YAOIIOIOQNTAX THN EIIOMENH I'ENIA YITHPEXZIQN @EXHX
Hiiag ®péviloc, Kaotag I'patoiog ko I'avvng Ocodmpiong

Hovemomuo Hepoaiwg, Tunpa [TAnpoeopikng kot
Epgovmrticd Akadnpaikd Ivetitovto Teyvoroyiog Yrnoroyiotov (EA ITY)

Hepiinyn

O vnpeoieg B€ong amoTeAOVV £vo. AVAOVONEVO TTEGIO EPUPUOYDV, TO 0010 PPicKel OO KoL TEPIGCOTEPES
EQUPLOYEC GE TOAAEG OpaoTnpLoTNTES TG oOYYpovng Cong. [Tapdio Tov £xouv N HEPIKA YPOVIC EUTOPIKNG
{ong, T0 GUVOAD TV VANPESIOV BEONG Kot TOV ADGEDVY OV Qappolovial o€ aVTéG HTopovv va Bewmpnbodv
amAOiKES, KOOMG OV EKUETOAAEVOVTOL TIC SUVATOTNTEG OVTE TOL CUYYPOVOL AOYICUIKOD, OAAGL 0oUTE T
TPOGPATOL EPEVVNTIKG ATOTEAECLOTO OTO TESI0 TOV PACE®MV YOPIKAOV KOl YOPOXPOVIKOV dedopévav. O
GKOTOG TG TOPOVGAS EPYAGING EIVAL VO CUUTANPMOGEL AVTO TO KEVO, TOPOVOIALOVTAG APYIKA TNV ETOUEVN
YEVIA TOV VANPECIOV BEomng, Kol 0T cLvvéyELn, eneénydvTag Tov TPOTO VAOTOINGNG ToVg pe TV aélomoinon
GUYYPOV®V EUTOPIKMOV AOYICHKOV KAODG Kol TPOSPATOV EPELVNTIKOV gpyoci®v. Ot TPOTEWOUEVEG
VINPEGIEG OEV €lval TPOGAVATOMGUEVEG LOVO TTPOG TN KATELOUVON TOV TOpadOcloKOV VINPESIOV BEonc, ot
omoleg TaPEYOVTUL GE VAV KIVODUEVO ¥PNOTN UECH AGVPUATOV SIKTO®V. TTN TPAYHOTIKOTNTA, TOAAEG omd
OVTEG UTOPOVV VoL Bpovv epapuoyn 6to Kabopiopd — oyediaon PEATIOTOV dadpoudV (Tpv TV Evapén tng
petakivnong), piag epyaciog n omoio Tpaypuatonoleitol uvO®E HEGH SOOIKTLOK®Y EQappoydV. Emimiéov,
07O TN OTLYUN OV 1) VAOTOINGT TOV LANPESIOV gival PACIGUEVT] GE TAATPOPUES AOYIGUIKOD HE DYNAES
SuvaTOTNTEG KAMUAK®OONG, UTOPOvV Vo ELANPETHGOVY GLYYPOVOG OUTNOELS amd Eva TOAD peyddo apBud
¥pnot®dv. Mmopohv enopuévmg TOAD €0KOAO VO, GUUTEPIANPOOLY 6TO TANICI0 pio dLUSIKTLOKNG EPAPUOYNC
mov B0 TapEYEL GTOVG YPNOTEG NG TPONYUEVN AETOLPYIKOTNTA OE GYéomn He TN Oéon Tovg Kot TIg
Ta&IOMTIKEG TOVG OVAYKEC.

IMPLEMENTING THE NEXT GENERATION OF LOCATION BASED SERVICES
Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

University of Piraeus, Department of Informatics and
Research Academic Computer Technology Institute (RA CTI)

Abstract

Location-based services (LBS) constitute an emerging application domain rapidly introduced in modern life
habits. However, given that LBS already have a few years of commercial life, the services provided are
rather naive, not exploiting the current software capabilities and the recent research advances in the fields of
spatial and spatio-temporal databases. The goal of this paper therefore is to fill this gap by, presenting the
next generation of location-based services and, then, demonstrating their implementation which takes
advantage of both modern commercial software and recent advances in the research field of spatial and
spatio-temporal databases. The solutions provided are not only focused on LBS; actually, many of them are
easily applicable in the context of route planning, which is a task usually performed via web applications.
Moreover, since the implementation is based on highly scalable platforms it can support requests from
numerous users at the same time. Therefore, they can be easily employed in the framework of a web-based
application providing users with advanced functionality regarding their location and travelling needs.

AéEaig Khadora: Ymnpeoieg 0éong, Baoeig Xwpikav kot Xwpoypovikmv Agdopévov, Alyopiuot
Key words: Location-based Services, Spatial and Spatiotemporal Databases, Algorithms

1. Introduction

The rapid growth of mobile devices, such as mobile phones and Personal Digital Assistants (PDAs) has
contributed to the development of an emerging class of e-services, the so-called Location-Based Services
(LBS), which provide information relevant to the spatial location of a receiver. LBS constitute an innovative
technological field, rapidly introduced in modern life habits, influencing the way that people organize their
activities, promising great business opportunities for telecommunications, advertising, tourism, etc. (Open
Geospatial Consortium, 2007). On the other hand, although LBS already have a few years of commercial
life, the services provided are rather naive, not exploiting the current software capabilities and the recent

advances in the research fields of spatial and spatio-temporal databases. The goal thus of this paper is to fill
this gap by presenting the next generation of location-based services and, then, to demonstrate their
implementation taking advantage of both modern commercial software and recent advances in the research
field of spatial and spatio-temporal databases.

More specifically, in this paper we present a set of LBS and then sketch up the respective algorithms
along with a description of their implementation. The majority of the presented services are not currently
supported by commercial LBS providers. The developed software is based on the Microsoft. NET (Microsoft
Corp., 2007a) and SQL Server platforms (Microsoft Corp., 2007b), while it employs two Maplnfo
components, the first enabling SQL Server to support spatial objects and R-tree indexing (i.e., the MaplInfo
SpatialWare (MapInfo Corp., 2007)), and the other implementing the routing algorithm between two nodes
along a given road network graph (i.e., MapInfo Routing J Server (Maplnfo Corp., 2007b)). Exploiting the
functionality provided by these components, we expand it towards many directions. Among others, the
developed software supports nearest neighbor queries using network (rather than Euclidean) distance,
optimal route finding between a set of user-defined landmarks, and in-route nearest neighbor queries.

The solutions provided are not only focused on LBS; actually, many of them are directly applicable in the
context of route planning, which is a task usually performed via web applications. Moreover, since our
implementation is based on highly scalable platforms (e.g., SQL Server) it can support requests from
numerous users at the same time. Therefore, they can be easily employed in the framework of a web-based
application providing users with advanced functionality regarding their location and travelling needs.

Outlining the rest of the paper, Section 2 presents two sets of LBS (i.e., one with services currently
supported by commercial LBS provider, and one with novel services, constituting our proposal regarding the
next generation of LBS). Section 3 presents implementation issues (presenting the development platforms,
and exemplifying the implemented algorithms used to support the proposed services). Finally, Section 4
closes the paper providing the conclusions and some interesting research directions. Table 1 summarizes the
notation used in the rest of the paper.

Table 1. Table of notations

V={V;},i=1l..n; the set of vertices corresponding to road network junctions on a road network.
E={E},i=1..n, the set of edges connecting vertices V;, corresponding to road segments on a road network!.
G(V, E) the directed graph that represents the underlying road network on which objects are moving?.
L={L;} ,i=1..n3 the set of all points of interest (POIs) or Landmarks?.
T={T;}, i=1.. ny the set of all mobile users
T;; the spatio-temporal point (i.e., time-stamped spatial point) of user T; at timestamp #;

Eucl_Dist (P, Q) the Euclidean distance between points P and Q

Net_Dist (P, Q) the network distance on the graph G between the points P and Q

Buffer(X, D) builds a buffer of width D around a path X

retrieves a set of bi-connected line segments {E;} of the network graph forming a single path
between points P and Q; usually, the result of a routing operation

Route(P, Q)

2. The Next Generation of LBS

In this section we describe a set of novel services constituting our proposal regarding the next generation
of LBS; obviously, these services are not currently supported by commercial LBS providers. We also include
in our discussion a set of already implemented services since: (a) they are fundamental and thus used as a
basis for the (more advanced) novel LBS set, and, (b) existing solutions on these services (i.e., algorithms
and implementation details) are rather naive and based on approaches usually resulting in false results. The
services were designed and developed on behalf of the Telenavis S.A. (Telenavis, 2007) in the context of the
Next Generation Location Based Services (NGLBS) project funded by the General Secretarial of Research
and Technology. Telenavis S.A. is a commercial LBS provider providing both GSM-based and web-based
private and corporate solutions (see for example http://www.navigation.gr).

! Each edge E; is associated with two weights (distance metrics): the length of the corresponding road segment and the average time
required to travel through that segment, respectively.

2 Movement constraints (such as user defined discretionary absence of tolls etc.) can be also applied in the graph G(V, E) by simply
modifying the weights of each edge.

3 POIs can be categorized into classes (e.g., gas stations, ATMs etc.); in fact, in our implementation POIs are divided in such
categories. We choose however, to restrict our discussion in the case of one class due to clarity reasons.

2.1. A set of LBS

The first set of LBS which is already implemented by commercial service providers contains three
fundamental services, named, What-is-around, Routing, and Find-the-Nearest. All services (and the
respective algorithms) assume the presence of graph G and/or a set of POIs L. Moreover, all services
involving graph operations (e.g., routing between two points), can be evaluated with any of the two
optimization criteria (length and time); in the following sections, for clarity reasons, we restrict our
discussion in the distance (rather than time) optimization, while the second criterion can be easily applied, by
simply involving a maximum speed which converts any time period to a maximum distance. The following
paragraphs describe the functionality of each LBS:

e What-is-around: The simplest service is the one that retrieves and displays the location of every POI
being located in a rectangular area (Q, d), where Q is the location of the user (or simply a user-defined
point) and d is a selected distance (i.e., the half-side of the query rectangle). The input of the
corresponding algorithm for “what-is-around” consists of the point Q and the distance d, while it returns
the set L'cL containing all POIs inside the rectangular area (Q, d).

® Routing: This service provides the optimal route between a departure and a destination point, P and Q,
respectively.

e Find-the-Nearest: This service retrieves the k nearest landmarks (POIs). For example, “find the two
restaurants that are closest to my current location” or “find the nearest café to the railway station”. The
underlying algorithm takes as input the query point Q (for example, calling user’s current location), and
returns the set of points L'cL, which are the k nearest to Q members of L*.

Figure 1: Guide-me example

2.2. A set of Novel LBS
The second set of LBS contains a number of advanced services which can be considered as extensions of
the above three fundamental services. Among the ones that were designed and implemented during the

NGLBS development, we will focus on three services, named Guide-me (or Dynamic Routing), Advanced

Routing and In-Route-Find-the-Nearest. The functionality of these services is described in the following

paragraphs. For a more detailed description regarding all services, along with an interesting LBS taxonomy

the interested reader is cited to Gratsias et al., 2005. Once again, all services (and the respective algorithms)

assume the presence of graph G and/or a set of POIs L:

o Guide-me (Dynamic Routing): A first extension of the (static) Routing described above is the so-called
Guide-me service (Fig. 1): Likewise, the system determines the best route between the calling user’s
current location (point P) and a destination point Q, and then it keeps track of the user’s movement (by
simply updating its position) towards the destination point, allowing him/her to deviate from the
‘optimal’ route, as long as the user’s location does not fall out of a predefined safe area (buffer) built
around this route. The user is notified of his/her deviation every time he/she crosses out of the buffer’s
border and he/she is given the option of re-routing from that current location (point R). The input of
Guide-me algorithm is the id of the calling user, the destination point Q, and the distance D, which
defines the buffer width.

e Advanced Routing: The Routing service provided above can also be extended towards its “advanced”
version, by requesting from the system to retrieve the best route between a departure and a destination
point, P and Q respectively, requesting also to travel through a set of intermediate points C={C;}. The
input of the respective algorithm is the departure and destination points, P and Q respectively and the set
of intermediate points C.

e In-Route-Find-the-Nearest: It is a combination of the Routing and Find-the-Nearest services which given
a departure and a destination point P and Q respectively, finds the best route between them, constrained

4 1t is important to note here that the conventional nearest neighbor query supported by commercial SDBMS retrieves the nearest
neighbor based on the Euclidean distance between the query and the data points stored in the SDBMS. However, the proper
functionality of this service requires finding the nearest neighbor based on the network distance between the two points (i.e., the
distance traveled by an object constrained to move on the network edges)

also to pass through one among the specified set of candidate points (e.g. one of the points contained in
Landmarks). For example, a request for this service is, “provide me the best route from my current
location to the city A constrained to pass from a gas station”. Once again, the input of the respective
algorithm is the departure and destination points, P and Q respectively. This problem can also be seen as
a special case of the so-called Trip Planning Query (TPQ) (Li et al., 2005), with the number of different
classes requested set to one.

3. Implementing the Services

In this section we describe the implementation of the proposed LBS suite. We will firstly introduce the
development platforms, while we will subsequently illustrate the respective algorithms along with some
interesting details on each service’s implementation.

3.1 Development Platforms

All the services are implemented on top of three basic components. The first one is the Microsoft SQL
Server 2000 (Microsoft Corp., 2007b), which is a relational database management system (RDBMS)
produced by Microsoft including standard RDBMS functionality (i.e., stored procedures, triggers etc.). SQL
Server is commonly used in small to large enterprise databases. Here, we have to point out that Microsoft
SQL Server does not natively support spatial objects such as points, lines etc.; consequently, the employment
of a middle-ware component which enables SQL Server to support spatial data is an obligatory action, in
order for the LBS suite to be properly developed.

This middle-ware component is the MapiInfo SpatialWare (Maplnfo Corp., 2007a), which enables the
RDBMS (in our case, SQL Server) to store, manage, and manipulate location-based data. It allows therefore
spatial data to be stored in the same place as traditional data, ensuring data accessibility, integrity, reliability
and security through the mechanisms of the SQL Server. SpatialWare includes a variety of non-traditional
data types, such as points, lines, polyline, regions (polygons), supports numerous spatial functions (such as
ST_Buffer generating buffers around spatial objects within a given tolerance etc.), and it is compliant with
the Open Geospatial Consortium (OGC), 2007. However, the most important SpatialWare feature is its
support for R-tree indexing (Guttman, 1984), making it able to support substantial quantities of spatial data;
R-tree indexing allows pruning the search space when a spatial query is executed. Otherwise (i.e., in the case
where no spatial index is present), the execution of each spatial query would lead to linear scans over the
entire dataset, which is a very expensive operation.

The third component used in the implementation of the LBS suite is the MapInfo Routing J Server (RJS)
(Maplnfo Corp., 2007b) which is a street network analysis tool for finding a route between two points, the
optimal or ordered path between many points, the creation of drive time matrices, and the creation of drive
time polygons. RJS calculates either the shortest distance or quickest timed route between any two points,
returning text-based driving directions and spatial points to the parent application. This functionality is
achieved by xml requests over a continuously running server: the client (i.e., the LBS suite) queries the RJS
with an xml file containing information such as, the departure and the destination point, and after processing
the request, RJS returns another xml file containing the optimal route in terms of its lines segments (i.e.,
edges of the respective directed graph). In our implementation we used the RJS .NET client middleware,
developed by Telenavis S.A. (Telenavis, 2007), which undertakes the tasks of composing the xml file used
for making the request, and subsequently, interpreting the server’s answer to a set of comprehensive objects
implemented in the form of .NET objects. However, this comes for a cost, since this client only supports the
simple operation of finding a route between two points, and not the more sophisticated ones that native RJS
does (i.e., finding optimal or ordered path between many points).

| NET LBS Suite |

DBMS SQL Server

SpatialWare Extension

Figure 2: System Architecture

In top of all the above components, the LBS suite, is implemented using Microsoft Visual Studio .NET
2003 (Microsoft Corp., 2007a), while the connection to the DBMS is realized by an OLE DB connection

(Microsoft Corp., 2007a) to the SQL Server. Figure 2 summarizes the system architecture used for the
developed LBS suite.

3.2 Implementation Details

In this section we will examine the implementation details of the above services. As previously discussed,
since the first three services (i.e., What-is-around, Routing and Find-the-Nearest) are already included in the
commercial — publicly available — Telenavis LBS suite, we will briefly describe both the existing solution
along with our (more sophisticated) implementation. Then, we will proceed with the novel services,
describing the algorithms and providing details about their implementation. In the rest of the paper we will
refer to the existing LBS implementation as TNLBS, while ours will be called as NGLBS. Here, we have to
point out that one of the core differences between TNLBS and NGLBS is that the former relies only on the
SQL Server, without employing the Spatial Ware component.

What-is-around

The first service on the TNLBS basically relies on the SQL Server DBMS, which contains, among others,
a table of Landmarks (e.g., gas stations) in the form of [object_id, object_name, x, y]. Obviously, the spatial
components of the landmark objects are represented in terms of their Cartesian coordinates in different table
fields, resulting in a non-efficient scheme. We have to point out again however, that since the SQL Server
does not natively support spatial objects, the above scheme is the only one suitable. The core of the service
implementation is the following query (providing that the query point Q is given in terms of its coordinates
Ox and Qy and d is a selected distance, that is, the half-side of the query rectangle):

SELECT * FROM Landmarks WHERE x>=Q0x-d AND x<=Qx+d AND y>=Qy-d AND y<=Qy+d

On the other hand, exploiting the fact that NGLBS is based on a scheme which includes the SpatialWare
component, the x and y fields can be substituted by a single Geometry field; as a result, the Landmarks table
is reformulated in the structure [object_id, object_name, object_geometry], while the above query can be
rewritten in terms of spatial database operations, employing the HG_Box function which returns a rectangle
with the given coordinates:
SELECT * FROM Landmarks WHERE
ST_Overlaps (object_geometry, HG_Box (Qx-d, Qy—-d, Ox+d, Qy+d)

Routing

The second service also included in the TNLBS, requires only querying the .NET RIS client with the
appropriate inputs, i.e., the departure and destination points P and Q; the network graph G(V, E) is already
contained inside RJS. The results are provided in terms of text-based driving directions and spatial objects
following the application model (i.e., points, lines, poly-lines). Regarding the algorithm used inside RJS in
order to calculate the shortest path between the two points, RIS documentation does not provide any
information about it. However, the problem of calculating shortest paths in graphs is well-known; therefore it
can be solved by employing a variety of algorithms (see for example the Dijkstra (Dijkstra, 1959) algorithm).
There is strong evidence however that the implementation of RJS in based on a variation of the A* algorithm
(Hart et al, 1968) which is the one that is usually employed in real-world applications involving network
graphs due to its computational optimality and straightforward implementation. This service is the only one
that is implemented following exactly the same manner in both TNLBS and NGLBS implementations.

Find-the-Nearest

The third service, which retrieves the k nearest landmarks to the caller’s location, is currently
implemented in TNLBS based on the Landmarks stored in the SQL Server DBMS (using the (x, y)
representation), and the RJS. The respective algorithm initially retrieves the 3-k nearest landmarks to the
query location, which are subsequently treated as candidate nearest points. The task of retrieving the 3-k
nearest landmarks is achieved by performing a SQL query calculating the Euclidean distance between the
query point Q and all points contained inside the Landmarks table, and then, sorting the results according to
the calculated distance:

SELECT TOP 3*k object_id, ((Q0x-x)"2+(Qy-y)”"2) AS Dist FROM Landmarks
ORDER BY Dist DESC

The algorithm subsequently performs routing operations (using the .NET RIS client) to all candidate object
retrieved by the previous query, sorts them according to the resulted network distance from the query point
and finally reports the first 3-k objects.

However, there is strong controversy regarding this algorithm’s performance and quality of output. For
example, there is no concrete background behind the choice of retrieving the 3-k nearest points in order to
treat them as candidates. As such, the approach of multiplying the number of k requested by 3 (or any other
arbitrarily selected coefficient) may lead to false outputs; a case which is clearly illustrated in Fig.3(a), where
the three nearest objects according to their Euclidean distance from the query point Q are points P;, P, and
P;, while point P, is the actual nearest neighbor.

Moreover, the performance of this algorithm is far from being optimal, since it requires calculating the
distance between the query and all POIs in the database during the execution of the above SQL statement.
This happens due to the fact that there is no spatial index present, leading the database to perform a linear
scan over Landmarks (calculating at the same time the requested distance expression); then the database
performance deteriorates when the number of POIs exceeds a few hundreds of thousands.

On the other hand, in our implementation, we employed recent technological advances in the field of
Spatial Network Databases (SNDB), and implemented the “Euclidean Restriction” algorithm described in
(Papadias et al., 2003) in order to retrieve the nearest to a query point. This algorithm is illustrated in the
following pseudo-code:

Algorithm Find_the_Net_Nearest (point Q)

Find the Euclidean nearest object P to the query object O

Calculate Net_Dist (Q, P)

Retrieve all POIs P; with Eucl_Dist (Q, P;) <Net_Dist (Q, P)

For each P; calculate Net_Dist (Q,P;)

Return as nearest neighbor the object with the smaller Net_Dist(Q,P;)

g W N

The algorithm is further exemplified in Fig,3(b) to Fig.3(d). Specifically, Fig.3(b) illustrates the first step
(i.e., the algorithm retrieves object P; which is the nearest object to Q according to the Euclidean distance),
then, its network distance D is calculated (i.e., step 2), and finally object P, is retrieved since its Euclidean
distance from Q is smaller than D, (i.e., step 3), and further examined as possible nearest neighbour in steps
4-5. This algorithm is based on the fact that Eucl_Dist(Q,P)<Net_Dist(Q,P),Y Q,P; as such, every object P'
with Euclidean distance from Q greater than the respective network distance of another object P can be
safely rejected (pruned) without further considering its network distance; formally, given that
Eucl_Dist(Q,P’)=Net_Dist(Q,P), then also Net_Dist(Q,P’)=Net_Dist(Q,P’) stands. It is proved therefore
that the nearest neighbor must be found among the objects retrieved in the third step. For each network
distance calculation requested, a routing operation is performed via the .NET RIS client, and the respective
distance is calculated accordingly. Regarding the first algorithm’s step which retrieves the Euclidean nearest
object P to the query object Q, rather than using an approach similar to the one of TNLBS, we exploit the R-
tree-based nearest neighbor operator provided from the SpatialWare, which improves the algorithm’s
performance:

SP_Nearest Landmarks, object_geometry, object_id, ST_Point (Qx,Qvy),k

The SP_Nearest operator retrieves the nearest to the point ST_Point (Qx,Qy) among those that are
contained inside the Landmarks table. Concluding, by employing the previously presented approach
(followed in the NGLBS implementation), the Find-The-Nearest service, not only retrieves exact solutions,
but since it employs spatial indexes, is much more efficient than TNLBS.

Ps o

() (®)

Figure 3: The Find-the-net-nearest service

Guide-me (Dynamic Routing)

This service requires the DBMS to keep track of the user’s current position. As such, the SQL Server
contains, among others, a relational table with each user’s T; current positions, which are updated from
outside the developed suite. This table is named Current_Positions and has the form of [User_id,
last_position_geometry]. The algorithm developed to support the Dynamic Routing service is illustrated in
the following pseudo-code:

Algorithm Dynamic_Routing(User Id T, destination point Q, distance D, time period At)

1 Retrieve current position T; ; of T;

2 Retrieve route R=Route(T;, ;, Q)

3 DO until T;,; reaches O

4 Wait At: j=j+At: Update T; ;

5 IF NOT T;,; lies on the buffer Buffer(R,D) go to Step 1
6 LOOP

Regarding the first step, it is performed by a simple request to the .NET RIS client. Probably, the most
interesting operation of the algorithm is revealed in step 5, where it is requested to check whether the
object’s current location 7; lies on a buffer of the route R with distance D; this operation is performed via
the Spatialware by checking whether the following SQL statement returns any records:

SELECT * FROM CurentPosition WHERE User_id=UId AND
ST_Contains (HG_Buffer (ST_Spatial (R_String),D), last_position_geometry)

The ST_Contains (A, B) function returns true when the spatial object A contains the spatial object B,
while the HG_Buffer (4, D) function constructs a spatial object representing the buffer of the A with
distance D. Finally, the ST_Spatial (string) function converts a properly composed string (e.g., the
route string) to a spatial object.

Advanced Routing

The Advanced Routing service, involving a departure and destination point, P and Q respectively, along
with a set of predefined intermediate points P;, can be seen as a variation of the well known travelling
salesman problem (TSP); however in our case there are two special requirements
e the distance between P, Q and P; is not Euclidean, thought it satisfies the triangle inequality, and
o the distances between points P; (i.e., Net_Distance(P;, P;)) are not known in advance, rather than they are

calculated during the algorithm’s execution

As such, the algorithm recursively examines alternative solutions, until all possible routes have been
checked. The algorithm prunes candidate routes by using the minimum network distance calculated so far;
pruning is also performed using the Euclidean distance as a first approximation, and then, if the solution is
not pruned by its Euclidean Distance, the network distance is calculated and the algorithm recursively
proceeds with the remained objects until all alternative solution have been examined or pruned. The details
of this algorithm are beyond the scope and this paper, and for this reason are omitted. It is however important
to note that this algorithm utilizes only the .NET RJS client, without querying at all the DBMS.

In-Route-Find-the-Nearest

This service retrieves the best route one has to follow in order to travel from a departure to a destination
point P and Q respectively, constrained also to pass through a POI among the ones contained in the
Landmarks table. The developed algorithm is illustrated in the following pseudo-code:

Algorithm In_Route_ Find the_Nearest (departure point P, destination point Q)

Retrieve route R=Route (P, Q)

Find the Euclidean nearest object N to the route object R

Calculate Net_Dist (P,N) and Net_Dist (N, Q)

Retrieve all POIs N; with Eucl_Dist (P, N;)+Eucl_Dist (N;, Q)<Net_Dist (P, N)+Net_Dist (N, Q)
For each N; calculate Net_Dist (P,N;) and Net_Dist (N;, Q)

Return as nearest neighbor the object N; with the smallest

Net_Dist (P, N;) +Net_Dist (N;, Q)

OO W N

Figure 4: The In-route-find-the-net-nearest service

This algorithm is based on the same principle with the Find_the_Net_Nearest algorithm, that is, the network
distance between two points is greater or equal to their Euclidean distance. As such, the algorithm initially
produces the optimal route R between P and Q by performing request to the .NET RIS client, while
subsequently, uses R as a query object on the SP_Nearest operator in order to retrieve the Euclidean

nearest neighbor N among the records contained in the Landmarks table (Lines 1-2 in pseudo-code and
Fig.4(a)). Then it also performs requests to the .NET RIS client on order to calculate the network distance
between P, N and Q (Line 3 in pseudo-code and Fig.4(b)), while afterwards uses their sum in order to
retrieve candidate objects with total distance from both P and Q less than it (Line 4 in pseudo-code and
Fig.4(c)). It is also important to note that these objects are contained inside an elliptical region with P and Q
as foci. In its last step, the algorithm calculates the network distances between P, Q and all candidate points
N, finally, reporting as answer the one that has the smallest sum of network distances.

4. Conclusions

In this paper we present the next generation of location based services, sketch up the respective
algorithms and provide some interesting details on their implementation. The majority of the presented
services are not currently supported by commercial LBS providers, or are available in an inefficient and
inaccurate manner. Our implementation is based on the Microsoft. NET and Microsoft SQL Server platforms,
employing two additional components, namely, the MapInfo SpatialWare and MapInfo Routing J Server in
order to efficiently support spatial and graph-based (i.e., road network-based) operations. Among others, the
software developed for the Next Generation Location Based Services, includes nearest neighbor queries
using network (rather than Euclidean) distance, optimal route finding between a set of user-defined
landmarks, and in-route nearest neighbor queries. The developed algorithms and their implementation are
supported by recent advances in the field of Spatial Network Databases (Papadias et al., 2003, Li et al.,
2005, Kolahdouzan and Shahabi, 2004, Sankaranarayanan et al., 2005).

The solutions provided are not only focused on LBS; actually, many of them are directly applicable in the
context of route planning, which is a task usually performed via web applications (while the Advanced
Routing and In-route-find-the-nearest are much more meaningful in the framework of route planning, rather
than the GSM-based LBS). Moreover, since our implementation is based on highly scalable platforms (SQL
Server along with the SpatialWare and RJS) it can support numerous concurrent requests. Therefore, our
plan is to employ it in the framework of a web-based application providing users with advanced functionality
regarding their travelling needs.

References

Dijkstra, E. W., 1959: A note on two problems in connexion with graphs, Numerische Mathematik, vol 1, pp.
269-271, 1959.

Gratsias, K., Frentzos, E., Delis, V. and Theodoridis, Y., 2005: Towards a Taxonomy of Location-Based
Services. Proceedings of Web and Wireless GIS (W2GIS), 2005

Guttman, A., 1984: R-Trees: a dynamic index structure for spatial searching. Proceedings of ACM
SIGMOD Conference, 1984.

Kolahdouzan, M., Shahabi, C.: Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases.
Proceedings of VLDB Conference, 2004

Hart, P. E., Nilsson, N. J., Raphael, B., 1968: A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4 (2): pp. 100-107.

Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G. and Teng, S.-H., 2005: On Trip Planning Queries in
Spatial Databases. Proceedings of SSTD, 2005

Maplnfo Corporation, 2007a: Maplnfo SpatialWare, Available at http://extranet.mapinfo.com/products/
Overview.cfm?productid=1141, (accessed 18 May 2007)

MapInfo Corporation, 2007b: Maplnfo Routing J Server, Available at http://extranet.mapinfo.com/
products/Overview.cfm?productid=1144, (accessed 18 May 2007)

Microsoft Corporation, 2007a: Microsoft Visual Studio .NET, Available at http:// msdn.microsoft.com/
vstudio/, accessed 18 May 2007.

Microsoft Corporation, 2007b: Microsoft SOQL Server, Available at http://www.microsoft.com/sql/, accessed
18 May 2007.

Open Geospatial Consortium, 2007: OpenGIS® Location Services (OpenLS): Core Services. Available at
http://www.opengis.org, accessed 18 May 2007

Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y., 2003: Query Processing in Spatial Network Databases.
Proceedings of VLDB Conference, 2003.

Sankaranarayanan, J., Alborzi, H., and Samet, H., 2005, Efficient Query Processing on Spatial Networks.
Proceedings of ACM-GIS Workshop, 2005.

Telenavis S.A., 2007: http://www.telenavis.gr/, accessed 18 May 2007

