
Spatial Joins 155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Spatial Joins:
Algorithms,

Cost Models and
Optimization

Nikos Manoulis

University of Hong Kong, Hong Kong

Yannis Theodoridis

University of Piraeus, Greece

Dimitris Papadias

Hong Kong University of Science and Technology, Hong Kong

Abstract

This chapter describes algorithms, cost models and optimization techniques
for spatial joins. Joins are among the most common queries in Spatial
Database Management Systems. Due to their importance and high processing
cost, a number of algorithms have been proposed covering all possible
cases of indexed and non-indexed inputs. We first describe some popular
methods for processing binary spatial joins and provide models for
selectivity and cost estimation. Then, we discuss evaluation of multiway

156 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

spatial joins by integrating binary algorithms and synchronous tree
traversal. Going one step further, we show how analytical models can be
used to combine the various join operators in optimal evaluation plans. The
chapter can serve as a comprehensive reference text to the researcher who
wants to learn about this important spatial query operator and to the
developer who wants to include spatial query processing modules in a
Database System.

Introduction

Spatial database systems (Güting, 1994) manage large collections of multidimen-
sional data which, apart from conventional features, include special character-
istics such as position and extent. That there is no total ordering of objects in
space that preserves proximity renders conventional indexes, such as B+-trees,
inapplicable to spatial databases. As a result, a number of spatial access
methods have been proposed (Gaede & Günther, 1998). A very popular method,
used in several commercial systems (for example, Informix and Oracle), is the
R-tree (Guttman, 1994), which can be thought of as an extension of B+-tree in
multi-dimensional space. R-trees index object approximations, usually minimum
bounding rectangles (MBRs), providing a fast filter step that excludes all objects
that cannot satisfy a query. A subsequent refinement step uses the geometry of
the candidate objects (that is, the output of the filter step) to dismiss false hits and
retrieve the actual solutions. The R-tree and its variations have been applied to
efficiently answer several query types, including spatial selections, nearest
neighbors and spatial joins.

As in relational databases, joins play an important role in effective spatial query
processing. A binary (that is, pairwise) spatial join combines two datasets with
respect to a spatial predicate (usually overlap/intersect). A typical example is
“find all pairs of cities and rivers that intersect.” For instance, in Figure 1 the
result of the join between the set of cities {c

1
, c

2
, c

3
, c

4
, c

5
} and rivers {r

1
, r

2
},

is {(r
1
, c

1
), (r

2
, c

2
), (r

2
, c

5
)}.

The query in this example is a spatial intersection join. In the general case, the
join predicate could be a combination of topological, directional and distance
spatial relations. Apart from the intersection join, variants of the distance join
have received considerable attention because they find application in data
analysis tasks (for example, data mining and clustering). Given two sets R and
S of spatial objects (or multidimensional points) and a distance function dist(), the
µ-distance join (or else similarity join) (Koudas & Sevcik, 2000) returns the

Spatial Joins 157

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

pairs of objects {(r, s): r ∈ R, s ∈ S, dist(r, s) ≤ µ}. A closest pairs query (Corral,
Manolopoulos, Theodoridis, Vassilakopoulos, 2000) returns the set of closest
pairs CP={(r, s): r ∈ R, s ∈ S}, such that dist(r, s) ≤ dist(r′, s′), for all r′ ∈ R, s′
∈ S: (r′, s′) ∉ CP. A similar (non-commutative) operator is the all k-nearest
neighbors query (Böhm & Krebs, 2002), which returns for each object from R
its k nearest neighbors in S. Finally, given two datasets R and S, a real number
µ and an integer t, the iceberg distance join (Shou, Mamoulis, Cao, Papadias,
Cheung, 2003) retrieves all pairs of objects from R and S such that: (i) the pairs
are within distance ε, and (ii) an object of R appears at least t times in the result
(for example, find all regions of R that are within distance 1 km from at least 10
regions of S).

As an example for the spatial join variants, consider Figure 2, which illustrates
a set of hotels {h

1
, h

2
, h

3
} and a set of restaurants {r

1
, r

2
, r

3
, r

4
, r

5
}. The ε-

distance join between these two sets returns seven pairs (h
1
, r

1
), (h

1
, r

2
), (h

2
, r

2
),

(h
2
, r

3
), (h

2
, r

4
), (h

3
, r

4
) and (h

3
, r

5
). The 3-closest pairs are (h

2
, r

3
), (h

3
, r

5
) and

(h
3
, r

4
). The all 1-nearest neighbor operator (for the hotels) returns (h

1
, r

2
), (h

2
,

r
3
) and (h

3
, r

5
). Note that ε is not involved in closest pairs and all k-nearest

neighbors operations. Finally, the iceberg distance join for t=3 returns (h
2
, r

2
), (h

2
,

r
3
) and (h

2
, r

4
). Observe that h

2
 is the only hotel with at least 3 nearby restaurants.

In this chapter, we focus on intersection joins by reviewing evaluation algorithms
and cost models, as well as techniques for optimizing and integrating them in a
spatial database query engine. Other variants of spatial joins can be processed
by (trivially or non-trivially) extending algorithms for intersection joins. The
interested reader should check Koudas and Sevcik (2000), Corral et al. (2000),
Böhm and Krebs(2002) and Shou et al .(2003) for details.

Figure 1. Graphical example of a spatial intersection join

c1
c2 c3

c4

c5

r1 r2

158 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Binary Spatial Joins

Most early spatial join algorithms apply a transformation of objects in order to
overcome the difficulties raised by their spatial extent and dimensionality. The
first known algorithm (Orenstein, 1986) uses a grid to regularly divide the
multidimensional space into small blocks, called pixels, and employs a space-
filling curve (z-ordering) to order them. Each object is then approximated by the
set of pixels intersected by its MBR, that is, a set of z-values. Since z-values are
1-dimensional, the objects can be dynamically indexed using relational index
structures, like the B+-tree, and the spatial join can be performed in a sort-merge
join fashion. The performance depends on the granularity of the grid; larger grids
can lead to finer object approximations, but also increase the space require-
ments. Rotem (1991) proposes an algorithm based on a spatial join index similar
to the relational join index, which partially pre-computes the join result and
employs grid files to index the objects in space.

The most influential algorithm for joining two datasets indexed by R-trees is the
R-tree join (RJ) (Brinkhoff, Kriegel, Seeger, 1993), due to its efficiency and the
popularity of R-trees. RJ synchronously traverses both trees, according to the
paradigm of Günther (1993), following entry pairs that overlap; non-intersecting
pairs cannot lead to solutions at the lower levels. After RJ, most research efforts
focused on spatial join processing for non-indexed inputs. Non-indexed inputs
are usually intermediate results of a preceding operator. Consider, for instance,
the query “find all cities with population over 5,000 which are crossed by a
river.” If there are only a few large cities and an index on population, it may be
preferable to process the selection part of the query before the spatial join. In
such an execution plan, even if there is a spatial index on cities, it is not employed
by the spatial join algorithm.

The simplest method to process a pairwise join in the presence of one index is
by applying a window query to the existing R-tree for each object in the non-

Figure 2. Example of distance join variants

h1 h2

h3

r1
r2

r3

r4

r5

Spatial Joins 159

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

indexed dataset (index nested loops). Due to its computational burden, this
method is used only when the joined datasets are relatively small. Another
approach is to build an R-tree for the non-indexed input using bulk loading (Patel
& DeWitt, 1996, Papadopoulos, Rigaux, Scholl, 1999) and then employ RJ to
match the trees (build and match). Lo and Ravishankhar (1994) use the existing
R-tree as a skeleton to build a seeded tree for the non-indexed input. The sort
and match (SaM) algorithm (Papadopoulos et al., 1999) spatially sorts the non-
indexed objects but, instead of building the packed tree, it matches each in-
memory created leaf node with the leaf nodes of the existing tree that intersect
it. Finally, the slot index spatial join (SISJ) (Mamoulis & Papadias, 1999, 2003)
applies hash-join, using the structure of the existing R-tree to determine the
extents of the spatial partitions.

If no indexes exist, both inputs have to be preprocessed in order to facilitate join
evaluation. Arge, Procopiuc, Ramaswamy, Suel and Vitter (1998) propose
scalable sweeping-based spatial join (SSSJ) that employs a combination of
plane sweep (Preparata & Shamos, 1985) and space partitioning to join the
datasets. However, the algorithm cannot avoid external sorting of both datasets,
which may lead to large I/O overhead. Patel and DeWitt (1996) describe
partition based spatial merge join (PBSM) that regularly partitions the space
using a rectangular grid, and hashes both inputs into the partitions. It then joins
groups of partitions that cover the same area using plane-sweep to produce the
join results. Some objects from both sets may be assigned in more than one
partition, so the algorithm needs to sort the results in order to remove the
duplicate pairs. Another algorithm based on regular space decomposition is the
size separation spatial join (S3J) (Koudas & Sevcik, 1997). S3J avoids
replication of objects during the partitioning phase by introducing more than one
partition layer. Each object is assigned in a single partition, but one partition may
be joined with many upper layers. The number of layers is usually small enough
for one partition from each layer to fit in memory; thus, multiple scans during the
join phase are not needed. Spatial hash-join (SHJ) (Lo & Ravishankar, 1996)
avoids duplicate results by performing an irregular decomposition of space based
on the data distribution of the build input.

Table 1 summarizes the existing algorithms of all three classes. In general,
indexing facilitates efficiency in spatial join processing; an algorithm that uses
existing indexes is expected to be more efficient than one that does not consider
them. The relative performance of algorithms in the same class depends on the
problem characteristics. Günther (1993) suggests that spatial join indices per-
form best for low join selectivity, while in other cases RJ is the best choice.
Among the algorithms in the second class (one indexed input), SISJ and SaM
outperform the other methods because they avoid the expensive R-tree con-
struction (Mamoulis & Papadias, 2003). There is no conclusive experimental
evaluation for the algorithms in the third class (non-indexed inputs). S3J is

160 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

preferable when the datasets contain relatively large rectangles and extensive
replication occurs in SHJ and PBSM. SHJ and PBSM have similar performance
when the refinement step is performed exactly after the filter step. In this case,
both algorithms sort their output in order to minimize random I/Os and PBSM
combines the removal of duplicate pairs with sorting. However, in complex
queries (for example, multiway spatial joins) and when the refinement step is
postponed after the filter steps of all operators, PBSM may be more expensive,
because it can produce larger intermediate results (due to the existence of
duplicates). S3J requires sorting of both datasets to be joined, and therefore it
does not favor pipelining and parallelism of spatial joins. On the other hand, the
fact that PBSM uses partitions with fixed extents makes it suitable for processing
multiple joins in parallel. In the following paragraphs, we review in detail one
representative algorithm from each of the three classes, namely the RJ, SHJ and
SISJ. SHJ

The R-tree join

The RJ (Brinkhoff et al., 1993) is based on the enclosure property of R-trees:
if two nodes do not intersect, there can be no MBRs below them that intersect.
Following this observation, RJ starts from the roots of the trees to be joined and
finds pairs of overlapping entries. For each such pair, the algorithm is recursively
called until the leaf levels where overlapping pairs constitute solutions. Figure 3
illustrates the pseudo-code for RJ assuming that the trees are of equal height; the
extension to different heights is straightforward.

Figure 4 illustrates two datasets indexed by R-trees. Initially, RJ receives the two
tree roots as parameters. The qualifying entry pairs at the root level are (A

1
, B

1
)

and (A
2
, B

2
). Notice that since A

1
 does not intersect B

2
, there can be no object

pairs under these entries that intersect. RJ is recursively called for the nodes
pointed by the qualifying entries until the leaf level is reached, where the
intersecting pairs (a

1
, b

1
) and (a

2
, b

2
) are output.

Table 1. Classification of spatial join methods

Both inputs are indexed One input is indexed Neither input is indexed
• transformation to z-values

(Orenstein, 1986)
• spatial join index (Rotem,

1991)
• tree matching (Günther, 1993,

Brinkhoff et al., 1993)

• index nested loops
• seeded tree join (Lo & Ravishankar,

1994)
• build and match (Patel & DeWitt,

1996, Papadopoulos et al., 1999)
• sort and match (Papadopoulos et al.,

1999)
• slot index spatial join (Mamoulis &

Papadias, 2003)

• spatial hash join (Lo &
Ravishankar, 1996)

• partition based spatial merge join
(Patel & DeWitt, 1996)

• size separation spatial join
(Koudas & Sevcik, 1997)

• scalable sweeping-based spatial
join (Arge et al., 1998)

Spatial Joins 161

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Two optimization techniques can be used to improve the CPU speed of RJ
(Brinkhoff et al., 1993). The first, search space restriction, reduces the
quadratic number of pairs to be evaluated when two nodes n

i
, n

j
 are joined. If

an entry e
i,x

 ∈ n
i
 does not intersect the MBR of n

j
 (that is, the MBR of all entries

contained in n
j
), then there can be no entry e

j,y
 ∈ n

j
, such that e

i,x
 and e

j,y
 overlap.

Using this fact, space restriction performs two linear scans in the entries of both
nodes before RJ and prunes out from each node the entries that do not intersect
the MBR of the other node. The second technique, based on the plane sweep
paradigm, applies sorting in one dimension in order to reduce the cost of
computing overlapping pairs between the nodes to be joined. Plane sweep also
saves I/Os compared to nested loops because consecutive computed pairs
overlap with high probability. (Brinkhoff et al. 1994) discuss multi-step process-
ing of RJ using several approximations (instead of conventional MBRs). Huang,
Jing and Rundensteiner (1997a) propose a breadth-first optimized version of RJ
that sorts the output at each level in order to reduce the number of page accesses.

Spatial Hash Join

SHJ (Lo & Ravishankar, 1996) (based on the relational hash-join paradigm)
computes the spatial join of two non-indexed datasets R (build input) and S
(probe input). Set R is partitioned into K buckets, where K is decided by the
system parameters. The initial extents of the buckets are points determined by
sampling. Each object is inserted into the bucket that is enlarged the least. Set
S is hashed into buckets with the same extent as R’s buckets, but with a different
insertion policy: An object is inserted into all buckets that intersect it. Thus, some
objects may be assigned to multiple buckets (replication) and some may not be
inserted at all (filtering). The algorithm does not ensure equal-sized partitions
for R (that is, with the same number of objects in them), as sampling cannot
guarantee the best possible bucket extents. Equal-sized partitions for S cannot

Figure 3. R-tree-based spatial join

RJ(Rtree_Node ni, RTNode nj)
 for each entry ej,y nj do {
 for each entry ei,x ni with ei,x ej,y do {
 if ni is a leaf node /* nj is also a leaf node */
 then Output (ei,x, ej,y);
 else { /* intermediate nodes */
 ReadPage(ei,x.ref); ReadPage(ej,y.ref);
 RJ(ei,x.ref, ej,y.ref); } }
 } /* end for */

162 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be guaranteed in any case, as the distribution of the objects in the two datasets
may be different.

Figure 5 shows an example of two datasets, partitioned using the SHJ algorithm.
After hashing set S, the two bucket sets are joined; each bucket from R is
matched with only one bucket from S, thus requiring a single scan of both files,
unless for some pair neither bucket fits in memory. In this case, an R-tree is built
for one of them, and the bucket-to-bucket join is executed in an index nested loop
fashion.

Slot Index Spatial Join

SISJ (Mamoulis & Papadias, 2003) is applicable when there is an R-tree for one
of the inputs (R). The algorithm is similar to SHJ, but uses the R-tree on R in order
to determine the bucket extents. If K is the desired number of partitions, SISJ will
find the topmost level of the tree such that the number of entries is larger or equal
to K. These entries are then grouped into K (possibly overlapping) partitions
called slots. Each slot contains the MBR of the indexed R-tree entries, along with
a list of pointers to these entries. Figure 6 illustrates a 3-level R-tree (the leaf
level is not shown) and a slot index built over it. If K = 9, the root level contains
too few entries to be used as partition buckets. As the number of entries in the
next level is over K, we partition them in 9 slots (for this example). The grouping
policy of SISJ starts with a single empty slot and inserts entries into the slot that
is enlarged the least. When the maximum capacity of a slot is reached
(determined by K and the total number of entries), either some entries are deleted
and reinserted or the slot is split according to the R*-tree splitting policy
(Beckmann, Kriegel, Schneider & Seeger, 1990).

After building the slot index, the second dataset S is hashed into buckets with the
same extents as the slots. If an object from S does not intersect any bucket, it

Figure 4. Two datasets indexed by R-trees

a1 a2 a3 a4 a5

A1 A2

b1 b2 b3 b4

B1 B2

a
1

a 2

a
3

a
4

a
5

A
1

A
2

b
1

b 2

b 3

b 4

B 2B 1

R-tree for R R-tree for S

Spatial Joins 163

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is filtered; if it intersects more than one bucket, it is replicated. The join phase
of SISJ is also similar to the corresponding phase of SHJ. All data from the R-
tree of R indexed by a slot are loaded and joined with the corresponding hash-
bucket from S using plane sweep. If the data to be joined do not fit in memory,
they can be joined using the algorithm of Arge et al.(1998), which employs
external sorting and then plane sweep. Another alternative is index nested loop
join (using as a root of the R-tree the corresponding slot). These methods can be
expensive when the partitions are much larger than the buffer. In such cases
SISJ is applied recursively, in a similar way to recursive hash-join. During the join
phase of SISJ, when no data from S is inserted into a bucket, the sub-tree data
under the corresponding slot is not loaded (slot filtering).

Selectivity and Cost Estimation for
Spatial Joins

Estimating the cost and the output size of a spatial join is an important and difficult
problem. Accurate cost models are necessary for the query optimizer to identify
a good execution plan that accelerates retrieval and minimizes the usage of
system resources. The output size of a spatial join between datasets R and S
depends on three factors:

• The cardinalities |R| and |S| of the datasets. The join may produce up to
|R|×|S| tuples (that is, the Cartesian product).

• The density of the datasets. The density of a dataset is formally defined as
the sum of areas of all objects in it divided by the area of the workspace1.
In other words, it is the expected number of objects that intersect a random

Figure 5. The partitioning phase of SHJ algorithm

B1

B2

B3

B1

B2

B3

filtered

replicated

(a) Objects from set R (build input) in

three partition buckets
(b) Filtering and replication of objects from

set S (probe input)

164 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

point in the workspace. Datasets with high density have objects with large
average area, and produce numerous intersections when joined.

• The distribution of the MBRs. Skewed datasets may produce arbitrary
few or many join pairs. Data skew is the most difficult factor to estimate,
since in many cases the distribution is not known, and even if known, its
characteristics are very difficult to capture.

The I/O cost of the refinement step is determined by the selectivity of the filter
step, since for each candidate object (or object pair) a random access that
retrieves its exact geometry is required. However, the selectivity of the
refinement step is hard to estimate because the arbitrary extents of the actual
objects do not allow for the easy computation of quantities like density and
complicate the probabilistic analysis of overlapping regions. Although this
estimate does not affect the cost of the spatial operator, it can be crucial for the
cost estimate of operators that succeed it. For example, for a complex query,
where three datasets are joined, the selectivity of the first join determines the
input size of the second. Estimating the selectivity of a spatial query after the
refinement step is a challenging issue, and to the best of our knowledge, no
previous work sufficiently solves this problem. Existing studies focus on the filter
step, often assuming that the data are uniformly distributed in the workspace
(uniformity assumption). Several of these studies are based on selectivity and
cost estimation formulae for window queries.

Selectivity and cost estimation for window queries

Given a spatial dataset R consisting of |R| ´-dimensional uniformly distributed
rectangles in a rectangular area u (workspace universe), the number of
rectangles that intersect a window query w (output cardinality - OC) is
estimated by the following formula,

Figure 6. An R-tree and a slot index built over it

(a) level 2 (root) entries (b) level 1 entries (c) slot index over level 1

Spatial Joins 165

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

∏
=










 +
⋅=

δ

1

,1min||),(
d d

dd

u

wr
RwROC , (1)

where dr is the average length of the projection of a rectangle r ∈ R at dimension

d, and dw , du are the corresponding projections of w, u respectively. The

product in Equation 1, called Minkowski sum, depends on the probability that a
random rectangle from R intersects w. A graphical example is given in Figure 7.
In particular, Figure 7a depicts a dataset R and a window query w. We can think
of w as a point query on a dataset that contains rectangles of average projection

dd wr + (Figure 7b), in which case the goal is to retrieve all rectangles that

contain the query point. Alternatively, the query can be transformed to a

rectangle with average side dd wr + on |R| points (Figure 7c), in which case the

goal is to retrieve the data points falling in the query window. The min function

in Equation 1 avoids boundary effects when dd wr + >1 for some dimension d.

The output size for non-uniform data can be estimated by maintaining a histogram
that partitions the data space into a set of buckets, and assuming that object
distribution in each bucket is (almost) uniform. Specifically, each bucket b
contains the number b.num of objects whose centroids fall in b, and the average
extent b.len of such objects. Figure 8 illustrates an example in the 2D space,
where the gray area corresponds to the intersection between b and the extended
query region, obtained by enlarging each edge of q with distance b.len/2.
Following the analysis on uniform data, the expected number of qualifying
objects in b approximates b.num’”I.area/b.area, where I.area and b.area are
the areas of the intersection region and b, respectively (Acharya, Poosala, &
Ramaswamy, 1999). The total number of objects intersecting q is predicted by
summing the results of all buckets. Evidently, satisfactory estimation accuracy
depends on the degree of uniformity of objects’ distributions in the buckets. This
can be maximized using various algorithms (Muralikrishna & DeWitt, 1988;
Poosala & Ioannidis, 1997; Acharya et al., 1999), which differ in the way that
buckets are structured. For example, in Muralikrishna & DeWitt (1988), buckets
have similar sizes (that is, “equi-width”) or cover approximately the same
number of objects (that is, “equi-depth”), while in Poosala and Ioannidis (1997)
and Acharya et al. (1999) bucket extents minimize the so-called “spatial skew.”

When the dataset is not indexed, the cost of a window query (in terms of disk
accesses) is equal to the cost of sequentially scanning the entire dataset (that is,

166 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

it is independent of the selectivity). On the other hand, the existence of an R-tree
can significantly reduce the query cost. The number of R-tree pages accessed
when processing a window query is equal to the expected number of non-leaf
node entries that intersect the query window plus the access of the R-tree root.

Let L be the number of R-tree levels and N
l
 (ldr ,) be the number of entries

(average entry projection length) at level l and dimension d (0 is the leaf level and
L-1 the root level). The cost of a window query is then given by the following
formula (Kamel & Faloutsos, 1993; Theodoridis & Sellis, 1996):

Cost(R, w) = 1 + ∑ ∏
−

= =

+
⋅

1

1 1

, }),1(min{
L

l d d

dld
l

u

wr
N

δ

(2)

Theodoridis & Sellis (1996) present formulae for the estimation of ldr , for each

R-tree level that are based solely on the cardinality of the dataset |R|, the average
object MBR projection length and the page size, which determines the capacity
of the nodes and the height of the tree. The cost for non-uniform datasets can
be computed with the aid of histograms (similar to the selectivity case).

Selectivity and cost estimation for spatial joins

The output size (and selectivity) of a spatial join can be estimated by extending
Equation 1 (and Equation 2) in a straightforward way. Let R, S be the joined
datasets. The output of the join is the expected number of rectangles retrieved

Figure 7. Output size estimation for window queries

0

1

1

w

 0

1

1

w

 0

1

1

w

(a) a dataset and a window

query
(b) a point query on rectangles of
average side

dd wr in d={1,2}
(c) a window query of side

dd wr on points

Spatial Joins 167

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from R when applying |S| window queries of projection length ds . Conversely,

it is the expected number of rectangles retrieved from S when applying |R|

window queries of projection length dr . In either case the output size is:

∏
=






 +
⋅⋅=

k

d d

dd

u

sr
SRSROC

1

,1min),((3)

For other data distributions where the uniformity assumption does not hold, one
can use 2D histograms that divide the space into buckets and summarize local
statistics for each bucket (Theodoridis et al., 1998; Mamoulis & Papadias, 1999).
The uniformity assumption can then be applied to each region to accumulate the
estimate for the join output. An et al. (An et al., 2001) extend this method by
maintaining, for each bucket, statistics about the objects’ edges and corners that
intersect it. Parametric approaches for distance joins, based on the observation
that distances between spatial objects follow power laws, were proposed in
(Belussi & Faloutsos, 1998, Faloutsos et al., 2000). Approximating the distribu-
tion (or object distances) in a real spatial dataset using histograms (or functions)
cannot provide worst-case guarantees for query selectivity estimation. As a
result, the effectiveness of most of the above methods is evaluated experimen-
tally. An, Yang and Sivasubramaniam (2001) show by experimentation that their
method is more accurate compared to the techniques used in Theodoridis et al.
(1998)and in Mamoulis and Papadias (1999) for joins between sets of MBRs.
Belussi & Faloutsos (1998) and Faloutsos, Seeger, Traina and Traina (2000)
provide experimental evidence for the accuracy of their models, though they are
incomparable with An et al. (2001), since it is applicable for distance joins
between point sets.

Figure 8. Estimation using histograms

bucket b

b.len/2

b.len/2

query q

168 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cost of R-Tree Join

Theodoridis et al. (1998) studied the cost of RJ in terms of R-tree node accesses.
Let R and S be two datasets indexed by R-trees and assume that the two R-trees

have (at level l) average entry side ldr , , lds , and number of entries N
R,l

, N
S,l

,

respectively. The number of node accesses during their spatial join can be
estimated by the following formula:

Cost
NA

(RJ, R, S) = 2 + ∑ ∏
−

= =

+
⋅⋅⋅

1

1 1

,,
,, }),1(min{2

L

l d d

ldld
lSlR

u

sr
NN

δ

(4)

Equation 4 expresses that every pair of intersecting entries at level l is
responsible for two node accesses at level l-1, if l>0. Therefore, the sum of the
expected number of intersecting entry pairs at the high levels of the trees, plus
the two accesses of the tree roots, give an estimate of the total number of node
accesses. Nevertheless, this quantity can be considered as an upper bound only,
since it does not reflect the actual number of I/Os under the existence of an LRU
buffer. When an intersecting pair of entries needs to be loaded, there is a high
probability that these pages will be in the system buffer if the buffer is large and
if they have been requested before. Huang et al. (1997b) provide an analysis of
RJ based on this observation, according to which, the I/O cost of joining R and
S in the presence of an LRU buffer is given by the following formula,

Cost(RJ, R, S) = T
R
 + T

S
 + (Cost

NA
(RJ, R, S) – T

R
 – T

S
)×Prob(node, M),

(5)

where T
R
, T

S
 are the number of nodes in the R-trees for R and S, respectively,

and Prob(node, M) is the probability that a requested R-tree node will not be in
the buffer (of size M), resulting in a page fault. This probability falls exponentially
with M, and its estimation is based on an empirical analysis.

Cost of Spatial Hash Join

The I/O cost of SHJ depends on the size of the joined datasets and the filtering
and replication that occur in set S. Initially, a small number of pages Cost

sam
 is

loaded to determine the initial hash buckets. Then both sets are read and hashed

Spatial Joins 169

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

into buckets. Let P
R
, P

S
 be the number of pages of the two datasets (stored in

sequential files) and rep
S
, fil

S
 be the replication and filtering ratios of S. The

partitioning cost of SHJ is given by the following formula:

Cost
part

(SHJ, R, S) = Cost
sam

 + 2 P
R
 + (2 + rep

S
– fil

S
)×P

S
(6)

Next, the algorithm will join the contents of the buckets from both sets. In typical
cases, where the buffer is large enough for at least one partition to fit in memory,
the join cost of SHJ is,

Cost
join

(SHJ, R, S) = P
R

+ (1 + rep
S
 – fil

S
)×P

S
, (7)

considering that the join output is not written to disk. Summing up, from Equations
6 and 7, the total cost of SHJ is:

Cost(SHJ, R, S) = Cost
sam

 + 3 P
R
 + (3 + 2rep

S
 – 2fil

S
)×P

S
(8)

Cost of Slot Index Spatial Join

SISJ joins a dataset R indexed by an R-tree with a non-indexed file S. Let T
R
 be

the number of R-tree nodes of R, and P
S
 the number of pages in S. Initially, the

slots have to be determined from R. This requires loading the top º levels of R’s
R-tree, in order to find the appropriate slot level. Let frac

R
 be the fraction of tree

nodes from the root until º. The slot index is built in memory, without additional
I/Os. Set S is then hashed into the slots requiring P

S
 accesses for reading, and

P
S
 + rep

S
P

S
 – fil

S
P

S
 accesses for writing, where rep

S
, fil

S
 are the replication and

filtering ratios of S. Thus, the cost of SISJ partition phase is:

Cost
part

(SISJ, R, S) = frac
R
 ×T

R
 + (2 + rep

S
 – fil

S
)×P

S
(9)

For the join phase of SISJ, we make the same assumptions as for SHJ; that is,
for each joined pair at least one bucket fits in memory. The pages from set R that
have to be fetched for the join phase are the remaining (1-frac

R
)×T

R
, since the

pointers to the slot entries are kept in the slot index and need not be loaded again
from the top levels of the R-tree. The number of I/O accesses required for the
join phase is:

170 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cost
join

(SISJ, R, S) = (1 – frac
R
)×T

R
 + (1 + rep

S
 – fil

S
)×P

S
(10)

Summarizing, the overall cost of SISJ is:

Cost(SISJ, R, S) = T
R
 + (3 + 2rep

S
 – 2fil

S
)×P

S
(11)

We can qualitatively compare the three algorithms from Equations 4, 8 and 11.
Given a large enough memory buffer, the cost of RJ is not much higher than T

R

+ T
S
, since we expect that every requested R-tree node that has been loaded will

remain in the memory buffer with high probability, due to the locality of accessed
pages. This assertion is experimentally verified in several studies (for example,
Huang et al., 1997b; Mamoulis & Papadias, 1999). Given that in typical R-tree
structures nodes have around 67% average utilization (Beckmann et al., 1990),
and that the non-leaf R-tree nodes are very few compared to the leaves (due to
the large fanouts, 100-200 in practice), the I/O cost of RJ is roughly the cost of
reading 150% of the total number of pages occupied by the rectangles (that is,
Cost(SISJ

,
 R

,
 S) ≈ T

R
 + T

S
 ≈ 1.5(P

R
 + P

S
)). The cost of SISJ is affected by the

filtering and replication ratios, which cannot be easily predicted. From empirical
studies on real datasets (Mamoulis & Papadias, 2003), it has been observed that
in practice, rep

S
 ≈ 0.3 and fil

S
≈ 0. Considering this and the discussion on average

R-tree node occupancy, we can approximate the cost of SISJ with 1.5P
R
 + 3.6P

S
.

With similar assumptions on the filtering and replication ratios (and assuming a
negligible sampling cost), the cost of SHJ is reduced to 3P

R
 + 3.6P

S
. Based on

these numbers, we can conclude that RJ is more efficient than SISJ, which is
more efficient than SHJ, under usual problem settings. Of course, the application
of RJ (SISJ) presumes the existence of two (one) R-trees.

In the next sections, we discuss how the cost estimation formulae for RJ, SHJ
and SISJ can be used in combination with the selectivity estimation models
discussed earlier to optimize complex queries that include spatial join operators.
The experimental study of Mamoulis & Papadias (2001) suggests that these
estimates are indeed accurate and usually lead to optimal plans.

Multiway Spatial Joins

Multiway spatial joins involve an arbitrary number of spatial inputs. Such
queries are important in several applications, including Geographical Information
Systems (for example, “find all cities adjacent to forests, which are intersected
by a river”) and VLSI (for example, “find all sub-circuits that formulate a

Spatial Joins 171

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specific topological configuration”). Formally, a multiway spatial join can be
expressed as follows: Given n datasets R

1
, R

2
, ... R

n
 and a query Q, where Q

ij

is the spatial predicate that should hold between R
i
 and R

j
, retrieve all n-tuples

{(r
1,w

,..,r
i,x

,..,r
j,y

,.., r
n,z

) | ∀ i,j : r
i,x

 ∈ R
i
, r

j,y
 ∈ R

j
 and r

i,x
 Q

ij
 r

j,y
}. The query can

be represented by a graph, where nodes correspond to datasets and edges to join
predicates. Equivalently, the graph can be viewed as a spatial constraint
network, where the nodes correspond to problem variables and edges to binary
spatial constraints. In the sequel we use the terms variable/dataset and con-
straint/join condition interchangeably.

We consider that all datasets are indexed by R-trees (on MBRs) and we deal
with the filter step, assuming that overlap is the default join condition; that is, if
Q

ij
 = True, then the rectangles from the corresponding inputs i,j should overlap.

The loosest query is the one that corresponds to an acyclic (tree) graph (for
example, the one illustrated in Figure 9a), while the most constrained consists of
a complete (clique) graph (for example, the one in Figure 9c). For each type of
query, Figure 9 illustrates a solution; that is, a configuration of rectangles r

i,1
 Î R

i

that satisfies the join conditions. We do not consider non-connected query
graphs, as these can be processed by solving connected sub-graphs and then
computing their Cartesian product.

Patel and DeWitt (1996) apply PBSM in a distributed, multi-processor environ-
ment to process cascading joins. Spatial datasets are regularly partitioned in
space (spatial declustering), and the physical resources (disks, processors) are
distributed according to the partitions. Papadopoulos et al. (1999) perform a two-
join case study to evaluate the performance of four spatial join algorithms.
Mamoulis and Papadias (1999) propose a pairwise joins method (PJM) that
combines binary join algorithms in a processing tree where the leaves are input
relations indexed by R-trees and the intermediate nodes are join operators.

Processing multiway joins by integration of pairwise join algorithms is the
standard approach in relational databases where the join conditions usually relate
different attributes. In spatial joins, however, the conditions refer to a single
spatial attribute for all inputs; that is, all object sets are joined with respect to their
spatial features. Motivated by this fact, synchronous traversal (ST) traverses
top-down2 all the R-trees involved in the query, excluding combinations of
intermediate nodes that do not satisfy the join conditions. The first general
application of ST to an arbitrary number of inputs appeared in Papadias et al.
(1998) for retrieval of database images matching some input configuration. The
employment of the method in multi-way spatial join processing is discussed in
Papadias et al. (1999) and in Mamoulis and Papadias (2001), together with
formulae for selectivity (in uniform datasets) and cost estimation (in terms of node
accesses). Next, we present in detail PJM and ST. Finally, we discuss the
optimization of processing multiway spatial joins based on dynamic programming.

172 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Integration of Pairwise Join Algorithms for Processing
Multiple Inputs

As in the case of relational joins, multiway spatial joins can be processed by
combining pairwise join algorithms. PJM considers a join order that is expected
to result in the minimum cost (in terms of page accesses). Each join order
corresponds to a single execution plan, where:

(i) RJ is applied when the inputs are leaves; that is, datasets indexed by R-
trees,

(ii) SISJ is employed when only one input is indexed by an R-tree,

(iii) SHJ is used when both inputs are intermediate results.

As an example of PJM, consider the query in Figure 9a and the plans of Figure
10. Figure 10a involves the execution of RJ for determining R

3
R

4
. The

intermediate result, which is not indexed, is joined with R
2
 and finally with R

1
 using

SISJ. On the other hand, the plan of Figure 10b applies RJ for R
1

R
2
 and R

3
R

4
,

and SHJ to join the intermediate results.

Queries with cycles can be executed by transforming them to tree expressions
using the most selective edges of the graph and filtering the results with respect
to the other relations in memory. For instance, consider the cycle (R

1
 overlap R

2
),

(R
2
 overlap R

3
), (R

3
 overlap R

1
) and the query execution plan R

1
(R

2
R

3
).

When joining the tuples of (R
2

R
3
) with R

1
 we can use either the predicate (R

2

overlap R
1
), or (R

3
 overlap R

1
) as the join condition. If (R

2
 overlap R

1
) is the most

selective one (that is, results in the minimum cost), it is applied for the join, and
the qualifying tuples are filtered with respect to (R

3
 overlap R

1
).

PJM uses Equations 5, 8 and 11 to estimate the join cost of the three algorithms.
The expected output size of a pairwise join determines the execution cost of an
upper operator and therefore is crucial for optimization. Selectivity estimation for
a pairwise join has already been discussed. Optimization of multiway spatial joins
requires selectivity estimation for each possible decomposition of the query

Figure 9. Multiway join examples

1

4

2

3

1,1
r

2,1
r

3,1r

4,1r

1

4

2

3

1,1
r

4,1
r 2,1

r

3,1r

1

4

2

3

1,1
r

4,1r
2,1

r

3,1
r

(a) chain (tree) query (b) query with cycle (c) clique query

Spatial Joins 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

graph (that is, for each allowable sub-plan). The generalized formula for the
output size of a query (sub) graph Q with n inputs is:

OC(R
1
,R

2
, …, R

n
, Q) = #(possible tuples)×Prob(a tuple is a solution)

(12)

The first part of the product equals the cardinality of the Cartesian product of the
n domains, while the second part corresponds to multiway join selectivity. In
case of acyclic graphs, the pairwise probabilities of the join edges are indepen-
dent and selectivity is the product of pairwise join selectivities (Papadias et al.,
1999):

() ∏ ∏
=∀ = 









 +
=

TRUEQji d d

djdi

ij
u

rr
n a solutioa tuple isProb

:, 1

,,,1min
δ

(13)

From Equations 12 and 13, the total number of query solutions is:

∏ ∏∏
=∀ ==










 +
⋅=

TRUEQji d d

djdi
n

i
in

ij
u

rr
RQRROC

:, 1

,,

1
1 ,1min),,...,(

δ

(14)

When the query graph contains cycles, the pairwise selectivities are no longer
independent and Equation 14 is not accurate. For cliques, it is possible to provide
a formula for multiway join selectivity based on the fact that if a set of rectangles
mutually overlap, then they must share a common area. Given a random n-tuple
of rectangles, the probability that all rectangles mutually overlap is (Papadias et
al., 1999):

() ∏ ∑ ∏
= = ≠=⋅−

=
δ

1 1 ,1
,

)1(

1

d

n

i

n

ijj
dj

d

r
un

n a solutioa tuple isProb (15)

174 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Thus, in case of clique queries Q the number of solutions is:

∏ ∑ ∏∏
= = ≠== ⋅−

⋅=
δ

1 1 ,1
,

1
1

)1(

1
),,...,(

d

n

i

n

ijj
dj

d

n

i
in r

un
RQRROC (16)

The above formulae are applicable for queries that can be decomposed to acyclic
and clique graphs (for example, Figure 9b). The optimal execution plan can be
computed from the estimated output size and the costs of the algorithms involved.
Selectivity estimation for real datasets can be performed using histograms. Next
we describe ST, an alternative to PJM for processing multiway spatial joins.

Synchronous Traversal

ST processes the indexes of all joined datasets, following combinations of nodes
that satisfy the query constraints. Consider the four R-trees of Figure 11 and the
clique query of Figure 9c. The query asks for the set of 4-tuples (a

w
, b

x
, c

y
, d

z
),

such that the four objects mutually overlap (for example, (a
2
, b

1
, c

2
, d

2
)). ST

starts from the roots of the R-trees, searching for entries that satisfy the join
conditions. In this example, out of the 16 combinations of root entries (that is, (A

1
,

B
1
, C

1
, D

1
), (A

1
, B

1
, C

1
, D

2
), .., (A

2
, B

2
, C

2
, D

2
)), only (A

1
, B

1
, C

1
, D

1
) may lead

to actual solutions. For instance, the combination (A
2
, B

1
, C

1
, D

1
) does not satisfy

the query constraints because A
2
 does not intersect C

1
 (or D

1
); therefore, there

cannot be any pair of overlapping objects (a
w
, c

y
), a

w
 pointed by A

2
and c

y
 pointed

by C
1
. As in the case of RJ, for each intermediate level solution, the algorithm

is called for the pointed R-tree nodes, recursively, until the leaves, where
solutions are output.

Figure 10. Alternative plans using pairwise join algorithms

R1

R2

R3 R4

RJ

SISJ

SISJ

R1 R2 R3 R4

HJ

RJRJ

(a) right-deep plan (b) bushy plan

Spatial Joins 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the worst case, the total number of combinations of data MBRs that have to
be checked for the satisfaction of the join conditions is |R|n, where n is the number
of inputs and |R| the cardinality of the datasets (assumed to be the same). ST
takes advantage of the hierarchical decomposition of space preserved by R-
trees to break the problem in smaller local ones at each tree level. A local
problem has to check Cn combinations in the worst case (C is the R-tree node
capacity), and can be defined by:

• A set of n variables, v
1
, v

2
,.., v

n
, each corresponding to a dataset.

• For each variable v
i
, a domain ∆

i
 consisting of the entries {e

i,1
,.., e

i,Ci
} of

a node n
i
 (in tree R

i
).

• Each pair of variables (v
i
, v

j
) is constrained by overlap, if Q

ij
 is True.

A binary assignment {v
i
 ← e

i,x
, v

j
 ← e

j,y
} is consistent if Q

ij
= True ⇒ e

i,x

overlaps e
j,y

. A solution of a local problem is a n-tuple t = (e
1,w

,.., e
i,x

,.., e
j,y

,..,e
n,z

)
such that ∀i,j, {v

i
 ¬ e

i,x
, v

j
 ¬ e

j,y
} is consistent. The goal is to find all solutions;

that is, assignments of entries to variables such that all constraints are satisfied.
In the previous example (clique query of Figure 9c), there exist four variables
v

1
,..,v

4
, and for each (v

i
,v

j
), i≠j, the constraint is overlap. At level 1 the domains

of the variables are ∆
1
={A

1
,A

2
}, ∆

2
={B

1
,B

2
}, ∆

3
={C

1
,C

2
} and ∆

4
={D

1
,D

2
}. Once

the root level solution (A
1
,B

1
,C

1
,D

1
) is found, ST will recursively search for

qualifying tuples at the lower level, where the domains of v
1
,..,v

4
 consist of the

entries under A
1
,..,D

1
, respectively; that is, ∆

1
={a

1
,a

2
}, ∆

2
={b

1
,b

2
}, ∆

3
={c

1
,c

2
}

and ∆
4
={d

1
,d

2
}. Notice that an intermediate-level solution does not necessarily

lead to an actual one. Since a part of the node area corresponds to “dead space”
(space not covered by object MBRs), many high-level solutions are false hits. The
pseudo-code for ST, assuming R-trees of equal height, is presented in Figure 12.

For each ∆
i
, space-restriction prunes all entries that do not intersect the MBR

of some n
j
, where Q

ij
= True. Consider the chain query of Figure 9a and the top-

Figure 11. Example of four R-trees

a2
a

3

a4

a1

a1

A

a2 a3 a 4

1 A2

A1

A2

R1 R2 R3
R4 level 1

level 0

b2

b
3

b4

b1

b1

B

b2 b3 b4

1 B2

B1 B2

c2 c
3

c4c1

c1

C

c 2 c3 c 4

1 C2

C1

C2

d2
d

3

d4

d1

d1

D

d2 d3 d4

1 D2

D1 D2

176 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12. Synchronous R-tree traversal

ST(Query Q[][], RTNode n[])
 for i:=1 to n do { /*prune domains*/
 �i := space-restriction(Q, n[], i);
 if �i = then return; /*no qualifying tuples exist for this combination of nodes*/}
 for each find-combinations(Q, �) do { /* for each solution at the current level */
 if n[] are leaf nodes then /*qualifying tuple is at leaf level*/
 Output();
 else /*qualifying tuple is at intermediate level*/
 ST(Q, .ref[]); /* recursive call to lower level */}

Domain space-restriction(Query Q[][], RTNode n[], int i)
 read ni; /* read node from disk */
 �i := ;
 for each entry ei,x ni do {
 valid := True; /*mark ei,x as valid */
 for each node nj such that Qij = True do {/*an edge exists between ni and nj*/
 if ei,x nj.MBR = then { /* ei,x does not intersect the MBR of node ni */
 valid := false; /* ei,x is pruned */
 break;}
 if valid = True then /*ei,x is consistent with all node MBRs*/
 �i := �i ei,x;
 }
 return �i;

level solution (A
2
, B

1
, C

1
, D

1
). At the next level ST is called with ∆

1
 = {a

3
, a

4
},

∆
2
 = {b

1
, b

2
}, ∆

3
 = {c

1
, c

2
} and ∆

4
 = {d

1
, d

2
}. Although A

2
 intersects B

1
, none of

entries (a
3
, a

4
) do and these entries can be safely eliminated from ∆

1
. Since ∆

1

becomes empty, (A
2
, B

1
, C

1
, D

1
) cannot lead to an actual solution and the search

is abandoned without loading the nodes pointed by B
1
, C

1
 and D

1
. Find-

combinations is the “heart” of ST; that is, the search algorithm that finds tuples
t ∈ ∆

1
 × ∆

2
 × ... × ∆

n
, that satisfy Q. In order to avoid exhaustive search of all

combinations, several backtracking algorithms applied for constraint satisfaction
problems can be used. The implementation of Mamoulis and Papadias (2001)
uses forward checking (FC) (Haralick & Elliott, 1981), which accelerates
search by progressively assigning values to variables and pruning the domains of
future (non-instantiated) variables. Given a specific order of the problem’s
variables v

1
, v

2
,…, v

n
, when v

i
 is instantiated, the domains of all future variables

v
j
, j > i, such that Q

ij
 = True, are revised to contain only rectangles that intersect

the current instantiation of v
j
 (check forward). If during this procedure some

domain is eliminated, a new value is tried for v
i
 until the end of D

i
 is reached. Then

FC backtracks to v
i-1

, trying a new value for this variable.

Spatial Joins 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ST Cost Estimation

ST starts from the top level L-1 (where L is the height of the trees), and solves
one local problem in order to find solutions at the roots. Each solution generates
one problem at the next level until it reaches the leaves where solutions are
output. Thus, the total number of local problems is,

N
PROBLEMS

 = 1 + ∑
−

=

1

1

),(#
L

l

lQsolutions , (17)

where #solutions(Q, l) is the number of qualifying entry combinations at level
l. An experimental study in Mamoulis and Papadias (2001) suggests that ST is
CPU bound, due to the huge number of local problems and the fact that tree nodes
are visited with high locality; thus, the LRU buffer serves the majority of I/O
requests. Therefore, it is crucial to estimate the CPU cost of the algorithm. This
depends on the cost of the local problems, all of which have the same
characteristics (that is, number of variables, constraints and domain size);
therefore, it is reasonable to assume that they all have approximately the same
cost (C

PROBLEM
). Consequently, the total CPU cost (Cost

CPU
) equals the number

of local problems times the cost of each problem:

Cost
CPU

(ST, Q)= N
PROBLEMS

 × C
PROBLEM

(18)

N
PROBLEMS

 can be estimated by Equation 17 using Equation 12 for the number of
solutions at each level of the tree. The only difference is that instead of object
MBRs, intermediate nodes are used in Equations 14 and 16. The remaining factor
is the cost C

PROBLEM
. Although in the worst case (for example, extremely large

intermediate nodes) each local problem is exponential (O(Cn)), the average
C

PROBLEM
 for typical situations is much lower (actually, it increases linearly with

n and page size). Unfortunately, the nature of backtracking-based search
algorithms (including forward checking) does not permit theoretical average
case analysis (Kondrak & van Beek, 1997). Therefore, an empirical analysis
was conducted in Mamoulis and Papadias (2001) to isolate this cost. The result
of this analysis is that the CPU-time for each local problem is linear to the
number of variables n and the page size p, independently of the domain
density or the structure of the graph, and we can define,

C
PROBLEM

 = F×n×p , (19)

178 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 2. Iterator functions

Iterator Open Next Close
ST
(RJ for two
inputs)

− open tree files − return next
tuple

− close tree
files

SISJ
(assuming that left
input is the R-tree
input)

− open left tree file;
− construct slot index;
− open right (probe) input;
− call next on right input and hash

results into slots;
− close right input

− perform
hash-join;

− return next
tuple

− close tree
file;

− de-allocate
slot index;

− hash buckets

SHJ
(assuming that left
input is the build
input and right
input the probe
input)

− open left input;
− call next on left and write the results

into intermediate file while
determining extents of hash buckets;

− close left input;
− hash results from intermediate file into

buckets;
− open right input;
− call next on right and hash all results

into right buckets;
− close right input

− perform
hash-join;

− return next
tuple

− de-allocate
hash buckets

where F is a factor that depends on the algorithm for ST and the CPU speed and
can be estimated by Equations 17, 18, 19 and the actual cost of a multiway join.
The experiments of Mamoulis and Papadias (2001) suggest that this method has
low average error (below 15%) for various multiway joins on synthetic datasets.

Combining ST with Pairwise Join Algorithms

Since ST is essentially a generalization of RJ, it easily can be integrated with
other pairwise join algorithms to effectively process complex spatial queries.
Table 2 shows how ST, SISJ and SHJ can be implemented as iterator functions
(Graefe, 1993) in an execution engine running on a centralized, uni-processor
environment that applies pipelining.

ST (RJ for two inputs) executes the join and passes the results to the upper
operator. SISJ first constructs the slot index, then hashes the results of the probe
(right) input into the corresponding buckets and finally performs the join, passing
the results to the upper operator. SHJ does not have knowledge about the initial
buckets where the results of the left join will be hashed; thus, it cannot avoid
writing the results of its left input to disk. At the same time it performs sampling
to determine the initial extents of the buckets. Then, the intermediate file is read
and hashed to the buckets. The results of the probe input are immediately hashed
to buckets. Notice that in this implementation, the system buffer is shared
between at most two operators and next functions never run concurrently; when

Spatial Joins 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

join is executed at one operator, only hashing is performed at the upper one. Thus,
given a memory buffer of M pages, the operator that is currently performing a
join uses M – K pages and the upper operator, which performs hashing, uses K
pages, where K is the number of slots/buckets. In this way, the utilization of the
memory buffer is maximized.

Optimization of Multiway Spatial Joins

Given a set of binary (for example, SISJ, SHJ) and n-ary (for example, ST) join
operators, and the corresponding selectivity/cost estimation formulae, the spatial
query optimizer aims at finding a fast execution plan. Dynamic programming
(DP), the standard technique for relational query optimization, can also be
applied for multiway spatial joins. The optimal plan for a query is computed in a
bottom-up fashion from its sub-graphs. At step i, for each connected sub-graph
Q

i
 with i nodes, DP (Figure 13) finds the best decomposition of Q

i
 to two

connected components, based on the optimal cost of executing these components
and their sizes. We assume that all join inputs are indexed by R-trees. When a
component consists of a single node, SISJ is considered as the join execution
algorithm, whereas if both parts have at least two nodes, SHJ is used. The output
size is estimated using the size of the plans that formulate the decomposition. DP
compares the cost of the optimal decomposition with the cost of processing the
whole sub-graph using ST, and sets as optimal plan of the sub-graph the best
alternative. Since pairwise algorithms are I/O bound and ST is CPU-bound,
when estimating the cost for a query sub-plan, DP takes under consideration the
dominant factor in each case.

At the end of the algorithm, Q.plan will be the optimal plan, and Q.cost and Q.size
will hold its expected cost and size. The execution cost of dynamic programming
depends on: (i) the number of relations n, (ii) the number of valid node

 clique chain star
combk







k

n

n-k+1













−
−

=

otherwise ,
1

1
 1,

k

n
kn

decompk












+

≤≤

∑
<≤ 12

otherwise ,

 21 ,0

k-i i

k
k

k
 


 ≤≤

otherwise ,2

 21 ,0 k





−
≤≤

otherwise ,1

 21 ,0

k

k

Table 3. Number of plans and optimization cost parameters for different
query graphs

180 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

combinations comb
k
 (that formulate a connected sub-graph) for each value of n,

and (iii) the number of decompositions decomp
k
 of a specific combination. Table

3 illustrates the above parameters for three special cases of join graphs. Note
that combinations of 2 nodes do not have valid decompositions because they can
be processed only by RJ.

The running cost of the optimization algorithm is the number of input combina-
tions for each value of n times the number of valid decompositions plus 1 for the
cost of ST:

Cost
CPU

(DP, Q) = ()∑
≤≤

+⋅
nk

kk decompcomb
1

1 (20)

Equation 20 suggests that DP can be too expensive for joins with a large (for
example, >10) number of inputs. For such cases, randomized algorithms can find
a good (but sub-optimal) plan within limited time (Mamoulis & Papadias, 2001).

DP(Query Q, int n) /*n = number of inputs*/
 for each connected sub-graph Ri-Rj Q2 Q of size 2 do {
 Q2.cost := Cost(RJ, Ri, Rj); /*Equation 5*/
 Q2.size := OC(Ri, Rj); /*Equation 3*/ }
 for i:=3 to n do
 for each connected sub-graph Qi Q with i nodes do {/*Find optimal plan for Qi*/
 Qi.plan := ST; Qi.cost := CostCPU(ST, Qi); /*Equation 18*/
 for each decomposition Qi {Qk, Qi-k}, such that Qk, Qi-k connected do {
 if (k=1) then /*Qk is a single node; SISJ will be used*/
 {Qk, Qi-k}.cost := Qi-k.cost + Cost(SISJ, Qk, Qi-k); /*Equation 11*/
 else /*both components are sub-plans; SHJ will be used*/
 {Qk, Qi-k}.cost := Qk.cost + Qi-k.cost + Cost(SHJ, Qk, Qi-k); /*Equation8*/
 if {Qk,Qi-k}.cost<Qi.cost then { /*better than former optimal*/
 Qi.plan := {Qk, Qi-k}; /*mark decomposition. as Qi’s optimal plan*/
 Qi.cost := {Qk, Qi-k}.cost; /*mark so far optimal cost of Qi*/}
 } /*decomposition*/
 /*Estimate Qi’s output size from optimal decomposition*/
 Qi.size := OC(Qi.plan);
 }}

Figure 13. Dynamic programming for optimization of multiway spatial joins

Spatial Joins 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

In this chapter we review some of the most significant research results related
to spatial join processing. In particular, we describe: (i) binary algorithms that can
be used in different cases, depending on whether the joined inputs are indexed
or not; (ii) selectivity and cost estimation models; and (iii) techniques for the
efficient processing of multiway joins based on integration of binary algorithms
and synchronous traversal. Although we attempted to provide an extensive
coverage of the literature, several issues related to spatial joins — for example,
parallel join processing (Brinkhoff et al., 1996; Luo, Naughton, & Ellman, 2002)
and join variants (Koudas & Sevcik, 2000; Corral et al., 2000; Böhm & Krebs,
2002; Shou et al., 2003) — were omitted due to space constraints.

There are several issues related to spatial joins that still need to be addressed.
First, it is a common belief that intersection join algorithms can be straightfor-
wardly applied for other types, like distance joins. However, practice (for
example, see Corral et al., 2000; Shou et al., 2003) has already shown that direct
extensions (usually of RJ) may be inefficient, and several optimizations can
potentially enhanceperformance. Thus the application and optimization of differ-
ent intersection algorithms to other join variants is an interesting topic of future
work. Furthermore, although current systems only consider the standard “first
filter, then refinement step” strategy, a spatial query processor should allow the
interleaving of filter and refinement steps. For example, consider the query “find
all cities adjacent to forests, which are intersected by a river” and assume that
we know there are only a few rivers that intersect cities, although there are
numerous such MBR pairs. Then, it would be preferable to execute the
refinement step after the first join before we proceed to the next one. However,
this knowledge presumes that we have accurate selectivity formulae for the
refinement step, which is a difficult, open problem for future work.

References

Acharya, S., Poosala, V., & Ramaswamy, S. (1999). Selectivity Estimation in Spatial
Databases. Proceedings of the ACM SIGMOD Conference, 13-24.

An, N., Yang, Z., & Sivasubramaniam, A. (2001). Selectivity Estimation for
Spatial Joins. Proceedings of the IEEE ICDE Conference, 368-375.

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., & Vitter, J.S. (1998).
Scalable Sweeping-Based Spatial Join. Proceedings of the VLDB Con-
ference, 570-581.

182 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Beckmann, N., Kriegel, H.P., Schneider, R., & Seeger, B. (1990). The R*-tree:
an Efficient and Robust Access Method for Points and Rectangles.
Proceedings of the ACM SIGMOD Conference, 322-331.

Belussi, A., & Faloutsos, C. (1998). Self-spatial Join Selectivity Estimating
Using Fractal Concepts. ACM TOIS, 16(2), 161-201.

Böhm C., & Krebs F. (2002). High Performance Data Mining Using the Nearest
Neighbor Join. Proceedings of the IEEE International Conference on
Data Mining, 43-50.

Brinkhoff, T., Kriegel, H.P., Schneider, R., & Seeger, B. (1994). Multi-Step
Processing of Spatial Joins. Proceedings of the ACM SIGMOD Confer-
ence, 197-208.

Brinkhoff, T., Kriegel, H.P., & Seeger, B. (1993). Efficient Processing of Spatial
Joins Using R-trees. Proceedings of the ACM SIGMOD Conference,
237-246.

Brinkhoff, T., Kriegel, H.P., & Seeger, B. (1996). Parallel Processing of Spatial
Joins Using R-trees. Proceedings of the ICDE Conference, 258-265.

Corral, A., Manolopoulos, Y., Theodoridis, Y., & Vassilakopoulos, M., (2000).
Closest Pair Queries in Spatial Databases. Proceedings of the ACM
SIGMOD Conference, 189-200.

Faloutsos, C., Seeger, B., Traina, A., & Traina, C. (2000). Spatial Join Selectivity
Using Power Laws. Proceedings of the ACM SIGMOD Conference,
177-188.

Gaede, V. & Günther, O. (1998). Multidimensional Access Methods. ACM
Computing Surveys, 30(2), 123-169.

Graefe, G. (1993) Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2), 73-170.

Günther, O. (1993) Efficient Computation of Spatial Joins. Proceedings of the
ICDE Conference, 50-59.

Güting, R.H. (1994). An Introduction to Spatial Database Systems. VLDB
Journal, 3(4), 357-399.

Guttman, A. (1984). R-trees: A Dynamic Index Structure for Spatial Searching.
Proceedings of the ACM SIGMOD Conference, 47-57.

Haralick, R., & Elliott, G. (1981). Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14, 263-313.

Huang, Y.W., Jing, N., & Rundensteiner, E. (1997a). Spatial Joins using R-trees:
Breadth First Traversal with Global Optimizations. Proceedings of the
VLDB Conference, 395-405.

Spatial Joins 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Huang, Y.W., Jing N., & Rundensteiner, E. (1997b). A Cost Model for
Estimating the Performance of Spatial Joins Using R-trees. Proceedings
of the SSDBM Conference, 30-38.

Kamel, I., & Faloutsos, C. (1993). On Packing R-trees. Proceedings of the
ACM International Conference on Information and Knowledge Man-
agement (CIKM), 490-499.

Koudas, N., & Sevcik, K. (1997). Size Separation Spatial Join. Proceedings of
the ACM SIGMOD Conference, 324-335

Koudas, N., & Sevcik, K. (2000). High Dimensional Similarity Joins: Algorithms
and Performance Evaluation. IEEE Transactions in Knowledge and
Data Engineering, 12(1), 3-18.

Kondrak Q., & van Beek, P. (1997). A Theoretical Evaluation of Selected
Backtracking Algorithms. Artificial Intelligence, 89, 365-387.

Lo, M-L., & Ravishankar, C.V. (1994). Spatial Joins Using Seeded Trees.
Proceedings of the ACM SIGMOD Conference, 209-220.

Lo, M-L., & Ravishankar, C.V. (1996). Spatial Hash-Joins. Proceedings of the
ACM SIGMOD Conference, 247-258.

Luo, G., Naughton, J., & Ellman, C. (2002). A Non-Blocking Parallel Spatial Join
Algorithm. In Proceedings of the ICDE Conference, 697-705.

Mamoulis, N., & Papadias, D. (1999). Integration of Spatial Join Algorithms for
Processing Multiple Inputs. Proceedings of the ACM SIGMOD Confer-
ence, 1-12.

Mamoulis, N., & Papadias, D. (2001). Multiway Spatial Joins. ACM Transac-
tions on Database Systems (TODS), 26(4), 424-475.

Mamoulis, N., & Papadias, D. (2003). Slot Index Spatial Join. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 15(1), 211-231.

Muralikrishna, M., & DeWitt, D. (1988). Equi-Depth Histograms for Estimating
Selectivity Factors for Multi-Dimensional Queries. Proceedings of the
ACM SIGMOD Conference, 28-36.

Orenstein, J. (1986). Spatial Query Processing in an Object-Oriented Database
System. Proceedings of the ACM SIGMOD Conference, 326-336.

Papadias, D., Mamoulis, N., & Delis, V. (1998). Algorithms for Querying by
Spatial Structure. Proceedings of the VLDB Conference, 546-557.

Papadias, D., Mamoulis, N., & Theodoridis, Y. (1999) Processing and Optimi-
zation of Multiway Spatial Joins Using R-trees. Proceedings of the ACM
Symposium on Principles of Database Systems (PODS), 44-55.

184 Mamoulis, Theodoridis & Papadias

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Papadopoulos, A.N., Rigaux, P., & Scholl, M. (1999). A Performance Evalua-
tion of Spatial Join Processing Strategies. Proceedings of the Symposium
on Large Spatial Databases (SSD), 286-307.

Patel, J.M., & DeWitt, D.J. (1996). Partition Based Spatial-Merge Join.
Proceedings of the ACM SIGMOD Conference, 259-270.

Poosala, Y., & Ioannidis, Y. (1997) Selectivity Estimation without the Attribute
Value Independence Assumption. Proceedings of the VLDB Confer-
ence, 486-495.

Preparata, F., & Shamos, M. (1985). Computational Geometry. Springer, New
York.

Rotem, D. (1991). Spatial Join Indices. Proceedings of the International
Conference on Data Engineering (ICDE), 500-509.

Shou, Y., Mamoulis, N., Cao, H., Papadias, D., & Cheung, D.W. (2003).
Evaluation of Iceberg Distance Joins. Proceedings of the 8th Interna-
tional Symposium on Spatial and Temporal Databases, (SSTD), 270-
288.

Theodoridis, Y., & Sellis, T. (1996). A Model for the Prediction of R-tree
Performance. Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), 161-171.

Theodoridis, Y., Stefanakis, E., & Sellis, T. (1998). Cost Models for Join Queries
in Spatial Databases. Proceedings of the ICDE Conference, 476-483.

Endnotes

* supported by grant HKU 7149/03E from Hong Kong RGC
* * also with the Data and Knowledge Engineering Group, Computer Technol-

ogy Institute, Greece [http://dke.cti.gr]
* * * supported by grant HKUST 6180/03E from Hong Kong RGC
1 Given a series of different layers of the same region (for example, rivers,

streets, forests), its workspace is defined as the total area covered by all
layers (not necessarily rectangular) including holes, if any.

2 RJ can be thought of as a special case of ST involving two inputs.

