

1

ΥΛΟΠΟΙΩΝΤΑΣ ΤΗΝ ΕΠΟΜΕΝΗ ΓΕΝΙΑ ΥΠΗΡΕΣΙΩΝ ΘΕΣΗΣ

Ηλίας Φρέντζος, Κώστας Γρατσίας και Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς, Τµήµα Πληροφορικής και

Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών (ΕΑ ΙΤΥ)

Περίληψη

Οι υπηρεσίες θέσης αποτελούν ένα αναδυόµενο πεδίο εφαρµογών, το οποίο βρίσκει όλο και περισσότερες

εφαρµογές σε πολλές δραστηριότητες της σύγχρονης ζωής. Παρόλο που έχουν ήδη µερικά χρόνια εµπορικής

ζωής, το σύνολο των υπηρεσιών θέσης και των λύσεων που εφαρµόζονται σε αυτές µπορούν να θεωρηθούν

απλοϊκές, καθώς δεν εκµεταλλεύονται τις δυνατότητες ούτε του σύγχρονου λογισµικού, αλλά ούτε τα

πρόσφατα ερευνητικά αποτελέσµατα στο πεδίο των βάσεων χωρικών και χωροχρονικών δεδοµένων. Ο

σκοπός της παρούσας εργασίας είναι να συµπληρώσει αυτό το κενό, παρουσιάζοντας αρχικά την επόµενη

γενιά των υπηρεσιών θέσης, και στη συνέχεια, επεξηγώντας τον τρόπο υλοποίησής τους µε την αξιοποίηση

σύγχρονων εµπορικών λογισµικών καθώς και πρόσφατων ερευνητικών εργασιών. Οι προτεινόµενες

υπηρεσίες δεν είναι προσανατολισµένες µόνο προς τη κατεύθυνση των παραδοσιακών υπηρεσιών θέσης, οι
οποίες παρέχονται σε έναν κινούµενο χρήστη µέσω ασύρµατων δικτύων. Στη πραγµατικότητα, πολλές από

αυτές µπορούν να βρουν εφαρµογή στο καθορισµό – σχεδίαση βέλτιστων διαδροµών (πριν την έναρξη της

µετακίνησης), µίας εργασίας η οποία πραγµατοποιείται συνήθως µέσω διαδικτυακών εφαρµογών. Επιπλέον,

από τη στιγµή που η υλοποίηση των υπηρεσιών είναι βασισµένη σε πλατφόρµες λογισµικού µε υψηλές

δυνατότητες κλιµάκωσης, µπορούν να εξυπηρετήσουν συγχρόνως αιτήσεις από ένα πολύ µεγάλο αριθµό

χρηστών. Μπορούν εποµένως πολύ εύκολα να συµπεριληφθούν στο πλαίσιο µία διαδικτυακής εφαρµογής

που θα παρέχει στους χρήστες της προηγµένη λειτουργικότητα σε σχέση µε τη θέση τους και τις

ταξιδιωτικές τους ανάγκες.

IMPLEMENTING THE NEXT GENERATION OF LOCATION BASED SERVICES

Elias Frentzos, Kostas Gratsias and Yannis Theodoridis

University of Piraeus, Department of Informatics and

Research Academic Computer Technology Institute (RA CTI)

Abstract
Location-based services (LBS) constitute an emerging application domain rapidly introduced in modern life

habits. However, given that LBS already have a few years of commercial life, the services provided are

rather naïve, not exploiting the current software capabilities and the recent research advances in the fields of

spatial and spatio-temporal databases. The goal of this paper therefore is to fill this gap by, presenting the

next generation of location-based services and, then, demonstrating their implementation which takes

advantage of both modern commercial software and recent advances in the research field of spatial and

spatio-temporal databases. The solutions provided are not only focused on LBS; actually, many of them are

easily applicable in the context of route planning, which is a task usually performed via web applications.

Moreover, since the implementation is based on highly scalable platforms it can support requests from

numerous users at the same time. Therefore, they can be easily employed in the framework of a web-based

application providing users with advanced functionality regarding their location and travelling needs.

Λέξεις κλειδιά: Υπηρεσίες θέσης, Βάσεις Χωρικών και Χωροχρονικών ∆εδοµένων, Αλγόριθµοι

Key words: Location-based Services, Spatial and Spatiotemporal Databases, Algorithms

1. Introduction
The rapid growth of mobile devices, such as mobile phones and Personal Digital Assistants (PDAs) has

contributed to the development of an emerging class of e-services, the so-called Location-Based Services

(LBS), which provide information relevant to the spatial location of a receiver. LBS constitute an innovative

technological field, rapidly introduced in modern life habits, influencing the way that people organize their

activities, promising great business opportunities for telecommunications, advertising, tourism, etc. (Open

Geospatial Consortium, 2007). On the other hand, although LBS already have a few years of commercial

life, the services provided are rather naïve, not exploiting the current software capabilities and the recent

2

advances in the research fields of spatial and spatio-temporal databases. The goal thus of this paper is to fill

this gap by presenting the next generation of location-based services and, then, to demonstrate their

implementation taking advantage of both modern commercial software and recent advances in the research

field of spatial and spatio-temporal databases.

More specifically, in this paper we present a set of LBS and then sketch up the respective algorithms

along with a description of their implementation. The majority of the presented services are not currently

supported by commercial LBS providers. The developed software is based on the Microsoft.NET (Microsoft

Corp., 2007a) and SQL Server platforms (Microsoft Corp., 2007b), while it employs two MapInfo

components, the first enabling SQL Server to support spatial objects and R-tree indexing (i.e., the MapInfo

SpatialWare (MapInfo Corp., 2007)), and the other implementing the routing algorithm between two nodes

along a given road network graph (i.e., MapInfo Routing J Server (MapInfo Corp., 2007b)). Exploiting the

functionality provided by these components, we expand it towards many directions. Among others, the

developed software supports nearest neighbor queries using network (rather than Euclidean) distance,

optimal route finding between a set of user-defined landmarks, and in-route nearest neighbor queries.

The solutions provided are not only focused on LBS; actually, many of them are directly applicable in the

context of route planning, which is a task usually performed via web applications. Moreover, since our

implementation is based on highly scalable platforms (e.g., SQL Server) it can support requests from

numerous users at the same time. Therefore, they can be easily employed in the framework of a web-based

application providing users with advanced functionality regarding their location and travelling needs.

Outlining the rest of the paper, Section 2 presents two sets of LBS (i.e., one with services currently

supported by commercial LBS provider, and one with novel services, constituting our proposal regarding the

next generation of LBS). Section 3 presents implementation issues (presenting the development platforms,

and exemplifying the implemented algorithms used to support the proposed services). Finally, Section 4

closes the paper providing the conclusions and some interesting research directions. Table 1 summarizes the

notation used in the rest of the paper.

Table 1. Table of notations

V={Vi}, i=1..n1 the set of vertices corresponding to road network junctions on a road network.

E={Ei}, i=1.. n2 the set of edges connecting vertices Vi, corresponding to road segments on a road network1.

G(V, E) the directed graph that represents the underlying road network on which objects are moving2.

L={Li} , i=1..n3 the set of all points of interest (POIs) or Landmarks3.

T={Ti}, i=1.. n4 the set of all mobile users

Ti,j the spatio-temporal point (i.e., time-stamped spatial point) of user Ti at timestamp tj

Eucl_Dist (P, Q) the Euclidean distance between points P and Q

Net_Dist (P, Q) the network distance on the graph G between the points P and Q

Buffer(X, D) builds a buffer of width D around a path X

Route(P, Q)
retrieves a set of bi-connected line segments {Ei} of the network graph forming a single path

between points P and Q; usually, the result of a routing operation

2. The Next Generation of LBS
In this section we describe a set of novel services constituting our proposal regarding the next generation

of LBS; obviously, these services are not currently supported by commercial LBS providers. We also include

in our discussion a set of already implemented services since: (a) they are fundamental and thus used as a

basis for the (more advanced) novel LBS set, and, (b) existing solutions on these services (i.e., algorithms

and implementation details) are rather naïve and based on approaches usually resulting in false results. The

services were designed and developed on behalf of the Telenavis S.A. (Telenavis, 2007) in the context of the

Next Generation Location Based Services (NGLBS) project funded by the General Secretarial of Research

and Technology. Telenavis S.A. is a commercial LBS provider providing both GSM-based and web-based

private and corporate solutions (see for example http://www.navigation.gr).

1 Each edge Ei is associated with two weights (distance metrics): the length of the corresponding road segment and the average time

required to travel through that segment, respectively.
2 Movement constraints (such as user defined discretionary absence of tolls etc.) can be also applied in the graph G(V, E) by simply

modifying the weights of each edge.
3 POIs can be categorized into classes (e.g., gas stations, ATMs etc.); in fact, in our implementation POIs are divided in such

categories. We choose however, to restrict our discussion in the case of one class due to clarity reasons.

3

2.1. A set of LBS
The first set of LBS which is already implemented by commercial service providers contains three

fundamental services, named, What-is-around, Routing, and Find-the-Nearest. All services (and the

respective algorithms) assume the presence of graph G and/or a set of POIs L. Moreover, all services

involving graph operations (e.g., routing between two points), can be evaluated with any of the two

optimization criteria (length and time); in the following sections, for clarity reasons, we restrict our

discussion in the distance (rather than time) optimization, while the second criterion can be easily applied, by

simply involving a maximum speed which converts any time period to a maximum distance. The following

paragraphs describe the functionality of each LBS:

• What-is-around: The simplest service is the one that retrieves and displays the location of every POI

being located in a rectangular area (Q, d), where Q is the location of the user (or simply a user-defined

point) and d is a selected distance (i.e., the half-side of the query rectangle). The input of the

corresponding algorithm for “what-is-around” consists of the point Q and the distance d, while it returns

the set L΄⊆L containing all POIs inside the rectangular area (Q, d).

• Routing: This service provides the optimal route between a departure and a destination point, P and Q,

respectively.

• Find-the-Nearest: This service retrieves the k nearest landmarks (POIs). For example, “find the two

restaurants that are closest to my current location” or “find the nearest café to the railway station”. The

underlying algorithm takes as input the query point Q (for example, calling user’s current location), and

returns the set of points L΄⊆L, which are the k nearest to Q members of L4.

P

Q

R

D
Figure 1: Guide-me example

2.2. A set of Novel LBS
The second set of LBS contains a number of advanced services which can be considered as extensions of

the above three fundamental services. Among the ones that were designed and implemented during the

NGLBS development, we will focus on three services, named Guide-me (or Dynamic Routing), Advanced

Routing and In-Route-Find-the-Nearest. The functionality of these services is described in the following

paragraphs. For a more detailed description regarding all services, along with an interesting LBS taxonomy

the interested reader is cited to Gratsias et al., 2005. Once again, all services (and the respective algorithms)

assume the presence of graph G and/or a set of POIs L:

• Guide-me (Dynamic Routing): A first extension of the (static) Routing described above is the so-called

Guide-me service (Fig. 1): Likewise, the system determines the best route between the calling user’s

current location (point P) and a destination point Q, and then it keeps track of the user’s movement (by

simply updating its position) towards the destination point, allowing him/her to deviate from the

‘optimal’ route, as long as the user’s location does not fall out of a predefined safe area (buffer) built

around this route. The user is notified of his/her deviation every time he/she crosses out of the buffer’s

border and he/she is given the option of re-routing from that current location (point R). The input of

Guide-me algorithm is the id of the calling user, the destination point Q, and the distance D, which

defines the buffer width.

• Advanced Routing: The Routing service provided above can also be extended towards its “advanced”

version, by requesting from the system to retrieve the best route between a departure and a destination

point, P and Q respectively, requesting also to travel through a set of intermediate points C={Ci}. The

input of the respective algorithm is the departure and destination points, P and Q respectively and the set

of intermediate points C.

• In-Route-Find-the-Nearest: It is a combination of the Routing and Find-the-Nearest services which given

a departure and a destination point P and Q respectively, finds the best route between them, constrained

4 It is important to note here that the conventional nearest neighbor query supported by commercial SDBMS retrieves the nearest

neighbor based on the Euclidean distance between the query and the data points stored in the SDBMS. However, the proper

functionality of this service requires finding the nearest neighbor based on the network distance between the two points (i.e., the

distance traveled by an object constrained to move on the network edges)

4

also to pass through one among the specified set of candidate points (e.g. one of the points contained in

Landmarks). For example, a request for this service is, “provide me the best route from my current

location to the city A constrained to pass from a gas station”. Once again, the input of the respective

algorithm is the departure and destination points, P and Q respectively. This problem can also be seen as

a special case of the so-called Trip Planning Query (TPQ) (Li et al., 2005), with the number of different

classes requested set to one.

3. Implementing the Services

In this section we describe the implementation of the proposed LBS suite. We will firstly introduce the

development platforms, while we will subsequently illustrate the respective algorithms along with some

interesting details on each service’s implementation.

3.1 Development Platforms
All the services are implemented on top of three basic components. The first one is the Microsoft SQL

Server 2000 (Microsoft Corp., 2007b), which is a relational database management system (RDBMS)

produced by Microsoft including standard RDBMS functionality (i.e., stored procedures, triggers etc.). SQL

Server is commonly used in small to large enterprise databases. Here, we have to point out that Microsoft

SQL Server does not natively support spatial objects such as points, lines etc.; consequently, the employment

of a middle-ware component which enables SQL Server to support spatial data is an obligatory action, in

order for the LBS suite to be properly developed.

This middle-ware component is the MapInfo SpatialWare (MapInfo Corp., 2007a), which enables the

RDBMS (in our case, SQL Server) to store, manage, and manipulate location-based data. It allows therefore

spatial data to be stored in the same place as traditional data, ensuring data accessibility, integrity, reliability

and security through the mechanisms of the SQL Server. SpatialWare includes a variety of non-traditional

data types, such as points, lines, polyline, regions (polygons), supports numerous spatial functions (such as

ST_Buffer generating buffers around spatial objects within a given tolerance etc.), and it is compliant with

the Open Geospatial Consortium (OGC), 2007. However, the most important SpatialWare feature is its

support for R-tree indexing (Guttman, 1984), making it able to support substantial quantities of spatial data;

R-tree indexing allows pruning the search space when a spatial query is executed. Otherwise (i.e., in the case

where no spatial index is present), the execution of each spatial query would lead to linear scans over the

entire dataset, which is a very expensive operation.

The third component used in the implementation of the LBS suite is the MapInfo Routing J Server (RJS)

(MapInfo Corp., 2007b) which is a street network analysis tool for finding a route between two points, the

optimal or ordered path between many points, the creation of drive time matrices, and the creation of drive

time polygons. RJS calculates either the shortest distance or quickest timed route between any two points,

returning text-based driving directions and spatial points to the parent application. This functionality is

achieved by xml requests over a continuously running server: the client (i.e., the LBS suite) queries the RJS

with an xml file containing information such as, the departure and the destination point, and after processing

the request, RJS returns another xml file containing the optimal route in terms of its lines segments (i.e.,

edges of the respective directed graph). In our implementation we used the RJS .NET client middleware,

developed by Telenavis S.A. (Telenavis, 2007), which undertakes the tasks of composing the xml file used

for making the request, and subsequently, interpreting the server’s answer to a set of comprehensive objects

implemented in the form of .NET objects. However, this comes for a cost, since this client only supports the

simple operation of finding a route between two points, and not the more sophisticated ones that native RJS

does (i.e., finding optimal or ordered path between many points).

.NET LBS Suite

OLE DB

DBMS SQL Server

Routing J Server

SpatialWare Extension

.NET RJS Client

Figure 2: System Architecture

In top of all the above components, the LBS suite, is implemented using Microsoft Visual Studio .NET

2003 (Microsoft Corp., 2007a), while the connection to the DBMS is realized by an OLE DB connection

5

(Microsoft Corp., 2007a) to the SQL Server. Figure 2 summarizes the system architecture used for the

developed LBS suite.

3.2 Implementation Details
In this section we will examine the implementation details of the above services. As previously discussed,

since the first three services (i.e., What-is-around, Routing and Find-the-Nearest) are already included in the

commercial – publicly available – Telenavis LBS suite, we will briefly describe both the existing solution

along with our (more sophisticated) implementation. Then, we will proceed with the novel services,

describing the algorithms and providing details about their implementation. In the rest of the paper we will

refer to the existing LBS implementation as TNLBS, while ours will be called as NGLBS. Here, we have to

point out that one of the core differences between TNLBS and NGLBS is that the former relies only on the

SQL Server, without employing the SpatialWare component.

What-is-around

The first service on the TNLBS basically relies on the SQL Server DBMS, which contains, among others,

a table of Landmarks (e.g., gas stations) in the form of [object_id, object_name, x, y]. Obviously, the spatial

components of the landmark objects are represented in terms of their Cartesian coordinates in different table

fields, resulting in a non-efficient scheme. We have to point out again however, that since the SQL Server

does not natively support spatial objects, the above scheme is the only one suitable. The core of the service

implementation is the following query (providing that the query point Q is given in terms of its coordinates

Qx and Qy and d is a selected distance, that is, the half-side of the query rectangle):

SELECT * FROM Landmarks WHERE x>=Qx-d AND x<=Qx+d AND y>=Qy-d AND y<=Qy+d

On the other hand, exploiting the fact that NGLBS is based on a scheme which includes the SpatialWare

component, the x and y fields can be substituted by a single Geometry field; as a result, the Landmarks table

is reformulated in the structure [object_id, object_name, object_geometry], while the above query can be

rewritten in terms of spatial database operations, employing the HG_Box function which returns a rectangle

with the given coordinates:
SELECT * FROM Landmarks WHERE

ST_Overlaps(object_geometry,HG_Box(Qx-d,Qy-d,Qx+d,Qy+d)

Routing

The second service also included in the TNLBS, requires only querying the .NET RJS client with the

appropriate inputs, i.e., the departure and destination points P and Q; the network graph G(V, E) is already

contained inside RJS. The results are provided in terms of text-based driving directions and spatial objects

following the application model (i.e., points, lines, poly-lines). Regarding the algorithm used inside RJS in

order to calculate the shortest path between the two points, RJS documentation does not provide any

information about it. However, the problem of calculating shortest paths in graphs is well-known; therefore it

can be solved by employing a variety of algorithms (see for example the Dijkstra (Dijkstra, 1959) algorithm).

There is strong evidence however that the implementation of RJS in based on a variation of the A* algorithm

(Hart et al, 1968) which is the one that is usually employed in real-world applications involving network

graphs due to its computational optimality and straightforward implementation. This service is the only one

that is implemented following exactly the same manner in both TNLBS and NGLBS implementations.

Find-the-Nearest

The third service, which retrieves the k nearest landmarks to the caller’s location, is currently

implemented in TNLBS based on the Landmarks stored in the SQL Server DBMS (using the (x, y)

representation), and the RJS. The respective algorithm initially retrieves the 3ÿk nearest landmarks to the

query location, which are subsequently treated as candidate nearest points. The task of retrieving the 3ÿk

nearest landmarks is achieved by performing a SQL query calculating the Euclidean distance between the

query point Q and all points contained inside the Landmarks table, and then, sorting the results according to

the calculated distance:

SELECT TOP 3*k object_id,((Qx-x)^2+(Qy-y)^2) AS Dist FROM Landmarks

ORDER BY Dist DESC

The algorithm subsequently performs routing operations (using the .NET RJS client) to all candidate object

retrieved by the previous query, sorts them according to the resulted network distance from the query point

and finally reports the first 3ÿk objects.

6

However, there is strong controversy regarding this algorithm’s performance and quality of output. For

example, there is no concrete background behind the choice of retrieving the 3ÿk nearest points in order to

treat them as candidates. As such, the approach of multiplying the number of k requested by 3 (or any other

arbitrarily selected coefficient) may lead to false outputs; a case which is clearly illustrated in Fig.3(a), where

the three nearest objects according to their Euclidean distance from the query point Q are points P1, P2 and

P3, while point P4 is the actual nearest neighbor.

Moreover, the performance of this algorithm is far from being optimal, since it requires calculating the

distance between the query and all POIs in the database during the execution of the above SQL statement.

This happens due to the fact that there is no spatial index present, leading the database to perform a linear

scan over Landmarks (calculating at the same time the requested distance expression); then the database

performance deteriorates when the number of POIs exceeds a few hundreds of thousands.

On the other hand, in our implementation, we employed recent technological advances in the field of

Spatial Network Databases (SNDB), and implemented the “Euclidean Restriction” algorithm described in

(Papadias et al., 2003) in order to retrieve the nearest to a query point. This algorithm is illustrated in the

following pseudo-code:

Algorithm Find_the_Net_Nearest(point Q)

1

2

3

4

5

Find the Euclidean nearest object P to the query object Q

Calculate Net_Dist(Q,P)

Retrieve all POIs Pi with Eucl_Dist(Q,Pi)<Net_Dist(Q,P)

For each Pi calculate Net_Dist(Q,Pi)

Return as nearest neighbor the object with the smaller Net_Dist(Q,Pi)

The algorithm is further exemplified in Fig,3(b) to Fig.3(d). Specifically, Fig.3(b) illustrates the first step

(i.e., the algorithm retrieves object P1 which is the nearest object to Q according to the Euclidean distance),

then, its network distance D1 is calculated (i.e., step 2), and finally object P2 is retrieved since its Euclidean

distance from Q is smaller than D1 (i.e., step 3), and further examined as possible nearest neighbour in steps

4-5. This algorithm is based on the fact that Eucl_Dist(Q,P)§Net_Dist(Q,P)," Q,P; as such, every object P'

with Euclidean distance from Q greater than the respective network distance of another object P can be

safely rejected (pruned) without further considering its network distance; formally, given that

Eucl_Dist(Q,P’)¥Net_Dist(Q,P), then also Net_Dist(Q,P’)¥Net_Dist(Q,P’) stands. It is proved therefore

that the nearest neighbor must be found among the objects retrieved in the third step. For each network

distance calculation requested, a routing operation is performed via the .NET RJS client, and the respective

distance is calculated accordingly. Regarding the first algorithm’s step which retrieves the Euclidean nearest

object P to the query object Q, rather than using an approach similar to the one of TNLBS, we exploit the R-

tree-based nearest neighbor operator provided from the SpatialWare, which improves the algorithm’s

performance:

SP_Nearest Landmarks, object_geometry, object_id, ST_Point(Qx,Qy),k

The SP_Nearest operator retrieves the nearest to the point ST_Point(Qx,Qy) among those that are

contained inside the Landmarks table. Concluding, by employing the previously presented approach

(followed in the NGLBS implementation), the Find-The-Nearest service, not only retrieves exact solutions,

but since it employs spatial indexes, is much more efficient than TNLBS.

Q
P1

P2
P3

P4

P1

P2

P3

Q

 P2

Q D1=Net_Dist(Q,P1

)

P3

P1

P1

P2

Q

D1

P3

(a) (b) (c) (d)

Figure 3: The Find-the-net-nearest service

Guide-me (Dynamic Routing)

This service requires the DBMS to keep track of the user’s current position. As such, the SQL Server

contains, among others, a relational table with each user’s Ti current positions, which are updated from

outside the developed suite. This table is named Current_Positions and has the form of [User_id,

last_position_geometry]. The algorithm developed to support the Dynamic Routing service is illustrated in

the following pseudo-code:

7

Algorithm Dynamic_Routing(User Id Τ, destination point Q, distance D, time period ∆t)

1

2

3

4

5

6

Retrieve current position Τi,j of Τi

Retrieve route R=Route(Τi,j,Q)

DO until Τi,j reaches Q

 Wait ∆t: j=j+∆t: Update Τi,j

 IF NOT Τi,j lies on the buffer Buffer(R,D) go to Step 1

LOOP

Regarding the first step, it is performed by a simple request to the .NET RJS client. Probably, the most

interesting operation of the algorithm is revealed in step 5, where it is requested to check whether the

object’s current location Ti,j lies on a buffer of the route R with distance D; this operation is performed via

the Spatialware by checking whether the following SQL statement returns any records:

SELECT * FROM CurentPosition WHERE User_id=UId AND

ST_Contains(HG_Buffer(ST_Spatial(R_String),D),last_position_geometry)

The ST_Contains(A,B) function returns true when the spatial object A contains the spatial object B,

while the HG_Buffer(A,D) function constructs a spatial object representing the buffer of the A with

distance D. Finally, the ST_Spatial(string) function converts a properly composed string (e.g., the

route string) to a spatial object.

Advanced Routing

The Advanced Routing service, involving a departure and destination point, P and Q respectively, along

with a set of predefined intermediate points Pi, can be seen as a variation of the well known travelling

salesman problem (TSP); however in our case there are two special requirements

• the distance between P, Q and Pi is not Euclidean, thought it satisfies the triangle inequality, and

• the distances between points Pi (i.e., Net_Distance(Pi, Pj)) are not known in advance, rather than they are

calculated during the algorithm’s execution

As such, the algorithm recursively examines alternative solutions, until all possible routes have been

checked. The algorithm prunes candidate routes by using the minimum network distance calculated so far;

pruning is also performed using the Euclidean distance as a first approximation, and then, if the solution is

not pruned by its Euclidean Distance, the network distance is calculated and the algorithm recursively

proceeds with the remained objects until all alternative solution have been examined or pruned. The details

of this algorithm are beyond the scope and this paper, and for this reason are omitted. It is however important

to note that this algorithm utilizes only the .NET RJS client, without querying at all the DBMS.

In-Route-Find-the-Nearest

This service retrieves the best route one has to follow in order to travel from a departure to a destination

point P and Q respectively, constrained also to pass through a POI among the ones contained in the

Landmarks table. The developed algorithm is illustrated in the following pseudo-code:

Algorithm In_Route_Find_the_Nearest(departure point P, destination point Q)

1

2

3

4

5

6

Retrieve route R=Route(P,Q)

Find the Euclidean nearest object N to the route object R

Calculate Net_Dist(P,N) and Net_Dist(N,Q)

Retrieve all POIs Ni with Eucl_Dist(P,Ni)+Eucl_Dist(Ni,Q)<Net_Dist(P,N)+Net_Dist(N,Q)

For each Ni calculate Net_Dist(P,Ni) and Net_Dist(Ni,Q)

Return as nearest neighbor the object Ni with the smallest

Net_Dist(P,Ni)+Net_Dist(Ni,Q)

P
Q

N

P

Q

N

L1=Net_Dist(P,N) L2=Net_Dist(N,Q)

P
Q

L1
L2

(a) (b) (c)

Figure 4: The In-route-find-the-net-nearest service

This algorithm is based on the same principle with the Find_the_Net_Nearest algorithm, that is, the network

distance between two points is greater or equal to their Euclidean distance. As such, the algorithm initially

produces the optimal route R between P and Q by performing request to the .NET RJS client, while

subsequently, uses R as a query object on the SP_Nearest operator in order to retrieve the Euclidean

8

nearest neighbor N among the records contained in the Landmarks table (Lines 1-2 in pseudo-code and

Fig.4(a)). Then it also performs requests to the .NET RJS client on order to calculate the network distance

between P, N and Q (Line 3 in pseudo-code and Fig.4(b)), while afterwards uses their sum in order to

retrieve candidate objects with total distance from both P and Q less than it (Line 4 in pseudo-code and

Fig.4(c)). It is also important to note that these objects are contained inside an elliptical region with P and Q

as foci. In its last step, the algorithm calculates the network distances between P, Q and all candidate points

Ni, finally, reporting as answer the one that has the smallest sum of network distances.

4. Conclusions
In this paper we present the next generation of location based services, sketch up the respective

algorithms and provide some interesting details on their implementation. The majority of the presented

services are not currently supported by commercial LBS providers, or are available in an inefficient and

inaccurate manner. Our implementation is based on the Microsoft.NET and Microsoft SQL Server platforms,

employing two additional components, namely, the MapInfo SpatialWare and MapInfo Routing J Server in

order to efficiently support spatial and graph-based (i.e., road network-based) operations. Among others, the

software developed for the Next Generation Location Based Services, includes nearest neighbor queries

using network (rather than Euclidean) distance, optimal route finding between a set of user-defined

landmarks, and in-route nearest neighbor queries. The developed algorithms and their implementation are

supported by recent advances in the field of Spatial Network Databases (Papadias et al., 2003, Li et al.,

2005, Kolahdouzan and Shahabi, 2004, Sankaranarayanan et al., 2005).

The solutions provided are not only focused on LBS; actually, many of them are directly applicable in the

context of route planning, which is a task usually performed via web applications (while the Advanced

Routing and In-route-find-the-nearest are much more meaningful in the framework of route planning, rather

than the GSM-based LBS). Moreover, since our implementation is based on highly scalable platforms (SQL

Server along with the SpatialWare and RJS) it can support numerous concurrent requests. Therefore, our

plan is to employ it in the framework of a web-based application providing users with advanced functionality

regarding their travelling needs.

References

Dijkstra, E. W., 1959: A note on two problems in connexion with graphs, Numerische Mathematik, vol 1, pp.

269-271, 1959.

Gratsias, K., Frentzos, E., Delis, V. and Theodoridis, Y., 2005: Towards a Taxonomy of Location-Based

Services. Proceedings of Web and Wireless GIS (W2GIS), 2005

Guttman, A., 1984: R-Trees: a dynamic index structure for spatial searching. Proceedings of ACM

SIGMOD Conference, 1984.

Kolahdouzan, M., Shahabi, C.: Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases.

Proceedings of VLDB Conference, 2004

Hart, P. E., Nilsson, N. J., Raphael, B., 1968: A Formal Basis for the Heuristic Determination of Minimum

Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4 (2): pp. 100–107.

Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G. and Teng, S.-H., 2005: On Trip Planning Queries in

Spatial Databases. Proceedings of SSTD, 2005

MapInfo Corporation, 2007a: MapInfo SpatialWare, Available at http://extranet.mapinfo.com/products/

Overview.cfm?productid=1141, (accessed 18 May 2007)

MapInfo Corporation, 2007b: MapInfo Routing J Server, Available at http://extranet.mapinfo.com/

products/Overview.cfm?productid=1144, (accessed 18 May 2007)

Microsoft Corporation, 2007a: Microsoft Visual Studio .NET, Available at http:// msdn.microsoft.com/

vstudio/, accessed 18 May 2007.

Microsoft Corporation, 2007b: Microsoft SQL Server, Available at http://www.microsoft.com/sql/, accessed

18 May 2007.

Open Geospatial Consortium, 2007: OpenGIS® Location Services (OpenLS): Core Services. Available at

http://www.opengis.org, accessed 18 May 2007

Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y., 2003: Query Processing in Spatial Network Databases.

Proceedings of VLDB Conference, 2003.

Sankaranarayanan, J., Alborzi, H., and Samet, H., 2005, Efficient Query Processing on Spatial Networks.

Proceedings of ACM-GIS Workshop, 2005.

Telenavis S.A., 2007: http://www.telenavis.gr/, accessed 18 May 2007

