
On the Effect of Trajectory Compression in 

Spatiotemporal Querying 

Elias Frentzos, Yannis Theodoridis 

Department of Informatics, University of Piraeus,  

80 Karaoli-Dimitriou St, GR-18534 Piraeus, Greece 
{efrentzo, ytheod}@unipi.gr  

and 

Research Academic Computer Technology Institute,  

10 Davaki St, GR-11526 Athens, Greece 

Abstract. Existing work repeatedly addresses that the ubiquitous positioning 

devices will start to generate an unprecedented stream of time-stamped 

positions leading to storage and computation challenges. Hence the need for 

trajectory compression arises. The goal of this paper is to estimate the effect of 

compression in spatiotemporal querying; towards this goal, we present an 

analysis of this effect and provide a model to estimate it in terms of average 

false hits per query. Then, we propose a method to deal with the model’s 

calculation, by incorporating it in the execution of the compression algorithm. 

Our experimental study shows that this proposal introduces a small overhead in 

the execution of trajectory compression algorithms, and also verifies the results 

of the analysis, confirming that our model can be used to provide a good 

estimation of the effect of trajectory compression in spatiotemporal querying. 

Keywords: Moving Object Databases, Trajectory Compression, Error 

Estimation 

1   Introduction 

The recent advances in the fields of wireless communications and positioning 

technologies activated the concept of Moving Object Databases (MOD), which has 

become increasingly important and has posed a great challenge to the database 

management system (DBMS) technology. During the last decade the database 

community continuously contributes on developing novel indexing schemes [1, 6, 12, 

17, 10] and dedicated query processing techniques [7], in order to handle the 

excessive amount of data produced by the ubiquitous location-aware devices. 

However, as addressed by [9], it is expected that all these positioning devices will 

eventually start to generate an unprecedented data stream of time-stamped positions. 

Sooner or later, such enormous volumes of data will lead to storage and computation 

challenges. Hence the need for trajectory compression techniques arises.  

The objectives for trajectory compression are [9]: to obtain a lasting reduction in 

data size, to obtain a data series that still allows various computations at acceptable 



(low) complexity, and finally, to obtain a data series with known, small margins of 

error, which are preferably parametrically adjustable. As a consequence, our interest 

is in lossy compression techniques which eliminate some redundant or unnecessary 

information under well-defined error bounds. However, existing work in this domain 

is relatively limited [3, 9, 13, 14], and mainly guided by advances in the field of line 

simplification, cartographic generalization and time series compression.  

Especially on the subject of the error introduced on the produced data by such 

compression techniques, the single related work [9] provides a formula for estimating 

the mean error of the approximated trajectory in terms of distance from the original 

data stream. On the other hand, in this work, we argue that instead of providing a user 

of a MOD with the mean error in the position of each (compressed) object at each 

timestamp (which can be also seen as the data (im)precision), he/she would rather 

prefer to be informed about the mean error introduced in query results over 

compressed data. The challenge thus accepted in this paper is to provide a theoretical 

model that estimates the error due to compression in the results of spatiotemporal 

queries. To the best of our knowledge, this is the first analytical model on the effect of 

compression in query results over trajectory databases.  

Outlining the major issues that will be addressed in this paper, our main 

contributions are as follows: 

• We describe two types of errors (namely, false negatives and false positives) when 

executing timeslice queries over compressed trajectories, and we prove a lemma 

that estimates the average number of the above error types. It is proved that the 

average number of the false hits of both error types depends on the Synchronous 

Euclidean Distance [3, 9, 13] between the original and the compressed trajectory, 

and the perimeter (rather than the area) of the query window. 

• We show how the cost of evaluating the developed formula can be reduced to a 

small overhead over the employed compression algorithm. 

• Finally, we conduct a comprehensive set of experiments over synthetic and real 

trajectory datasets demonstrating the applicability and accuracy of our analysis. 

The model described in this paper can be employed in MODs so as to estimate the 

average number of false hits in query results when trajectory data are compressed. For 

example, it could be utilized right after the compression of a trajectory dataset in 

order to provide the user with the average error introduced in the results of 

spatiotemporal queries of several sizes; it could be therefore exploited as an additional 

criterion for the user in order to decide whether compressed data are suitable for 

his/her needs, and possibly decide on different compression rates, and so on.  

The rest of the paper is structured as follows. Related work is discussed in Section 

2. Section 3 constitutes the core of the paper presenting our theoretical analysis. 

Section 4 presents the results of our experimental study, while Section 5 provides the 

conclusions of the paper and some interesting research directions. 

2   Background 

In this section we firstly deal with the techniques introduced for compressing 

trajectories during the last few years, while, we subsequently examine the related 



 

Fig. 1. Top-down Douglas-Peucker algorithm used for trajectory Compression. Original data 

points are represented by closed circles [9] 

 

Fig. 2. The Synchronous Euclidean Distance (SED): The distance is calculated between the 

point under examination (Pi) and the point Pi’ which is determined as the point on the line (Ps, 

Pe) the time instance ti [9] 

work in the field of estimating and handling the error introduced by such compression 

techniques. 

2.1 Compressing Trajectories 

As already mentioned, existing work in trajectory compression is mainly guided by 

related work in the field of line simplification and time series compression. Meratnia 

and By [9] exploit existing algorithms used in the line generalization field, presenting 

one top-down and one opening window algorithm, which can be directly applied to 

spatiotemporal trajectories. The top-down algorithm, named TD-TR, is based on the 

well known Douglas-Peucker [5] algorithm (Fig. 1) introduced by geographers in 

cartography. This algorithm calculates the perpendicular distance of each internal 

point from the line connecting the first and the last point of the polyline (line AB in 

Fig. 1) and finds the point with the greatest perpendicular distance (point C). Then, it 

creates lines AC and CB and, recursively, checks these new lines against the 

remaining points with the same method, and so on. When the distance of all 

remaining points from the currently examined line is less than a given threshold (e.g., 

all the points following C against line BC in Fig. 1) the algorithm stops and returns 

this line segment as part of the new - compressed - polyline. Being aware of the fact 

that trajectories are polylines evolving in time, the algorithm presented in [9] replaces 

the perpendicular distance used in the DP algorithm with the so-called Synchronous 

Euclidean Distance (SED), also discussed in [3, 13], which is the distance between 

the currently examined point (Pi in Fig. 2) and the point of the line (Ps, Pe) where the 

moving object would lie, supposed it was moving on this line, at time instance ti 

determined by the point under examination (Pi' in Fig. 2).  

The time complexity of the original Douglas-Peucker algorithm (on which the TD-

TR algorithm is based) is O(N
2
), with N being the number of the original data points, 

while it can be reduced to O(NlogN) by applying the proposal presented in [8]. 

Ps(xs,ys,ts) 

Pe(xe,ye,te) 

Pi(xi,yi,ti) 

Pi’(xi’,yi’,ti) 

A 

B 

 

C 



 

Fig. 3. Opening Window algorithm used for trajectory Compression. Original data points are 

represented by closed circles [9] 

Although the experimental study presented in [9] shows that the TD-TR algorithm is 

significantly better than the opening window one (presented later in this section) in 

terms of both quality and compression (since it globally optimizes the compression 

process), the TD-TR algorithm has the disadvantage that it is not an on-line algorithm 

and, therefore, it is not applicable to newcoming trajectory portions as soon as they 

feed a MOD. On the contrary, it requires the a priori knowledge of the entire moving 

object trajectory.  

On the other hand, under the previously described conditions of on-line operation, 

the opening window (OW) class of algorithms can be easily applied. These algorithms 

start by anchoring the first trajectory point, and attempt to approximate the subsequent 

data points with one gradually longer segment (Fig. 3). As long as all distances of the 

subsequent data points from the segment are below the distance threshold, an attempt 

is made to move the segment's end point one position up in the data series. When the 

threshold is going to exceed, two strategies can be applied: either the point causing 

the violation (Normal Opening Window, NOPW) or the point just before it (Before 

Opening Window, BOPW) becomes the end point of the current segment, as well as 

the anchor of the next segment. If the threshold is not exceeded, the float is moved 

one position up in the data series (i.e., the window opens further) and the algorithm 

continuous until the last point of the trajectory is found; then the whole trajectory is 

transformed into a linear approximation. While in the original OW class of algorithms 

each distance is calculated from the point perpendicularly to the segment under 

examination, in the OPW-TR algorithm presented in [9] the SED is evaluated. 

Although OW algorithms are computationally expensive - since their time complexity 

is O(N
2
) - they are very popular. This is because, they are online algorithms, and they 

can work reasonably well in presence of noise. 

Recently, Potamias et al. [13] proposed several techniques based on uniform and 

spatiotemporal sampling to compress trajectory streams, under different memory 

availability settings: fixed memory, logarithmically or linearly increasing memory, or 

memory not known in advance. Their major contributions are two compression 

algorithms, namely, the STTrace and Thresholds. The STTrace algorithm, utilizes a 

constant for each trajectory amount of memory M. It starts by inserting in the 

allocated memory the first M recorded positions, along with each position's SED with 

respect to its predecessor and successor in the sample. As soon as the allocated 

memory gets exhausted and a new point is examined for possible insertion, the 

sample is searched for the item with the lowest SED, which represents the least 

possible loss of information in case it gets discarded. In the sequel, the algorithm 

checks whether the inserted point has SED larger than the minimum one found 

already in the sample and, if so, the currently processed point is inserted into the 

A 

B 

C 



sample at the expense of the point with the lowest SED. Finally, the SED attributes of 

the neighboring points of the removed one are recalculated, whereas a search is 

triggered in the sample for the new minimum SED. The proposed algorithm may be 

easily applied in the multiple trajectory case, by simply calculating a global minimum 

SED of all the trajectories stored inside the allocated memory. 

It notably arises from the previous discussion that the vast majority of the proposed 

trajectory compression algorithms base their decision on whether keeping or 

discarding a point of the original trajectory on the value of SED between the original 

and the compressed trajectory at this particular timestamp. Consequently, a method 

for calculating the effect of compression in spatiotemporal querying based on the 

value of SED along the original trajectory data points, would not introduce a 

considerable overhead in the compression algorithm, since it would require only 

performing additional operations inside the same algorithm.  

2.2 Related Work on Error Estimation 

To the best of our knowledge, a theoretical study on modeling the error introduced in 

spatiotemporal query results due to the compression of trajectories is lacking; our 

work is the first on this topic covering the case of the spatiotemporal timeslice 

queries. Nevertheless, there are two related subjects: The first is the determination of 

the error introduced directly in each trajectory by the compression [9], being the 

average value of the SED between a trajectory p and its approximation q (also termed 

as synchronous error E(q, p)). [9] provide a method for calculating this average value 

as a function of the distance between p and q along each sampled point. The outcome 

of this analysis turns to a costly formula, which provides the average error (i.e., mean 

distance between p and q along their lifetime); however, there is no obvious way on 

how to use it in order to determine the error introduced in query results.  

The second related subject is the work conducted on the context of trajectory 

uncertainty management, such as [4, 11, 16, 19]. This is due to the fact that the error 

introduced by compression can also be seen as uncertainty, and thus related 

techniques may be applied in the resulted dataset (e.g., probabilistic queries). 

However, such methodology cannot be directly used in the presence of compressed 

trajectory data, since the task of determining the statistical distribution of the location 

of the compressed trajectory using information from the original one, is by itself a 

complex task. Moreover, none of the proposed techniques actually deals with our 

essential proposal, i.e., the determination of the error introduced in query results using 

information about the compressed (or uncertain) data.  

On the other hand, our approach is based only on the fact that the compression 

algorithm exploits the SED in each original trajectory data point and thus, introduces 

a very small overhead on the compression algorithm. 

3   Analysis 

The core of our analysis is a lemma that provides the formula used to estimate the 

average number of false hits per query when executed over a compressed trajectory 



dataset. In this work, we focus on timeslice queries, which can be used to retrieve the 

positions of moving objects at a given time point in the past and can be seen as a 

special case of spatiotemporal range queries, with their temporal extent set to zero 

[18, 12]. This type of query can also be seen as the combination of a spatial (i.e., 

query window W) and a temporal (i.e., timestamp t) component. As it will be 

discussed in Section 5, the extension of our model to support range queries with non-

zero temporal extent is by no means trivial and is left as future work. 

It is important to mention that our model supports arbitrarily distributed trajectory 

data without concerning about their characteristics (e.g., sampling rate, velocity, 

heading, agility). Therefore, it can be directly employed in MODs without further 

modifications. The single assumption we make is that timeslice query windows are 

uniformly distributed inside the data space. Should this assumption be relaxed, one 

should mathematically model the query distribution using a probability distribution 

and modify the following analysis, accordingly. Table 1 summarizes the notations 

used in the rest of the paper. 

Table 1. Table of notations 

Notation Description  

S, †
T ,T the unit space, a trajectory dataset and its compressed counterpart. 
†

i
T , Ti an original trajectory and its compressed counterpart. 

TN, TP the set of false negatives and the set of false positives. 

R, Raµb, Wj 
the set of all timeslice queries over S, its subset with sides of length a and b 

along the x- and y- axes, and a timeslice query window. 

n, mi the cardinality of dataset T and the number of sampled points inside †

i
T . 

SEDi(t),  δ
xi(t), 

δ
yi(t) 

the function of the Synchronous Euclidean Distance (SED) between †

i
T and 

its compressed counterpart Ti, and its projection along the x- and y- axes. 

ti,k, SEDi,k, 

 
δ
xi,k , 

δ
yi,k 

the kth timestamp on which trajectory †

i
T sampled its position, its 

Synchronous Euclidean Distance from its compressed counterpart Ti at the 

same timestamp, and its projection along the x- and y- axes. 

Ai,j 
the area inside which the lower-left corner of Wj has to be found at 

timestamp tj in order for it to retrieve Ti as false negative (or false positive). 

AvgPi,N(Raµb), 

AvgPi,P(Raµb) 

the average probability of all timeslice queries Wj œ Raµb, to retrieve Ti as 

false negative (or false positives). 

EN(Raµb), 

EP(Raµb) 

the average number of false negatives (or false positives) in the results of a 

query Wj œ Raµb. 
 

Let us consider the unit 3D (i.e., 2D spatial and 1D temporal) space S containing a 

set †T of n trajectories †

i
T  and a set T with their compressed counterparts Ti. Let also 

R be the uniformly distributed set of all timeslice queries posed against datasets †T  

and T, and Raµb be the subset of R containing all timeslice queries having sides of 

length a and b along the x- and y- axis respectively. Two types of errors are 

introduced when executing a timeslice query WjœR over a dataset with the previously 

described settings:  

• false negatives are the trajectories which originally qualified the query but their 

compressed counterparts were not retrieved; formally, the set of false negatives 

N
T T⊆  is defined as { }†

: |N i i j i jT T T T W T W= ∈ ∉ ∈ ; 



• false positives are the compressed trajectories retrieved by the query while their 

original counterparts are not qualifying it; formally, the set of false positives 

P
T T⊆  is defined as { }†

: |P i i j i jT T T T W T W= ∈ ∈ ∉ .  

Consider for example Fig. 4 illustrating a set of n uncompressed trajectories †

i
T , 

along with their compressed counterparts Ti. Each uncompressed trajectory †

i
T  is 

composed by a set of mi time-stamped points, applying linear interpolation in-between 

them. Fig. 4 also illustrates a timeslice query W; though W retrieves the compressed 

trajectory T1, its original counterpart †

1
T  does not intersect the query window, 

encountering a false positive. Conversely, though the original trajectory †

2
T  intersects 

W, its compressed counterpart T2 is not present in the query results, forming a false 

negative. Having described the framework of our work, we state the following lemma. 

 

Fig. 4. Problem setting 

Lemma 1. The average number of false negatives EN(Raµb) and false positives 

EP(Raµb) in the results of timeslice queries Wj œ Raµb uniformly distributed inside the 

unit space with sides of length a and b along the x- and y- axis respectively, over a 

compressed trajectory dataset is given by the following formula: 

( ) ( )

( ) ( ) ( )1
, , 1 , , 1, 1 ,

1 1 (1 ) (1 ) 2 2 6

i

N a b P a b

mn
i k i k i k i ki k i k

i k

E R E R

b x x a y yt t e

a b

δ δ δ δ

× ×

−
+ ++

= =

= =

 + +−
 ⋅ + −
 + ⋅ +
 

∑∑
 (1) 

where , , , 1 , 1 , , 1 , 1 ,2 2i k i k i k i k i k i k i k i ke x y x y x y x yδ δ δ δ δ δ δ δ+ + + += + + + . 

Eq.(1) formulates the fact that the average error in the results of timeslice queries over 

compressed trajectory data is directly related to the projection of the weighted average 

SED along the x- and y- axis (i.e., ( ), 1 ,i k i kt t+ −  multiplied by , , 1i k i kx xδ δ ++ or 

, , 1i k i ky yδ δ ++ ) multiplied by the respective opposite query dimension (i.e., 

( ), , 1i k i k
b x xδ δ ++  and ( ), , 1i k i k

a y yδ δ ++ ), while e is a sum of minor importance, 

since it is the sum of the products between , , 1 , , 1, , ,i k i k i k i kx x y yδ δ δ δ+ + . 

3.1 Proof of Lemma 1 

The average number EN(Raµb) of trajectories being false negatives in the results of a 

timeslice query Wj œ Raµb, can be obtained by summing up the probabilities 

( )†
|i j i jP T W T W∉ ∈ of all dataset trajectories Ti (i=1,…,n) to be false negative 

regarding an arbitrary timeslice query window Wj œ Raµb: 

 t 
y 

x 

T2 

   
†

2T  

  
†

1T  

T1 

 

†

3T  

W 



  

(a) (b) 

Fig. 5. The intersection of a trajectory 
†

i
T and its compressed counterpart Ti, with the plane of a 

timeslice query at timestamp tj.  

( ) ( ),

1

n

N a b i N a b

i

E R AvgP R× ×
=

=∑  (2)

Similarly, the average number EP(Raµb) of trajectories being false positives can be 

calculated by the following formula: 

( ) ( ),

1

n

P a b i P a b

i

E R AvgP R× ×
=

=∑  (3)

Hence, our target is to determine AvgPi,N(Raµb) and AvgPi,P(Raµb). Towards this goal, 

we formulate the probability of a random trajectory be false negative (or false 

positive), regarding an arbitrary timeslice query window Wj œ Raµb invoked at 

timestamp tj (i.e.,
†

|
i j i j

T W T W∉ ∈ , and 
†

|
i j i j

T W T W∈ ∉ , respectively). As also 

illustrated in Fig. 5(b), the intersection of trajectories Ti, 
†

i
T  with the plane 

determined by the temporal component of Wj (i.e., timestamp tj) will be demonstrated 

as two points (points pi,j and 
†

,i j
p , respectively, in Fig. 5(b)) having in-between them, 

distance δ xi,j and δ yi,j along the x- and y- axis, respectively.  

In order to calculate the quantity of timeslice query windows that would retrieve 

trajectory Ti as a false negative (false positive) at the timestamp tj, we need to 

distinguish among four cases regarding the signs of δ xi,j and δ yi,j as demonstrated in 

Fig. 6 (Fig. 7, respectively). The shaded (with sided stripes) region in all four cases 

illustrate the area inside which the lower-left query window corner has to be found in 

order for it to retrieve trajectory Ti as false negative (or false positive, respectively).  

    
(a) , ,0 0i j i jx yδ δ< ∧ >  (b) , ,0 0i j i jx yδ δ> ∧ <  (c) , ,0 0i j i jx yδ δ> ∧ >  (d) , ,0 0i j i jx yδ δ< ∧ <  

Fig. 6. Regions inside which the lower-left query window corner has to be found in order to 

retrieve trajectory Ti as false negative 

 

Wj δ
yi,j<0 

δ
xi,j<0 

N 

Ai,j 
 

Wj 

δ
yi,j>0 

δ
xi,j>0 

N 

Ai,j 

 

Wj δ
yi,j<0 δ

xi,j>0 

N 

Ai,j  

Wj 

δ
yi,j>0 

δ
xi,j<0 

N 

Ai,j 

 

 

Query Window  

Wj 

a 

b 

  †

,i j
p  pi,j 

 

δ
yi(tj) 

δ
xi(tj) 

x 

y 
t=tj 

 t y 

x 

Ti 

   †

iT  



    

(a) , ,0 0i j i jx yδ δ< ∧ >  (b) , ,0 0i j i jx yδ δ> ∧ <  (c) , ,0 0i j i jx yδ δ> ∧ >  (d) , ,0 0i j i jx yδ δ< ∧ <  

Fig. 7. Regions inside which the lower-left query window corner has to be found in order to 

retrieve trajectory Ti as false positive 

However, as can be easily derived from these figures, the area of the shaded region in 

all four cases, is equal for both false negatives and false positives, and can be 

calculated by the following equation: 

( ) ( ), , ,i j i j i j
A a b a x b yδ δ= ⋅ − − ⋅ −  (4)

Given that Wj is valid when it is (either partially or totally) found inside the unit 

space, the lower-left query window corner must be found inside a space region of area 

equal to ( ) ( )1 1a b+ ⋅ + . Then, since queries are uniformly distributed inside the unit 

space, the probability of trajectory Ti to be retrieved as a false negative or false 

positive at timestamp tj is: 

( ) ( )

( ) ( )( )

† †

, , ,

| |

1 1

(1 ) (1 ) (1 ) (1 )

i j i j i j i j

i j i j i j

P T W T W P T W T W

A a b a x b y
a b a b

δ δ

∉ ∈ = ∈ ∉ =

⋅ = ⋅ ⋅ − − ⋅ −
+ ⋅ + + ⋅ +

 (5)

Given also our assumption regarding the distribution of query windows, the average 

probability of a trajectory Ti to be false negative regarding an arbitrary query window 

Wj œ Raµb at any timestamp can be obtained by integrating Eq.(5) over all timestamps 

inside the unit space. As long as ( )†
|i j i jP T W T W∉ ∈ =  ( )†

|i j i jP T W T W∈ ∉ , it 

follows that: 

( ) ( )

( ) ( )
, ,

1 1
† †

0 0
| |

i N a b i P a b

i j i j i j i j

AvgP R AvgP R

P T W T W dt P T W T W dt

× ×= =

∉ ∈ = ∈ ∉∫ ∫
  (6)

However, given that each original trajectory Ti is a set of mi time-stamped points 

applying linear interpolation in between them, Eq.(6) is transformed as follows: 

( ) ( )

( ) ( )1 1

, ,

1 1

† †

1 1, 1 , , 1 ,

1 1
| |

i i
k k

k k

i N a b i P a b

m m
t t

i j i j i j i j
t t

k ki k i k i k i k

AvgP R AvgP R

P T W T W dt P T W T W dt
t t t t

+ +

× ×

− −

= =+ +

= =

∉ ∈ = ∈ ∉
− −∑ ∑∫ ∫

 (7)

and δ xi,j and δ yi,j can be trivially formulated as single functions of t when 

, , 1i k i k
t t t +≤ ≤ , between sampled points: 

 

Wj δ
yi,j>0 δ

xi,j<0 

N 

Ai,j 

 

Wj δ
yi,j>0 

δ
xi,j>0 

N 

Ai,j 
 

Wj 

δ
yi,j<0 

δ
xi,j<0 

N 

Ai,j 

 

Wj 

δ
yi,j<0 

δ
xi,j>0 

N 

Ai,j 



( ) , 1 ,

, ,

, 1 ,

( ) , and
i k i k

i i k i k

i k i k

x x
x t x t t

t t

δ δ
δ δ +

+

−
= + − ⋅

−
 (8)

( ) , 1 ,

, ,

, 1 ,

( )
i k i k

i i k i k

i k i k

y y
y t y t t

t t

δ δ
δ δ +

+

−
= + − ⋅

−
 (9)

Substituting Eq.(8), Eq.(9) and Eq.(5) into Eq.(7) and performing the necessary 

calculations we result in the following formula:  

( ) ( )

( )
( ) ( )

, ,

, , 1 , , 1

1
, 1 ,

1
, , , 1 , 1 , , 1 , 1 ,

2 2

(1 ) (1 ) 2 2

6

i

i N a b i P a b

i k i k i k i k

m
i k i k

k
i k i k i k i k i k i k i k i k

AvgP R AvgP R

b x x a y y

t t

a b x y x y x y x y

δ δ δ δ

δ δ δ δ δ δ δ δ

× ×

+ +
−

+

= + + + +

= =

 + +
 + −−  ⋅ + ⋅ + + + +  
 

∑
 (10)

Finally, by substituting Eq.(10) into Eq.(2) and defining , ,2 i k i ke x yδ δ= +  

, 1 , 1 , , 1 , 1 ,2 i k i k i k i k i k i kx y x y x yδ δ δ δ δ δ+ + + ++ +  we haven proven Lemma 1. � 

3.2 Discussion on Lemma 1 

Eq.(1), the main result of Lemma 1, can be straightforwardly used to estimate the 

average number of false negatives and false positives for timeslice query windows 

with known size along the x- and y- axes (a and b, respectively). It notably arises from 

this formula that the average number of false negatives in the results of a timeslice 

query is equal to the respective average number of false positives, while their values 

depend mainly on the perimeter of the query window (a+b), rather than its area 

( a b⋅ ).However, it should be explicitly mentioned that Lemma 1 holds in the case of 

uniformly distributed query windows only; as such, the estimated average number of 

false negatives and false positives serves as a metric estimating data losses due to 

compression, rather than providing an accurate result regarding individual queries. 

Obviously, the evaluation of Eq.(1) is a costly operation; given that it involves a 

double sum, its time complexity is O(nÿm) where n is the number of trajectories and m 

is the (average) number of sampled points per trajectory. In other words, since Eq.(1) 

includes the calculation of δ xi,k, δ yi,k, between each tuple of the initial and compressed 

trajectories on each timestamp the trajectory was originally sampled, it requires to 

process the entire original dataset along with its compressed counterpart. On the other 

hand, as already stated in Section 2, the vast majority of the proposed trajectory 

compression algorithms, base their decision about the point of the original trajectory 

data to eliminate, on the value of the SED; however, since 

( ) ( ) ( )2 2

i i iSED t x t y tδ δ= + , the respective algorithm should first evaluate ( )i
x tδ  

and ( )i
y tδ  at timestamps ti,k producing thus, 

,i k
xδ and 

,i k
yδ , respectively. 



Consequently, any trajectory compression algorithm using the SED as the criterion to 

decide which trajectory points to eliminate, also calculates 
,i k

xδ and
,i k

yδ . As such, 

Eq.(1) can be calculated during the algorithm’s execution, adding very small overhead 

in the original algorithm; the above observation is further confirmed in our 

experimental study presented in the next section. 

Moreover, since Eq.(1) involves the query dimensions a and b, it follows that 

different values of a and b will lead to different calculations for the average error. 

However, such an approach (i.e., evaluating Eq.(1) from the beginning for every 

different query size), would lead to high computation cost since it would also require 

O(nÿm) time. In order to overcome this drawback, Eq.(1) can be rewritten as follows: 

( ) ( )
(1 ) (1 )

N a b P a b

A a B b C
E R E R

a b
× ×

⋅ + ⋅ +
= =

+ ⋅ +
, (11) 

where ( )
1

, , 1

, 1 ,

1 1 2

imn
i k i k

i k i k

i k

y y
A t t

δ δ−
+

+
= =

+
= − ⋅∑∑ , ( )

1
, , 1

, 1 ,

1 1 2

imn
i k i k

i k i k

i k

x x
B t t

δ δ−
+

+
= =

+
= − ⋅∑∑ and

C = ( )
1

, 1 ,

1 1 6

imn

i k i k

i k

e
t t

−

+
= =

− − ⋅∑∑ . Therefore, in the case where the average error need to be 

determined for a variety of query sizes (i.e., different sizes of a and b), rather than 

directly calculating Eq.(1) for each different query size, the three factors A, B and C 

could be calculated first, and be subsequently employed in Eq.(11); an approach 

which dramatically reduces the computation cost to O(1) time. 

4   Experiments 

In this section, we present several sets of experiments using synthetic and real 

trajectory datasets. The goal of our experimental study is two-fold:  

• first, to present the overhead introduced in the execution of a compression 

algorithm when calculating during the values of A, B and C factors introduced in 

Eq.(11), and, 

• second, to present the accuracy of the estimation provided by our analytical model 

regarding the number of false negatives and false positives over synthetic and real 

trajectory datasets. 

Regarding the datasets used, we have exploited on a real-world dataset of a fleet of 

trucks consisting of 276 trajectories and 112203 entries of trajectory segments [15]. 

We have also used synthetic datasets produced by a network-based data generator 

over the San Joaquin road network [2]. The synthetic trajectories generated 

correspond to 2000 moving objects, each one sampling its position 400 times. All the 

datasets where normalized in the [0,1] space. In order to test the accuracy of our 

model and produce compressed datasets, we implemented the TD-TR algorithm 

proposed by [9]. Then we executed it against all the (real and synthetic) datasets, 

varying its threshold between 0.001 and 0.02 of the total space, producing thus, the 

respective compressed datasets. Finally we used the original and compressed datasets 

and created several 3D R-trees [18] in order to accelerate the querying process used 



when performing experiments on the quality. Table 2 illustrates summary information 

about the (original and compressed) datasets used. The experiments were performed 

in a PC running Microsoft Windows XP with AMD Athlon 64 3GHz processor, 1 GB 

RAM and several GB of disk size. All structures and algorithms were implemented in 

Visual Basic. 

Table 2. Summary Dataset Information  

Original Datasets Compressed Datasets (# entries) 

TD-TR threshold value  
# trajectories # entries 

0.001 0.005 0.010 0.015 0.020 

Trucks 273 112,203 62,067 20,935 12,636 9,274 7,571 

Synthetic 2,000 800,000 229,167 120,437 88,565 74,638 65,410 

4.1. Experiments on the performance 

In order to demonstrate the applicability of our proposal in trajectory data and 

estimate the overhead introduced in a trajectory compression algorithm when 

calculating the values of A, B and C factors introduced in Eq.(11), we run the TD-TR 

compression algorithm over the real data and measured the average execution time 

required for each trajectory, scaling also the threshold of the algorithm. We then 

modified the algorithm in order to calculate the model parameters (i.e., the values of 

A, B and C in Eq.(11)) within its execution and also run it against the same dataset 

with the same parameters. The respective results are illustrated in Fig. 8. 

In particular, Fig. 8(a) and Fig. 8(b) illustrate the execution time of the TD-TR 

algorithm per compressed trajectory (in milliseconds), with and without the 

evaluation of the model parameters, against the trucks, and the synthetic datasets, 

respectively. A first conclusion is that the algorithm’s execution time reduces as the 

value of the TD-TR threshold increases; this is an expected result, since typically, the 

number of the algorithm’s iterations increase, as the value of the threshold decreases. 

However, the main result gathered from Fig. 8 is that the overhead introduced in 

the algorithm’s execution, is typically small (i.e., the difference between the two 

bars). In all cases, the overhead introduced in the algorithm is between 7% and 

19% of the originally required execution time; furthermore, in absolute times, the 

overhead introduced never exceeds 0.2 milliseconds per trajectory. As a consequence, 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
se

c
)

Model calculations included

Model calculations excluded

 

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

E
x

ec
u

ti
o

n
 t

im
e 

(m
se

c)

Model calculations included

Model calculations excluded

 
(a) (b) 

Fig. 8. Execution time for the TD-TR algorithm with and without the calculation of the model 

parameters over (a) the trucks, and, (b) the synthetic datasets, scaling the value of the TD-TR 

threshold. 



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

A
v

e
ra

g
e 

F
al

se
 H

it
s

False Negatives

False Positives

Estimation

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

A
v

e
ra

g
e 

F
al

se
 H

it
s

False Negatives

False Positives

Estimation

 (a) (b) 

Fig. 9. Accuracy of the model scaling the value of the TD-TR threshold over (a) the trucks, 

and, (b) the synthetic datasets 

the discussion presented in Section 3.2 is further confirmed, and our model can be 

evaluated as an extension of the compression algorithm’s execution, introducing a 

small / perhaps negligible overhead. 

4.2. Experiments on the quality 

The statistical measure employed in order to demonstrate the quality of our 

estimation, are the reported average number of false negatives and false positives, 

N
E and

P
E , respectively. Formally, these measures are defined as:   

,

1..

1
N N i

i n

E E
n

=

= ∑ , 
,

1..

1
P P i

i n

E E
n

=

= ∑  (12) 

where, n is the number of executed queries and EN,i (EP,i) the actual number of false 

negatives (false positives, respectively) in the i
th

 query. In the next experiments, n is 

set to 10000 timeslice queries.  

Our first set of experiments was performed against both the real and the synthetic 

datasets. Specifically, we executed 10000 rectangular timeslice queries of 0.10µ0.10 

size (i.e., covering 1% of unit space) randomly distributed inside the unit space, over 

both the original and the compressed datasets (each one stored in separate 3D R-

trees), and then, utilizing the results of each particular query over the two datasets, we 

counted the actual number of false negatives and false positives, EN,i and EP,i, 

respectively and then calculated their average values over all the executed queries 

(termed as average false hits – negatives and positives - in all figures describing the 

experimental evaluation). Fig. 9 illustrates the results of this experiment scaling the 

value of the compression threshold over the trucks and the synthetic dataset. A first 

conclusion is that the average number of false hits (negatives and positives) is linear 

with the value of the TD-TR compression threshold.  

Moreover, the estimations,
N

E and
P

E , of our model are very close to the actual 

values of average false negatives and false positives reported by the experiments, 

regardless of the value of the compression  threshold. In particular, the average error 

in the estimation (i.e., the difference between the bars describing the reported by 

the experiment average number of false negatives and positives, and our model 



estimation drawn by a solid line) for the synthetic dataset is around 6%, varying 

between 0.2% and 14%; regarding the trucks dataset (i.e., Fig. 9(a)), the average error 

increases around 10.6%, mainly due to the error introduced in small values of TD-TR 

threshold. 

In our second experiment we used the same experimental settings (i.e., datasets, 

number of queries), but we fixed the TD-TR threshold to 0.01 and scaled the size of 

the timeslice query window between 0.05µ0.05 and 0.30µ0.30 (resulting in 0.25% 

and 9% of unit space, respectively). The corresponding results are illustrated in Fig. 

10(a) and Fig. 10(b) against the trucks and the synthetic datasets, respectively. Again, 

it is clear that our model is highly accurate, producing estimates 
N

E and
P

E  with 

errors (i.e., the difference between the average values reported by the experiment and 

our model estimation) for the synthetic dataset between 0.2% and 8.7% and the 

average error being around 2.9% (while the respective average error for the trucks 

dataset is 7.5%). Another notable conclusion is that the average number of false 

positives and false negatives are sub-linear with the query size; an expected result 

gathered directly from the way that Eq.(11) involves the lengths a and b of the query 

sides. 

In the last experiment we verified the effect of using non-square timeslice queries 

(i.e., a∫b) over the synthetic datasets (while the experiments with the trucks dataset 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.05 0.1 0.15 0.2 0.25 0.3
Query size (a  = b )

A
v

er
ag

e 
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.1 0.15 0.2 0.25 0.3
Query size (a  = b )

A
v

er
ag

e 
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

 (a) (b) 

Fig. 10. Accuracy of the model scaling the square query size over (a) the trucks, and, (b) the 

synthetic datasets 

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.1 0.15 0.2 0.25 0.3
Query size a (b=0.30)

A
v

er
ag

e
 F

al
se

 H
it

s

False Negatives

False Positives

Estimation

 

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.3 0.3 0.3 0.3 0.3
Query size b (a=0.30)

A
v

er
ag

e 
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

 (a) (b) 

Fig. 11. Accuracy of the model scaling the non-square query size towards (a) the x- axis, and 

(b) the y- axis, against the synthetic datasets. 



produced similar results). Specifically, we used timeslice query windows with sizes 

varying from 0.05µ0.30 (where a<<b) to 0.30µ0.30 (where a=b); we also scaled the 

query size towards the other direction (from 0.30µ0.05 to 0.30µ0.30). The results of 

this experiment, illustrated in Fig. 11(a) and (b) respectively, resulted in similar 

outcomes as the ones presented in the previous paragraph regarding square (i.e, a=b) 

timeslice queries. Specifically, our model is once again very accurate, producing 

estimates with error between 0.6% and 7.2%, while the average error is 3.5%.  

5   Conclusions 

Related work on the subject of trajectory compression has focused on the 

development of compression algorithms also emphasizing on the error introduced in 

the position of each object from the compression. In this work, acknowledging that 

users are more likely concerned about the error introduced by the compression in 

spatiotemporal query results, we presented the first theoretical model that estimates 

this error in the results of timeslice queries. We provided a closed formula of the 

average number of false hits (false negatives and false positives) covering the case of 

uniformly distributed query windows and arbitrarily distributed trajectory data with 

various speeds, headings etc. Under various synthetic and real trajectory datasets, we 

first illustrated the applicability of our model under real-life requirements – it turns 

out that the estimation of the model parameters introduce only a small overhead in the 

trajectory compression algorithm - and then presented the accuracy of our 

estimations, with an average error being around 6%.  

There are numerous interesting research directions arising from this work, 

including the development of the model’s counterparts for nearest neighbor queries, 

or even more, general spatiotemporal range queries (i.e., with temporal extent ∫ 0). 

More specifically, the extension of our approach towards the second direction, would 

require to determine the shape of the spatiotemporal space inside which the lower left 

range query corner (i.e., the minimum point of the range query) has to be found in 

order for the compressed trajectory to be retrieved as a false hit (negative of positive), 

in accordance with Fig. 6, Fig. 7, and subsequently to determine its volume in 

accordance with Eq.(4). Although this volume can be calculated when δ xi and δ yi are 

expressed as single functions (i.e., between consecutive timestamps), in the general 

case where δ xi and δ yi are expressed as multi-functions (i.e., different functions in 

different original trajectory line segments), the respective volume is very hard to be 

determined. Nevertheless, it is a great challenge for future work. 

Finally, we plan to examine the application of our model to trajectory data 

warehouse environments, which manage aggregate data. Considering for example a 

trajectory data warehouse with population measurements (i.e., the number of 

trajectories located in each cell of the partitioned space), our model could be utilized 

in order to estimate the number of false hits introduced in the number of objects 

contained within each cell. 



Acknowledgements 

Research partially supported by FP6/IST Programme of the European Union under 

the GeoPKDD project (2005-08) [www.geopkdd.eu]. 

References 

1. Almeida, V. T., and Guting, R. H., Indexing the Trajectories of Moving Objects in 

Networks. GeoInformatica, 9(1):33–60, 2005. 

2. Brinkhoff, T.: A Framework for Generating Network-Based Moving Objects, 

Geoinformatica, 6 (2), 2002 

3. Cao, H., Wolfson, O., and Trajcevski, G., Spatio-temporal Data Reduction with 

Deterministic Error Bounds. Proceeding of DIALM–POMC, 2003.  

4. Cheng, R., Kalashnikov, D., and Prabhakar, S., Querying Imprecise Data in Moving Object 

Environments, IEEE TKDE, 16 (9), 2004. 

5. Douglas, D. H., Peucker, T. K.: Algorithms for the reduction of the number of points 

required to represent a digitized line or its caricature. The Canadian Cartographer 10 (1973) 

112–122 

6. Frentzos, E., Indexing Objects Moving on Fixed Networks. Proceedings of SSTD, 2003. 

7. Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y., Algorithms for Nearest 

Neighbor Search on Moving Object Trajectories, Geoinformatica 11 (2), 2007. 

8. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification 

algorithm. Proceeedings of SDH, 1992. 

9. Meratnia, N., By, R., Spatiotemporal Compression Techniques for Moving Point Objects, 

Proceedings of EDBT, 2004. 

10. Ni, J., and Ravishankar, C., Indexing Spatiotemporal Trajectories with Efficient Polynomial 

Approximation",  IEEE TKDE, 19(5), 2007 

11. Pfoser, D., and Jensen, C. S., Capturing the uncertainty of moving-object representations. 

Proceedings of SSD, 1999. 

12. Pfoser D., Jensen C. S., and Theodoridis, Y., Novel Approaches to the Indexing of Moving 

Object Trajectories, Proceedings of VLDB, 2000 

13. Potamias, M., Patroumpas, K. and Sellis, T., Sampling Trajectory Streams with 

Spatiotemporal Criteria, Proceedings of SSDBM, 2006. 

14. Potamias, M., Patroumpas, K. and Sellis, T., Amnesic online synopses for moving objects, 

Proceedings of CIKM, 2006. 

15. Theodoridis, Y. (ed.), The R-tree Portal. URL: www.rtreeportal.org (accessed 5 March, 

2007) 

16. Trajcevski, G., Probabilistic Range Queries in Moving Objects Databases with Uncertainty. 

Proceedings of MobiDE, 2003. 

17. Tao, Y., and Papadias, D., MV3R-Tree: A Spatio-Temporal Access Method for Timestamp 

and Interval Queries, Proceedings of VLDB, 2001 

18. Theodoridis, Y., Vazirgiannis, M., and Sellis, T., Spatio-temporal Indexing for Large 

Multimedia Applications. Proceedings of ICMCS, 1996 

19. Trajcevski, G., Wolfson, O., Hinrichs, K., and Chamberlain, S., Managing uncertainty in 

moving objects databases, ACM TODS 29 (3), 2004. 


