

The notion of patterns in Data Mining

Irene Ntoutsi, Yannis Theodoridis

 Information Systems Lab
Department of Informatics

University of Piraeus
Hellas

Technical Report Series
UNIPI-ISL-TR-2007-02

March 2007

The Notion of Patterns in Data Mining∗

Irene Ntoutsi and Yannis Theodoridis
Department of Informatics,

University of Piraeus, Greece
{ntoutsi,ythed}@unipi.gr

Abstract

Several heterogeneous pattern types are available nowadays as a result
of the different goals that a mining task tries to accomplish and of the
application of Data Mining techniques over different domains. In this
chapter we overview three popular pattern types, namely frequent itemsets
and association rules, clusters and clusterings, and decision trees. We also
adopt a pattern representation schema based on both extensional and
intensional description of patterns and describe how the different pattern
types are expressed with respect to this schema.

1 Introduction

Knowledge Discovery in Databases (KDD) and Data Mining (DM) provide a
solution to the information flood problem, by extracting valid, novel, potentially
useful, and ultimately understandable patterns from data [1]. According to Rizzi
et al. [8], patterns constitute compact and rich in semantics representations of
raw data; compact by means that they summarize in some degree the amount of
information contained in the original raw data, and rich in semantics by means
that they reveal new knowledge hidden in the huge amount of raw data.

Several pattern types exist in the literature mainly due to the wide hetero-
geneity of data and data mining applications, as well as due to the different
techniques for pattern extraction as a result of the different goals that a mining
process tries to accomplish (i.e. what data characteristics the mining task tries
to highlight). For example, frequent itemsets capture the correlations between
attribute values, clusters reveal natural groups in data, whereas decision trees
detect characteristics that predict (with respect to a given class attribute) the
behavior of future records.

In the following subsections we overview three popular data mining pattern
types that are relevant to this work, namely frequent itemsets (and their exten-
sions, association rules), clusters (and their groupings, clusterings), and decision

∗This research is partially supported by the Greek Ministry of Education and the European
Union under a grant of the “Heracletos” EPEAEK II Programme (2003–07).

1

trees. At the end of the chapter, we present our pattern representation schema
which is based on both extensional and intensional description of patterns and
show how the different pattern types presented through this chapter are adapted
into this schema.

2 Pattern representation schema

Patterns summarize the raw data in a compact and semantically reach way. As
such, the description of a pattern might be either extensional, i.e. in terms of
the data members participated in its generation, or intensional, i.e. in terms of
the meaning/ concept represented by the pattern. The extensional description
of a pattern is just an enumeration of its data members, thus it is common for all
pattern types. The intensional description, however, reveals information about
the ”shape” and the semantics of the pattern, thus it depends on the pattern
type.

Regarding the intensional description of patterns, Ganti et al. [2] introduced
the 2-component property of patterns. According to this property, a broad
class of pattern types can be described in terms of a structure and a measure
component. The structure component identifies “interesting regions” within the
pattern space, whereas the measure component summarizes the subset of the
data that is mapped to each region. In other words, the structural component
describes the pattern space, whereas the measure component quantifies, in some
way, how well the pattern space describes the underlying raw data space.

The 2–component property of patterns has been extended in the settings
of the PANDA project, where Rizzi et al. [8] introduced a general model for
patterns, including also a source component that describes the data set from
which patterns have been extracted and an expression component that describes
the relationship between the source data space and the pattern space.

Similar ideas appear in [5], where authors introduce the 3W model towards
unified Data Mining. Here patterns are described as constraints over the at-
tribute space (I-World) and are related (E-World) to the raw data (D-World)
from which they have been extracted through some data mining task.

Throughout this work, we adopt the extensional – intensional description of
patterns, and for the intensional part we adopt the 2–component property of
patterns.

3 Decision Trees

Decision Trees (DTs) are very popular classification methods due to their intu-
itive representation that render them easily understandable by humans. In this
section, we provide some basic concepts on DTs following the work by Mitchell
[6].

Let A = {A1, A2, ..., Am} be the set of attributes on which classification
will be based (predictive attributes), where attribute Ai has domain dom(Ai).

2

Let C be the class attribute, i.e. the attribute to be predicted, with domain
dom(C) = {C1, C2, ..., Ck}, k is the number of classes. P is a probability distri-
bution on dom(A1) × dom(A2) × · · · × dom(Am) × dom(C), i.e. P is the joint
probability distribution of the predictive and the class attributes; P is called the
problem distribution. The probability distribution of the predictive attributes,
i.e. D(A1) × D(A2) × · · · × D(Am)) is called the attribute space distribution.

The goal of a decision tree is to learn a predictor function f : dom(A1) ×
dom(A2) × · · · × dom(Am) → dom(C). Towards this goal, a set of problem
instances drawn from P is utilized; this is known as the training set D. A
decision tree T constructed from D provides a classification of D’s instances
into the Cj , j = 1 . . . k, classes based on the values of the predictive attributes
Ai, i = 1 . . . m.

Predictive attributes might be either numerical, categorical or ordinal. The
domain of a numerical attribute is an ordered set (e.g. age, income), the domain
of a categorical or nominal attribute is a finite set without any natural ordering
(e.g. colors, gender, marital status), whereas the domain of an ordinal attribute
is a set of discrete values with an imposed order, but without any knowledge
regarding the absolute differences between values (e.g. preference scale, severity
of an injury). Usually, the predictive attributes are numeric.

Regarding its structure, a DT consists of internal and leaf nodes. An internal
node has an associated test condition (splitting predicate) which specifies a test
over some predictive attribute (e.g. “Age ≥ 20”). Each branch descending from
that node corresponds to one of the possible values for this attribute. Most
common are binary predicates, i.e. predicates of the form “Yes” or “No”. A leaf
node provides the class label of the instances that follow the path from the root
to this node. In case the instances belong to more than one classes, this label
might be the label of the majority class. In the general case, a leaf node might
be associated with some weight to all problem classes; this weight depends on
the amount of instances that fall into the leaf and belong to the specific class.

In Figure 1 an example of a DT is depicted, which refers to to the bank loan
allowance problem. It is determined over two predictive attributes, Age and
Income, and a class attribute C = {C1, C2}.

A small part of the dataset used for its generation is depicted in Table 1.

Instance Age Salary Class
1 30 30K C1

2 35 10K C2

3 50 100K C1

Table 1: A sample of the training set used for the DT of Figure 1

Evaluation As already stated, a DT is build upon a training set D of prob-
lem instances drawn from the joint probability distribution of the predictive
attributes and of the class attributeP . A “fully developed tree” will perfectly
fit the training set. However, a DT should not only fit the training data well, but

3

10 ≤ Age ≤40

20K ≤ Income ≤60K

Yes

Yes

R1

No

R3

No

C1:20

C2: 10

C1: 10

C2: 15

C1: 25

C2: 20

R2

Figure 1: An example of a decision tree

it should also predict correctly the class labels of future, previously unseen prob-
lem instances. Over–fitting the training set is a wrong property for a DT, since it
might follow every idiosyncrasy of the training set, much of which are unlikely
to occur in future seen problem instances. This desirable property is known
as generalization accuracy and is measured through the miss–classification er-
ror(ME). ME is based on counting the number of instances predicted wrongly
by the DT model. Ideally we would like to know the ME of the classifier f on
the problem distribution P . However, since P is unknown (the only we know
are some instances drawn from it, i.e. the training set), several techniques have
been developed for estimating ME(f, P).

The most common technique is the holdout test estimate: the initial set of
problem instances is split into two disjoint sets: train and test. The train set
is used for building the classifier, whereas the test set for evaluating its perfor-
mance. Usually, 1/3 of instances is used for testing and 2/3 is used for training.
Other popular techniques in this category are re–substitution estimation and
V –fold cross validation.

A solution to the generalization problem is tree pruning. Beginning at the
last DT level, the child nodes are pruned away if the resulting change in the tree
accuracy is less than a times the change in tree complexity. Due to pruning, the
resulting tree might not perfectly predict its training set; this error is called re–
substitution error. Thus, a good DT should minimize both the re–substitution
error (with respect to the training set) and the miss–classification error (with
respect to an independent test set).

Partitioning The DT growing process can be viewed as the process of parti-
tioning the attribute space (i.e. the space defined by the predictive attributes,
D(A1) × D(A2) × · · · × D(Am)) into disjoint regions until each region contains

4

instances of the same class (this holds in the maximal case, since after pruning
a region might contain instances from more than one problem classes). The
border line between two neighboring regions of different classes is knows as the
decision boundary. Decision boundaries are parallel to the attribute axis since
each test condition involves only a single attribute. Thus, decision regions are
axis parallel hyper–rectangles, also called isothetic [5].

Each leaf node of the tree corresponds to a region R. A region can be
described through the set of instances that are mapped to the corresponding leaf
node, this is called the extension of the region. A semantic/ implicit description
of the region is also available: a region can be described through the path
starting from the root of the tree and resulting to the corresponding leaf node,
this is called the structure of the region. For example, the structure component
of the most left leaf node in the tree of Figure 1 is: (10 ≤ Age ≤ 40) ∩ (20K ≤
Income ≤ 60K). In case the actual instances are not available, a summarized
description of them might exist, like for the example the fraction of problem
instances that fall into this region for each of the problem classes, this is called
the measure of the region. For example, the measure component of the most left
leaf node in the tree of Figure 1 is: 20% for C1 and 10% for C2. The structure
and the measure component of a region, comprise the intension of the region.

The partitioning of the previously presented DT (Figure 1) is depicted in
Figure 2. Note here that the attribute space is defined by the predictive at-

Age10

20

80

30

60

40

100

20 40 50 60

120

Income

70

Attribute
Space

R1

R2

R3

C1: 0.1
C2: 0.15

DT1

C1: 0.25
C2: 0.2C1: 0.2

C2: 0.1

Figure 2: The attribute space partitioning achieved by the DT of Figure 1

tributes of the problem, and as such it is common for all DTs referring to the
specific classification problem. What actually differentiates the different DTs

5

is the partitioning they perform over the attribute space, i.e. what are the
resulting regions. Further detail on the partitioning can be found on the DT
comparison chapter.

4 Clusters and Clusterings

Clustering is the unsupervised classification of data into natural groups (called
clusters) so that data points within a cluster are more similar to each other
than to data points in other clusters [4]. The term unsupervised stands for the
fact that there is no a priori knowledge about the partition of the data. In a
more formal definition, we can state that a clustering Cl is the partition of a data
set D into cluster C1, C2, . . . , CK such that Ci∩Cj = ∅ and ∪K

j=1(Cj) = D. This
definition stands for hard clustering, where an instance is assigned to exactly
one cluster, forming thus a crisp partition of the data set. A more “relaxed”
definition is that of soft clustering which allows for degrees of membership, to
which an instance belongs to different clusters.

Clustering algorithms are based on some distance function that evaluates in
which cluster an object should be assigned. For example, Euclidean distance
is usually utilized for numeric instances. There is also an evaluation function
that evaluates how good the achieved clustering is. Minimizing the distance of
every data point from the mean of the cluster to which it is assigned could be
considered as such a criterion.

Due to its broad application areas, the clustering problem has been studied
extensively in many contexts and disciplines including data mining. As a result,
a large number of clustering algorithms exists in the literature (see [4] for a
survey).

Different clustering algorithms proposed in the literature use a variety of
cluster definitions. Han and Kamber [3] propose the following categorization
for the major clustering methods:

1. Partitioning methods that create K partitions of the data (K is defined
by the user) where each partition corresponds to a cluster and is “repre-
sented” through some centroid like in the K-means algorithm or through
some medoid like in the K-medoids algorithm [3]. An example of the K–
means algorithm (generated through MATLAB) is depicted in Figure 3.

2. Hierarchical methods that create a hierarchical decomposition of the data
set. Depending on how the hierarchical decomposition is formed, i.e. in
a bottom-up or top-down fashion, they are classified into agglomerative
and divisive methods correspondingly. In both cases, a distance function
between clusters is required; different distance functions can be used like
single link, complete link, average link or centroids distance [3]. In this
case, clusters discovered during the clustering process are organized in a
dendrogram structure, like the one depicted in Figure 4.

6

Figure 3: An example of K–means clustering

Figure 4: A dendrogram generated through some hierarchical clusterer

3. Density-based methods that continue to grow a cluster as long as the den-
sity (i.e. number of data points) in its “neighbor” exceeds some threshold.
In this category belongs the DBScan algorithm [3], some examples of which
are depicted in Figure 5.

4. Grid–based methods that quantize the object space into a finite number
of cells that form a grid structure. In this category belong STING and

7

Figure 5: An example of DBScan

CLIQUE algorithms [3].

5. Model-based methods that hypothesize a model for each of the clusters and
finds the best fit of the data to the given model. Statistical approaches,
like the COBWEB algorithm, and neural network approaches are the two
major approaches in this category [3].

Lets return to the extensional–intensional description of clusters: The ex-
tensional description of a cluster is straightforward and can be extracted by an
explicit enumeration of the data that fall into the cluster boundary, thus this
description is common for the different cluster types.

The intensional description, however, depends on the specific cluster type,
even on the specific characteristics of the clustering algorithm: for example,
in case of a “partitioning cluster”, the structure component can be defined by
its center as in K-means or by its centroid as in K-medoids. Note however,
that there are algorithms like the hierarchical ones, where some intensional
description of the structure of the generated clusters is not available. In this
case, only the extensional description of the clusters in terms of their data
members is available.

Regarding the measure component of the intensional description, there are
several alternative possibilities like the cluster support (i.e. the percentage of
data set records that fall into this cluster) or the intra-cluster distance (i.e.
average distance between cluster members) or the average distance of the cluster
members from its centroid/ medoid.

We demonstrate the notion of explicit, implicit representation of a cluster
through an example. For display purposes, we consider numerical 2D data, like
those in Figure 6. Clusters are also shown in this figure; they are the result of
the K-means execution over the data. Consider the left cluster of Figure 6. Its
extensional description is an enumeration of its members, thus it is {(3,4), (3,8),
(4,5), (4,7), (2,6)}, where each pair (x, y) represents a point (the members are
painted in navy blue in the figure). The intensional description consists, in this
case, of the cluster centroid, thus it is (3.2, 6) (the centroid is painted in pink
in the figure).

8

Figure 6: An example of the extensional/ intensional description of a cluster

5 Frequent Itemsets and Association Rules

Frequent itemsets and association rules mining are strongly related to each other
since frequent itemsets mining is the first step towards association rules mining.

The Frequent Itemset Mining (FIM) problem is a core problem in many
data mining tasks, such as association rules, correlations, sequences, episodes
etc, although the original motivation for frequent itemsets mining came from
the need to analyze supermarket transaction data in order to find items that
are frequently purchased together.

For the definition of the FIM problem, we follow the work by Agrawal et al
[7]: Let I be a set of distinct items and D be a database of transactions where
each transaction T contains a set of items T ⊆ I. An example of a transaction
database is depicted in Table 2.

Transaction ID Transaction Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Table 2: An example transaction database D

A set X ⊆ I with |X| = k is called k-itemset or simply itemset. The
frequency of X in D, equals to the number of transactions in D that contain X,
i.e. frD(X) = |{T ∈ D : X ⊆ T}|. The percentage of transactions in D that
contain X, is called support of X in D, i.e. suppD(X) = frD(X)

D . An itemset
X is called frequent if its support is greater than or equal to a user-specified
minimum support threshold σ called minSupport, suppD(X) ≥ σ. The FIM
problem is defined as finding all itemsets X in D that are frequent with respect
to a given minSupport threshold σ. Let Fσ(D) be the set of frequent itemsets
extracted from D under minSupport threshold σ.

The set of frequent itemsets (FI) forms the itemset lattice L in which the

9

lattice property holds: an itemset is frequent iff all of its subsets are frequent.
Considering minSupport = 2 and the database example of Table 2, the corre-
sponding frequent itemsets lattice is depicted in Figure 7.

Figure 7: An example of a frequent itemsets lattice

The lattice property allows to enumerate all frequent itemsets using more
compact representations like closed frequent itemsets(CFI) and maximal fre-
quent itemsets (MFI). A frequent itemset X is called closed if there exists no
frequent superset Y ⊇ X with suppD(X) = suppD(Y). Let Cσ(D) be the set
of closed frequent itemsets extracted from D under minSupport threshold σ.
By definition, Cσ(D) is a lossless representation of Fσ(D) since both the lattice
structure (i.e. frequent itemsets) and lattice measure (i.e. their supports) can
be derived from CFIs. The set of closed frequent itemsets for the example of
Figure 7 is depicted in Figure 8.

Figure 8: The closed frequent itemsets for the lattice of Figure 7

Closed frequent itemsets provide some compression over the FI lattice, how-
ever this compression is small since it is based on both the structure and the
measure of the items in the lattice. To provide further compression capabilities,
the notion of maximal frequent itemsets has been proposed. A frequent itemset
is called maximal if it is not a subset of any other frequent itemset. Let Mσ(D)
be the set of maximal frequent itemsets extracted from D under minSupport
threshold σ. Unlike Cσ(D), Mσ(D) is a lossy representation of Fσ(D) since it is
only the lattice structure (i.e. frequent itemsets) that can be determined from
MFIs whereas frequent itemsets supports are lost [9]. Practically, CFIs can

10

be orders of magnitude less than FIs, and MFIs can be orders of magnitude
less than CFIs [9]. The set of maximal frequent itemsets for the example of
Figure 7 is depicted in Figure 9.

Figure 9: The maximal frequent itemsets for the lattice of Figure 7

Lets return to the extensional – intensional description of patterns: the ex-
tensional description of an itemset consists of an explicit enumeration of the
data instances that support this itemset. For example, the extensional descrip-
tion of the itemset ({1, 3}, 2) is the set of instances {100, 300} from Table 2.
Regarding the intensional description, the structure component consists of the
itemset itself, i.e. items that form it like {1, 3}, whereas the measure component
consists of itemset support, e.g. 2.

The Association Rules Mining (ARM) problem was first introduced
by Agrawal and Swami [7] and was mainly motivated by the market basket
analysis domain. It is defined as follows: Let D be a database of transactions,
where each transaction consists of a set of distinct items I, called itemsets. An
association rule is a implication of the form X → Y , where X ⊆ I, Y ⊆ I and
X ∩ Y = ∅ (X and Y are itemsets). The rule is associated with a support s
and a confidence c. The rule X → Y is said to have support s, if s% of the
transactions in D contain X ∪ Y , whereas it is said to have confidence c, if c%
of the transactions in D that contain X also contain Y . A rule is interesting or
strong if its support and threshold exceed some user specified thresholds.

The Association Rules Mining problem consists of two steps. In the first
step the set of frequent itemsets is calculated which is then used as input to the
second step where the association rules are finally extracted. So, association
rules provide some additional information than frequent itemsets.

Lets return to the extensional – intensional description of patterns: the
extensional description of a rule comprises of all those instances that contribute
to its generation. For example, the extensional description of the rule 2 → 5
is the set of instances {200, 400} from Table 2. The structure component of
a rule consists of its head (item 2 in our example) and body (item 5 in our
example), whereas the measure component consists of its confidence (100% in
our example) and support (50% in our example).

11

References

[1] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: An overview. In Advances in Knowledge Discovery
and Data Mining, pages 1–34. 1996.

[2] V. Ganti, J. Gehrke, and R. Ramakrishnan. A framework for measuring
changes in data characteristics. In PODS, pages 126–137. ACM Press, 1999.

[3] J. Han and M. Kamber. Data mining: concepts and techniques. Morgan
Kaufmann Publishers Inc., 2000.

[4] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computer Surveys, 31:264–323, 1999.

[5] T. Johnson, L. Lashmanan, and T. Ravmond. The 3W Model and Algebra
for Unified Data Mining. In VLDB, 2000.

[6] T. Mitchell. Machine Learning. Kluwer Academic Publishers, 1997.

[7] T. I. Rakesh Agrawal and A. Swami. Mining association rules between sets
of items ins large databases. In Proceedings of ACM SIGMOD’93, 1993.

[8] S. Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis,
P. Vassiliadis, M. Vazirgiannis, and E. Vrachnos. Towards a Logical Model
for Patterns. In ER, pages 77–90, 2003.

[9] M. Zaki and C.-J. Hsiao. Efficient algorithms for mining closed itemsets
and their lattice structure. IEEE Transactions on Knowledge and Data
Engineering, 17:462–478, 2005.

12

