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Abstract

This chapter describes algorithms, cost models and optimization techniques
for spatial joins. Joins are among the most common queries in Spatial
Database Management Systems. Due to their importance and high processing
cost, a number of algorithms have been proposed covering all possible
cases of indexed and non-indexed inputs. We first describe some popular
methods for processing binary spatial joins and provide models for
selectivity and cost estimation. Then, we discuss evaluation of multiway
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spatial joins by integrating binary algorithms and synchronous tree
traversal. Going one step further, we show how analytical models can be
used to combine the various join operators in optimal evaluation plans. The
chapter can serve as a comprehensive reference text to the researcher who
wants to learn about this important spatial query operator and to the
developer who wants to include spatial query processing modules in a
Database System.

| ntroduction

Spatial database systems(Giting, 1994) managelargecollectionsof multidimen-
sional datawhich, apart from conventional features, include special character-
istics such as position and extent. That there is no total ordering of objectsin
space that preserves proximity renders conventional indexes, such as B*-trees,
inapplicable to spatial databases. As a result, a number of spatial access
methods have been proposed (Gaede & Glinther, 1998). A very popular method,
used in several commercial systems (for example, Informix and Oracle), isthe
R-tree (Guttman, 1994), which can be thought of as an extension of B*-treein
multi-dimensional space. R-treesindex object approximations, usual ly minimum
bounding rectangles(MBRs), providing afast filter step that excludesall objects
that cannot satisfy aquery. A subsequent refinement step uses the geometry of
thecandidateobjects(that is, theoutput of thefilter step) to dismissfalsehitsand
retrieve the actual solutions. The R-tree and its variations have been applied to
efficiently answer several query types, including spatial selections, nearest
neighborsand spatial joins.

Asinrelational databases, joinsplay animportant rolein effective spatial query
processing. A binary (that is, pairwise) spatial join combinestwo datasets with
respect to a spatial predicate (usually overlap/intersect). A typical exampleis
“find all pairs of cities and rivers that intersect.” For instance, in Figure 1 the
result of the join between the set of cities{c, c, c,, c,, c.} and rivers{r,r.},
is{(r,c), (r,c), (r, c)}.

The query in this exampleisaspatial intersection join. In the general case, the
join predicate could be a combination of topological, directional and distance
spatial relations. Apart from the intersection join, variants of the distance join
have received considerable attention because they find application in data
analysis tasks (for example, data mining and clustering). Given two sets R and
Sof spatial objects(or multidimensional points) and adistancefunctiondist(), the
p-distance join (or else similarity join) (Koudas & Sevcik, 2000) returns the
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Figure 1. Graphical example of a spatial intersection join
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pairsof objects{(r,s):r € R,se S, dist(r,s) <u}. A closest pairsquery (Corral,
Manolopoulos, Theodoridis, Vassilakopoulos, 2000) returns the set of closest
pairs CP={(r, s):r € R,se S}, suchthat dist(r, s) < dist(r’, s"), foral r'e R, s’
e S (r, s) ¢ CP. A similar (non-commutative) operator is the all k-nearest
neighbors query (Béhm & Krebs, 2002), which returns for each object from R
itsk nearest neighborsin S. Finally, given two datasets R and S, areal number
M and an integer t, the iceberg distance join (Shou, Mamoulis, Cao, Papadias,
Cheung, 2003) retrieves all pairs of objectsfrom Rand Ssuch that: (i) the pairs
are within distance ¢, and (ii) an object of R appears at least t timesin the result
(for example, find all regions of Rthat are within distance 1 km from at least 10
regions of §).

Asan examplefor the spatial join variants, consider Figure 2, which illustrates
a set of hotels {h,, h,, h,} and a set of restaurants {r, r,, r,, r, r.}. The &
distance join between these two setsreturns seven pairs (h,, r.), (h,, r,), (h,, r,),
(h,, r)), (h,r,), (h, r,) and (h,, r.). The 3-closest pairs are (h,, r,), (h,, r.) and
(h,, r,). Theall 1-nearest neighbor operator (for the hotels) returns (h,, r,), (h,,
r,) and (h,, r.). Note that ¢ is not involved in closest pairs and all k-nearest
neighborsoperations. Finally, theiceberg distancejoinfor t=3returns(h,, r,), (h,,
r,)and(h,,r,). Observethat h,istheonly hotel with at |east 3 nearby restaurants.

Inthischapter, wefocusonintersectionjoinsby reviewing evaluation algorithms
and cost models, aswell as techniques for optimizing and integrating them in a
spatial database query engine. Other variants of spatial joins can be processed
by (trivially or non-trivially) extending algorithms for intersection joins. The
interested reader should check Koudas and Sevcik (2000), Corral et al. (2000),
Bohm and Krebs(2002) and Shou et al .(2003) for details.
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Figure 2. Example of distance join variants

Binary Spatial Joins

Most early spatial join algorithms apply atransformation of objectsin order to
overcomethe difficultiesraised by their spatial extent and dimensionality. The
first known algorithm (Orenstein, 1986) uses a grid to regularly divide the
multidimensional space into small blocks, called pixels, and employs a space-
filling curve (z-ordering) to order them. Each object isthen approximated by the
set of pixelsintersected by itsMBR, that is, aset of z-values. Since z-valuesare
1-dimensional, the objects can be dynamically indexed using relational index
structures, likethe B*-tree, and the spatial join can be performed in asort-merge
joinfashion. Theperformancedependsonthegranularity of thegrid; larger grids
can lead to finer object approximations, but also increase the space require-
ments. Rotem (1991) proposes an algorithm based on aspatial joinindex similar
to the relational join index, which partially pre-computes the join result and
employs grid files to index the objects in space.

Themostinfluential algorithm for joining two datasetsindexed by R-treesisthe
R-treejoin (RJ) (Brinkhoff, Kriegel, Seeger, 1993), duetoitsefficiency and the
popularity of R-trees. RJ synchronously traverses both trees, according to the
paradigm of Gunther (1993), following entry pairsthat overlap; non-intersecting
pairscannot lead to solutions at the lower levels. After RJ, most research efforts
focused on spatial join processing for non-indexed inputs. Non-indexed inputs
are usually intermediate results of apreceding operator. Consider, for instance,
the query “find all cities with population over 5,000 which are crossed by a
river.” If thereareonly afew large citiesand an index on population, it may be
preferable to process the selection part of the query before the spatial join. In
suchanexecutionplan, evenif thereisaspatial index oncities, itisnot employed
by the spatial join algorithm.

The simplest method to process a pairwise join in the presence of oneindex is
by applying a window query to the existing R-tree for each object in the non-
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indexed dataset (index nested loops). Due to its computational burden, this
method is used only when the joined datasets are relatively small. Another
approachistobuildan R-treefor the non-indexedinput using bulk loading (Patel
& DeWitt, 1996, Papadopoulos, Rigaux, Scholl, 1999) and then employ RJ to
match thetrees (build and match). Lo and Ravishankhar (1994) use the existing
R-tree as a skeleton to build a seeded tree for the non-indexed input. The sort
and match (SaM) algorithm (Papadopoulos et al., 1999) spatially sortsthe non-
indexed objects but, instead of building the packed tree, it matches each in-
memory created leaf node with the leaf nodes of the existing tree that intersect
it. Finally, theslot index spatial join (SISJ) (Mamoulis & Papadias, 1999, 2003)
applies hash-join, using the structure of the existing R-tree to determine the
extents of the spatial partitions.

If noindexesexist, bothinputshaveto be preprocessed in order to facilitatejoin
evaluation. Arge, Procopiuc, Ramaswamy, Suel and Vitter (1998) propose
scalable sweeping-based spatial join (SSSJ) that employs a combination of
plane sweep (Preparata & Shamos, 1985) and space partitioning to join the
datasets. However, the algorithm cannot avoid external sorting of both datasets,
which may lead to large I/O overhead. Patel and DeWitt (1996) describe
partition based spatial merge join (PBSM) that regularly partitions the space
using arectangular grid, and hashes both inputsinto the partitions. It then joins
groups of partitions that cover the same area using plane-sweep to produce the
join results. Some objects from both sets may be assigned in more than one
partition, so the algorithm needs to sort the results in order to remove the
duplicate pairs. Another algorithm based on regular space decompositionisthe
size separation spatial join (S3J) (Koudas & Sevcik, 1997). S3J avoids
replication of objectsduring the partiti oning phase by introducing morethan one
partitionlayer. Each object isassignedinasinglepartition, but one partition may
bejoined with many upper layers. The number of layersisusually small enough
for onepartition fromeach layer tofitin memory; thus, multiple scansduring the
join phase are not needed. Spatial hash-join (SHJ) (Lo & Ravishankar, 1996)
avoidsduplicateresultsby performing anirregul ar decomposition of space based
on the data distribution of the build input.

Table 1 summarizes the existing algorithms of all three classes. In general,
indexing facilitates efficiency in spatial join processing; an algorithm that uses
existing indexesis expected to be more efficient than one that does not consider
them. The relative performance of algorithmsin the same class depends on the
problem characteristics. Gunther (1993) suggests that spatial join indices per-
form best for low join selectivity, while in other cases RJ is the best choice.
Among the algorithms in the second class (one indexed input), SISJ and SaM
outperform the other methods because they avoid the expensive R-tree con-
struction (Mamoulis & Papadias, 2003). There is no conclusive experimental
evaluation for the algorithms in the third class (non-indexed inputs). S*J is
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preferable when the datasets contain relatively large rectangles and extensive
replication occursin SHJand PBSM. SHJand PBSM have similar performance
when the refinement step is performed exactly after the filter step. In this case,
both algorithms sort their output in order to minimize random 1/0Os and PBSM
combines the removal of duplicate pairs with sorting. However, in complex
gueries (for example, multiway spatial joins) and when the refinement step is
postponed after the filter steps of all operators, PBSM may be more expensive,
because it can produce larger intermediate results (due to the existence of
duplicates). S*J requires sorting of both datasets to be joined, and therefore it
does not favor pipelining and parallelism of spatial joins. On the other hand, the
fact that PBSM usespartitionswith fixed extentsmakesit suitablefor processing
multiple joinsin parallel. In the following paragraphs, we review in detail one
representative algorithm from each of thethree classes, namely the RJ, SHJand
SISJ. SHJ

The R-tree join

The RJ (Brinkhoff et al., 1993) is based on the enclosure property of R-trees:
if two nodes do not intersect, there can be no MBRs below them that intersect.
Following this observation, RJ starts from the roots of the treesto bejoined and
findspairsof overlapping entries. For each such pair, thealgorithmisrecursively
called until theleaf levelswhere overlapping pairsconstitute solutions. Figure 3
illustratesthe pseudo-codefor RJassuming that thetreesare of equal height; the
extension to different heightsis straightforward.

Figure4illustratestwo datasetsindexed by R-trees. Initially, RJreceivesthetwo
tree roots as parameters. The qualifying entry pairs at theroot level are (A, B))
and (A,, B,). Notice that since A, does not intersect B,, there can be no object
pairs under these entries that intersect. RJ is recursively called for the nodes
pointed by the qualifying entries until the leaf level is reached, where the
intersecting pairs (a,, b,) and (a,, b,) are output.

Table 1. Classification of spatial join methods

Both inputsareindexed Oneinput isindexed Neither input isindexed
e transformation to z-values e index nested loops e gpatia hashjoin (Lo &
(Crenstein, 1986) o seeded treejoin (Lo & Ravishankar, Ravishankar, 1996)
e gpatid join index (Rotem, 1994) e partition based spatial merge join
1991) o build and match (Patel & DeWitt, (Patel & DeWitt, 1996)
o tree matching (Gunther, 1993, 1996, Papadopoulos et al ., 1999) e size separation spatial join
Brinkhoff et a., 1993) o sort and match (Papadopouloset al., (Koudas & Sevcik, 1997)
1999) o scalable sweeping-based spatial
e dlot index spatid join (Mamoulis & join (Argeet a., 1998)
Papadias, 2003)
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Two optimization techniques can be used to improve the CPU speed of RJ
(Brinkhoff et al., 1993). The first, search space restriction, reduces the
quadratic number of pairs to be evaluated when two nodes n, n are joined. If
anentry e e n, doesnot intersect the MBR of n, (thatis, the MBR of all entries
contai ned |n n) then there can be no entry e,enN, suchthate ande y overlap.

Using thlsfact spacerestriction performstwo Ilnear scansin the entries of both
nodes before RJ and prunes out from each node the entriesthat do not intersect
the MBR of the other node. The second technique, based on the plane sweep
paradigm, applies sorting in one dimension in order to reduce the cost of
computing overlapping pairs between the nodes to be joined. Plane sweep also
saves 1/0Os compared to nested loops because consecutive computed pairs
overlapwith highprobability. (Brinkhoff et al. 1994) discussmulti-step process-
ing of RJusing several approximations (instead of conventional MBRS). Huang,
Jing and Rundensteiner (1997a) propose abreadth-first optimized version of RJ
that sortsthe output at each level in order to reduce the number of page accesses.

Spatial Hash Join

SHJ (Lo & Ravishankar, 1996) (based on the relational hash-join paradigm)
computes the spatial join of two non-indexed datasets R (build input) and S
(probe input). Set R is partitioned into K buckets, where K is decided by the
system parameters. The initial extents of the buckets are points determined by
sampling. Each object isinserted into the bucket that is enlarged the least. Set
Sishashed into bucketswith the same extent as R’ sbuckets, but with adifferent
insertionpolicy: Anobjectisinsertedintoall bucketsthat intersectit. Thus, some
objects may be assigned to multiple buckets (replication) and some may not be
inserted at all (filtering). The algorithm does not ensure equal-sized partitions
for R (that is, with the same number of objects in them), as sampling cannot
guarantee the best possible bucket extents. Equal-sized partitions for S cannot

Figure 3. R-tree-based spatial join

RJ(Rtree_Node n;, RTNode n;)
for eachentry g, n;jdo{
foreachentry ey nwithegyx ey do{
if njisaleaf node /* nisalsoaleaf node*/
then Output (e, €y);
else { /* intermediate nodes */
ReadPage(e, «.r ef); ReadPage(, ,.ref);
Rl(exref, gy.ref);}  }
} I* end for */
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be guaranteed in any case, as the distribution of the objectsin the two datasets
may be different.

Figure5 showsan exampl e of two datasets, partitioned using the SHJalgorithm.
After hashing set S, the two bucket sets are joined; each bucket from R is
matched with only one bucket from S, thus requiring asingle scan of both files,
unlessfor somepair neither bucket fitsin memory. Inthiscase, an R-treeisbuilt
for oneof them, and the bucket-to-bucket joinisexecuted inanindex nested | oop
fashion.

Slot Index Spatial Join

SISJ(Mamoulis & Papadias, 2003) isapplicablewhenthereisan R-treefor one
of theinputs(R). Thealgorithmissimilar to SHJ, but usestheR-treeon Rin order
todeterminethebucket extents. If K isthedesired number of partitions, SISJwill
find thetopmost level of thetree such that the number of entriesislarger or equal
to K. These entries are then grouped into K (possibly overlapping) partitions
called slots. Each slot containsthe M BR of theindexed R-treeentries, alongwith
alist of pointers to these entries. Figure 6 illustrates a 3-level R-tree (the leaf
level isnot shown) and aslot index built over it. If K=9, theroot level contains
too few entries to be used as partition buckets. As the number of entriesin the
nextlevel isover K, wepartitionthemin 9 slots(for thisexample). Thegrouping
policy of SISJstartswith asingle empty slot and inserts entriesinto the slot that
is enlarged the least. When the maximum capacity of a slot is reached
(determined by K and thetotal number of entries), either someentriesare del eted
and reinserted or the slot is split according to the R*-tree splitting policy
(Beckmann, Kriegel, Schneider & Seeger, 1990).

After building the sl ot index, the second dataset Sishashed into bucketswiththe
same extents as the slots. If an object from S does not intersect any bucket, it

Figure 4. Two datasets indexed by R-trees
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Figure 5. The partitioning phase of SHJ algorithm
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(a) Objectsfrom set R (build input) in (b) Filtering and replication of objects from
three partition buckets set S(probe input)

isfiltered; if it intersects more than one bucket, it isreplicated. The join phase
of SISJisalso similar to the corresponding phase of SHJ. All data from the R-
tree of Rindexed by aslot are loaded and joined with the corresponding hash-
bucket from Susing plane sweep. If the datato be joined do not fit in memory,
they can be joined using the algorithm of Arge et al.(1998), which employs
external sorting and then plane sweep. Another alternative isindex nested |oop
join (using asaroot of the R-treethe corresponding slot). These methods can be
expensive when the partitions are much larger than the buffer. In such cases
SISJisappliedrecursively,inasimilar way to recursivehash-join. Duringthejoin
phase of SISJ, when no datafrom Sisinserted into a bucket, the sub-tree data
under the corresponding slot is not loaded (slot filtering).

Selectivity and Cost Estimation for
Spatial Joins

Estimating thecost and the output sizeof aspatial joinisanimportant and difficult
problem. Accurate cost model sare necessary for the query optimizer to identify
a good execution plan that accelerates retrieval and minimizes the usage of
system resources. The output size of a spatial join between datasets R and S
depends on three factors:

e The cardinalities |R| and |§ of the datasets. The join may produce up to
|R|%| tuples (that is, the Cartesian product).

e Thedensity of the datasets. The density of adataset isformally defined as
the sum of areas of all objectsinit divided by the area of the workspacel.
Inother words, it isthe expected number of objectsthat intersect arandom
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Figure 6. An R-tree and a slot index built over it

I

(a) level 2 (root) entries (b) level 1 entries (c) dlot index over level 1

point in the workspace. Datasets with high density have objectswith large
average area, and produce numerous intersections when joined.

e The distribution of the MBRs. Skewed datasets may produce arbitrary
few or many join pairs. Data skew is the most difficult factor to estimate,
since in many cases the distribution is not known, and even if known, its
characteristics are very difficult to capture.

Thel/O cost of the refinement step is determined by the selectivity of thefilter
step, since for each candidate object (or object pair) a random access that
retrieves its exact geometry is required. However, the selectivity of the
refinement step is hard to estimate because the arbitrary extents of the actual
objects do not allow for the easy computation of quantities like density and
complicate the probabilistic analysis of overlapping regions. Although this
estimate does not affect the cost of the spatial operator, it can be crucial for the
cost estimate of operators that succeed it. For example, for a complex query,
where three datasets are joined, the selectivity of the first join determines the
input size of the second. Estimating the selectivity of a spatial query after the
refinement step is a challenging issue, and to the best of our knowledge, no
previouswork sufficiently solvesthisproblem. Existing studiesfocusonthefilter
step, often assuming that the data are uniformly distributed in the workspace
(uniformity assumption). Several of these studies are based on selectivity and
cost estimation formulae for window queries.

Selectivity and cost estimation for window queries

Given a spatial dataset R consisting of |R| “-dimensional uniformly distributed
rectangles in a rectangular area u (workspace universe), the number of
rectangles that intersect a window query w (output cardinality - OC) is
estimated by the following formula,
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d=1 ud

OC(R,w) = Rl-ﬁ min(lmT%}’ (1)

where a istheaveragelength of the projection of arectangler € Rat dimension

d, and W_d Iare the corresponding projections of w, u respectively. The

product in Equation 1, called Minkowski sum, depends on the probability that a
random rectanglefrom Rintersectsw. A graphical exampleisgiveninFigure?.
In particular, Figure 7adepicts adataset R and awindow query w. We can think
of wasapoint query on adataset that contains rectangles of average projection

a+w_d (Figure 7b), in which case the goal is to retrieve all rectangles that
contain the query point. Alternatively, the query can be transformed to a
rectanglewith average side a + W_d on |R| points (Figure 7c), in which casethe
goal istoretrieve the data pointsfalling in the query window. The min function

in Equation 1 avoids boundary effects when a + W_d >1 for some dimension d.

Theoutput sizefor non-uniform datacan be estimated by maintaining ahistogram
that partitions the data space into a set of buckets, and assuming that object
distribution in each bucket is (almost) uniform. Specifically, each bucket b
containsthe number b.num of objectswhose centroidsfall in b, and the average
extent b.len of such objects. Figure 8 illustrates an example in the 2D space,
where the gray area corresponds to the intersection between b and the extended
guery region, obtained by enlarging each edge of q with distance b.len/2.
Following the analysis on uniform data, the expected number of qualifying
objects in b approximates b.num’'”|.area/b.area, where |.area and b.area are
the areas of the intersection region and b, respectively (Acharya, Poosala, &
Ramaswamy, 1999). The total number of objects intersecting q is predicted by
summing the results of all buckets. Evidently, satisfactory estimation accuracy
dependsonthedegreeof uniformity of objects’ distributionsinthebuckets. This
can be maximized using various algorithms (Muralikrishna & DeWitt, 1988;
Poosala & loannidis, 1997; Acharyaet al., 1999), which differ in the way that
bucketsarestructured. For example, in Muralikrishna& DeWitt (1988), buckets
have similar sizes (that is, “equi-width”) or cover approximately the same
number of objects (that is, “ equi-depth™), whilein Poosalaand | oannidis (1997)
and Acharyaet al. (1999) bucket extents minimizethe so-called “ spatial skew.”

When the dataset is not indexed, the cost of a window query (in terms of disk
accesses) isequal to the cost of sequentially scanning the entire dataset (that is,
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Figure 7. Output size estimation for window queries
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(a) adataset and awindow (b) apoint query on rectangles of (c) awindow query of side
query averagesidey, w, ind={1,2} r, w,onpoints

itisindependent of the selectivity). Onthe other hand, the existence of an R-tree
can significantly reduce the query cost. The number of R-tree pages accessed
when processing a window query is equal to the expected number of non-leaf
node entries that intersect the query window plus the access of the R-tree root.

Let L be the number of R-tree levels and N, (E) be the number of entries

(averageentry projectionlength) at level | anddimensiond (Oistheleaf level and
L-1 theroot level). The cost of awindow query isthen given by the following
formula(Kamel & Faloutsos, 1993; Theodoridis & Sellis, 1996):

L1 s o
Cost(R, w) = 1 + Iz, N, -H(min{],rd*'u&}) 2)

d

Theodoridis& Sellis(1996) present formulaefor the estimation of m for each

R-treelevel that are based solely onthecardinality of thedataset |R|, the average
object MBR projection length and the page size, which determines the capacity
of the nodes and the height of the tree. The cost for non-uniform datasets can
be computed with the aid of histograms (similar to the selectivity case).

Selectivity and cost estimation for spatial joins

The output size (and selectivity) of aspatial join can be estimated by extending
Equation 1 (and Equation 2) in a straightforward way. Let R, S be the joined
datasets. The output of the join is the expected number of rectangles retrieved
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Figure 8. Estimation using histograms

!

query q b.len/2

* —& b.len2=—

bucket b

from Rwhen applying |§ window queries of projection length g . Conversely,
it is the expected number of rectangles retrieved from S when applying |R|

window queries of projection length a . In either case the output sizeis:

oc(R,S):|R|-|S|'Emin(lrd:Ts“] (3)

d

For other datadistributions wherethe uniformity assumption does not hold, one
can use 2D histograms that divide the space into buckets and summarize local
statisticsfor each bucket (Theodoridiset al., 1998; Mamoulis& Papadias, 1999).
Theuniformity assumption can then be applied to each region to accumulate the
estimate for the join output. An et al. (An et al., 2001) extend this method by
mai ntaining, for each bucket, statisticsabout the objects’ edgesand cornersthat
intersect it. Parametric approaches for distance joins, based on the observation
that distances between spatial objects follow power laws, were proposed in
(Belussi & Faloutsos, 1998, Faloutsoset al., 2000). Approximating the distribu-
tion (or object distances) inareal spatial dataset using histograms (or functions)
cannot provide worst-case guarantees for query selectivity estimation. As a
result, the effectiveness of most of the above methodsis evaluated experimen-
tally. An, Y ang and Sivasubramaniam (2001) show by experimentationthat their
method is more accurate compared to the techniques used in Theodoridis et al.
(1998)and in Mamoulis and Papadias (1999) for joins between sets of MBRs.
Belussi & Faloutsos (1998) and Faloutsos, Seeger, Traina and Traina (2000)
provide experimental evidencefor theaccuracy of their models, though they are
incomparable with An et al. (2001), since it is applicable for distance joins
between point sets.
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Cost of R-Tree Join

Theodoridiset al. (1998) studied the cost of RJinterms of R-tree node accesses.
Let Rand Sbetwo datasetsindexed by R-trees and assume that the two R-trees

have (at level 1) average entry side 1y, , s;, and number of entries N, N,

respectively. The number of node accesses during their spatial join can be
estimated by thefollowing formula:

L1 5 ' a+§
Cost,(RJ, R 9 =2+ 2-3 Ng, -Ng, 'H(mm{lT}) (4)
=1 d=1

d

Equation 4 expresses that every pair of intersecting entries at level | is
responsible for two node accesses at level I-1, if 1>0. Therefore, the sum of the
expected number of intersecting entry pairs at the high levels of the trees, plus
the two accesses of the tree roots, give an estimate of the total number of node
accesses. Nevertheless, this quantity can be considered as an upper bound only,
sinceit does not reflect the actual number of 1/Os under the existence of an LRU
buffer. When an intersecting pair of entries needs to be loaded, there is a high
probability that these pageswill beinthe system buffer if the buffer islarge and
if they have been requested before. Huang et al. (1997b) provide an analysis of
RJ based on this observation, according to which, the 1/O cost of joining R and
Sin the presence of an LRU buffer is given by the following formula,

Cost(RJ, R, § =T, + T, + (Cost,,(R, R, § — T, —T)xProb(node, M),
(5)

where T, T are the number of nodes in the R-trees for R and S, respectively,
and Prob(node, M) isthe probability that arequested R-tree node will not bein
thebuffer (of sizeM), resultinginapagefault. Thisprobability fallsexponentially
with M, and its estimation is based on an empirical analysis.

Cost of Spatial Hash Join

The 1/0 cost of SHJ depends on the size of the joined datasets and the filtering
and replication that occur in set S. Initially, asmall number of pages Cost_ is
loaded to determinetheinitial hash buckets. Then both sets are read and hashed
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into buckets. Let P, P_ be the number of pages of the two datasets (stored in
sequential files) and rep,, fil  be the replication and filtering ratios of S. The
partitioning cost of SHJisgiven by the following formula:

Cost , (SHJ, R, § = Cost_ + 2 P, + (2 + rep, — fil)xP,  (6)

Next, thealgorithmwill jointhe contentsof the bucketsfrom both sets. Intypical
cases, wherethebuffer islarge enough for at | east one partitiontofitin memory,
the join cost of SHJ s,

Cost; (SHJ, R, §) = P+ (1 + repg —fil JxP, (7)

consideringthat thejoin output isnot written to disk. Summing up, from Equations
6 and 7, the total cost of SHJis:

Cost(SHJ, R, §) = Cost_ + 3 P_ + (3 + 2rep, — 2fil )xP,  (8)

Cost of Sot Index Spatial Join

SISJjoins adataset Rindexed by an R-tree with anon-indexed file S. Let T, be
the number of R-tree nodes of R, and P the number of pagesin S. Initially, the
slots have to be determined from R. Thisrequiresloading thetop °levelsof R's
R-tree, inorder to find the appropriateslot level. Let frac, bethefraction of tree
nodesfromtheroot until °. The slot index isbuilt in memory, without additional
I/Os. Set Sis then hashed into the slots requiring P  accesses for reading, and
P+ rep P, —fil P accesses for writing, where rep,, fil ; are the replication and
filtering ratios of S. Thus, the cost of SISJ partition phaseis:

Cost . (SISJ, R, § = frac, xT_ + (2 + repg — fil )xPg 9

part

For the join phase of SISJ, we make the same assumptions as for SHJ; that is,
for eachjoined pair at |east one bucket fitsin memory. The pagesfrom set Rthat
have to be fetched for the join phase are the remaining (1-frac )xT,, since the
pointerstotheslot entriesare kept inthe slot index and need not beloaded again
from the top levels of the R-tree. The number of 1/O accesses required for the
joinphaseis:
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Cost  (SISJ, R, § = (1 —frac )xT, + (1 + rep, — fil )xP,  (10)

join

Summarizing, the overall cost of SISJis:
Cost(SISJ, R, § =T, + (3 + 2rep, — 2fil )xP (11)

We can qualitatively compare the three algorithms from Equations 4, 8 and 11.
Given alarge enough memory buffer, the cost of RJisnot much higher than T
+ T, since we expect that every requested R-tree node that has been |oaded will
remaininthememory buffer with high probability, duetothelocality of accessed
pages. Thisassertionisexperimentally verifiedin several studies (for example,
Huang et al., 1997b; Mamoulis & Papadias, 1999). Given that in typical R-tree
structures nodes have around 67% average utilization (Beckmann et al., 1990),
and that the non-leaf R-tree nodes are very few compared to the leaves (due to
the large fanouts, 100-200 in practice), the 1/O cost of RJisroughly the cost of
reading 150% of the total number of pages occupied by the rectangles (that is,
Cost(SISI R § = T, + T = 1.5(P, + Py). The cost of SISJis affected by the
filteringand replicationratios, which cannot beeasily predicted. Fromempirical
studiesonreal datasets (Mamoulis & Papadias, 2003), it has been observed that
inpractice, rep,~ 0.3 andfil .~ 0. Considering thisand the discussion on average
R-tree node occupancy, we can approximate the cost of SISJwith 1.5P_ + 3.6P.
With similar assumptionson thefiltering and replication ratios (and assuming a
negligible sampling cost), the cost of SHJis reduced to 3P, + 3.6P_. Based on
these numbers, we can conclude that RJ is more efficient than SISJ, which is
moreefficient than SHJ, under usual problem settings. Of course, theapplication
of RJ (SISJ) presumes the existence of two (one) R-trees.

In the next sections, we discuss how the cost estimation formulae for RJ, SHJ
and SISJ can be used in combination with the selectivity estimation models
discussed earlier to optimize complex queriesthat include spatial join operators.
The experimental study of Mamoulis & Papadias (2001) suggests that these
estimates are indeed accurate and usually lead to optimal plans.

Multiway Spatial Joins

Multiway spatial joins involve an arbitrary number of spatial inputs. Such
gueriesareimportantinseveral applications, including Geographical Information
Systems (for example, “find all cities adjacent to forests, which are intersected
by ariver”) and VLSI (for example, “find all sub-circuits that formulate a
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specific topological configuration”). Formally, a multiway spatial join can be
expressed as follows: Given n datasets R, R, ... R and a query Q, where Q
isthe spatial predicate that should hold between R and R, retrieve al n- tuples
{(rlw.,lx.,j NS RANE r€R. 1, eRandr Qr}Thequerycan
berepresented by agraph, where nodes correspond to datasets and edgestojoin
predicates. Equivalently, the graph can be viewed as a spatial constraint
network, where the nodes correspond to problem variables and edges to binary
spatial constraints. In the sequel we use the terms variable/dataset and con-
straint/join conditioninterchangeably.

We consider that all datasets are indexed by R-trees (on MBRs) and we deal
with thefilter step, assuming that overlap isthe default join condition; that is, if
Qij =True, then therectanglesfrom the corresponding inputsi,j should overlap.
The loosest query is the one that corresponds to an acyclic (tree) graph (for
example, theoneillustrated in Figure 9a), whilethe most constrained consists of
acomplete (clique) graph (for example, the one in Figure 9c). For each type of
query, Figure9illustratesasolution; that is, aconfiguration of rectanglesrile R
that satisfies the join conditions. We do not consider non-connected query
graphs, as these can be processed by solving connected sub-graphs and then
computing their Cartesian product.

Patel and DeWitt (1996) apply PBSM in adistributed, multi-processor environ-
ment to process cascading joins. Spatial datasets are regularly partitioned in
space (spatial declustering), and the physical resources (disks, processors) are
distributed according to the partitions. Papadopoul oset al. (1999) perform atwo-
join case study to evaluate the performance of four spatial join algorithms.
Mamoulis and Papadias (1999) propose a pairwise joins method (PJM) that
combines binary join algorithmsin a processing tree where the leaves are input
relations indexed by R-trees and the intermediate nodes are join operators.

Processing multiway joins by integration of pairwise join algorithms is the
standard approachinrel ational databaseswherethejoin conditionsusually relate
different attributes. In spatial joins, however, the conditions refer to a single
spatial attributefor all inputs; thatis, all object setsarejoined withrespect totheir
spatial features. Motivated by this fact, synchronous traversal (ST) traverses
top-down2 all the R-trees involved in the query, excluding combinations of
intermediate nodes that do not satisfy the join conditions. The first general
application of ST to an arbitrary number of inputs appeared in Papadias et al.
(1998) for retrieval of database images matching someinput configuration. The
employment of the method in multi-way spatial join processing is discussed in
Papadias et al. (1999) and in Mamoulis and Papadias (2001), together with
formulaefor selectivity (inuniform datasets) and cost estimation (intermsof node
accesses). Next, we present in detail PIM and ST. Finally, we discuss the
optimization of processing multiway spatial joinsbased on dynamic programming.
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Integration of Pairwise Join Algorithms for Processing
Multiple Inputs

Asin the case of relational joins, multiway spatial joins can be processed by
combining pairwisejoin algorithms. PIM considersajoin order that is expected
to result in the minimum cost (in terms of page accesses). Each join order
corresponds to a single execution plan, where:

(i) RJisapplied when the inputs are leaves; that is, datasets indexed by R-
trees,

(i) SISJisemployed when only one input isindexed by an R-tree,
(i) SHJis used when both inputs are intermediate results.

Asan example of PIM, consider the query in Figure 9a and the plans of Figure
10. Figure 10a involves the execution of RJ for determining R, R, The
intermediateresult, whichisnotindexed, isjoinedwithR, andfinally withR using
SISJ. Ontheother hand, theplanof Figure10bappliesRJforR | R andR; R,
and SHJ to join the intermediate results.

Queries with cycles can be executed by transforming them to tree expressions
using the most sel ective edges of the graph and filtering the results with respect
totheother relationsinmemory. For instance, consider thecycle (R, overlapR,),
(R, overlap R), (R, overlap R)) and the query execution plan R X (R, v R,).
When joining the tuples of (R, X R,) with R we can use either the predicate (R,
overlapR)), or (R,overlapR ) asthejoincondition. If (R,overlap R ) isthe most
selective one (that is, resultsin the minimum cost), itisapplied for thejoin, and
the qualifying tuples are filtered with respect to (R, overlap R)).

PJM uses Equations5, 8 and 11 to estimate thejoin cost of the three algorithms.
The expected output size of apairwise join determines the execution cost of an
upper operator andthereforeiscrucial for optimization. Selectivity estimationfor
apairwisejoinhasalready been discussed. Optimization of multiway spatial joins
requires selectivity estimation for each possible decomposition of the query

Figure 9. Multiway join examples
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(a) chain (tree) query (b) query with cycle (c) clique query
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graph (that is, for each allowable sub-plan). The generalized formula for the
output size of aquery (sub) graph Q with ninputsis:

OC(R,R,, ..., R, Q) = #(possible tuples)x Prob(a tuple is a sc()lll;';ion)

Thefirst part of the product equal sthe cardinality of the Cartesian product of the
n domains, while the second part corresponds to multiway join selectivity. In
case of acyclic graphs, the pairwise probabilities of the join edges are indepen-
dent and sel ectivity isthe product of pairwisejoin selectivities (Papadiaset al .,
1999):

5 ro+r
Prob(atupleisasolution)= ] Hmin[l—"d—"d) (13)
ud

Vi, j:Q; =TRUE d=1

From Equations 12 and 13, the total number of query solutionsis:

Vi, j:Q; =TRUE d=1

OCR..R.Q=[TR"_ I Hmn( r‘“””’] (14)

When the query graph contains cycles, the pairwise selectivities are no longer
independent and Equation 14 isnot accurate. For cliques, itispossibleto provide
aformulafor multiway join selectivity based onthefact that if aset of rectangles
mutually overlap, then they must share acommon area. Given arandom n-tuple
of rectangles, the probability that all rectanglesmutually overlap is(Papadias et
al., 1999):

n n

)
Prob(a tuple isa solution) = — r
Moy 2 I =
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Figure 10. Alternative plans using pairwise join algorithms
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Thus, in case of clique queries Q the number of solutionsis:

n 1 n n ___
OC(R,..R. Q) =[IRI TT—=> I]r:. (16)

5
i1 d-t (N=D-uy = 51

Theaboveformulaeareapplicablefor queriesthat can be decomposedto acyclic
and clique graphs (for example, Figure 9b). The optimal execution plan can be
computed fromthe estimated output sizeand the costs of theal gorithmsinvolved.
Selectivity estimation for real datasets can be performed using histograms. Next
we describe ST, an alternative to PIM for processing multiway spatial joins.

Synchronous Traver sal

ST processestheindexesof all joined datasets, following combinati ons of nodes
that satisfy the query constraints. Consider the four R-trees of Figure 11 and the
clique query of Figure 9c. The query asks for the set of 4-tuples(a,, b, c, d),
such that the four objects mutually overlap (for example, (a,, b,, c,, dz)S. ST
starts from the roots of the R-trees, searching for entries that satisfy the join
conditions. Inthisexample, out of the 16 combinationsof root entries(that s, (A,
B.C.D).(A,B,C,D,), .,(A,B,C,D,)only (A, B, C,D,) may lead
to actual solutions. For instance, thecombination (A, B,, C,, D,) doesnot satisfy
the query constraints because A, does not intersect C, (or D,); therefore, there
cannot beany pair of overlapping objects(a,, cy), a, pointedby A and c pointed
by C,. Asinthe case of RJ, for each intermediate level solution, the afgorithm
is called for the pointed R-tree nodes, recursively, until the leaves, where
solutions are output.
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Figure 11. Example of four R-trees
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In the worst case, the total number of combinations of data MBRs that have to
bechecked for the satisfaction of thejoin conditionsis|R|", wherenisthenumber
of inputs and |R| the cardinality of the datasets (assumed to be the same). ST
takes advantage of the hierarchical decomposition of space preserved by R-
trees to break the problem in smaller local ones at each tree level. A local
problem has to check C" combinations in the worst case (C is the R-tree node
capacity), and can be defined by:

* Asetof nvariables, v, v,,.., v,, each corresponding to a dataset.
»  For each variable v, adomain A, consisting of the entries { e

i7" |C|
anoden, (intree R).
. Each pair of variables (v,, vj) is constrained by overlap, if Q, is True.

} of

A binary assignment {v, < &

i x

Vv, < e } is consistent if Q, = True = e
overlapse . A solution of alocal problem isan-tuplet=(e .., €. ST - )
such that Vi j, {v.-e, v -e } is consistent. The goal isto find all solutlons

that is, assignments of entrl esto variables such that all constraints are satisfied.

In the previous example (clique query of Figure 9c), there exist four variables
v,,..,v,, and for each (v,,v), iz}, the constraint is overlap. At level 1 the domains
of thevariablesare A ={A A}, A,={B,,B,},A,={C,,C} andA,={D,,D,}. Once
the root level solution (A ,B,,C,,D,) is found, ST will recursively search for
qualifying tuples at the lower level, where the domains of v,,..,v, consist of the
entries under A ,..,D,, respectively; that is, A;={a,a}, A={b b}, A,={c,c,}
andA,={d,,d}. Notlcethat an intermediate-level solution does not necessarily
lead to an actual one. Since a part of the node area corresponds to “dead space”
(spacenot covered by object MBRS), many high-level solutionsarefalsehits. The

pseudo-code for ST, assuming R-trees of equal height, is presented in Figure 12.

For each A, space-restriction prunes all entries that do not intersect the MBR
of some n, where Q,=True. Consider the chain query of Figure 9aand the top-
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level solution (A, B, C,, D,). At the next level ST iscalledwithA ={a, a},
A,={b,b},A,={c,c}andA,={d,d}. Although A, intersects B,, none of
entries (a,, a,) do and these entries can be safely eliminated from A,. Since A|
becomes empty, (A,, B,, C,, D,) cannot lead to an actual solution and the search
is abandoned without loading the nodes pointed by B,, C, and D,. Find-
combinationsisthe“heart” of ST; that is, the search algorithm that finds tuples
te A) xA,x...xA that satisfy Q. In order to avoid exhaustive search of all
combinations, several backtracking algorithmsapplied for constraint satisfaction
problems can be used. The implementation of Mamoulis and Papadias (2001)
uses forward checking (FC) (Haralick & Elliott, 1981), which accelerates
search by progressively assigning valuesto variablesand pruning the domains of
future (non-instantiated) variables. Given a specific order of the problem’s
variablesv,, v,,..., v ,whenv, isinstantiated, the domainsof all futurevariables
Vv, j >1i, such that Qij =True, arerevised to contain only rectangles that intersect
the current instantiation of v. (check forward). If during this procedure some
domainiseliminated, anew valueistriedfor v, until theend of D, isreached. Then
FC backtracksto v, , trying a new value for this variable.

Figure 12. Synchronous R-tree traversal

ST(Query Q[][], RTNode n[J)
fori:=1tondo{ /*prunedomains*/
A; := space-restriction(Q, n[], i);
if 4;= thenreturn; /*no qualifying tuples exist for this combination of nodes*/}
for each find-combinations(Q, 4) do { /* for each solution at the current level */
if n[] are leaf nodes then /* qualifying tuple is at |eaf level*/
Output( );
else/*qualifying tupleis at intermediate level*/
ST(Q, .ref[]); /* recursive call to lower level */}

Domain space-restriction(Query Q[][], RTNode n[], int i)
read n;; /* read node from disk */
Adi=
foreachentrye, n do{
valid := True; *mark e x asvalid */
for each node n; such that Q; = True do {/*an edge exists between n; and nj*/
if ex n.MBR= then{/* &, doesnot intersect the MBR of node n; */
valid :=false; /* e xispruned */
break;}
if valid = True then /*e 4 is consistent with all node MBRs*/
di=4i €
}
return 4;;
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ST Cost Estimation

ST starts from the top level L-1 (where L is the height of the trees), and solves
onelocal problemin order to find solutionsat theroots. Each solution generates
one problem at the next level until it reaches the leaves where solutions are
output. Thus, the total number of local problemsis,

N -1+ i#solutions(Q,I), (17)

PROBLEMS =

where #solutions(Q, 1) is the number of qualifying entry combinations at level
I. An experimental study in Mamoulis and Papadias (2001) suggeststhat ST is
CPU bound, dueto the huge number of local problemsand thefact that treenodes
are visited with high locality; thus, the LRU buffer serves the majority of 1/0O
requests. Therefore, itiscrucial to estimate the CPU cost of thealgorithm. This
depends on the cost of the local problems, all of which have the same
characteristics (that is, number of variables, constraints and domain size);
therefore, it is reasonable to assume that they all have approximately the same
cost (Cpropen) - Consequently, the total CPU cost (Cost,,, ) equals the number
of local problems times the cost of each problem:

CPU

Cost,, (ST, Q)= N x C (18)

PROBLEMS PROBLEM

Norosems CaN be estimated by Equation 17 using Equation 12 for the number of
solutions at each level of thetree. The only differenceisthat instead of object
MBRs, intermediate nodesare used in Equations 14 and 16. Theremaining factor
isthe cost C_, o, Although in the worst case (for example, extremely large
intermediate nodes) each local problem is exponential (O(C")), the average
Crrosen fOr typical situationsis much lower (actually, itincreaseslinearly with
n and page size). Unfortunately, the nature of backtracking-based search
algorithms (including forward checking) does not permit theoretical average
case analysis (Kondrak & van Beek, 1997). Therefore, an empirical analysis
was conducted in Mamoulis and Papadias (2001) to isolate this cost. The result
of this analysis is that the CPU-time for each local problem is linear to the
number of variables n and the page size p, independently of the domain

density or the structure of the graph, and we can define,

C = Fxnxp , (29

PROBLEM
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Table 2. Iterator functions

Iterator Open Next Close
ST — opentreefiles — returnnext | — closetree
(RIfor two tuple files
inputs)
SISJ — open léeft treefile; —  perform — closetree
(assuming that left | — construct slot index; hash-join; file;
inputistheR-tree | — open right (probe) input; — returnnext | — de-allocate
input) — call next on right input and hash tuple dot index;
resultsinto slots; —  hash buckets
— closeright input
SHJ — open leftinput; —  perform — deallocate
(assuming that left [ — call next on left and write the results hash-join; hash buckets
input is the build into intermediate file while —  return next
input and right determining extents of hash buckets; tuple
input the probe — closeleft input;
input) — hash results from intermediate file into
buckets;

open right input;
call next on right and hash all results
into right buckets;

— closeright input

where F isafactor that depends on the algorithm for ST and the CPU speed and
can be estimated by Equations 17, 18, 19 and the actual cost of amultiway join.
The experiments of Mamoulisand Papadias (2001) suggest that this method has
low averageerror (below 15%) for various multiway joinson synthetic datasets.

Combining ST with Pairwise Join Algorithms

Since ST is essentially a generalization of RJ, it easily can be integrated with
other pairwise join algorithms to effectively process complex spatial queries.
Table 2 shows how ST, SISJand SHJ can be implemented asiterator functions
(Graefe, 1993) in an execution engine running on a centralized, uni-processor
environment that appliespipelining.

ST (RJ for two inputs) executes the join and passes the results to the upper
operator. SISJfirst constructsthe slot index, then hashestheresults of the probe
(right) inputinto the corresponding bucketsandfinally performsthejoin, passing
theresultsto the upper operator. SHJ does not have knowledge about the initial
buckets where the results of the left join will be hashed; thus, it cannot avoid
writing theresultsof itsleftinput to disk. At the sametimeit performssampling
to determinetheinitial extentsof the buckets. Then, theintermediatefileisread
and hashed to the buckets. Theresultsof the probeinput areimmediately hashed
to buckets. Notice that in this implementation, the system buffer is shared
between at most two operators and next functions never run concurrently; when
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Table 3. Number of plans and optimization cost parameters for different
query graphs

clique chain star
combx, (n) n-k+1 n,k=1
n-1
k {( } otherwise
k-1
decomp 01<ks<2 01<k<2 01<k<2
k+ Y (kJ otherwise 2, otherwise k —1, otherwise
2<ickal !

joinisexecuted at oneoperator, only hashing isperformed at theupper one. Thus,
given amemory buffer of M pages, the operator that is currently performing a
join uses M — K pages and the upper operator, which performs hashing, uses K
pages, where K isthe number of slots/buckets. Inthisway, the utilization of the
memory buffer is maximized.

Optimization of Multiway Spatial Joins

Given aset of binary (for example, SISJ, SHJ) and n-ary (for example, ST) join
operators, and the corresponding sel ectivity/cost estimation formul ae, the spatial
guery optimizer aims at finding a fast execution plan. Dynamic programming
(DP), the standard technique for relational query optimization, can also be
applied for multiway spatial joins. The optimal plan for aquery iscomputedina
bottom-up fashion from its sub-graphs. At step i, for each connected sub-graph
Q, with i nodes, DP (Figure 13) finds the best decomposition of Q. to two
connected components, based on the optimal cost of executing thesecomponents
and their sizes. We assume that all join inputs are indexed by R-trees. When a
component consists of a single node, SISJis considered as the join execution
algorithm, whereasif both partshaveat | east two nodes, SHJisused. The output
sizeisestimated using thesize of the plansthat formul atethedecomposition. DP
compares the cost of the optimal decomposition with the cost of processing the
whole sub-graph using ST, and sets as optimal plan of the sub-graph the best
alternative. Since pairwise algorithms are 1/0 bound and ST is CPU-bound,
when estimating the cost for aquery sub-plan, DP takes under consideration the
dominant factor in each case.

Attheend of thealgorithm, Q.planwill bethe optimal plan, and Q.cost and Q.size
will holditsexpected cost and size. The execution cost of dynamic programming
depends on: (i) the number of relations n, (ii) the number of valid node
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Figure 13. Dynamic programming for optimization of multiway spatial joins

DP(Query Q, int n) /*n = number of inputs*/
for each connected sub-graph R-R Q, Qof size2do{
Q,.cost := Cost(RJ, R, R); /*Equation 5*/
Q,.size:= OC(R, R); /*Equation 3*/  }
fori:=3tondo
for each connected sub-graph Q. Q with i nodes do {/* Find optimal plan for Q*/
Q..plan := ST; Q..cost := Costepy(ST, Q); /*Equation 18*/
for each decomposition Q,  {Q, Q... such that Q,, Q... connected do {
if (k=1) then /*Q, isa single node; S SJ will be used*/
{Qw Qi}-cost ;= Q.cost + Cost(SIST, Q,, Q.); /*Equation 11*/
€lse /*both components are sub-plans; SHJ will be used*/
{Qw Q. -cost := Q,.cost + Q.cost + Cost(SHJ, Q,, Q..0; /* Equation8*/
if { Q Q. .cost<Q,.cost then { /*better than former optimal*/
Q.plan:={Q,, Q.J; /*mark decomposition. as Q,'s optimal plan*/
Q;.cost :={Q,, Q. .cost; /*mark so far optimal cost of Q*/}
} I* decomposition*/
/*Estimate Q" s output size from optimal decomposition*/
Q,.size := OC(Q,.plan);
1}

combinations comb, (that formulate aconnected sub-graph) for each value of n,
and (iii) thenumber of decompositions decomp, of aspecific combination. Table
3 illustrates the above parameters for three special cases of join graphs. Note
that combinationsof 2 nodesdo not havevalid decompositionsbecausethey can
be processed only by RJ.

The running cost of the optimization algorithm isthe number of input combina-
tionsfor each value of ntimesthe number of valid decompositionsplus 1 for the
cost of ST:

Cost_, (DP, Q) = Y comb, - (1+ decomp, ) (20)

1<k<n

Equation 20 suggests that DP can be too expensive for joins with a large (for
example, >10) number of inputs. For such cases, randomized algorithmscanfind
agood (but sub-optimal) planwithinlimited time (Mamoulis& Papadias, 2001).
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Summary

In this chapter we review some of the most significant research results related
tospatial join processing. Inparticul ar, wedescribe: (i) binary algorithmsthat can
be used in different cases, depending on whether the joined inputs are indexed
or not; (ii) selectivity and cost estimation models; and (iii) techniques for the
efficient processing of multiway joinsbased onintegration of binary algorithms
and synchronous traversal. Although we attempted to provide an extensive
coverage of theliterature, several issuesrelated to spatial joins— for example,
parallel joinprocessing (Brinkhoff et al., 1996; L uo, Naughton, & Ellman, 2002)
and join variants (Koudas & Sevcik, 2000; Corral et al., 2000; Béhm & Krebs,
2002; Shou et al., 2003) — were omitted due to space constraints.

There are several issues related to spatial joins that still need to be addressed.
First, it isacommon belief that intersection join algorithms can be straightfor-
wardly applied for other types, like distance joins. However, practice (for
example, see Corral et al., 2000; Shou et al., 2003) has already shown that direct
extensions (usually of RJ) may be inefficient, and several optimizations can
potentially enhanceperformance. Thusthe application and optimization of differ-
ent intersection algorithmsto other join variantsis an interesting topic of future
work. Furthermore, although current systems only consider the standard “first
filter, then refinement step” strategy, aspatial query processor should allow the
interleaving of filter and refinement steps. For example, consider thequery “find
all cities adjacent to forests, which are intersected by ariver” and assume that
we know there are only a few rivers that intersect cities, although there are
numerous such MBR pairs. Then, it would be preferable to execute the
refinement step after the first join before we proceed to the next one. However,
this knowledge presumes that we have accurate selectivity formulae for the
refinement step, which isadifficult, open problem for future work.
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! Given aseries of different layers of the same region (for example, rivers,
streets, forests), its workspace is defined as the total area covered by all
layers (not necessarily rectangular) including holes, if any.

2 RJ can be thought of as a special case of ST involving two inputs.
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