

1

Index-based Most Similar Trajectory Search

Elias Frentzos Kostas Gratsias Yannis Theodoridis

Dept. of Informatics,

University of Piraeus, Greece

Dept. of Informatics,

University of Piraeus, Greece

Dept. of Informatics,

University of Piraeus, Greece

& Research Academic

Computer Technology Institute

& Research Academic

Computer Technology Institute

& Research Academic

Computer Technology Institute

efrentzo@unipi.gr gratsias@unipi.gr ytheod@unipi.gr

Abstract

The problem of trajectory similarity in moving object

databases is a relatively new topic in the spatial and

spatiotemporal database literature. Existing work focuses

on the spatial notion of similarity ignoring the temporal

dimension of trajectories and disregarding the presence

of a general-purpose spatiotemporal index. In this work,

we address the issue of spatiotemporal trajectory

similarity search by defining a similarity metric,

proposing an efficient approximation method to reduce its

calculation cost, and developing novel metrics and

heuristics to support k-most-similar-trajectory search in

spatiotemporal databases exploiting on existing R-tree-

like structures that are already found there to support

more traditional queries. Our experimental study, based

on real and synthetic datasets, verifies that the proposed

similarity metric efficiently retrieves spatiotemporally

similar trajectories in cases where related work fails,

while at the same time the proposed algorithm is shown to

be efficient and highly scalable.

1. Introduction

With the rapid growth of wireless communications and
positioning technologies, the concept of Moving Object
Databases (MOD) has been in the core of the spatial and
spatiotemporal database research. An interesting type of
query that is useful in MOD search is the so-called
trajectory similarity problem, which aims to find ‘similar’
trajectories of moving objects.

To illustrate the problem, consider the following
example. Suppose that the metro network of a city has
been recently extended, initiating a new transportation
line, in view of providing transport services to a major
part of the residents of the city suburbs. This metro
network extension requires the re-designing of the
existing transportation network (buses, tram, trolley-
buses, etc.). Experts in the field would be assisted if they
could pose queries about the similarity between the
trajectories of the existing transport means and the new
metro line. As such, they would be able, for example, to
change the timetable of a bus line, if it matches in a

certain day with the timetable of the new metro line, or
even abort it. To handle such queries efficiently, MOD
systems should include methods for answering the so-
called Most-Similar-Trajectory (MST) search also
discussed in [15].

Trajectory similarity search is a relatively new topic in
the literature; the majority of the methods proposed so far
are based on either the context of time series analysis or
the Longest Common SubSequence (LCSS) model [21]
and the recently proposed Edit Distance on Real Sequence
(EDR) [5]. However, all these methods have the main
drawback that they either ignore the time dimension of the
movement, therefore calculating the spatial (and not the
spatiotemporal) similarity between the trajectories, or
assume that the trajectories are of the same length and
have the same sampling rate. To exemplify the problem
derived when different sampling rates are present,
consider Figure 1 presenting two trajectories T and Q with
their position being sampled in different rates.

Figure 1. Trajectories with different sampling rates

While Q and T sample their position 4 and 32 times
respectively, they have approximately the same length
traversing through the same area. Though the two
trajectories are obviously similar, methods based on the
LCSS or the EDR model cannot detect this kind of
similarity since they try to match trajectory sampled
positions one by one, which clearly does not happen in the
above (real world) example. Moreover, the majority of the
proposed approaches exploit specialized index structures
in order to prune the search space and retrieve the most
similar to a query trajectory.

The challenge accepted in this paper, is to efficiently
support the k-MST search in MODs storing historical
trajectory information, exploiting existing R-tree-like
structures which can also be used to support other types of
queries as discussed in [13] and [6]. Our main
contributions are outlined as follows:

T

Q

 2

• We define a dissimilarity metric (DISSIM) for the
measurement of the spatiotemporal dissimilarity
between two trajectories and we propose an efficient
approximation method to overcome its costly
calculation.

• Adopting the MINDIST calculation between a
trajectory and an index node proposed in [6], we
present a set of novel metrics, and provide several
lemmas, to be used for pruning.

• Using the above metrics, we propose a best-first
query processing algorithm to perform k-MST search
on R-tree-like structures.

• We conduct a comprehensive set of experiments over
synthetic and real datasets demonstrating that the
proposed similarity metric efficiently retrieves
spatiotemporally similar trajectories in cases where
related work fail, and the proposed MST search
algorithm is highly scalable and efficient, in terms of
execution time and pruned space.

We have to point out that this algorithm does not
require any dedicated index structure and can be directly
applied to any member of the R-tree family used to index
trajectories. To the best of our knowledge, this is the first
work providing techniques for a spatiotemporal index to
support both classical range, topological and similarity
based queries. The rest of the paper is structured as
follows. Related work is discussed in Section 2, while
Section 3 introduces the dissimilarity metric, as well as
the set of metrics that support our pruning strategies.
Section 4 describes in detail the best-first query
processing algorithm to perform MST search over
historical trajectory information. Section 5 presents the
results of our experimental study and Section 6 concludes
the paper giving hints for future work.

2. Related Work

Similarity search has been well studied in the time series
analysis domain. As a measure of approximate matching,
Agrawal et al. [1] proposed the utilization of the Discrete
Fourier Transformation (DFT). An alternative time series
matching technique through dimension reduction was
proposed by Chan and Fu [3], using the Discrete Wavelet
Transformation (DWT). In order to compare sequences
with different lengths, Berndt and Clifford [2] used the
Dynamic Time Warping (DTW) technique that allowed
sequences to be stretched along the time axis to minimize
the distance between sequences. Although DTW incurred
a heavy computation cost, it was more robust against
noise.

In [22] an indexing method for processing shape-
based similarity queries for trajectory databases was
presented. The proposed method was based on Euclidean
Distance. However it could be applied only on trajectories
with same lengths being valid during the same time
interval. Cai and Ng [4] proposed the utilization of

Chebyshev polynomials for approximating and indexing
trajectories for similarity matching purposes. Still, this
method suffered from the requirement that the trajectories
should be of the same length (in terms of the number of
spatiotemporal points that are composed of).

Vlachos et al. [20] presented a distance measure that
allowed to find similar trajectories under translation,
scaling and rotational transformations. The first step of
their method was the mapping of each trajectory to a
trajectory in a rotation invariant space. For the calculation
of the distance between two trajectories in the new
rotation invariant space, the DTW technique was utilized.

Sakurai et al. [14] proposed an improved version of
DTW, the Fast search method for Dynamic Time Warping
(FTW), based on a new lower bounding measure for the
approximation of the time warping distance. They proved
that FTW could prune a significant portion of the search
space, leading to a significant reduction of the search cost.

Recently, Lin and Su [11] have studied the time
independent similarity search problem of moving object
trajectories. The “one way distance” (OWD) function is
introduced for comparing the spatial shapes of trajectories
along with appropriate algorithms for computing OWD.
Their experimental study shows that the adoption of
OWD function outperforms DTW algorithm in terms of
precision and performance.

Several approaches are based on the Longest Common
Sub Sequence (LCSS) similarity measure. LCSS measure
matches two sequences by allowing them to stretch,
without rearranging, the sequence of the elements, but
allowing some elements to be unmatched (which is the
main advantage of the LCSS measure compared with
Euclidean Distance and DTW). Therefore, LCSS can
efficiently handle outliers and different scaling factors.
Vlachos et al. [21] adopted the utilization of the LCSS
method. Introducing two similarity measures allowing
time stretching and translations respectively, the authors
proposed non-metric similarity functions, which were
very robust to the presence of noise and provided an
intuitive notion of similarity between trajectories by
giving more weight to the similar portions of the
trajectories. Moreover, an efficient index structure (based
on hierarchical clustering) for similarity queries was
presented. However, as will be shown in the experimental
study, the proposed method suffers when trajectories have
different sampling rates.

In [5] a distance function, called Edit Distance on Real
Sequences (EDR), was introduced. This distance function,
based on edit distance, was shown to be more robust than
DTW and LCSS over trajectories with noise. The
efficiency of this distance function was improved by the
application of three pruning strategies, which reduced the
respective computational cost in terms of computations
between the query and data trajectories without
introducing false dismissals. On the other hand, same as
LCSS, EDR determines spatial similarity only, ignoring
time, while trajectories with different sampling rates

 3

cannot be handled efficiently, as it will be shown in the
experimental study. Moreover, both [21] and [5] propose
the employment of dedicated indexes to prune the search
space so as to efficiently support k-MST search.

Recently, Keogh et al. [10] presented an algorithm
(based on the LB_Keogh function introduced in [9]),
which dramatically reduced the time complexity of the
calculation of the Euclidean Distance measure. This speed
up was further achieved by allowing indexing. However,
the above algorithm, which was generalized to other
distance measures, such as DTW and LCSS, could be
applied only to 2D shapes.

Acknowledging the contributions of the above
proposals, in the sequel we propose novel metrics and
algorithms for trajectory similarity search on R-tree-like
structures.

Table 1. Table of notations

Notation Description

T, Q an indexed and a query trajectory

Tk, Qk the kth line segment of T or Q

tk a timestamp

DQ,T(t) function of distance in time between Q and T

, ,a b c factors of DQ,T(t) trinomial

EQ,T
calculation error of the dissimilarity between
trajectories

D distance between trajectories

V relative speed between moving objects

N R-tree node

MINDIST(Q,N) minimum distance between Q and N

Vmax
the sum of the maximum speed of indexed trajectories
plus the maximum speed of the query trajectory

SR
the set of line segments already retrieved from the
index

SC

the set of trajectories with line segments already
retrieved from the index but not yet fully completed
inside the given time period.

3. Metrics for k-MST Search

In this section we will define the notion of spatiotemporal
dissimilarity used in the rest of the paper followed by a
series of metrics and heuristics used in our algorithms for
MST Search (Table 1 presents the notations used in the
rest of the section). As already mentioned, existing work
in the domain of trajectory similarity search, either
ignores the time dimension of the movement, as such
calculating the spatial similarity between trajectories or
assumes that trajectories have the same lengths (in terms
of the number of spatiotemporal points that are composed
of) and the same sampling rate. From a different
perspective, extending the well known Euclidean Distance
metric also used in [21] and [5], we define the notion of
spatiotemporal dissimilarity between two trajectories T
and Q both being valid during a definite time interval [t1,
tn], by integrating their Euclidean distance in time.

Definition 1: The Dissimilarity DISSIM(Q,T) between

trajectories Q and T being valid during the period [t1, tn]

is defined as the definite integral of the function of time of

the Euclidean distance between the two trajectories

during the same period:

1

,(,) ()
nt

Q T

t

DISSIM Q T D t dt= ∫ ,

where DQ,T(t) is the function of the Euclidean distance
between trajectories Q and T with time. However, since
each trajectory is represented by a collection of discrete
points where linear interpolation is applied in between,
the definition of dissimilarity is transformed to:

11

,
1

(,) ()
k

k

tn

Q T

k t

DISSIM Q T D t dt
+−

=

=∑ ∫ ,

where tk are the timestamps that objects T and Q recorded
their position. Obviously, in real world applications, the
sampling rates of trajectories may vary, resulting in
trajectories with positions sampled at different
timestamps; however, considering two trajectories with
this characteristic, the position of the first object at the
time instance when the second recorded its position can
be approximated by applying linear interpolation.

The Euclidean distance between two points moving
with linear functions of time between consecutive
timestamps, was defined in [6]:

2
, ()

Q T
D t at bt c= + + ,

where a, b, c are the factors of this trinomial (real
numbers, 0a ≥).

In order to calculate the integral of DQ,T(t), we
distinguish between the following two cases for the value
of the non-negative factor a :

• 0a = . As shown in [6], it implies that 0b = . Hence,

1

,

1

()
k

k

t

Q T

k kt

c
D t dt

t t

+

+

=
−∫

• 0a > . According to Meratnia and By [12]:
1

1 2
2

, 2

2 4 2
() arcsinh

4 8 4

i
k

k
i

t
t

Q T

t
t

at b b ac at b
D t dt at bt c

a a a ac b

+
+  + − +

= + + −   − 
∫

In order to avoid such a computationally heavy
operation, we adopt the utilization of the Trapezoid Rule
for the computation of the integral, resulting in the
following Lemma.

Figure 2. Trapezoid approximation

Lemma 1: The dissimilarity value between two points

moving linearly with time can be approximated by the

following expression:

Distance

t

tk+2

tk+1

2b a−

tk

tk+3

Ek

Ek+1

Ek+2

,Q T
D

 4

()
1

, , 1 1
1

1
(,) (() ()) ()

2

n

Q T k Q T k k k

k

DISSIM Q T D t D t t t
−

+ +
=

≈ + ⋅ −∑

with the error of the approximation, which depends on tk,

tk+1 values, being bounded by:
3

(2)1
, 1

31
(2)1

, , 1 1
1

3
(2)1

, 1

()
() ,2 212

()
() , 212

()
() , 212

k k

Q T k k

n
k k

Q T Q T k k k

k

k k
Q T k k k

t t b bD if t t
a a

t t bE D t if t t
a

t t bD t if t t
a

+
+

−
+

+ +
=

+
+

 −
− ≤− ≤


 −

≤ < < −

 −

− < <


∑

Proof: in [7]. �

 demonstrates the trapezoid approximation illustrating

the approximation error E in the three above cases: the

value of 2b a− is the flex of (2)
,Q TD ; Ek is calculated based

on the value of (2)
, 1()Q T kD t + (case b), Ek+1 is calculated

based on the value of (2)
, (2)Q TD b a− (case a) and Ek+2 is

calculated based on (2)
, 2()Q T kD t + (case c).

So far we have defined the dissimilarity between two
trajectories (Definition 1) and have approximated this
measure with a less expensive computation and a bounded
error. As already mentioned, the location of non-recorded
timestamps is approximated by linear interpolation
between consecutive recorder points. (Support of non-
linear e.g. arc, movement is left as a task for future work.)
In the sequel, we will provide a series of metrics that will
be used in our MST search algorithm.

(a) (b)

Figure 3. LDD definition

3.1 Speed-Dependent Metrics

In this section we define two metrics, namely
OPTDISSIM and PESDISSIM, and provide several
lemmas to be used for pruning purposes during MST
Search. Before proceeding into the core of the section, we
define the Linearly Depended Dissimilarity (LDD) which
is used in the definition of our metrics:
Definition 2: The Linearly Depended Dissimilarity

(LDD) between two moving objects with initial distance D

moving collinearly with relative speed V during the

period 1[,]nt t t∆ = , is given by the following expression:

()
()2

2 , 0
(, ,)

2 ,

t D V t if D V t
LDD D V t

D V otherwise

∆ ⋅ + ⋅∆ + ⋅∆ ≥
∆ =



The relative speed V is a negative (positive) number when
the distance between the two objects decreases (increases,

respectively). To illustrate this definition, consider Figure
3 where LDD is described as the shaded area
encompassed by the inclined line representing a distance
function between two objects moving towards each other
with relative speed V, with the horizontal lines t1 and tn
defining t∆ . The two cases of LDD definition are
illustrated in Figure 3(a) and Figure 3(b), respectively.

Any algorithm used for MST search will have to
calculate the dissimilarity between a query trajectory and
several (indexed or not) trajectories; obviously, at any
time instance such an algorithm will have retrieved
several parts of candidate MSTs.

Figure 4. OPTDISSIM definition

Although we cannot calculate the exact DISSIM of
these partially retrieved trajectories from the query
trajectory, we can safely estimate a lower bound for it,
called OPTDISSIM. Consider, for example, Figure 4 that
illustrates OPTDISSIM of a partially retrieved candidate
trajectory T from the query trajectory Q. OPTDISSIM
partially consists of the dissimilarity of the entries already
retrieved from the index (the shaded area during the time
intervals [t1,t2] and [t3,t4]). Regarding the period [t4,t5], the
smallest possible dissimilarity is given assuming that the
moving object started from its position at t4 approaching
the query object with the maximum possible speed (the
inclined line between t4 and t5). Finally, when dealing
with intermediate time intervals such as [t2,t3], one has to

calculate the time instance 2
o

t in which the object stopped

its movement towards the query trajectory (the inclined

line between t2 and 2
o

t) and then returned to its known

position at the time instance t3 (the inclined line between

2
o

t and t3). Now we can proceed with the formal definition

of OPTDISSIM:
Definition 3: The most optimistic DISSIM (OPTDISSIM)

between a query trajectory Q and an indexed trajectory T

with line segments partially retrieved from the index,

during a period 1[,]nt t , is defined as:

()
()
()
()

1

, 1 max 1

, max 1

, max

, 1 max 1

(, , ,)

(,) , ;

(), , () , , 1;

(), , () , , 1;

(), , ()

(), , () ,

n

k k k R

Q T k k k k R

Q T k k k k R

o

Q T k k k

o

Q T k k k

OPTDISSIM Q T t t

DISSIM Q T if T S

LDD D t V t t if T S k

LDD D t V t t if T S k n

LDD D t V t t

LDD D t V t t otherwise

+ +

+

+ +

=
 ∈
 − − ∉ =


− − ∉ = −

− − +

−

1

1

n

k

−

= 




∑

where DQ,T is the function of distance with time between

trajectories Q and T, SR is the set of line segments

Distance

t
tn=t5

t1

O
P

T
D

IS
S
IM

Vmax

t2

t3

2

o

t

t

t4 DQ,T

t

tn

t1

D

V<0

∆t LDD

t

tn

t1

LDD

Distance D

V<0

∆t

Distance

 5

already retrieved from the index, Vmax is the sum of the

maximum speed of indexed trajectories plus the maximum

speed of the query trajectory, and o

kt is given by the

following expression:

()()1 , 1 , max() () 2o

k k k Q T k Q T k
t t t D t D t V+ += + + −

Recalling Figure 4, the value of o

kt is straightforward

utilizing the fact that the slope of the two inclined lines

between 2 2[,]ot t and 2 3[,]ot t is the same and equal to Vmax.

Having defined OPTDISSIM, we can provide the
following lemma, which will also turn out to be useful for
pruning purposes:
Lemma 2: A trajectory indexed by an R-tree-like

structure with line segments partially retrieved from the

index cannot have smaller DISSIM from a query

trajectory Q during a period 1[,]
n

t t than its respective

OPTDISSIM.
Proof: According to Definition 3, OPTDISSIM is the sum
of the DISSIM of the trajectory entries already retrieved
from the index (belonging to the set SR), a value which is
fixed, plus the DISSIM of an object which approached the
query trajectory with the maximum possible speed (Vmax)
during the time intervals not already retrieved from the
index, with the constraint that the object has to be found
at given positions at the start and/or the end of the
interval. Therefore, since the two objects approach each
other with the maximum possible speed during those
periods, the distance between them is minimized; hence
minimizing the corresponding integral and consequently
their dissimilarity. �

Figure 5. PESDISSIM definition

Likewise, by adopting the same scenario where an
MST algorithm has only partially retrieved trajectories,
one can estimate an upper bound, for the DISSIM between
the query and a partially retrieved trajectory, named
PESDISSIM. As illustrated in Figure 5, PESDISSIM
works in a fashion similar to OPTDISSIM with the
difference that during time intervals where the movement
of the object is not known, the object is assumed to
diverge (and not approach) the query trajectory with the
maximum possible speed Vmax. In the same way, we
formally define PESDISSIM:
Definition 4: The most pessimistic DISSIM (PESDISSIM)

between a query trajectory Q and an indexed trajectory T

with line segments partially retrieved from the index,

during a period 1[,]nt t , is defined as:

()
()
()
()

1

, 1 max 1

, max 1

, max

, 1 max 1

(, , ,)

(,) , ;

(), , () , , 1;

(), , () , , 1;

(), , ()

(), , () ,

n

k k k R

Q T k k k k R

Q T k k k k R

p

Q T k k k

p

Q T k k k

PESDISSIM Q T t t

DISSIM Q T if T S

LDD D t V t t if T S k

LDD D t V t t if T S k n

LDD D t V t t

LDD D t V t t otherwise

+ +

+

+ +

=
 ∈
 − ∉ =
 − ∉ = −


− +

− −

1

1

n

k

−

=




∑

where DQ,T, SR and Vmax are as defined in previous

definitions, and p

k
t is given by the following expression:

()()1 , , 1 max() () 2p

k k k Q T k Q T k
t t t D t D t V+ += + + −

The following lemma is directly derived by the
definition of PESDISSIM.

Lemma 3: A trajectory indexed by an R-tree-like

structure with line segments partially retrieved from the

index cannot have DISSIM from a query trajectory Q

during a period 1[,]
n

t t greater than its respective

PESDISSIM.
Proof: According to Definition 4, PESDISSIM is the sum
of the DISSIM of the trajectory entries already retrieved
from the index (belonging to the set SR), a value which is
fixed, plus the DISSIM of an object which diverged the
query trajectory with the maximum possible speed (Vmax)
during the time intervals not already retrieved from the
index, with the constraint that the object has to be found
in given positions at the start and/or the end of the
interval. Therefore, the distance between the two
trajectories during those periods is maximized, hence
maximizing their dissimilarity. �

3.2 Speed-Independent Metrics

The utilization of the previously defined metrics in an
MST search algorithm can significantly enhance its
performance by pruning several candidate trajectories.
However, these metrics are relatively loose, since they are
based on the maximum speed Vmax which, theoretically
speaking, could be orders of magnitude higher than the
mean object speed. Therefore, we need to define other
metrics not influenced by Vmax, supporting our speed-
independent MST search algorithms. These metrics can
be developed when an MST algorithm reports index
nodes in incremental order of their MINDIST from the
query trajectory. Obviously, this is a reasonable
assumption considering R-tree like structures where a
best-first strategy like the one proposed in [8] can be
utilized.

Consider, for example, Figure 6 that describes the
DISSIM of a partially retrieved candidate trajectory T
from the query trajectory Q; According to our previous
discussion, the DISSIM between [t1,t2] and [t3,t4] is
accurately defined. In this case however, we can utilize
the fact that index nodes are accessed in incremental order
of their MINDIST from the query trajectory.

t

P
E

S
D

IS
S
IM

DQ,T

Distance

tn=t5

t1

t2

t3

2

p

t

t4

Vmax

 6

Consequently, any line segment not yet retrieved from the
index, cannot be closer to Q than MINDIST(Q,N) where N

is the next index node in the queue, and the lower bound
of DISSIM turns into the shaded area of Figure 6.

Figure 6. OPTDISSIMINC definition

More formally, we define OPTDISSIMINC as follows:
Definition 5: Assuming that index nodes are reported in

incremental order of their MINDIST from the query

trajectory, the most optimistic DISSIM between a query

trajectory Q and an indexed trajectory T during a period

[t1,tn] having a line segment inside a tree node N, is given

by the following expression:

1
1

1 1

(, , , ,)
(,) , ;

(,) () ,

INC n
n

k k k R

k k k

OPTDISSIM Q T N t t
DISSIM Q T if T S

MINDIST N T t t otherwise

−

= +

=
∈


⋅ −

∑

where SR is the set of line segments already retrieved from

the index.
Using the above definition of OPTDISSIMINC, we can

also define the minimum DISSIM of an index node N:
Definition 6: Assuming that index nodes are reported in

incremental order of their MINDIST from the query

trajectory, the minimum DISSIM between a trajectory T,

indexed by an R-tree-like structure having a line segment

inside a node N, and a query trajectory Q during a period

[t1,tn], is defined as:

1

1

1

(, , ,)
(,) ()

min
(, , , ,),

INC n

n

INC n C

MINDISSIM Q N t t
MINDIST Q N t t

OPTDISSIM Q T N t t T S

=
⋅ −


∀ ∈

where SC, is the set of the trajectories with line segments

already retrieved from the index but not yet fully

completed inside the period [t1,tn].
Lemma 4: Assuming that index nodes are reported in

incremental order of their MINDIST from a query

trajectory Q, a trajectory that is partially stored inside a

tree node N cannot have smaller DISSIM from Q during

the time period [t1,tn] than the node’s respective

MINDISSIMINC.
Proof: Any line segment inside N resides in a trajectory
that either belongs to Sc or not. In the former case,
considering that nodes are reported in incremental order,
trajectory entries not yet retrieved cannot be closer to the
query object than the MINDIST of the node in which they
belong. So, the minimum dissimilarity of an object of Sc is
the sum of the dissimilarity of its entries already retrieved
from the index, plus the dissimilarity of an object being as
close as MINDIST to the query trajectory during the rest
of the query time period - a sum which corresponds to
OPTDISSIMINC definition. In the latter case, where the

trajectory does not belong to Sc, the line segment cannot
belong to an object fully retrieved from the index because
this would lead to duplicate line segments in the index.
Hence the line segment belongs to a moving object with
no segments retrieved from the previously accessed nodes
and it cannot be closer to the query trajectory than
MINDIST. Thus, in the best case, its distance from the
query object during the query period is equal to MINDIST
and its DISSIM is equal to (,)MINDIST Q N t⋅ ∆ . �

3.3 Heuristics

The lemmas provided in previous sections support the
following heuristics directly used in the MST Search
algorithm that will be presented in Section 4.
• Heuristic 1: Every trajectory with OPTDISSIM

greater than the current most similar (i.e. the one with
the smallest calculated DISSIM - or PESDISSIM if
there is not a fully calculated DISSIM) cannot be more
similar to the query trajectory than the current most
similar; as such, it can be pruned from the candidates
list.

• Heuristic 2: When leaf and internal nodes are reported
in incremental order of their MINDIST from the query
trajectory, every trajectory line segment contained in a
node with MINDISSIMINC greater than the current
most similar belongs to a moving object, which cannot
be more similar to the query trajectory, hence, the
node can be pruned from the candidates list.
Moreover, since any node reported after the one
processed will have MINDIST greater or equal to
MINDIST of the current node, according to Definition
6 the same will hold for the respective values of
MINDISSIMINC. As a result, all these nodes will have
MINDISSIMINC greater than the current most similar,
and the algorithm can be terminated since all the
remaining nodes can be pruned.

4. A k-MST Search Algorithm

The proposed BFMSTSearch algorithm (illustrated in
Figure 7) accesses the tree structure in a best-first mode,
calculating the appropriate MINDISTs between the query
trajectory and the tree nodes, thus reporting leaf and
internal tree nodes in incremental order of their MINDIST
from the query trajectory. At leaf level, the algorithm uses
three hashed in-memory structures: One with the
completed trajectories (Completed), one with the partially
completed trajectories (Valid) and one with the partially
completed nevertheless already rejected (Rejected)
trajectories. Both Completed and Valid in-memory
structures store lists. Each list contains the moving
object’s time intervals along with their starting and ending
distances, its (partial) DISSIM the respective calculation
error and the OPTDISSIM and PESDISSIM values. The
Rejected in-memory structure contains only trajectory ids.

Distance

t
tn=t5

t1

O
P

T
D

IS
S
IM

IN
C

t2

t3

t4
DQ,T

MINDIST(Q,N)

 7

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

14.
15.
16.
17.

18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.

Algorithm BFMSTSearch (R-tree R, trajectory Q, time
period Qper)

 EnQueue Queue, R.RootNode, 0, Q
 DO WHILE Queue.Count > 0
 Element = DeQueue(Queue)
 N=Element.Node:Q=Element.QueryTrajectory
 IF Completed.Count>0
 IF MINDISSIMINC(Q,N)>MSim.DISSIM
 Return MSim
 ELSE
 IF N is leaf node
 Sort(N, TS)
 FOR EACH leaf entry E in leaf node N
 IF Rejected not contains E.Id
 IF Valid contains E.Id retrieve list L
 ELSE create list L: Add L in Valid
 FIND next query entry QS in Q with
 QS.Te<N.TS: QE=QS
 DO UNTIL QE.TS > E.Te
 Interpolate to produce nE, nQE
 in period (T1,T2):Add (T1,T2) in L
 Calc DISSIM,PESDISSIM,
 OPTDISSIM,ERR)
 IF L is completed
 Move L from Valid to Completed
 IF DISSIM<MSim.DISSIM
 Update Msim with nE,DISSIM
 ELSE
 IF PESDISSIM<MSim.DISSIM
 Update MSim with nE,PESDISSIM
 IF OPTDISSIM>MSim.DISSIM
 Move L from Valid to Rejected
 NEXT query entry QE
 Return QE in the query entry QS
 NEXT
 ELSE
 FOR EACH entry E in the node Element
 IF (Q.TS,Q.TE) Overlaps (E.TS,E.TE)
 Interpolate to produce nQE
 in period (T1,T2)
 Dist = MinDist(nQ, E)
 EnQueue Queue, E, Dist, nQ
 NEXT
 LOOP

Figure 7. BFMST Search pseudo-code

When an internal node is processed (lines 32-37) the
algorithm calculates the MINDIST between the node and
the part of the query trajectory Q being inside the
temporal extend of the node and then is enqued. When a
leaf entry is processed (lines 9-30), the algorithm checks
whether it belongs to a Rejected moving object (by simply
using its id) and rejects it if it does (line 12). In the sequel
it checks whether the entry belongs to a Valid moving
object and if so retrieves its list L; otherwise it creates a
new list and adds it to Valid (line 13). The algorithm uses
a plane sweep method which scans leaf entries and
trajectory segments in their temporal dimension in a
single pass. This requires that the leaf entries are
previously sorted according to their temporal order (line
10), unless the underlying tree structure (such as the TB-
tree) stores them in temporal organization anyway.

When a leaf entry and a query trajectory segment
overlap in the temporal dimension, the algorithm adds the
period to the list L (line 17), calculating DISSIM,
OPTDISSIM and PESDISSIM, together with the
respective calculation error (line 18). If the list L is
completed, it is removed from the Valid and added to the
Completed, while its DISSIM is checked against the
current most similar; if smaller, takes its position in MSim

(lines 20-22). In the case where L is not yet completed, its
PESDISSIM is checked against the current most similar
and, if smaller, takes its position in MSim (lines 24-25);
its OPTDISSIM is also compared with the current most
similar and, if greater, the list is moved from Valid to
Rejected applying heuristic 1 (lines 26-27).

In both cases where a node (leaf or internal) is
processed, the algorithm first checks whether its
MINDISSIMINC is greater than the current most similar
and if so, the algorithm terminates applying heuristic 2,
and returns the current most similar as the query reply
(lines 5-7). Note that in order to avoid calculating all the
OPTDISSIMINC values involving in the MINDISSIMINC
definition (e.g.

C
T S∈ in definition 6), we first check

whether the 1(,) ()nMINDIST Q N t t⋅ − value of the node
is less than the current most similar. In such a case, the
calculation of the OPTDISSIMINC values is omitted, since
the value of MINDISSIMINC will be less than the current
most similar regardless of the OPTDISSIMINC values.

4.3 Extending to k-MST algorithms

In the same fashion as in [6], we generalize the above
algorithm to support the k-most similar trajectory search
by considering the following:
• using a buffer of at most k (current) most similar

trajectories sorted by their actual dissimilarity from
the query trajectory;

• terminating the algorithm execution when processing
a node with MINDISSIMINC greater than the
dissimilarity of the more dissimilar object in the
buffer, when extending the BFMSTSearch algorithm.

4.4 Error Management

The above MST algorithm calculates dissimilarity
between query and indexed trajectories using the
approximation introduced in Lemma 1, computing at the
same time the appropriate approximation error (denoted
as ERR in Figure 7). However, apart from its
computation, the usage of the error is fundamental in
order to compute exact and correct results, a task not
explicitly discussed in the description of the BFMST
algorithm for sake of clarity. Actually, three modifications
must be introduced in the algorithm so as to incorporate
the role of the approximation error:
• A candidate most similar trajectory, not already

completed, is compared against the current k
th most

similar by using the value of PESDISSIM-ERR.
• A completed candidate most similar trajectory is

compared against the current k
th most similar using

the value DISSIM-ERR.
• Instead of using one kth most similar, it is required to

utilize a buffer of the candidate k
th most similar

trajectories. These will be all the trajectories with

 8

DISSIM greater than the kth most similar and DISSIM-

ERR less than it.
Finally, a post processing step is required after the
execution of the MST algorithm in order to determine the
definite k MSTs by calculating the actual dissimilarity of
each candidate trajectory against the query trajectory.
Although, this is a computational heavy operation, it only
happens when the error buffer contains more than one
trajectory, or when the order in which the trajectories are
reported from the k-buffer can be affected by the
calculation error of each trajectory’s similarity. As an
indication, during the entire experimental study, there was
no experiment that this case appeared.

5. Experimental Study

The above illustrated algorithm can be implemented in
any R-tree-like structure storing historical moving object
information such as the 3D R-tree [19], the STR-tree [13]
and the TB-tree [13]. Among them, we have chosen the
3D R-tree and the TB-tree that have excellent
performance in specific traditional trajectory queries [13].
We used a page size of 4KB and a (variable size) buffer
fitting the 10% of the index size, with a maximum
capacity of 1000 pages. The experiments were performed
in a PC running Microsoft Windows XP with AMD
Athlon 64 3GHz processor, 512 MB RAM and several
GB of disk space.

5.1 Datasets

Although existing work on trajectory similarity [21], [5]
utilized real data, these datasets are not suitable for our
objectives due to the fact that they are composed by 2D
projections of trajectories without any information about
the sampled timestamps; a reasonable fact, bearing in
mind that the similarity measured in those papers only
depends on the spatial and not the spatiotemporal
trajectory similarity. On the other hand, several real
datasets recently became available for experimentation
purposes [16]; these datasets (representing the movement
of a fleet of trucks) were used in our experiments to
evaluate the quality of the proposed similarity measure
(section 5.2). However, since they are relatively small
(273 trajectories and 112203 line segments), they could
not expose the actual performance of the algorithms;
therefore, the performance study (section 5.3) was
conducted using synthetic datasets generated by a custom
generator based on the GSTD data generator [17].

In order to achieve scalability in the volumes of the
datasets, we generated synthetic trajectories of 100, 250,
500 and 1000 moving objects resulting in datasets of
200K, 500K, 1000K, and 2000K entries, respectively (the
position of each object was sampled approximately 2000
times), thus building indices of up to 100 MB size.
Regarding the rest parameters of the generator, the initial

distribution and the heading of objects in all cases was
random, while their speed was ruled by a normal or
lognormal distribution. Table 2 illustrates summary
information about the real and the generated datasets and
the corresponding indexes. Note that each synthetic
dataset is denoted by its cardinality (e.g. the S0100
constitutes from 100 trajectories).

Table 2. Summary dataset information

Speed Distribution
Index Size

(MB)

D
a

ta
se

t

#
 O

b
je

ct
s

#
 E

n
tr

ie
s

(x
1

K
)

Type � σ
3D R-

tree

TB-

tree

Trucks 273 112 Real data 3.2 1.8

S0100 100 200 Lognormal 1 0.6 10.7 5.2

S0250 250 500 Lognormal 1 0.6 25.8 13.1

S0500 500 1000 Lognormal 1 0.6 51.0 26.2

S1000 1000 2000 Lognormal 1 0.6 99.1 52.4

5.2 Experiments on the quality

In order to evaluate the quality of the proposed similarity
measure we conducted an extensive set of experiments
using the real Trucks dataset. All trajectories of the
dataset were compressed using the TD-TR algorithm
described in [12] producing thus artificial trajectories,
which were similar (but not identical) to the ones of the
original dataset. Then, we used each compressed
trajectory to query the original dataset, expecting the
algorithm to return the corresponding original trajectory
as most similar. We run one set of queries setting k=1 and
we counted the number of times the query failed to return
the original trajectory as the most similar. We also scaled
the value of the TD-TR parameter p from 0.1% to 10% of
the length of each trajectory, in order to achieve different
values of similarity since an increasing TD-TR parameter
produces a compressed trajectory with fewer sampled
points and greater dissimilarity regarding the original
trajectory. As an example, Figure 8 illustrates (a) an
original trajectory and the trajectories produced using the
TD-TR algorithm with (b, c, d) different values of p. A
major observation derived from Figure 8 is that while the
general sketch of the trajectory remains unaffected with
the evolution of p, the number of vertices outlining the
trajectory decreases and the local details are vanished.

p=0

 (168 Vertices)

p=0.1 %

(65 Vertices)

p=1 %

(29 Vertices)

p=2 %

(22 Vertices)

(a) (b) (c) (d)

Figure 8. Different degree of compression on a trajectory

Among the related work we have chosen to run the
same experiments using the LCSS [21] and EDR [5]
similarity measures. We did not include DTW [2] in our
experimental study, since both LCSS and EDR were

 9

shown to outperform it [21], [5]. We set the value of the
parameter ε for these two measures to be a quarter of the
maximum standard deviation of trajectories, which leads
to the best clustering results, according to [5]. We also
normalized the trajectory dataset as suggested in the same
paper. Furthermore, for a fair comparison, we made an
obvious improvement over LCSS and EDR, by manually
adding samples in the under-sampled (query) trajectory
with linear interpolation at the timestamps the checked
dataset trajectory was sampled. We called these improved
versions LCSS-I and EDR-I respectively.

The results of the experiments evaluating the quality
of the proposed similarity metric are illustrated in Figure
9. Clearly, the proposed dissimilarity measure (DISSIM)
outperforms both its competitors in all settings, regarding
also their improved versions. Actually, in the largest part
of the experiments, DISSIM correctly identifies the
original trajectory from which the query one has been
produced. On the other hand, it produces false responses
only when the value of p exceeds 5%, verifying that it is a
very robust similarity metric. LCSS (and LCSS-I) also
achieves good quality classifying correctly the query
trajectory in the majority of the experimental settings;
nevertheless, it is always less accurate than DISSIM.
Regarding EDR and EDR-I, it turns out that for p values
greater than 1% they completely fail to describe the
similarity between trajectories, since the false responses
exceed 60%.

Figure 9. False results increasing the value the TD-TR
parameter

The reason of the poor performance of EDR similarity
measure demonstrated in these experiments can be
explained considering its definition: EDR is the number
of insert, delete, or replace operations that are needed to
convert trajectory A into B [5]. Thus, supposing that n is
the number of vertices in A and m is the number of
vertices in (the compressed) Ac, (,)cEDR A A n m≥ − since
at least n-m vertices are needed to be added into Ac so as
to convert it to A. For an arbitrary dataset trajectory T
with k vertices being spatially away from A, it can be
easily shown that EDR between T and Ac is at most
max(m, k). Therefore, if a dataset contains a trajectory T
with k vertices and max(,)m k n m≤ − , e.g. a trajectory
composed by a small number of vertices, then it also
holds that (,) (,)c cEDR T A EDR A A≤ .

5.3 Experiments on the performance

The proposed algorithm was evaluated with three sets of
500 queries according to the settings presented in Table 3.
As such the effects of cardinality (Q1), query length (Q2)
and k (Q3) were evaluated using both 3D R- and TB-trees.
(Here, we have to note that although related work also
uses index structures to prune the search space and
support efficient k-MST search, they utilize dedicated
indices not designed to support other types of queries.
Due to this fact, they are not comparable with our
proposal, hence they are not included in our performance
study.)

Table 3. Query Settings

Query

Set
Datasets

Query Trajectory (as part of a

random data trajectory)
k

Q1 S0100 … S1000 5% 1

Q2 S0500 1% … 100% 1

Q3 S0500 5% 1..10

0

50

100

150

200

250

300

350

400

450

0 500 1000
Moving Objects

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

3D R - BFMST

TB - BFMST

0

0.2

0.4

0.6

0.8

1

0 500 1000
Moving Objects

P
ru

n
in

g
 p

o
w

e
r

3D R - BFMST

TB - BFMST

 (a – Q1) (b – Q1)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.5 1
Query Length

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

3D R - BFMST

TB - BFMST

0

0.2

0.4

0.6

0.8

1

0 0.5 1
Query Length

P
ru

n
in

g
 p

o
w

e
r 3D R - BFMST

TB - BFMST

 (a – Q2) (b – Q2)

0

50

100

150

200

250

300

0 5 10
k

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

3D R - BFMST

TB - BFMST

0

0.2

0.4

0.6

0.8

1

0 5 10
k

P
ru

n
in

g
 p

o
w

e
r

3D R - BFMST

TB - BFMST

 (a – Q3) (b – Q3)

Figure 10. Scaling with the dataset cardinality (Q1) the
query length (Q2) and the number of k (Q3)

Figure 10 illustrates the execution time and the
achieved pruned space for the query sets Q1 (scaling with
the dataset cardinality), Q2 (scaling with the query length)
and Q3 (scaling with the number of k) evaluating the
BFMST search algorithm. Clearly, the implementation of
the proposed algorithm in both indices demonstrates high

0

20

40

60

80

100

0.1% 1.0% 2.0% 5.0% 10.0%
TD-TR Parameter

F
a
ls

e
 R

e
s
u
lt
s
 (

%
) DISSIM

LCSS

LCSS-I

EDR

EDR-I

 10

pruning power, pruning over 90% in all the experimental
settings. Moreover, as also demonstrated in the same
figures, the pruning power remains almost constant – or
decreases at a low rate - regardless of the scaling factor

Regarding execution time, both trees achieve good
execution times, due to the fact that the algorithm prunes
mainly by the MINDISSIMINC heuristic, which directly
rejects all tree nodes not yet processed by the time it
realizes. The execution time appears to be linear with the
number of moving objects, quadratic with the query
length and sub-linear with k. Moreover, the TB-tree
outperforms the 3D R-tree as the query length increases,
while in the rest of the experimental settings, it is the
opposite that is reported.

6. Conclusions and Future Work

Related work on similarity query processing either
ignores time dimension of trajectories or considers
trajectories with the same sampling rate. In this work, we
relaxed these assumptions by defining a novel metric,
called DISSIM, and then we presented a complete
treatment of historical MST queries over moving object
trajectories stored on R-tree like structures avoiding the
drawbacks of the existing methods. Using our proposed
metrics and heuristics for ordering and pruning purposes,
we presented a best-first MST algorithm. Under various
synthetic and real trajectory datasets, we illustrated the
superiority of the proposed DISSIM metric against related
work [21], [5], in terms of quality, while our algorithm
was shown to have high pruning ability when processing
MST queries, also verified in the case of k-MST queries.

Future work includes the development of algorithms
to support Time-Relaxed MST queries over trajectories
indexed by R-tree like structures using the proposed
DISSIM metric. This type of query calculates the
minimum dissimilarity between trajectories regardless of
the time instance in which the query object starts. A
second research direction includes the development of
selectivity estimation formulae for query optimization
purposes investing on the work presented in [18] for
predictive spatiotemporal queries.

Acknowledgements

Research partially supported by FP6/IST Programme of
the European Union under the GeoPKDD project (2005-
08).

References

[1] Agrawal, R., Faloutsos, C., and Swami, A., Efficient
Similarity Search in Sequence Databases, Proceedings of

FODO, 1993.
[2] Berndt, J. and Clifford, J., Finding patterns in time series:

A dynamic programming approach, Advances in

Knowledge Discovery and Data Mining. AAAI/MIT
Press.

[3] Chan, K.P., and Fu, A.W-C., Efficient time series
matching by Wavelets, Proceedings of ICDE, 1999.

[4] Cai, Y., and Ng, R., Indexing spatio-temporal trajectories
with Chebyshev polynomials, Proceedings of ACM

SIGMOD, 2004.
[5] Chen, L., Tamer Özsu, M., and Oria, V., Robust and Fast

Similarity Search for Moving Object Trajectories,
Proceedings of ACM SIGMOD, 2005.

[6] Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis,
Y., Algorithms for Nearest Neighbor Search on Moving
Object Trajectories, Geoinformatica, to appear.

[7] Frentzos, E., Gratsias, K., and Theodoridis, Y., Index-
based Most Similar Trajectory Search, UNIPI-ISL-TR-
2006-01, Technical Report Series, University of Piraeus,
2006. Available at: http://isl.cs.unipi.gr/db/index.html.

[8] Hjaltason, G., and Samet, H., Distance Browsing in
Spatial Databases, ACM Transactions in Database

Systems, vol. 24(2), pp. 265-318, 1999.
[9] Keogh, E., Exact indexing of dynamic time warping,

Proceedings of VLDB, 2002.
[10] Keogh, E., Wei, L., Xi, X., Lee, S.H., and Vlachos, M.,

LB_Keogh Supports Exact Indexing of Shapes under
Rotation Invariance with Arbitrary Representations and
Distance Measures, Proceedings of VLDB, 2006.

[11] Lin, B., and Su, J., Shapes Based Trajectory Queries for
Moving Objects, Proceedings of ACM GIS, 2005.

[12] Meratnia, N., and By, R., Spatiotemporal Compression
Techniques for Moving Point Objects, Proceedings of

EDBT, 2004.
[13] Pfoser D., Jensen C. S., and Theodoridis, Y., Novel

Approaches to the Indexing of Moving Object
Trajectories, Proceedings of VLDB, 2000.

[14] Sakurai, Y., Yoshikawa, M., and Faloutsos, C., FTW: Fast
Similarity Search under the Time Warping Distance,
Proceedings of PODS, 2005.

[15] Theodoridis, Y., Ten Benchmark Queries for Location-
based Services, The Computer Journal, vol. 46(6), pp.
713-725, 2003.

[16] Theodoridis, Y., The R-tree Portal. URL:
www.rtreeportal.org (accessed 15 March 2006).

[17] Theodoridis, Y., Silva, J.R.O., and Nascimento, M. A., On
the Generation of Spatio-temporal Datasets, Proceedings

of SSD, 1999.
[18] Tao, Y., Sun, J., and Papadias, D., Analysis of predictive

spatio-temporal queries, ACM Transactions on Database

Systems vol. 28(4), pp. 295-336, December 2003.
[19] Theodoridis, Y., Vazirgiannis, M., and Sellis, T., Spatio-

temporal Indexing for Large Multimedia Applications,
Proceedings of ICMCS, 1996.

[20] Vlachos, M., Gunopulos, D., and Das, G., Rotation
Invariant Distance Measures for Trajectories, Proceedings

of SIGKDD, 2004.
[21] Vlachos, M., Kollios, G., and Gunopulos, D., Discovering

Similar Multidimensional Trajectories, Proceedings of

ICDE, 2002.
[22] Yanagisawa, Y., Akahani, J., and Satoh, T., Shape-Based

Similarity Query for Trajectory of mobile Objects,
Proceedings of MDM, 2003.

