
Towards the Next Generation of Location-based

Services

Elias Frentzos, Kostas Gratsias and Yannis Theodoridis†

Department of Informatics, University of Piraeus,

80 Karaoli-Dimitriou St, GR-18534 Piraeus, Greece
{efrentzo, gratsias, ytheod}@unipi.gr

and

Research Academic Computer Technology Institute,

Patras University Campus, GR-26500 Rio, Greece

Abstract. Location-based services (LBS) constitute an emerging application

domain rapidly introduced in modern life habits. However, given that LBS

already count a few years of commercial life, the services provided are rather

naïve, not exploiting the current software capabilities and the recent research

advances in the fields of spatial and spatio-temporal data management. The goal

of this paper is to fill this gap by first presenting the next generation of location-

based services and then, demonstrating their implementation which takes

advantage of both modern commercial software and state-of-the-art spatial

network and spatio-temporal databases techniques. Novel techniques are also

proposed in fields non-thoroughly addressed by the research community, such

as the prediction of future position of objects moving on a road network.

Keywords: Location Based Services, Spatial Network Databases, Spatio-temporal databases

1 Introduction

The rapid introduction of location-aware mobile devices in modern life, such as GPS-

enabled mobile phones and Personal Digital Assistants (PDAs), has triggered the

development of an emerging class of e-services, the so-called Location-Based

Services (LBS), which provide information relevant to the location of a receiver [15].

LBS are rapidly introduced in modern life habits, influencing the way that people

organize their activities, promising great business opportunities for

telecommunications, advertising, tourism, etc. [11], also setting the research agenda in

several technological fields including spatial and spatio-temporal data management.

From the database management perspective, efficient LBS support request the

integration of several research advances in indexing [13], [17] and query processing

techniques [5], [12], [14], [16]. The development of such services has also indicated

several open research issues such as the processing of forecasting queries (i.e.,

determining future positions of moving points [4]), the support of continuous location

† Contact author’s address: 80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece. Tel: +30-

2104142449, Fax: +30-2104142264.

2 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

change in query processing techniques [3], knowledge discovery from data collected

via LBS [10], etc.

On the other hand, although LBS already count some years of commercial life (i-

area by NTT DoCoMo was launched in 2001), the services currently provided are

rather naïve, not exploiting the current software capabilities and the recent advances

in the research fields of spatial and spatio-temporal databases. The goal of this paper

is to present the next generation of LBS and, then, demonstrate their implementation

taking advantage of modern GIS and DBMS software as well as recent advances in

spatial network and spatio-temporal databases.

Investing on the taxonomy of LBS proposed in [1], we present a set of advanced

LBS and then sketch up the respective algorithms along with a description of their

implementation details. The taxonomy classes provided in [1] are based on the

discrimination of mobile vs. stationary reference (query) object, on the one hand, and

data objects (e.g., landmarks), on the other hand, resulting in four classes of services

(i.e., both being static, S-S, one being static and one being mobile, S-M and M-S, both

being mobile, M-M), summarized in Table 1.

Table 1. LBS Classification and example services, according to [1]

Reference (Query)

Object

Data Objects

Stationary (S) Mobile (M)

Stationary (S)

What-is-around

Routing

Find-the-nearest

Guide-me

Mobile (M) Find-me Get-together

The driving force behind the LBS classification presented in [1] is about query

processing issues: the query processing techniques behind a service involving mobile

objects, clearly fall into the domain of Moving Object Databases (MOD), while

processing of services concerning stationary objects is likely to be an issue related to

the area of Spatial (or Spatial Network) Databases (SDB or SNDB). The services

presented in this paper cover the S-S, M-S and M-M classes introduced in [1],

employing respective query processing techniques, while, their majority, to the best of

our knowledge, is not currently supported by commercial LBS providers.

Outlining the rest of the paper, Section 2 presents the framework on top of which

LBS are developed as well as a set of fundamental LBS of the S-S LBS class. Section

3 is the core of the paper where a set of novel services is presented, constituting our

proposal regarding the next generation of LBS, as well as the algorithmic and

implementation issues raised during their development. Section 4 provides technical

details regarding the development platforms. Finally, Section 5 summarizes our work

providing the conclusions and some interesting directions for future work.

Towards the Next Generation of Location-based Services 3

2 Background

In this section, we first introduce the framework used in the rest of the paper, and then

describe a set of services already provided by current LBS solutions. We include this

set in our discussion since they are fundamental and, thus, used as a basis for the

(more advanced) novel LBS set that will follow in Section 3.

Table 2. Table of notations

Symbol Description

V = {Vi}
the set of vertices corresponding to road network junctions on a road

network

E = {Ei,j}
the set of edges connecting vertices Vi and Vj, corresponding to road

segments on a road network

G(V, E)
the directed graph that represents the underlying road network on which

objects are moving

L = {Li} the set of points of interest (POIs) or Landmarks

Ti , Ti,j,
†

,i jT
the trajectory of a mobile user, its actual (sampled) and its predicted

spatio-temporal position (i.e., time-stamped spatial point) at timestamp tj

, , ,, ,x y t

i j i j i jT T T
the x-, y-, t- components of the spatio-temporal position Ti,j. Also note

that ,

t

i jT ª tj

, , ,, ,
x y

i j i j i jV V V
���� ����

����

the (estimated) velocity vector of object Ti at timestamp tj and its

projection along the x and y axes

T = {Ti} the set of trajectories of mobile users

DEucl(P, Q) the Euclidean distance between the two dimensional points P and Q

DNet(P, Q)
the network distance on the graph G between the two dimensional points

P and Q

Buffer(X, D) A method that builds a buffer of width D around a path X

Route(P, Q)

A method that retrieves a set of bi-connected line segments {Ei} of the

network graph forming a single path between points P and Q; usually,

the result of a routing operation

2.1 The Framework

Before proceeding into describing the LBS, we set the framework on which the

services will be based. Specifically, this framework contains:

− A directed graph G(V, E) that represents the underlying road network on which

objects are moving. The set of vertices (nodes) V = {Vi} of G correspond to road

junctions while its edges E={Ei,j} (connecting nodes Vi and Vj} represent road

segments. Each edge Ei,j is associated with two weights (distance metrics): the

length of the corresponding road segment and the average time required to travel

through that segment, respectively. Movement constraints (one-ways etc.) can be

also applied in the graph G(V, E) by appropriately setting the weights of each edge.

− The set L = {Li} containing the points of interest (POIs) or landmarks. POIs can be

also categorized into classes (e.g., restaurants, gas stations, ATMs etc); in fact, in

4 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

our implementation POIs are divided in such categories. We choose however, to

restrict our discussion in the case of one class for sake of clarity in presentation.

− The set T = {Ti} of trajectories of mobile users. Each trajectory is represented as a

set of time-stamped sampled locations <x, y, t>, applying linear interpolation in-

between them.

The above definitions along with the notation used in the rest of the paper are

summarized in Table 2.

The services presented in this paper are part of an LBS platform following the

system architecture illustrated in Fig.1. Among the components contained in the

system architecture, we focus on the LBS suite, which encloses the logic and a

number of advanced algorithms behind the developed services. Regarding the other

components, the architecture includes an extensible Database Management System

(DBMS) with a Spatial Extension communicating with the LBS suite via OLE DB

protocol; the Routing Server maintains the network graph G and provides routing

between two points on the network, while its communication with the LBS suite is

achieved via the Routing Client middleware. Exploiting the simple functionality

provided by these components, we expand it towards many directions. Among others,

the developed software supports nearest neighbor search using network (rather than

Euclidean) distance, in-route nearest neighbour search, and predictive location queries

which are supported by novel techniques.

LBS Suite

OLE DB

DBMS

Routing Server

Spatial Extension

Routing Client

Locator

Fig. 1. LBS Suite Architecture

The database maintained in the DBMS of Fig.1 contains, among others, a set of

tables fundamental for the advanced services that will be proposed later. Specifically,

Landmarks(object_id, object_name, object_geometry), contains the set L of POIs

while Trajectories(User_id, Trajectory_id, sampled_position_geometry, timestamp)

contains the set T of trajectories of the tracked LBS users. For performance issues, we

build a view Current_Positions(User_id, last_position_geometry) on top of

Trajectories, which contains the current positions of all tracked LBS users. The table

Trajectories (and its view Current_Positions) are assumed to be periodically updated

from an external Locator component. We also point out that geometry type columns

in tables assume the Spatial Extension component in the involved DBMS illustrated

in Fig.1.

Towards the Next Generation of Location-based Services 5

2.2 A Set of Fundamental LBS

The basic set of LBS usually operated by current LBS solutions consists of three

fundamental services, namely What-is-around, Routing, and Find-the-Nearest, which

evidently fall into the S-S class of the taxonomy presented in [1]. All three services

(and the respective algorithms) assume the presence of a graph G and/or a set of POIs

L. Moreover, all services involving graph operations (e.g., routing between two

points), can be evaluated with any of the two optimization criteria presented, either

traveled distance or traveling time, choosing between the two weights set for each

edge of the graph (length and time, respectively); in the following sections, for sake

of simplicity, we restrict our discussion to the distance (rather than time)

optimization. The following paragraphs describe the functionality of each of the

above fundamental LBS:

• What-is-around: The simplest service is the one that retrieves and displays the

location of every POI being located inside a rectangular area (Q, d), where Q is the

location of the user (or simply a user-defined point) and d is a selected distance

(i.e., the half-side of the query rectangle). The input of the corresponding algorithm

consists of the point Q and the distance d, while it returns the set L
΄
⊆L containing

all POIs inside the rectangular area (Q, d). This LBS is fundamental for the user in

order to know where he/she is located and what he/she can find nearby, while in

terms of spatial database operations it involves a simple spatial range query.

• Routing: This service provides the optimal route between a departure and a

destination point, P and Q, respectively. The input of the respective algorithm is

the departure and destination points P and Q; the service returns a route on the

graph connecting the two points. Apart from other applications, this LBS gives the

user the tool to make use of the previous service and find the way to the landmark

of interest. This service is implemented by performing a simple request to the

routing component (i.e. the Routing Server in Fig.1).

• Find-the-Nearest: This service retrieves the k nearest landmarks (POIs). For

example, “find the two restaurants that are closest to my current location” or “find

the nearest café to the railway station”. The underlying algorithm takes as input

the query point Q (for example, calling user’s current location), and returns the set

of points L
΄
⊆L, which are the k nearest to Q members of L.

Regarding the third service, it is important to note that the conventional nearest

neighbor (NN) search supported by current LBS solutions retrieves the k-NN objects

based on the Euclidean distance between the reference (query) and the data objects

stored in the database. However, the proper functionality of this service requires

finding the nearest neighbor based on the network distance between the two points

(i.e., the distance traveled by an object constrained to move on the network edges).

On the other hand, a recent solution in the field of SNDB includes the “Euclidean

Restriction” algorithm described in [12]. The algorithm is based on the observation

that DEucl(Q, P) § DNet(Q, P) holds for each pair of two-dimensional points Q and P;

as such, every object P' with Euclidean distance from Q greater than the respective

network distance of another object P can be safely pruned without further considering

its network distance, which by definition is greater than the respective Euclidean

distance.

6 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

Based on the above three fundamental LBS, in Section 3 we propose a set of

advanced LBS, covering also the M-S and M-M classes of services, according to the

taxonomy introduced in [1].

3 Next Generation LBS

In this section we describe a set of novel services constituting our proposal regarding

the next generation of LBS, which can be also considered as extensions of the three

fundamental services discussed in Section 2.2. In particular, we focus on the

following three services, named Guide-me (or, Dynamic Routing), In-Route-Find-the-

Nearest, and Get-together. Once again, all services (and the respective algorithms)

assume the presence of a graph G and/or a set of POIs L:

• Guide-me (Dynamic Routing): A first extension of the (static) Routing described in

Section 2.2 is the so-called Guide-me service, illustrated in Fig. 2(a). Likewise, the

system determines the best route between the calling user’s current location (point

P) and a destination point Q, and, then, keeps track of the user’s movement (by

simply updating its position) towards the destination point, allowing him/her to

deviate from the ‘optimal’ route, as long as his/her location does not fall out of a

predefined safe area (buffer) built around this route. The user is notified of his/her

deviation every time he/she crosses out of the buffer’s border and he/she is given

the option of re-routing from that current location (point R). The input of Guide-me

algorithm contains the id of the calling user, the destination point Q, and the

distance D, which defines the buffer width.

• In-Route-Find-the-Nearest: It is a combination of Routing and Find-the-Nearest

services which, given a departure and a destination point, P and Q, respectively,

finds the best route between them, constrained also to pass through one among the

specified set of candidate points (e.g., one of the points contained in Landmarks).

For example, a request for this service could be, “provide me the best route from

my current location to city A constrained to pass from a gas station”. Once again,

the input of the respective algorithm contains the departure and destination points,

P and Q respectively. This problem can also be considered as a special case of the

so-called Trip Planning Query (TPQ) [5], with the number of different classes

requested set to one.

• Get-together: With this service a moving user Tk ‘attracts’ a set of other users Sk Œ

T (let us assume, members of a community), also moving in the same area, to

converge at a meeting point not known in advance. This point is periodically

(every ∆t seconds) calculated by the system based on the future projection of the

calling user’s trajectory. As an example, consider Fig.2(b), where the calling user

Tk is at (the spatiotemporal) location (Tk,j0) and moves towards the direction shown.

The ‘attracted’ users Ti1 and Ti2 are located at (Ti1,j0) and (Ti2,j0) respectively. The

system predicts that by the time tj+∆t user
Τ

k will most probably be located at

location †

,k j tT +∆ (point P in Fig.2(b)) and, therefore, routes Ti1 and Ti2 towards this

point. Eventually, at tj+∆t the (recorded) location of Tk is Tk,j0+∆t. Likewise, the

system projects the trajectory of Tk to the future time tj0+2∆t, predicting that at that

Towards the Next Generation of Location-based Services 7

time Tk will be at †

, 2k j tT + ∆ (point P ΄ in Fig.2(b)), so it routes the rest of the users

accordingly. The service terminates when at least one or all the members of Sk

reach Tk. The input of the respective algorithm is the id of the ‘master’ user Tk, the

set of the ids of the ‘attracted’ users Sk, and a time delay ∆t. The algorithm returns

a set of (dynamically updated) paths between each Ti œ Sk and the periodically

predicted location of Tk.

P

Q
P

΄

D

Ti1

(Ti1, j0)

(Tk, j0)

Tk

Ti2

(Ti2, j0)

(Tk, j0+∆t)

(Ti1, j0+∆t)

(Ti2, j0+∆t)

P

Ṕ

(a) (b)

Fig. 2. (a) Guide-me and (b) Get-together examples

Among these services, the first evidently falls into the M-S class since it involves a

moving user and several static data objects, while, the second is classified as S-S.

Finally, the third service belongs to M-M class since both the reference (query) and

the data objects are moving. The algorithms supporting the above three services are

presented in the sections that follow.

3.1 Guide-me (Dynamic Routing)

As already discussed (and illustrated in Fig. 2(a)), this service requires the DBMS to

keep track of the user’s current position. As such, it exploits the previously introduced

view Current_Positions over the table Trajectories (containing the current position of

each user Ti). The algorithm developed to support the Dynamic Routing service is

illustrated in the pseudo-code of Fig.3.

Apparently the first step of the Dynamic_Routing algorithm, involving the

retrieval of the current position of object Ti, is a simple selection on

Current_Positions. Regarding the second step, Route is performed by a simple

request to the routing component (i.e., the Routing Server of Fig.1). Finally, in step 9,

it is requested to check whether the object’s current location Ti,j lies on a buffer of the

route R with distance D; this operation is performed by compiling the Buffer and

Contains spatial methods provided by the Spatial DBMS extensions:

8 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

Algorithm Dynamic_Routing(User Id

Τ
i , destination point Q,

distance D, time period ∆t)
1
2
3
4
5
6
7
8
9

Τ
i,j = Retrieve current position of

Τ
i

R = Route(
Τ

i,j , Q)
DO WHILE

Τ
i,j has not reached Q

 Wait ∆t ; j = j +∆t

Τ
i,j = Retrieve current position of

Τ
i

 IF NOT
Τ

i,j lies in the buffer Buffer(R,D) THEN
 R = Route(

Τ
i,j , Q)

 ENDIF
LOOP

Fig. 3. Algorithm Dynamic_Routing

SELECT * FROM CurentPositions
WHERE User_id=UId AND
Contains(Buffer(R,D),last_position_geometry)

The Contains(A, B) function returns true when the spatial object A contains the

spatial object B, while the Buffer(A, D) function constructs a spatial object

representing the buffer of the A with distance D.

3.2 In-Route-Find-the-Nearest

This service retrieves the best route one has to follow in order to travel from a

departure to a destination point, P and Q, respectively, also constrained to pass via a

landmark among the ones contained in the Landmarks table. The developed

algorithm, based on the TPQ solutions provided in [5], is illustrated in the pseudo-

code of Fig.4.

Algorithm In_Route_Find_the_Nearest(departure point P,
destination point Q)

1
2
3
4
5

6
7
8
9
10
11
12

Nearest .Dist= ¶
Retrieve route R=Route(P, Q)
Find the Euclidean nearest object N to the route object R
Calculate D Net (P, N) and D Net (N, Q)
Retrieve all POIs Ni having
 D Eucl (P,N i)+D Eucl (Ni ,Q)< D Net (P, N)+ D Net (N, Q) and
sort them incrementally according to D Eucl (P,N i)+ D Eucl (Ni ,Q)
DO WHILE DEucl (P,N i)+ D Eucl (Ni ,Q) ≤ Nearest.Dist
 IF Nearest .Dist > D Net (P, Ni)+ D Net (Ni , Q) THEN
 Nearest .Point = Pi
 Nearest .Dist = D Net (P, Ni)+ D Net (Ni , Q)
 ENDIF
NEXT Ni
Return Nearest

Fig. 4. Algorithm In_Route_Find_the_Nearest

Towards the Next Generation of Location-based Services 9

The In_Route_Find_the_Nearest algorithm is based on the same principle

with the Euclidean restriction algorithm [12], that is, the Euclidean distance between

two points serves as a lower bound for their network distance. As such, the algorithm

initially produces the optimal route R between P and Q by performing a request to the

Routing Server, while subsequently, uses R as a query object in order to retrieve the

Euclidean NN among the records contained in the Landmarks table (Lines 2-3 in

pseudo-code, also illustrated in Fig.5(a)). In this step, we exploit the R-tree-based

nearest neighbor operator provided from the DBMS Spatial Extension, which

retrieves the nearest to the query object R among those that are contained in the

Landmarks table.

Then, the algorithm performs requests to the Routing Server in order to retrieve the

best route between P, N and Q calculating the network distance between them (Line 4

in pseudo-code, also illustrated in Fig.5(b)), while afterwards uses their sum in order

to retrieve candidate objects with a total distance from both P and Q upper bounded

by it (Line 5 in pseudo-code, also illustrated in Fig.5(c)). It is also important to note

that these objects are contained inside an elliptical region with P and Q as foci.

P
Q

N

P

Q

N

L1=Net_Dist(P,N) L2=Net_Dist(N,Q)

P
Q

L1
L2

(a) (b) (c)

Fig. 5. An illustration of the In-Route-Find-the-Net-Nearest functionality

In its final step, the algorithm calculates the network distances between P, Q and

the candidate points Ni, until the sum of the Euclidean distances of Ni from P and Q is

greater than the respective network distance of the candidate nearest (lines 6-11).

Finally, the algorithm reports the candidate nearest as the answer to the query.

3.3 Get-together

This service requires the DBMS to keep track of a user’s current position (we name

him/her ‘master’), along with the positions of the users in the set Sk ‘attracted’ by user

Tk; recall that all current positions are maintained in Current_Positions view.

Moreover, in order to ‘project’ the master user’s trajectory in a future position, it also

employs the Trajectories table containing the history of each tracked object. The

algorithm developed to support the Get-together service is illustrated in the pseudo-

code of Fig.6.

The Get_together algorithm iterates until the position of all users contained in

set Sk have converged to the master user’s current position Tk,j at timestamp tj. Inside

each iteration, the algorithm projects the trajectory of object Tk into the future

timestamp tj +∆t calculating the respective position
†

,k j
T on which Tk is estimated to

be found at this future timestamp (Line 2). Subsequently, the algorithm computes and

reports the routes needed for all objects of set Sk, in order to reach position
†

,k j
T (Line

3), and finally, updates the actual positions of all objects involved in the algorithm at

10 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

timestamp tj +∆t (Lines 5-6) - these positions are used in order to determine whether

the algorithm may or not continue with the next iteration (Line 1).

Algorithm Get_together(User Id
Τ

k, destination point Q,
distance D, time period ∆t)
1
2
3
4
5
6
7

DO WHILE Ti,j has not reached
Τ

k,j (" Ti œ Sk)
 †

,k j
T =Project_trajectory(

Τ
k, ∆t)

 FOR EACH Ti œ Sk Report Route(
Τ

i,j , †

,k j
T)

 Wait ∆t ; j = j +∆t
 FOR EACH Ti œ Sk Update current position

Τ
i,j

 Update current position
Τ

k,j of
Τ

k
LOOP

Fig. 6. Algorithm Get_together

Evidently, the most interesting operation involved in the algorithm is the

Project_trajectory function. This routine estimates the future location of a

moving object by projecting its trajectory to a future timestamp tj+∆t. Such a

computation requires some extra knowledge about the objects movement, such as the

velocity and the direction of each object. Although several methods have been

proposed for processing and indexing the current and future location of objects

moving without network constraints, including [13] and [16], the problem of

predicting the position of an object moving in a network, is very challenging by its

nature, and therefore, still remains open. Specifically, the majority of the proposed

strategies consider only the object’s current position [4], while an efficient

Project_trajectory function should make use of a trace (of dynamic length) of

the trajectory for the estimation of the object’s future location. Moreover, since our

need is to estimate a single point on which the members of Sk will be routed, the

Project_trajectory function should produce a ‘winner’ (i.e., single) projected

point. As such, existing approaches which produce matrices with probabilities for

each candidate network edge [4] cannot be used; instead we must estimate a single

destination point for all ‘attracted’ objects.

Tk

t

y

x

, ,
,x y

k j k j
T T

y y

kV b=
���

x x

kV b=
���

,

t

k j
T

t

x

y

Tk

,k jV
����

(a) (b) (c)

Fig. 7. The Project_trajectory function: (a) a trajectory in the 3-dimensional space, (b) the x and

y trajectory coordinates expressed as functions of time, and, (c) the estimated vector ,k jV
����

Towards the Next Generation of Location-based Services 11

We address this problem based on a simple regression model, which calculates the

projection of the velocity vector along the x- and y- axes. Specifically, assuming that

the object follows a ‘general’ direction, our goal is to determine this direction; we

therefore employ the simple linear regression along each axis, assuming that the

values of
,

x

k j
T and

,

y

k j
T at each timestamp

,

t

j k j
t T= , linearly depend on time, i.e.,

, ,

x x x t

k j k j
T a b T= + ⋅ , and

, ,

y y y t

k j k j
T a b T= + ⋅ , (1)

and, the velocity vector of this ‘general’ direction at timestamp tj will be determined

as the vector
, , ,

x y

k j k j k j
V V V= +

���� ����
����

. The magnitude for both x x

k
V b=
���

 and y y

k
V b=
���

 can be

calculated using linear regression analysis techniques given the values of time-

stamped sampled positions of Tk. Consider, for example, Fig.7(a) illustrating a

trajectory Tk in the 3-dimensional space; then, Fig.7(b) demonstrates the

corresponding x and y trajectory coordinates as functions of time, along with the

values of x x

k
V b=
���

 and y y

k
V b=
���

 calculated by the ‘mean’ trajectory direction along

each axis. Then, their combination in Fig.7(c) produces the vector
,k j

V
����

 standing for

the general trajectory direction.

Finally, a first approximation of the projected location
†

,k j t
T +∆ can be calculated by

the simple formula †

, , ,k j t k j k j
T T V t+∆ = + ⋅∆

����

, which leads to

†

, , ,

x x x

k j t k j k jT T V t+∆ = + ⋅∆ and
†

, , ,

y y y

k j t k j k jT T V t+∆ = + ⋅∆ (2)

It is also worth to note that the velocity vectors produced by linear regression already

include the mean object speed along the two axes, which, consequently, is

incorporated in the above formulas. Anyway, its value
,k j

V can be easily calculated

as the magnitude of vector
,k j

V
����

, thus:

2 2

, , , ,

x y

k j k j k j k j
V V V V= = +

(3)

There is one more issue that has to be clarified regarding the calculation of ,

x

k jV

and ,

y

k jV . Specifically, one first approach on their computation via the regression

analysis, is to proceed with it based on the entire moving object trajectory history

(i.e., using the complete set of time-stamped moving object positions Ti,j for j = 0, ..,

now). Although, this approach may sound reasonable, it can lead to false conclusions

regarding their estimated values since, moving objects may change travelling

direction arbitrarily, perform U-turns, vary their speed etc. Consider, for example, a

truck delivering several commercial products around a metropolitan area; the truck

starts its trip from a departure point (e.g., the company warehouse), delivers the

products to several locations around the city (stopping at each one of them), and

returns back to its original location (i.e., the company warehouse). Thus, the values of

12 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

,

x

k jV and ,

y

k jV calculated from the regression model will include all this arbitrarily

directed trajectory history.

On the other hand, the direction criterion applied in local circumstances can

provide more accurate results; for example, when this delivery truck moves between

two delivery points, it actually follows a general direction. As such, we propose that

the calculation of ,

x

k jV and ,

y

k jV could be safely performed based on the ∆t last

timestamps. Formally, in our implementation, ,

x

k jV and ,

y

k jV are determined by the

following formulas (which are directly derived from the linear regression analysis of

the last ∆t time-stamped trajectory sampled positions):

() ()

()

, , , ,

, 2

, ,

j
x x t t

k l k j k l k j

l j tx

k j j
x x

k l k j

l j t

T T T T

V

T T

= −∆

= −∆

− ⋅ −

=

−

∑

∑
, and

() ()

()

, , , ,

, 2

, ,

j
y y t t

k l k j k l k j

l j ty

k j j
y y

k l k j

l j t

T T T T

V

T T

= −∆

= −∆

− ⋅ −

=

−

∑

∑
 (4)

where , ,

1

1

j
x x

k j k l

l j t

T T
t = −∆

= ⋅
∆ +

∑ , , ,

1

1

j
y y

k j k l

l j t

T T
t = −∆

= ⋅
∆ +

∑ and , ,

1

1

j
t t

k j k l

l j t

T T
t = −∆

= ⋅
∆ +

∑ .

Subsequently, in order to support more realistic, network-constrained projected

location, in the proposed algorithm we search for the nearest network link based on
†

,k j t
T +∆ , and we route object Tk to it, thus producing route R. Finally, we determine the

point on this route, on which the object will be found after the ∆t time period, i.e.,

after traversing a distance of
k

V t⋅ ∆ (which is performed by simply traversing it and

counting the distance so far). The developed algorithm is illustrated in the pseudo-

code of Fig.8.

Algorithm Project_Trajectory(User Id

Τ
k, time period ∆ t)

1

2

3

4

5

Calculate x
kV and y

kV based on Eq.(4)

∆
���

†
k,j+∆t k,j kT = T +V × t

R = Route(k,jT , †
k,j+ ∆tT)

Determine point P on R with D Net (k,jT ,P)= t⋅ ∆kV

Return P

Fig. 8. Algorithm In_Route_Find_the_Nearest

A final point to be discussed is that the calculation of ,

x

k jV and ,

y

k jV through

Eq.(4) (i.e., the first algorithm step) requires only to query the Trajectories table

based on the master user’s id and the last ∆t timestamps; the results of this query will

retrieve the set of all time-stamped trajectory positions involved in Eq.(4) which will

be subsequently used to produce ,

x

k jV and ,

y

k jV .

Towards the Next Generation of Location-based Services 13

4 Implementation Details

All the services presented in Sections 2 and 3 have been implemented on top of three

basic components. The first one is the Microsoft SQL Server [9], which is a relational

database management system (RDBMS) that does not natively support spatial objects

such as points, lines etc; consequently, the employment of an extension component,

which enables SQL Server to support spatial data is an obligatory action, in order for

the LBS suite to be properly developed.

The Spatial Extension component is the MapInfo SpatialWare [6], which enables

the DBMS to store, manage, and manipulate location-based data. It allows therefore

spatial data to be stored in the same place as traditional data, ensuring data

accessibility, integrity, reliability and security through the mechanisms of the SQL

Server. SpatialWare includes a variety of non-traditional data types, such as points,

lines, polyline, regions (polygons), supports numerous spatial functions,and it is Open

GIS compliant [11]. However, the most important SpatialWare feature is the support

it provides for R-tree indexing [2], making it able to support huge volumes of spatial

data; R-tree indexing allows pruning the search space when a spatial query is

executed. Otherwise (i.e., in the case where no spatial index is present), the execution

of each spatial query would lead to linear scans over the entire dataset, which is a very

expensive operation.

The Routing Server component used in our implementation is the MapInfo Routing

J Server (RJS) [7], which is a street network analysis tool for finding a route between

two points, the optimal or ordered path between many points, the creation of drive

time matrices, and the creation of drive time polygons. RJS calculates either the

shortest distance or quickest timed route between any two points, returning text-based

driving directions and spatial points to the parent application. This functionality is

achieved by XML requests over a continuously running server: the client queries the

RJS with an XML file containing information such as, the departure and the

destination point, and after processing the request, RJS returns another XML file

containing the optimal route in terms of its lines segments (i.e., edges of the

respective directed graph). Mapinfo provides also the RJS .NET client middleware,

which undertakes the tasks of composing the XML file used for making the request,

and subsequently, interpreting the server’s answer to a set of comprehensive objects

implemented in the form of .NET objects.

Finally, the LBS suite, requesting data from all the above components, is

implemented with Microsoft Visual Studio .NET [8], while the connection to the

DBMS is realized by an OLE DB connection [9].

5 Summary

In this paper we presented typical examples of the next generation of location based

services, sketched up the respective algorithms and provided some interesting details

on their implementation. The majority of the presented services are not currently

supported by commercial LBS providers, or are available in an inefficient and

inaccurate manner. Among others, the developed services involve nearest neighbor

14 Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

queries using network (rather than Euclidean) distance, optimal route finding between

a set of user-defined landmarks, and in-route nearest neighbor queries. The developed

algorithms and their implementation are supported by recent advances in the field of

Spatial Network Databases [5],[12],[14], and novel techniques originally proposed in

this paper.

The solutions provided are not only focused on LBS; actually, many of them are

directly applicable in the context of route planning, which is a task usually performed

via web services. Therefore, our plan is to employ our LBS suite in the framework of

a web-based application providing users with advanced functionality regarding their

travelling needs.

Acknowledgments

Research partially supported by FP6/IST Programme of the European Union under

GeoPKDD project (2005-08) and EPAN Programme of the General Secretariat for

Research and Technology of Greece under NGLBS project (2004-06). The services

proposed in this paper are part of a commercial LBS platform; they designed and

developed in cooperation with Telenavis S.A. in the context of NGLBS project.

Telenavis S.A. is a commercial LBS provider providing both GSM-based and web-

based private and corporate solutions (see for example http://www.navigation.gr).

References

1. Gratsias, K., Frentzos, E., Delis, V. and Theodoridis, Y., 2005: Towards a Taxonomy of

Location-Based Services. Proceedings of Web and Wireless GIS (W2GIS), 2005

2. Guttman, A., 1984: R-Trees: a dynamic index structure for spatial searching. Proceedings

of ACM SIGMOD Conference, 1984.

3. Jensen, C.S.; Christensen, A.; Pedersen, T.; Pfoser, D.; Saltenis, S. and Tryfona, N., 2001:

Location-Based Services: A Database Perspective. Proceedings of Scandinavian GIS, 2001.

4. Karimi H. and Liu, X., A Predictive Location Model for Location-Based Services,

Proceedings of ACM-GIS, 2003

5. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G. and Teng, S.-H., 2005: On Trip Planning

Queries in Spatial Databases. Proceedings of SSTD, 2005

6. MapInfo Corporation, 2007a: MapInfo SpatialWare, Available at

http://extranet.mapinfo.com/products/ Overview.cfm?productid=1141, (accessed 18 May

2007)

7. MapInfo Corporation, 2007b: MapInfo Routing J Server, Available at

http://extranet.mapinfo.com/ products/Overview.cfm?productid=1144, (accessed 18 May

2007)

8. Microsoft Corporation, 2007a: Microsoft Visual Studio .NET, Available at http://

msdn.microsoft.com/ vstudio/, accessed 18 May 2007.

9. Microsoft Corporation, 2007b: Microsoft SQL Server, Available at

http://www.microsoft.com/sql/, accessed 18 May 2007.

10.Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J.

Intell. Inf. Syst. 27(3): 267-289 (2006)

Towards the Next Generation of Location-based Services 15

11. Open GIS Consortium, 2007: OpenGIS® Location Services (OpenLS): Core Services.

Available at http://www.opengis.org, accessed 18 May 2007

12. Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y., 2003: Query Processing in Spatial

Network Databases. Proceedings of VLDB Conference, 2003.

13. Saltenis, S.; Jensen, C. S.; Leutenegger, S.; and Lopez, M., 2000: Indexing the Positions of

Continuously Moving Objects. Proceedings of ACM SIGMOD Conference, 2000.

14. Sankaranarayanan, J.; Alborzi, H.; and Samet, H., 2005, Efficient Query Processing on

Spatial Networks. Proceedings of ACM-GIS, 2005.

15. Theodoridis, Y., Ten Benchmark Queries for Location-based Services, The Computer

Journal, vol. 46(6), pp. 713-725, 2003.

16. Tao, Y.; Papadias, D.; and Shen, Q., 2002.: Continuous Nearest Neighbor Search.

Proceedings of VLDB Conference, 2002.

17. Tao Y., Papadias D., Sun J., The TPR*-Tree: An Optimized Spatio-Temporal Access Method

for Predictive Queries, Proceedings of VLDB Conference, 2003.

