 13(c))

• The discriminant is greater than zero, meaning that the two functions intersect in two points (Line 13). In

this case, we have to determine whether these time instances are inside the entry’s lifetime. Hence, we

further distinguish among three sub-cases:

• Both solutions are outside the temporal extent of M (and T) (Line 15). We only have to check their

maximum in order to determine which is the globally minimum inside the current temporal

interval (see Figure 13(d))

 - 22 -

• Both solutions are inside the temporal extent of M (and T) (Line 17). We must break apart the

entry into 3 different entries (see Figure 13(e)) and determine the part of T to be replaced by M.

• Only one solution is inside the temporal extent of M (Line 25). We must break apart the entry into

2 different entries (see Figure 13(f)) and determine the part of T to be replaced by M.

Algorithm UpdateNearests (List Nearests, struct CM, Roof)

 1. FOR EACH T IN Nearests

 2. IF (T.TS, T.T E)Overlaps(CM.TS, CM.T E)

 3. M=Interpolate(CM, Max(CM.TS, T.TS), Min(CM.TE, T.TE))

 4. T=Interpolate(T, Max(CM.TS, T.TS), Min(CM.TE, T.TE))

 5. IF M.D Max < T.D Min

 6. Nearests.Replace T with M

 7. ELSEIF M.D Max < T.D Max

 8 D = Discriminant(M-T)

 9. IF D < 0

10. IF T.D Min > M.D Min THEN Nearests.Replace T with M

11. ELSEIF D=0

12. IF T.D Max > M.D Max THEN Nearests.Replace T with M

13. ELSE
14. RR1=Solution1(T - M): RR2=Solution2(T - M):

R1=Min(RR1, RR2): R2=Max(RR1, RR2)

15. IF R2<T.T S OR R1>T.T E

16. IF T.D Max > M.D Max THEN Nearests.Replace T with M

17. ELSEIF R2<T.T E AND R1>T.T S

18. IF M.D min < T.D min

19. M1=Part(M,, R1): M2=Part(M, R2): T1=Part(T, R1, R2):

20. Nearests.Replace T with (M1, T1, M2)

21. ELSE
22. T1=Part(T,, R1): T2=Part(T, R2): M1=Part(M, R1, R2)

23. Nearests.Replace T with (T1, T2, M1)

24. ENDIF

25. ELSE
26. IF M(R1 - 1)< T(R1 – 1)

27. M1=Part(M,, R1): T1=Part(T, R1): Nearests.Replace T with (M1, T1)

28. ELSE
29. T1=Part(T,, R1): M1=Part(M, R1): Nearests.Replace T with (T1, M1)

30. ENDIF

31. ENDIF

32. ENDIF

33. ENDIF

34. ENDIF
35. Roof=max(Roof, T.D max)

36. NEXT

Figure 14: UpdateNearests Algorithm

