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Abstract 

The problem of trajectory similarity in moving object 

databases is a relatively new topic in the spatial and 

spatiotemporal database literature. Existing work focuses 

on the spatial notion of similarity ignoring the temporal 

dimension of trajectories and disregarding the presence 

of a general-purpose spatiotemporal index. In this work, 

we address the issue of spatiotemporal trajectory 

similarity search by defining a similarity metric, 

proposing an efficient approximation method to reduce its 

calculation cost, and developing novel metrics and 

heuristics to support k-most-similar-trajectory search in 

spatiotemporal databases exploiting on existing R-tree-

like structures that are already found there to support 

more traditional queries. Our experimental study, based 

on real and synthetic datasets, verifies that the proposed 

similarity metric efficiently retrieves spatiotemporally 

similar trajectories in cases where related work fails, 

while at the same time the proposed algorithm is shown to 

be efficient and highly scalable. 

1. Introduction 

With the rapid growth of wireless communications and 
positioning technologies, the concept of Moving Object 
Databases (MOD) has been in the core of the spatial and 
spatiotemporal database research. An interesting type of 
query that is useful in MOD search is the so-called 
trajectory similarity problem, which aims to find ‘similar’ 
trajectories of moving objects.  

To illustrate the problem, consider the following 
example. Suppose that the metro network of a city has 
been recently extended, initiating a new transportation 
line, in view of providing transport services to a major 
part of the residents of the city suburbs. This metro 
network extension requires the re-designing of the 
existing transportation network (buses, tram, trolley-
buses, etc.). Experts in the field would be assisted if they 
could pose queries about the similarity between the 
trajectories of the existing transport means and the new 
metro line. As such, they would be able, for example, to 
change the timetable of a bus line, if it matches in a 

certain day with the timetable of the new metro line, or 
even abort it. To handle such queries efficiently, MOD 
systems should include methods for answering the so-
called Most-Similar-Trajectory (MST) search also 
discussed in [15]. 

Trajectory similarity search is a relatively new topic in 
the literature; the majority of the methods proposed so far 
are based on either the context of time series analysis or 
the Longest Common SubSequence (LCSS) model [21] 
and the recently proposed Edit Distance on Real Sequence 
(EDR) [5]. However, all these methods have the main 
drawback that they either ignore the time dimension of the 
movement, therefore calculating the spatial (and not the 
spatiotemporal) similarity between the trajectories, or 
assume that the trajectories are of the same length and 
have the same sampling rate. To exemplify the problem 
derived when different sampling rates are present, 
consider Figure 1 presenting two trajectories T and Q with 
their position being sampled in different rates.  

 
Figure 1. Trajectories with different sampling rates 

While Q and T sample their position 4 and 32 times 
respectively, they have approximately the same length 
traversing through the same area. Though the two 
trajectories are obviously similar, methods based on the 
LCSS or the EDR model cannot detect this kind of 
similarity since they try to match trajectory sampled 
positions one by one, which clearly does not happen in the 
above (real world) example. Moreover, the majority of the 
proposed approaches exploit specialized index structures 
in order to prune the search space and retrieve the most 
similar to a query trajectory.  

The challenge accepted in this paper, is to efficiently 
support the k-MST search in MODs storing historical 
trajectory information, exploiting existing R-tree-like 
structures which can also be used to support other types of 
queries as discussed in [13] and [6]. Our main 
contributions are outlined as follows: 
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• We define a dissimilarity metric (DISSIM) for the 
measurement of the spatiotemporal dissimilarity 
between two trajectories and we propose an efficient 
approximation method to overcome its costly 
calculation. 

• Adopting the MINDIST calculation between a 
trajectory and an index node proposed in [6], we 
present a set of novel metrics, and provide several 
lemmas, to be used for pruning. 

• Using the above metrics, we propose a best-first 
query processing algorithm to perform k-MST search 
on R-tree-like structures.  

• We conduct a comprehensive set of experiments over 
synthetic and real datasets demonstrating that the 
proposed similarity metric efficiently retrieves 
spatiotemporally similar trajectories in cases where 
related work fail, and the proposed MST search 
algorithm is highly scalable and efficient, in terms of 
execution time and pruned space. 

We have to point out that this algorithm does not 
require any dedicated index structure and can be directly 
applied to any member of the R-tree family used to index 
trajectories. To the best of our knowledge, this is the first 
work providing techniques for a spatiotemporal index to 
support both classical range, topological and similarity 
based queries. The rest of the paper is structured as 
follows. Related work is discussed in Section 2, while 
Section 3 introduces the dissimilarity metric, as well as 
the set of metrics that support our pruning strategies. 
Section 4 describes in detail the best-first query 
processing algorithm to perform MST search over 
historical trajectory information. Section 5 presents the 
results of our experimental study and Section 6 concludes 
the paper giving hints for future work. 

2. Related Work 

Similarity search has been well studied in the time series 
analysis domain. As a measure of approximate matching, 
Agrawal et al. [1] proposed the utilization of the Discrete 
Fourier Transformation (DFT). An alternative time series 
matching technique through dimension reduction was 
proposed by Chan and Fu [3], using the Discrete Wavelet 
Transformation (DWT). In order to compare sequences 
with different lengths, Berndt and Clifford [2] used the 
Dynamic Time Warping (DTW) technique that allowed 
sequences to be stretched along the time axis to minimize 
the distance between sequences. Although DTW incurred 
a heavy computation cost, it was more robust against 
noise. 

In [22] an indexing method for processing shape-
based similarity queries for trajectory databases was 
presented. The proposed method was based on Euclidean 
Distance. However it could be applied only on trajectories 
with same lengths being valid during the same time 
interval. Cai and Ng [4] proposed the utilization of 

Chebyshev polynomials for approximating and indexing 
trajectories for similarity matching purposes. Still, this 
method suffered from the requirement that the trajectories 
should be of the same length (in terms of the number of 
spatiotemporal points that are composed of).  

Vlachos et al. [20] presented a distance measure that 
allowed to find similar trajectories under translation, 
scaling and rotational transformations. The first step of 
their method was the mapping of each trajectory to a 
trajectory in a rotation invariant space. For the calculation 
of the distance between two trajectories in the new 
rotation invariant space, the DTW technique was utilized.  

Sakurai et al. [14] proposed an improved version of 
DTW, the Fast search method for Dynamic Time Warping 
(FTW), based on a new lower bounding measure for the 
approximation of the time warping distance. They proved 
that FTW could prune a significant portion of the search 
space, leading to a significant reduction of the search cost.  

Recently, Lin and Su [11] have studied the time 
independent similarity search problem of moving object 
trajectories. The “one way distance” (OWD) function is 
introduced for comparing the spatial shapes of trajectories 
along with appropriate algorithms for computing OWD. 
Their experimental study shows that the adoption of 
OWD function outperforms DTW algorithm in terms of 
precision and performance. 

Several approaches are based on the Longest Common 
Sub Sequence (LCSS) similarity measure. LCSS measure 
matches two sequences by allowing them to stretch, 
without rearranging, the sequence of the elements, but 
allowing some elements to be unmatched (which is the 
main advantage of the LCSS measure compared with 
Euclidean Distance and DTW). Therefore, LCSS can 
efficiently handle outliers and different scaling factors. 
Vlachos et al. [21] adopted the utilization of the LCSS 
method. Introducing two similarity measures allowing 
time stretching and translations respectively, the authors 
proposed non-metric similarity functions, which were 
very robust to the presence of noise and provided an 
intuitive notion of similarity between trajectories by 
giving more weight to the similar portions of the 
trajectories. Moreover, an efficient index structure (based 
on hierarchical clustering) for similarity queries was 
presented. However, as will be shown in the experimental 
study, the proposed method suffers when trajectories have 
different sampling rates. 

In [5] a distance function, called Edit Distance on Real 
Sequences (EDR), was introduced. This distance function, 
based on edit distance, was shown to be more robust than 
DTW and LCSS over trajectories with noise. The 
efficiency of this distance function was improved by the 
application of three pruning strategies, which reduced the 
respective computational cost in terms of computations 
between the query and data trajectories without 
introducing false dismissals. On the other hand, same as 
LCSS, EDR determines spatial similarity only, ignoring 
time, while trajectories with different sampling rates 
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cannot be handled efficiently, as it will be shown in the 
experimental study. Moreover, both [21] and [5] propose 
the employment of dedicated indexes to prune the search 
space so as to efficiently support k-MST search. 

Recently, Keogh et al. [10] presented an algorithm 
(based on the LB_Keogh function introduced in [9]), 
which dramatically reduced the time complexity of the 
calculation of the Euclidean Distance measure. This speed 
up was further achieved by allowing indexing. However, 
the above algorithm, which was generalized to other 
distance measures, such as DTW and LCSS, could be 
applied only to 2D shapes. 

Acknowledging the contributions of the above 
proposals, in the sequel we propose novel metrics and 
algorithms for trajectory similarity search on R-tree-like 
structures. 

Table 1. Table of notations 

Notation Description  

T, Q an indexed and a query trajectory 

Tk, Qk the kth line segment of T or Q 

tk a timestamp 

DQ,T(t) function of distance in time between Q and T 

, ,a b c  factors of DQ,T(t) trinomial  

EQ,T 
calculation error of the dissimilarity between 
trajectories 

D distance between trajectories 

V relative speed between moving objects 

N R-tree node 

MINDIST(Q,N) minimum distance between Q and N 

Vmax 
the sum of the maximum speed of indexed trajectories 
plus the maximum speed of the query trajectory 

SR 
the set of line segments already retrieved from the 
index 

SC 

the set of trajectories with line segments already 
retrieved from the index but not yet fully completed 
inside the given time period. 

3. Metrics for k-MST Search 

In this section we will define the notion of spatiotemporal 
dissimilarity used in the rest of the paper followed by a 
series of metrics and heuristics used in our algorithms for 
MST Search (Table 1 presents the notations used in the 
rest of the section). As already mentioned, existing work 
in the domain of trajectory similarity search, either 
ignores the time dimension of the movement, as such 
calculating the spatial similarity between trajectories or 
assumes that trajectories have the same lengths (in terms 
of the number of spatiotemporal points that are composed 
of) and the same sampling rate. From a different 
perspective, extending the well known Euclidean Distance 
metric also used in [21] and [5], we define the notion of 
spatiotemporal dissimilarity between two trajectories T 
and Q both being valid during a definite time interval [t1, 
tn], by integrating their Euclidean distance in time.  

Definition 1: The Dissimilarity DISSIM(Q,T) between 

trajectories Q and T being valid during the period [t1, tn] 

is defined as the definite integral of the function of time of 

the Euclidean distance between the two trajectories 

during the same period: 

1

,( , ) ( )
nt

Q T

t

DISSIM Q T D t dt= ∫ , 

where DQ,T(t) is the function of the Euclidean distance 
between trajectories Q and T with time. However, since 
each trajectory is represented by a collection of discrete 
points where linear interpolation is applied in between, 
the definition of dissimilarity is transformed to: 

11

,
1

( , ) ( )
k

k

tn

Q T

k t

DISSIM Q T D t dt
+−

=

=∑ ∫ , 

where tk are the timestamps that objects T and Q recorded 
their position. Obviously, in real world applications, the 
sampling rates of trajectories may vary, resulting in 
trajectories with positions sampled at different 
timestamps; however, considering two trajectories with 
this characteristic, the position of the first object at the 
time instance when the second recorded its position can 
be approximated by applying linear interpolation.  

The Euclidean distance between two points moving 
with linear functions of time between consecutive 
timestamps, was defined in [6]: 

2
, ( )

Q T
D t at bt c= + + ,  

where a, b, c are the factors of this trinomial (real 
numbers, 0a ≥ ). 

In order to calculate the integral of DQ,T(t), we 
distinguish between the following two cases for the value 
of the non-negative factor a : 

• 0a = . As shown in [6], it implies that 0b = . Hence, 

   
1

,

1

( )
k

k

t

Q T

k kt

c
D t dt

t t

+

+

=
−∫  

• 0a > . According to Meratnia and By [12]: 
1

1 2
2

, 2

2 4 2
( ) arcsinh

4 8 4

i
k

k
i

t
t

Q T

t
t

at b b ac at b
D t dt at bt c

a a a ac b

+
+  + − +

= + + −   − 
∫  

In order to avoid such a computationally heavy 
operation, we adopt the utilization of the Trapezoid Rule 
for the computation of the integral, resulting in the 
following Lemma. 

 
Figure 2. Trapezoid approximation 

Lemma 1: The dissimilarity value between two points 

moving linearly with time can be approximated by the 

following expression: 

Distance 

t 

tk+2 

tk+1 

2b a−  

tk 

tk+3 

 

Ek 

Ek+1 

Ek+2 

,Q T
D  
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( )
1

, , 1 1
1

1
( , ) ( ( ) ( )) ( )

2

n

Q T k Q T k k k

k

DISSIM Q T D t D t t t
−

+ +
=

≈ + ⋅ −∑  

with the error of the approximation, which depends on tk, 

tk+1 values, being bounded by: 
3

(2)1
, 1

31
(2)1

, , 1 1
1

3
(2)1

, 1

( )
( ) ,2 212

( )
( ) , 212

( )
( ) , 212

k k

Q T k k

n
k k

Q T Q T k k k

k

k k
Q T k k k

t t b bD if t t
a a

t t bE D t if t t
a

t t bD t if t t
a

+
+

−
+

+ +
=

+
+

 −
− ≤− ≤


 −

≤ < < −

 −

− < <


∑  

Proof: in [7]. � 
 
 demonstrates the trapezoid approximation illustrating 

the approximation error E in the three above cases: the 

value of 2b a−  is the flex of (2)
,Q TD ; Ek is calculated based 

on the value of (2)
, 1( )Q T kD t +  (case b), Ek+1 is calculated 

based on the value of (2)
, ( 2 )Q TD b a−  (case a) and Ek+2 is 

calculated based on (2)
, 2( )Q T kD t + (case c). 

So far we have defined the dissimilarity between two 
trajectories (Definition 1) and have approximated this 
measure with a less expensive computation and a bounded 
error. As already mentioned, the location of non-recorded 
timestamps is approximated by linear interpolation 
between consecutive recorder points. (Support of non-
linear e.g. arc, movement is left as a task for future work.) 
In the sequel, we will provide a series of metrics that will 
be used in our MST search algorithm. 

  
(a) (b) 

Figure 3. LDD definition 

3.1   Speed-Dependent Metrics 

In this section we define two metrics, namely 
OPTDISSIM and PESDISSIM, and provide several 
lemmas to be used for pruning purposes during MST 
Search. Before proceeding into the core of the section, we 
define the Linearly Depended Dissimilarity (LDD) which 
is used in the definition of our metrics: 
Definition 2: The Linearly Depended Dissimilarity 

(LDD) between two moving objects with initial distance D 

moving collinearly with relative speed V during the 

period 1[ , ]nt t t∆ = , is given by the following expression: 

( )
( )2

2 , 0
( , , )

2 ,

t D V t if D V t
LDD D V t

D V otherwise

∆ ⋅ + ⋅∆ + ⋅∆ ≥
∆ =



 

The relative speed V is a negative (positive) number when 
the distance between the two objects decreases (increases, 

respectively). To illustrate this definition, consider Figure 
3 where LDD is described as the shaded area 
encompassed by the inclined line representing a distance 
function between two objects moving towards each other 
with relative speed V, with the horizontal lines t1 and tn 
defining t∆ . The two cases of LDD definition are 
illustrated in Figure 3(a) and Figure 3(b), respectively.  

Any algorithm used for MST search will have to 
calculate the dissimilarity between a query trajectory and 
several (indexed or not) trajectories; obviously, at any 
time instance such an algorithm will have retrieved 
several parts of candidate MSTs.  

 
Figure 4. OPTDISSIM definition 

Although we cannot calculate the exact DISSIM of 
these partially retrieved trajectories from the query 
trajectory, we can safely estimate a lower bound for it, 
called OPTDISSIM. Consider, for example, Figure 4 that 
illustrates OPTDISSIM of a partially retrieved candidate 
trajectory T from the query trajectory Q. OPTDISSIM 
partially consists of the dissimilarity of the entries already 
retrieved from the index (the shaded area during the time 
intervals [t1,t2] and [t3,t4]). Regarding the period [t4,t5], the 
smallest possible dissimilarity is given assuming that the 
moving object started from its position at t4 approaching 
the query object with the maximum possible speed (the 
inclined line between t4 and t5). Finally, when dealing 
with intermediate time intervals such as [t2,t3], one has to 

calculate the time instance 2
o

t  in which the object stopped 

its movement towards the query trajectory (the inclined 

line between t2 and 2
o

t ) and then returned to its known 

position at the time instance t3 (the inclined line between 

2
o

t  and t3). Now we can proceed with the formal definition 

of OPTDISSIM: 
Definition 3: The most optimistic DISSIM (OPTDISSIM) 

between a query trajectory Q and an indexed trajectory T 

with line segments partially retrieved from the index, 

during a period 1[ , ]nt t , is defined as: 

( )
( )
( )
( )

1

, 1 max 1

, max 1

, max

, 1 max 1

( , , , )

( , ) , ;

( ), , ( ) , , 1;

( ), , ( ) , , 1;

( ), , ( )

( ), , ( ) ,

n

k k k R

Q T k k k k R

Q T k k k k R

o

Q T k k k

o

Q T k k k

OPTDISSIM Q T t t

DISSIM Q T if T S

LDD D t V t t if T S k

LDD D t V t t if T S k n

LDD D t V t t

LDD D t V t t otherwise

+ +

+

+ +

=
 ∈
 − − ∉ =


− − ∉ = −

− − +

−

1

1

n

k

−

= 




∑  

where DQ,T is the function of distance with time between 

trajectories Q and T,  SR is the set of line segments 

Distance 

t 
tn=t5 

t1 

O
P

T
D

IS
S
IM

 

Vmax 

t2 

t3 

2

o

t

t  

t4 DQ,T 

t 

tn 

t1 

D 

V<0 

∆t LDD 

 

t 

tn 

t1 

LDD 

Distance D 

V<0 

∆t 

Distance 
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already retrieved from the index, Vmax is the sum of the 

maximum speed of indexed trajectories plus the maximum 

speed of the query trajectory, and o

kt  is given by the 

following expression: 

( )( )1 , 1 , max( ) ( ) 2o

k k k Q T k Q T k
t t t D t D t V+ += + + −  

Recalling Figure 4, the value of o

kt  is straightforward 

utilizing the fact that the slope of the two inclined lines 

between 2 2[ , ]ot t  and 2 3[ , ]ot t  is the same and equal to Vmax. 

Having defined OPTDISSIM, we can provide the 
following lemma, which will also turn out to be useful for 
pruning purposes: 
Lemma 2: A trajectory indexed by an R-tree-like 

structure with line segments partially retrieved from the 

index cannot have smaller DISSIM from a query 

trajectory Q during a period 1[ , ]
n

t t  than its respective 

OPTDISSIM. 
Proof: According to Definition 3, OPTDISSIM is the sum 
of the DISSIM of the trajectory entries already retrieved 
from the index (belonging to the set SR), a value which is 
fixed, plus the DISSIM of an object which approached the 
query trajectory with the maximum possible speed (Vmax) 
during the time intervals not already retrieved from the 
index, with the constraint that the object has to be found 
at given positions at the start and/or the end of the 
interval. Therefore, since the two objects approach each 
other with the maximum possible speed during those 
periods, the distance between them is minimized; hence 
minimizing the corresponding integral and consequently 
their dissimilarity. � 

 
Figure 5. PESDISSIM definition 

Likewise, by adopting the same scenario where an 
MST algorithm has only partially retrieved trajectories, 
one can estimate an upper bound, for the DISSIM between 
the query and a partially retrieved trajectory, named 
PESDISSIM. As illustrated in Figure 5, PESDISSIM 
works in a fashion similar to OPTDISSIM with the 
difference that during time intervals where the movement 
of the object is not known, the object is assumed to 
diverge (and not approach) the query trajectory with the 
maximum possible speed Vmax. In the same way, we 
formally define PESDISSIM: 
Definition 4: The most pessimistic DISSIM (PESDISSIM) 

between a query trajectory Q and an indexed trajectory T 

with line segments partially retrieved from the index, 

during a period 1[ , ]nt t , is defined as: 

( )
( )
( )
( )

1

, 1 max 1

, max 1

, max

, 1 max 1

( , , , )

( , ) , ;

( ), , ( ) , , 1;

( ), , ( ) , , 1;

( ), , ( )

( ), , ( ) ,

n

k k k R

Q T k k k k R

Q T k k k k R

p

Q T k k k

p

Q T k k k

PESDISSIM Q T t t

DISSIM Q T if T S

LDD D t V t t if T S k

LDD D t V t t if T S k n

LDD D t V t t

LDD D t V t t otherwise

+ +

+

+ +

=
 ∈
 − ∉ =
 − ∉ = −


− +

− −

1

1

n

k

−

=




∑  

where DQ,T, SR and Vmax are as defined in previous 

definitions, and p

k
t  is given by the following expression: 

( )( )1 , , 1 max( ) ( ) 2p

k k k Q T k Q T k
t t t D t D t V+ += + + −  

The following lemma is directly derived by the 
definition of PESDISSIM. 

Lemma 3: A trajectory indexed by an R-tree-like 

structure with line segments partially retrieved from the 

index cannot have DISSIM from a query trajectory Q 

during a period 1[ , ]
n

t t  greater than its respective 

PESDISSIM. 
Proof: According to Definition 4, PESDISSIM is the sum 
of the DISSIM of the trajectory entries already retrieved 
from the index (belonging to the set SR), a value which is 
fixed, plus the DISSIM of an object which diverged the 
query trajectory with the maximum possible speed (Vmax) 
during the time intervals not already retrieved from the 
index, with the constraint that the object has to be found 
in given positions at the start and/or the end of the 
interval. Therefore, the distance between the two 
trajectories during those periods is maximized, hence 
maximizing their dissimilarity. � 

3.2   Speed-Independent Metrics  

The utilization of the previously defined metrics in an 
MST search algorithm can significantly enhance its 
performance by pruning several candidate trajectories. 
However, these metrics are relatively loose, since they are 
based on the maximum speed Vmax which, theoretically 
speaking, could be orders of magnitude higher than the 
mean object speed. Therefore, we need to define other 
metrics not influenced by Vmax, supporting our speed-
independent MST search algorithms. These metrics can 
be developed when an MST algorithm reports index 
nodes in incremental order of their MINDIST from the 
query trajectory. Obviously, this is a reasonable 
assumption considering R-tree like structures where a 
best-first strategy like the one proposed in [8] can be 
utilized. 

Consider, for example, Figure 6 that describes the 
DISSIM of a partially retrieved candidate trajectory T 
from the query trajectory Q; According to our previous 
discussion, the DISSIM between [t1,t2] and [t3,t4] is 
accurately defined. In this case however, we can utilize 
the fact that index nodes are accessed in incremental order 
of their MINDIST from the query trajectory. 

t 

P
E

S
D

IS
S
IM

 

DQ,T 

Distance 

tn=t5 

t1 

t2 

t3 

2

p

t

t4 

Vmax 
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Consequently, any line segment not yet retrieved from the 
index, cannot be closer to Q than MINDIST(Q,N) where N 

is the next index node in the queue, and the lower bound 
of DISSIM turns into the shaded area of Figure 6. 

 
Figure 6. OPTDISSIMINC definition 

More formally, we define OPTDISSIMINC as follows: 
Definition 5: Assuming that index nodes are reported in 

incremental order of their MINDIST from the query 

trajectory, the most optimistic DISSIM between a query 

trajectory Q and an indexed trajectory T during a period 

[t1,tn] having a line segment inside a tree node N, is given 

by the following expression: 

1
1

1 1

( , , , , )
( , ) , ;

( , ) ( ) ,

INC n
n

k k k R

k k k

OPTDISSIM Q T N t t
DISSIM Q T if T S

MINDIST N T t t otherwise

−

= +

=
∈


⋅ −

∑  

where SR is the set of line segments already retrieved from 

the index. 
Using the above definition of OPTDISSIMINC, we can 

also define the minimum DISSIM of an index node N: 
Definition 6: Assuming that index nodes are reported in 

incremental order of their MINDIST from the query 

trajectory, the minimum DISSIM between a trajectory T, 

indexed by an R-tree-like structure having a line segment 

inside a node N, and a query trajectory Q during a period 

[t1,tn], is defined as: 

1

1

1

( , , , )
( , ) ( )

min
( , , , , ),

INC n

n

INC n C

MINDISSIM Q N t t
MINDIST Q N t t

OPTDISSIM Q T N t t T S

=
⋅ −


∀ ∈

 

where SC, is the set of the trajectories with line segments 

already retrieved from the index but not yet fully 

completed inside the period [t1,tn]. 
Lemma 4: Assuming that index nodes are reported in 

incremental order of their MINDIST from a query 

trajectory Q, a trajectory that is partially stored inside a 

tree node N cannot have smaller DISSIM from Q during 

the time period [t1,tn] than the node’s respective 

MINDISSIMINC. 
Proof: Any line segment inside N resides in a trajectory 
that either belongs to Sc or not. In the former case, 
considering that nodes are reported in incremental order, 
trajectory entries not yet retrieved cannot be closer to the 
query object than the MINDIST of the node in which they 
belong. So, the minimum dissimilarity of an object of Sc is 
the sum of the dissimilarity of its entries already retrieved 
from the index, plus the dissimilarity of an object being as 
close as MINDIST to the query trajectory during the rest 
of the query time period - a sum which corresponds to 
OPTDISSIMINC definition. In the latter case, where the 

trajectory does not belong to Sc, the line segment cannot 
belong to an object fully retrieved from the index because 
this would lead to duplicate line segments in the index. 
Hence the line segment belongs to a moving object with 
no segments retrieved from the previously accessed nodes 
and it cannot be closer to the query trajectory than 
MINDIST. Thus, in the best case, its distance from the 
query object during the query period is equal to MINDIST 
and its DISSIM is equal to ( , )MINDIST Q N t⋅ ∆ . � 

3.3   Heuristics 

The lemmas provided in previous sections support the 
following heuristics directly used in the MST Search 
algorithm that will be presented in Section 4. 
• Heuristic 1: Every trajectory with OPTDISSIM 

greater than the current most similar (i.e. the one with 
the smallest calculated DISSIM - or PESDISSIM if 
there is not a fully calculated DISSIM) cannot be more 
similar to the query trajectory than the current most 
similar; as such, it can be pruned from the candidates 
list. 

• Heuristic 2: When leaf and internal nodes are reported 
in incremental order of their MINDIST from the query 
trajectory, every trajectory line segment contained in a 
node with MINDISSIMINC greater than the current 
most similar belongs to a moving object, which cannot 
be more similar to the query trajectory, hence, the 
node can be pruned from the candidates list. 
Moreover, since any node reported after the one 
processed will have MINDIST greater or equal to 
MINDIST of the current node, according to Definition 
6 the same will hold for the respective values of 
MINDISSIMINC. As a result, all these nodes will have 
MINDISSIMINC greater than the current most similar, 
and the algorithm can be terminated since all the 
remaining nodes can be pruned. 

4. A k-MST Search Algorithm 

The proposed BFMSTSearch algorithm (illustrated in 
Figure 7) accesses the tree structure in a best-first mode, 
calculating the appropriate MINDISTs between the query 
trajectory and the tree nodes, thus reporting leaf and 
internal tree nodes in incremental order of their MINDIST 
from the query trajectory. At leaf level, the algorithm uses 
three hashed in-memory structures: One with the 
completed trajectories (Completed), one with the partially 
completed trajectories (Valid) and one with the partially 
completed nevertheless already rejected (Rejected) 
trajectories. Both Completed and Valid in-memory 
structures store lists. Each list contains the moving 
object’s time intervals along with their starting and ending 
distances, its (partial) DISSIM the respective calculation 
error and the OPTDISSIM and PESDISSIM values. The 
Rejected in-memory structure contains only trajectory ids. 
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Algorithm BFMSTSearch (R-tree R, trajectory Q, time 
period Qper) 

 EnQueue Queue, R.RootNode, 0, Q 
 DO WHILE Queue.Count > 0 
  Element = DeQueue(Queue) 
  N=Element.Node:Q=Element.QueryTrajectory 
  IF Completed.Count>0  
    IF MINDISSIMINC(Q,N)>MSim.DISSIM  
      Return MSim 
  ELSE 
    IF N is leaf node 
      Sort(N, TS) 
      FOR EACH leaf entry E in leaf node N 
        IF Rejected not contains E.Id 
          IF Valid contains E.Id retrieve list L 
          ELSE create list L: Add L in Valid 
          FIND next query entry QS in Q with 
          QS.Te<N.TS: QE=QS 
          DO UNTIL QE.TS > E.Te 
            Interpolate to produce nE, nQE 
            in period (T1,T2):Add (T1,T2) in L 
            Calc DISSIM,PESDISSIM, 
                 OPTDISSIM,ERR) 
            IF L is completed 
              Move L from Valid to Completed 
              IF DISSIM<MSim.DISSIM  
                Update Msim with nE,DISSIM 
            ELSE  
              IF PESDISSIM<MSim.DISSIM  
                Update MSim with nE,PESDISSIM 
              IF OPTDISSIM>MSim.DISSIM  
                Move L from Valid to Rejected 
          NEXT query entry QE 
          Return QE in the query entry QS 
      NEXT 
    ELSE 
      FOR EACH entry E in the node Element 
        IF (Q.TS,Q.TE) Overlaps (E.TS,E.TE) 
          Interpolate to produce nQE 
          in period (T1,T2) 
          Dist = MinDist(nQ, E) 
          EnQueue Queue, E, Dist, nQ 
      NEXT 
 LOOP 

Figure 7. BFMST Search pseudo-code 

When an internal node is processed (lines 32-37) the 
algorithm calculates the MINDIST between the node and 
the part of the query trajectory Q being inside the 
temporal extend of the node and then is enqued. When a 
leaf entry is processed (lines 9-30), the algorithm checks 
whether it belongs to a Rejected moving object (by simply 
using its id) and rejects it if it does (line 12). In the sequel 
it checks whether the entry belongs to a Valid moving 
object and if so retrieves its list L; otherwise it creates a 
new list and adds it to Valid (line 13). The algorithm uses 
a plane sweep method which scans leaf entries and 
trajectory segments in their temporal dimension in a 
single pass. This requires that the leaf entries are 
previously sorted according to their temporal order (line 
10), unless the underlying tree structure (such as the TB-
tree) stores them in temporal organization anyway. 

When a leaf entry and a query trajectory segment 
overlap in the temporal dimension, the algorithm adds the 
period to the list L (line 17), calculating DISSIM, 
OPTDISSIM and PESDISSIM, together with the 
respective calculation error (line 18). If the list L is 
completed, it is removed from the Valid and added to the 
Completed, while its DISSIM is checked against the 
current most similar; if smaller, takes its position in MSim 

(lines 20-22). In the case where L is not yet completed, its 
PESDISSIM is checked against the current most similar 
and, if smaller, takes its position in MSim (lines 24-25); 
its OPTDISSIM is also compared with the current most 
similar and, if greater, the list is moved from Valid to 
Rejected applying heuristic 1 (lines 26-27). 

In both cases where a node (leaf or internal) is 
processed, the algorithm first checks whether its 
MINDISSIMINC is greater than the current most similar 
and if so, the algorithm terminates applying heuristic 2, 
and returns the current most similar as the query reply 
(lines 5-7). Note that in order to avoid calculating all the 
OPTDISSIMINC values involving in the MINDISSIMINC 
definition (e.g. 

C
T S∈  in definition 6), we first check 

whether the 1( , ) ( )nMINDIST Q N t t⋅ −  value of the node 
is less than the current most similar. In such a case, the 
calculation of the OPTDISSIMINC values is omitted, since 
the value of MINDISSIMINC will be less than the current 
most similar regardless of the OPTDISSIMINC values.  

4.3   Extending to k-MST algorithms 

In the same fashion as in [6], we generalize the above 
algorithm to support the k-most similar trajectory search 
by considering the following: 
• using a buffer of at most k (current) most similar 

trajectories sorted by their actual dissimilarity from 
the query trajectory; 

• terminating the algorithm execution when processing 
a node with MINDISSIMINC greater than the 
dissimilarity of the more dissimilar object in the 
buffer, when extending the BFMSTSearch algorithm. 

4.4   Error Management 

The above MST algorithm calculates dissimilarity 
between query and indexed trajectories using the 
approximation introduced in Lemma 1, computing at the 
same time the appropriate approximation error (denoted 
as ERR in Figure 7). However, apart from its 
computation, the usage of the error is fundamental in 
order to compute exact and correct results, a task not 
explicitly discussed in the description of the BFMST 
algorithm for sake of clarity. Actually, three modifications 
must be introduced in the algorithm so as to incorporate 
the role of the approximation error:  
• A candidate most similar trajectory, not already 

completed, is compared against the current k
th most 

similar by using the value of PESDISSIM-ERR. 
• A completed candidate most similar trajectory is 

compared against the current k
th most similar using 

the value DISSIM-ERR.  
• Instead of using one kth most similar, it is required to 

utilize a buffer of the candidate k
th most similar 

trajectories. These will be all the trajectories with 
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DISSIM greater than the kth most similar and DISSIM-

ERR less than it. 
Finally, a post processing step is required after the 
execution of the MST algorithm in order to determine the 
definite k MSTs by calculating the actual dissimilarity of 
each candidate trajectory against the query trajectory. 
Although, this is a computational heavy operation, it only 
happens when the error buffer contains more than one 
trajectory, or when the order in which the trajectories are 
reported from the k-buffer can be affected by the 
calculation error of each trajectory’s similarity. As an 
indication, during the entire experimental study, there was 
no experiment that this case appeared. 

5. Experimental Study 

The above illustrated algorithm can be implemented in 
any R-tree-like structure storing historical moving object 
information such as the 3D R-tree [19], the STR-tree [13] 
and the TB-tree [13]. Among them, we have chosen the 
3D R-tree and the TB-tree that have excellent 
performance in specific traditional trajectory queries [13]. 
We used a page size of 4KB and a (variable size) buffer 
fitting the 10% of the index size, with a maximum 
capacity of 1000 pages. The experiments were performed 
in a PC running Microsoft Windows XP with AMD 
Athlon 64 3GHz processor, 512 MB RAM and several 
GB of disk space.  

5.1   Datasets 

Although existing work on trajectory similarity [21], [5] 
utilized real data, these datasets are not suitable for our 
objectives due to the fact that they are composed by 2D 
projections of trajectories without any information about 
the sampled timestamps; a reasonable fact, bearing in 
mind that the similarity measured in those papers only 
depends on the spatial and not the spatiotemporal 
trajectory similarity. On the other hand, several real 
datasets recently became available for experimentation 
purposes [16]; these datasets (representing the movement 
of a fleet of trucks) were used in our experiments to 
evaluate the quality of the proposed similarity measure 
(section 5.2). However, since they are relatively small 
(273 trajectories and 112203 line segments), they could 
not expose the actual performance of the algorithms; 
therefore, the performance study (section 5.3) was 
conducted using synthetic datasets generated by a custom 
generator based on the GSTD data generator [17]. 

In order to achieve scalability in the volumes of the 
datasets, we generated synthetic trajectories of 100, 250, 
500 and 1000 moving objects resulting in datasets of 
200K, 500K, 1000K, and 2000K entries, respectively (the 
position of each object was sampled approximately 2000 
times), thus building indices of up to 100 MB size. 
Regarding the rest parameters of the generator, the initial 

distribution and the heading of objects in all cases was 
random, while their speed was ruled by a normal or 
lognormal distribution. Table 2 illustrates summary 
information about the real and the generated datasets and 
the corresponding indexes. Note that each synthetic 
dataset is denoted by its cardinality (e.g. the S0100 
constitutes from 100 trajectories). 

Table 2. Summary dataset information 
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Trucks 273 112 Real data 3.2 1.8 

S0100 100 200 Lognormal 1 0.6 10.7 5.2 

S0250 250 500 Lognormal 1 0.6 25.8 13.1 

S0500 500 1000 Lognormal 1 0.6 51.0 26.2 

S1000 1000 2000 Lognormal 1 0.6 99.1 52.4 

5.2   Experiments on the quality 

In order to evaluate the quality of the proposed similarity 
measure we conducted an extensive set of experiments 
using the real Trucks dataset. All trajectories of the 
dataset were compressed using the TD-TR algorithm 
described in [12] producing thus artificial trajectories, 
which were similar (but not identical) to the ones of the 
original dataset. Then, we used each compressed 
trajectory to query the original dataset, expecting the 
algorithm to return the corresponding original trajectory 
as most similar. We run one set of queries setting k=1 and 
we counted the number of times the query failed to return 
the original trajectory as the most similar. We also scaled 
the value of the TD-TR parameter p from 0.1% to 10% of 
the length of each trajectory, in order to achieve different 
values of similarity since an increasing TD-TR parameter 
produces a compressed trajectory with fewer sampled 
points and greater dissimilarity regarding the original 
trajectory. As an example, Figure 8 illustrates (a) an 
original trajectory and the trajectories produced using the 
TD-TR algorithm with (b, c, d) different values of p. A 
major observation derived from Figure 8 is that while the 
general sketch of the trajectory remains unaffected with 
the evolution of p, the number of vertices outlining the 
trajectory decreases and the local details are vanished.  

    
p=0 

 (168 Vertices) 

p=0.1 % 

(65 Vertices) 

p=1 % 

(29 Vertices) 

p=2 % 

(22 Vertices) 

(a) (b) (c) (d) 

Figure 8. Different degree of compression on a trajectory 

Among the related work we have chosen to run the 
same experiments using the LCSS [21] and EDR [5] 
similarity measures. We did not include DTW [2] in our 
experimental study, since both LCSS and EDR were 
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shown to outperform it [21], [5]. We set the value of the 
parameter ε for these two measures to be a quarter of the 
maximum standard deviation of trajectories, which leads 
to the best clustering results, according to [5]. We also 
normalized the trajectory dataset as suggested in the same 
paper. Furthermore, for a fair comparison, we made an 
obvious improvement over LCSS and EDR, by manually 
adding samples in the under-sampled (query) trajectory 
with linear interpolation at the timestamps the checked 
dataset trajectory was sampled. We called these improved 
versions LCSS-I and EDR-I respectively. 

The results of the experiments evaluating the quality 
of the proposed similarity metric are illustrated in Figure 
9. Clearly, the proposed dissimilarity measure (DISSIM) 
outperforms both its competitors in all settings, regarding 
also their improved versions. Actually, in the largest part 
of the experiments, DISSIM correctly identifies the 
original trajectory from which the query one has been 
produced. On the other hand, it produces false responses 
only when the value of p exceeds 5%, verifying that it is a 
very robust similarity metric. LCSS (and LCSS-I) also 
achieves good quality classifying correctly the query 
trajectory in the majority of the experimental settings; 
nevertheless, it is always less accurate than DISSIM. 
Regarding EDR and EDR-I, it turns out that for p values 
greater than 1% they completely fail to describe the 
similarity between trajectories, since the false responses 
exceed 60%.  

 
Figure 9. False results increasing the value the TD-TR 
parameter 

The reason of the poor performance of EDR similarity 
measure demonstrated in these experiments can be 
explained considering its definition:  EDR is the number 
of insert, delete, or replace operations that are needed to 
convert trajectory A into B [5]. Thus, supposing that n is 
the number of vertices in A and m is the number of 
vertices in (the compressed) Ac, ( , )cEDR A A n m≥ − since 
at least n-m vertices are needed to be added into Ac so as 
to convert it to A. For an arbitrary dataset trajectory T 
with k vertices being spatially away from A, it can be 
easily shown that EDR between T and Ac is at most 
max(m, k). Therefore, if a dataset contains a trajectory T 
with k vertices and max( , )m k n m≤ − , e.g. a trajectory 
composed by a small number of vertices, then it also 
holds that ( , ) ( , )c cEDR T A EDR A A≤ . 

5.3   Experiments on the performance 

The proposed algorithm was evaluated with three sets of 
500 queries according to the settings presented in Table 3. 
As such the effects of cardinality (Q1), query length (Q2) 
and k (Q3) were evaluated using both 3D R- and TB-trees. 
(Here, we have to note that although related work also 
uses index structures to prune the search space and 
support efficient k-MST search, they utilize dedicated 
indices not designed to support other types of queries. 
Due to this fact, they are not comparable with our 
proposal, hence they are not included in our performance 
study.) 

Table 3. Query Settings 

Query  

Set 
Datasets 

Query Trajectory (as part of a 

random data trajectory) 
k 

Q1 S0100 … S1000 5% 1 

Q2 S0500 1% … 100% 1 

Q3 S0500 5% 1..10 
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Figure 10. Scaling with the dataset cardinality (Q1) the 
query length (Q2) and the number of k (Q3) 

Figure 10 illustrates the execution time and the 
achieved pruned space for the query sets Q1 (scaling with 
the dataset cardinality), Q2 (scaling with the query length) 
and Q3 (scaling with the number of k) evaluating the 
BFMST search algorithm. Clearly, the implementation of 
the proposed algorithm in both indices demonstrates high 
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pruning power, pruning over 90% in all the experimental 
settings. Moreover, as also demonstrated in the same 
figures, the pruning power remains almost constant – or 
decreases at a low rate - regardless of the scaling factor 

Regarding execution time, both trees achieve good 
execution times, due to the fact that the algorithm prunes 
mainly by the MINDISSIMINC heuristic, which directly 
rejects all tree nodes not yet processed by the time it 
realizes. The execution time appears to be linear with the 
number of moving objects, quadratic with the query 
length and sub-linear with k. Moreover, the TB-tree 
outperforms the 3D R-tree as the query length increases, 
while in the rest of the experimental settings, it is the 
opposite that is reported. 

6. Conclusions and Future Work 

Related work on similarity query processing either 
ignores time dimension of trajectories or considers 
trajectories with the same sampling rate. In this work, we 
relaxed these assumptions by defining a novel metric, 
called DISSIM, and then we presented a complete 
treatment of historical MST queries over moving object 
trajectories stored on R-tree like structures avoiding the 
drawbacks of the existing methods. Using our proposed 
metrics and heuristics for ordering and pruning purposes, 
we presented a best-first MST algorithm. Under various 
synthetic and real trajectory datasets, we illustrated the 
superiority of the proposed DISSIM metric against related 
work [21], [5], in terms of quality, while our algorithm 
was shown to have high pruning ability when processing 
MST queries, also verified in the case of k-MST queries. 

Future work includes the development of algorithms 
to support Time-Relaxed MST queries over trajectories 
indexed by R-tree like structures using the proposed 
DISSIM metric. This type of query calculates the 
minimum dissimilarity between trajectories regardless of 
the time instance in which the query object starts. A 
second research direction includes the development of 
selectivity estimation formulae for query optimization 
purposes investing on the work presented in [18] for 
predictive spatiotemporal queries. 
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