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Abstract 

 

Mining Trajectory Databases (TD) has recently 

gained great interest due to the popularity of tracking 

devices. On the other hand, the inherent presence of 

uncertainty in TD (e.g., due to GPS errors) has not 

been taken yet into account during the mining process. 

In this paper, we study the effect of uncertainty in TD 

clustering and introduce a three-step approach to deal 

with it. First, we propose an intuitionistic point vector 

representation of trajectories that encompasses the 

underlying uncertainty and introduce an effective 

distance metric to cope with uncertainty. Second, we 

devise CenTra, a novel algorithm which tackles the 

problem of discovering the Centroid Trajectory of a 

group of movements. Third, we propose a variant of 

the Fuzzy C-Means (FCM) clustering algorithm, which 

embodies CenTra at its update procedure. The 

experimental evaluation over real world TD 

demonstrates the efficiency and effectiveness of our 

approach. 

 
1. Introduction 

 
With the integration of wireless communications 

and positioning technologies, TD have become 
increasingly popular, posing great challenges to the 
data mining community [12]. On the other hand, since 
a TD consists of movements of objects, which record 
their position as it evolves over time, the concept of 
uncertainty appears in various ways; data imprecision 
due to sampling and/or measurement errors [18], 
uncertainty in querying and answering [19], fuzziness 
by purpose during pre-processing for preserving 
anonymity [1], and so on. Although uncertainty is 
inherent in TD, to the best of our knowledge there is no 
related work in the database literature that studies its 
effect in the knowledge discovery process. 

For example, clustering of trajectories into separate 
collections, involves partitioning of a TD into clusters, 
so that each cluster contains similar trajectories, 
according to a similarity definition. Several approaches 
try to quantify the (dis)-similarity between trajectories, 
dealing with basic trajectory features, [20], [23], [6], 
[7], [17]. However, neither of the above deals with 
uncertainty aspects. 

On the other hand, clustering approaches based on 
fuzzy logic [24], such as FCM [4], consider uncertainty 
by allowing each data element to belong to different 
clusters by a certain degree of membership. 
Considering that input vector values are subject to 
uncertainty due to imprecise measurements, noise or 
sampling errors, the distances that determine the 
membership of a point to a cluster are also subject to 
uncertainty. Therefore, the possibility of erroneous 
membership assignments in the clustering process is 
evident. Moreover, current fuzzy clustering approaches 
do not utilize any information about uncertainty at the 
elementary level of the data points, which for the case 
of trajectories are the spatial locations of the objects 
recorded in temporal order.  

In this paper, we introduce a three-step approach to 
deal with uncertainty in TD and its effect on trajectory 
clustering. We initially adopt a symbolic representation 
and model trajectories as sequences of regions (i.e., 
wherefrom a moving object passes) accompanied with 
intuitionistic fuzzy values, i.e., elements of an 
intuitionistic fuzzy set. Intuitionistic fuzzy sets [3] are 
generalized fuzzy sets [24] that can be useful in coping 
with the hesitancy originating from imprecise 
information. The elements of an intuitionistic fuzzy set 
are characterized by two values representing, 
respectively, their belongingness and non-

belongingness to this set. In the case of TD where this 
set is the region that a trajectory possibly crosses, the 
above values represent the probabilities of presence 
and non-presence in the area. In order to exploit this 
information, we define a novel distance metric 
especially designed to operate on such intuitionistic 
fuzzy vectors, having as goal to incorporate it in some 
variant of the FCM algorithm that will effectively 
cluster trajectories under uncertainty. 

The success of any FCM-variant algorithm depends 
on the way that cluster centroids are driven towards the 
correct direction in each iteration of the algorithm. 
However, in the TD setting where trajectories are 
complex objects, even the most efficient similarity 
function would most probably fail in different 
applications. We argue that we can succeed better 
clustering results if instead of using global similarity 
functions between whole trajectories, we exploit local 
similarity properties between portions of the 
trajectories. Based on this idea, at the second step of 



our approach, we propose CenTra, a novel density- as 
well as similarity-based algorithm to tackle the 
problem of discovering the Centroid of a group of 
trajectories. Finally, at the third step of our approach, 
we propose a new trajectory clustering algorithm, 
called CenTR-I-FCM, which utilizes CenTra in its 
centroid update step, uses a global uncertainty-
supporting similarity function to group trajectories at a 
higher level, and iteratively refines the results using 
local similarity between sub-trajectories. This 
algorithm has the efficiency advantages of partitioning 
clustering algorithms (in comparison to the higher 
processing cost of density-based algorithms), whereas 
produces non-spherical clusters due to the inclusion of 
CenTra, that recognises representative movements of 
any shape. Summarizing our contributions: 
• we propose an intuitionistic fuzzy vector 

representation of trajectories that enables the 
clustering of trajectories by existing (fuzzy or not) 
clustering algorithms; 

• we define a global distance metric on the previous 
trajectory representation, which outperforms its 
competitors proposed in the literature; 

• we tackle the problem of identifying the centroid of 
a bunch of trajectories using density and local 
similarity properties; 

• we propose a novel modification of the FCM 
algorithm for clustering complex trajectory datasets 
based on the above distance measure and the idea 
of the centroid trajectory. 
The rest of this paper is structured as follows: 

Section 2 discusses related work. In Section 3, we 
introduce the intuitionistic vector representation of 
trajectories. The proposed similarity measure is defined 
in Section 4 while in Section 5 we describe the CenTra 
and the CenTR-I-FCM algorithms. In Section 6 we 
conduct an experimental study over a real trajectory 
dataset. Finally, we conclude this study in Section 7. 

 

2. Related work 

 
In this section we review existing works in the 

domains related with the current work, namely, 
uncertainty in TD, TD clustering, and intuitionistic 
fuzzy set theory. 
Representing Uncertainty in TD - Probably, the most 
recognized notion of uncertainty in TD is the 
uncertainty of the trajectory representation, which 
means that the location of a moving object stored in a 
TD deviates from its real location due to a variety of 
reasons, which include both the measurement error of 
the positioning method, and the sampling error due to 
the interpolation method employed in-between 
sampled positions. The notion of sampling error and its 

behavior across the time axis are studied in [18]. In 
[19], a model for uncertain trajectories is proposed that 
associates an uncertainty threshold ε to the whole 
trajectory. This approach results in trajectories with 
uncertainty modeled as 3D cylindrical volumes. Hence, 
trajectory points (x, y, t) are associated with an ε-
uncertainty area, actually a horizontal disk with radius 
ε centered at (x, y). In order to reduce the complexity of 
handling this kind of spherical neighborhoods, square 
uncertainty areas were introduced in [12]. 
TD Clustering - The vast majority of the proposed 
clustering algorithms, such as k-means [16], BIRCH 
[25], DBSCAN [9], and STING [21] are tailored to 
work with point data, making thus their application to 
TD not a straightforward task. During the last decade 
several approaches have been proposed in the literature 
so as to enable well-known algorithms to operate on 
trajectories. Most of these approaches are inspired by 
the time series analysis domain, and propose trajectory 
similarity measures as the vehicle to group trajectories; 
they usually focus on the movement shape of 
trajectories, which are usually considered as 2D or 3D 
time series data [20], [23], [6], [7]. None of the 
previous approaches considers the underlying 
uncertainty. On the other hand, clustering approaches 
based on fuzzy logic [24], such as Fuzzy C-Means 
(FCM) [4] and its variants are competitive to 
conventional clustering algorithms, especially for real-
world applications. However, directly mapping these 
techniques in TD is not straightforward, mainly due to 
the complex nature of trajectories (a question that 
arises, for example, is about the nature of the cluster 
centroid in a group of trajectories). 

Among the related works, the ones by Gaffney et al. 
[11], [5] and Lee et al. [14] are closest to ours. Gaffney 
et al. [11], [5] proposed probabilistic algorithms for 
clustering short trajectories using a regression mixture 
model. Subsequently, unsupervised learning is carried 
out by using EM algorithm to determine the cluster 
memberships in the model. In this approach, the issue 
of uncertainty is not taken into account, while 
representation of cluster centroids is out of the scope of 
these papers. What is more, in our approach we make 
no assumption about the size of the trajectories or 
whether they conform to some regression model, since 
we are interested in complex, real-world objects 
following arbitrary movement patterns. Recently, Lee 
et al. [14] proposed TRACLUS, a partition-and-group 
framework for clustering trajectories which enables the 
discovery of common sub-trajectories, based on a 
trajectory partitioning algorithm that uses the minimum 
description length principle. TRACLUS clusters 
trajectories as line segments (sub-trajectories) 
independently of whether the whole trajectories belong 
to different or the same clusters; for this reason a 



variant of DBSCAN for line segments is proposed 
[14]. Finally, the notion of the representative 

trajectory of a cluster is provided. The fundamental 
difference of TRACLUS with our approach is that we 
cluster trajectories as a whole. Furthermore, contrary to 
our approach, the temporal information is not 
considered in [14], while the proposed algorithm for 
identifying the representative trajectory of a cluster 
primarily supports straight movement patterns and 
cannot identify complex (e.g. circular) motions, which 
are usual in real world applications. Moreover, [14] 
does by no means deal with the uncertainty in TD. 
Intuitionistic Fuzzy Sets and Similarity - Regarding 
the theoretical foundations of fuzzy and intuitionistic 
fuzzy sets, these are described in [24], [3]. In the 
following paragraphs, we briefly outline the basic 
notions used in this paper.  
Definition 1. Let a set E of elements be fixed. A fuzzy 

set A�  on E is an object of the form 

{ }, ( )
A

A x x x Eµ= ∈
�

�  

where :
A

µ
�

E→[0,1] defines the degree of membership 

of the element x E∈  to the set A E⊂� . For every 
element x E∈ , 0≤ ( )

A
xµ

�
≤1. � 

Definition 2. An intuitionistic fuzzy set A on E is an 
object of the form 

{ }, ( ), ( )
A A

A x x x x Eµ γ= ∈  

where µA: E Ø [0, 1] and γA: E Ø [0, 1] define the 
degree of membership and non-membership, 
respectively, of the element x œ Ε to the set A Õ E. For 
every element x œ Ε  it holds that 0 § µA(x) § 1, 0 § 
γA(x) § 1 and 0 § µA(x) + γA(x) § 1. For every x œ Ε, if 
γA(x) = 1 − µA(x), A represents a uzzy set. The function 
πA(x) = 1 - γA(x) - µA(x) represents the degree of 
hesitancy of the element x E∈  to the set A E⊂ . � 

The plethora and importance of the potential 
applications of intuitionistic fuzzy sets have drawn the 
attention of many researchers that have proposed 
various kinds of similarity measures between 
intuitionistic fuzzy sets. Example applications include 
identification of functional dependency relationships 
between concepts in data mining systems, approximate 
reasoning, pattern recognition and others. A variety of 
similarity measures between intuitionistic fuzzy sets 
have been proposed. Recently, Li et al. [15] provided a 
comprehensive survey and a detailed comparison of 
those measures. 

In the following sections, we will present in detail 
our approach for TD clustering that takes uncertainty 
into consideration. The notation used in the rest of the 
paper is summarized in Table 1. 

Table 1. Table of notations 
Notation Description 

E={x1, x2, ..xn} A finite space of n elements xi 

µΑ(x), γΑ(x), πΑ(x)  
The membership, non-membership, and hesitancy 
of x œ E in an intuitionistic fuzzy set A 

D, ls, Ti, ni, lsi 
A trajectory database, its lifespan, a single 
trajectory, its number of segments and its lifespan 

G, ck,l, gap 
A regular grid used to approximate trajectories, a 
single cell ( 1 k m≤ ≤  and 1 l n≤ ≤ ), and cell c1,1 

iT , ri,j  
The approximation of trajectory Ti over G and its 
j-th approximated region  

UnTra( iT ), uri,j 
The approximated uncertain trajectory Ti over G, 
and its j-th approximated uncertain region 

I-UnTra( iT ) 
The intuitionistic approximated uncertain 
trajectory Ti over G 

DUnTra (=
UnTra

IFS
A B− ), 

DIFS, Dtotal 

The distance measure between (a) two UnTras, 

(b) two I-UnTras, and, (c) two trajectories 

mbr(ur), i j min
ur ur− , 

i j ext
ur ur−  

The minimum bounding rectangle of uncertain 
region ur, and the minimum and external 
distances between the mbr(uri) and mbr(urj) 

MA, ΓA, ΠA  
The sets containing the values of membership, 
non-membership and hesitancy for every member 
of the fuzzy set A 

U , c, N 

A ( c N× )-dimensional matrix of reals [ ]0,1
ik

u ∈ , 

the number of clusters, the cardinality of the data 
vectors 

 

3. Intuitionistic fuzzy vector 

representation of trajectories 
 
Representing trajectories by means of intuitionistic 

fuzzy sets is challenging. Formally, let D = {T1, T2, …, 
TN} be a TD consisting of N trajectories. Assuming 
linear interpolation between consecutive time-stamped 
positions, a trajectory Ti = <(xi,0, yi,0, ti,0), …, (xi,ni, yi,ni, 

ti,ni)>, consists of a sequence of ni > 0 line segments in 
3D space, where the j-th segment interpolates positions 
sampled at time ti,j-1 and ti,j. 

A basic requirement for applying existing clustering 
algorithms (usually designed for point vector data) into 
TD, is to transform trajectories in a space where each 
Ti is represented as p-dimensional point. We therefore 
propose an approximation technique and define the 
dimensionality of trajectories by dividing the lifespan 
of each trajectory in p sub-intervals (e.g., 1 minute 
periods). Regarding the spatial dimension, we assume a 
regular grid of equal rectangular cells with user-
defined size (e.g., 100×100 m2); in each cell an 
identifier is also attached. Given this setting, and 
inspired by the Piecewise Aggregate Approximation 
(PAA) technique [13], we propose a method that 
partitions Ti into p << ni equi-sized temporal periods 
and substitutes the trajectory 3D line segments of each 
period with the set of the grid cells that Ti crosses 
during this period. More formally: 



 

 

 

(a) (b) (c) (d) 

Figure 1 (a) Crossed cells by trajectory, (b) by UnTra with ε = 1, and (c) UnTra with p = 5. (d) Representation of 
membership, non-membership, and hesitancy in the continuous space 

Definition 3. Given (i) a regular grid G of granularity m × 
n consisting of cells ck,l (1 § k § m and 1 § l § n), (ii) a 
trajectory Ti as a sequence of ni line segments, the lifespan 
ls of all trajectories in the trajectory database D, and (iii) a 
target dimension p << ni, the approximate trajectory 

i
T =‚ri,1..ri,pÚ of  trajectory  Ti is the one resulted by Ti 
when all trajectory triplets (xi,j, yi,j, ti,j) of Ti found inside a 
temporal period  

( )1
,

ls j ls j

j p p
p

⋅ − ⋅ =   , 1 j p≤ ≤   

are replaced by a region ri,j, which is composed by the set 
of cells ck,l

 

crossed by Ti during pj . � 
The advantage of this technique is that it allows us to 

view and store all trajectories in D as vectors in the same 
user-defined dimensionality p, where each value of the 
vector corresponds to a dynamic time-ordered list of cells 
crossed by the trajectory. Note that depending on the 
choice of the spatial and temporal granularity a trajectory 
may introduce gaps (i.e., regions with empty set of cells 
due to the fact that there is no motion during the particular 
period of time). 

Next, inspired by the approach proposed in [12], we 

model the Uncertain Trajectory (UnTra) of 
i

T  over G to 

be 
i

T  with its regions ,i j
r  been extended to cover some 

neighbouring cells, the ones that are touched by the ε-
buffer [12] of the initial trajectory Ti. (A similar idea is 
also found in [19], where each trajectory is modelled as a 
circular disk evolving in the temporal dimension, thus 
forming a cylindrical volume.) Formally: 
Definition 4. Given an approximate trajectory 

i
T =‚ri,1..ri,pÚ 

and an uncertainty threshold ε, the Uncertain Trajectory 
UnTra ( )iT =‚uri,1..uri,pÚ of 

i
T  over G is obtained by 

replacing each region ,i j
r with an uncertain region ,i j

ur  
consisting of the set of cells ck,l

 

that the ε-buffer of Ti 
crosses during pj. � 

To clarify the above definitions through an example, 
assume a simple trajectory Ti consisting of 6 (i.e. ni = 6) 
line segments, which, when it is overlaid on a grid, it 
crosses some of its cells (Figure 1(a)). Figure 1(b) 
illustrates the UnTra counterpart of Figure 1(a) with ε = 1. 
Assuming a target dimension p = 5, Ti is approximated by 

UnTra(
i

T ), which simply consists of five uncertain 

regions, reflecting the partitioning of the above grey cells 
in five subsets (i.e. differently colored regions in Figure 
1(c)) with respect to the lifespan of Ti. Without loss of 
generality, in the rest of the paper, we assume that all 
trajectories in D have the same uncertainty threshold ε. 

Based on the above representation, in the following we 
propose an intuitionistic fuzzy vector representation of a 
trajectory. The idea is to model each region uri,j of an 
UnTra as an intuitionistic fuzzy set A E⊂  of the regions 
universe E that belongs to A by a degree µΑ(uri,j) and does 
not belong to A by a degree γΑ(uri,j) (recall Definition 2). 
Let us, for the moment, assume that we work in the 
continuous space. Assuming no uncertainty in the temporal 
dimension (i.e., each uri,j is only subject to spatial 
uncertainty), Figure 1(d) depicts one cell ck,l and two 
auxiliary buffers in grey color, one exterior and one 
interior, in distance ε from the cell; these buffers are 
formed, respectively, as the Minkowski sum (ck,l ⊕ ε) and 
Minkowski difference (ck,l  ε) of ck,l with ε [19]. There are 
also the projections of four segments along with their 
corresponding buffers (also in ε distance from the 
interpolated segment). The thick portion of these segments 
implies the part of the segment that lies inside the cell with 
100% probability. The dashed portion implies the part of 
the segment that lies outside the cell with 100% 
probability, while the solid thin portions are the parts of 
the segments that we do not know whether they lie inside 
or outside the cell. So, the ratio of the length of the thick 
portion over the total trajectory length corresponds to the 
membership of the segment to the cell. Similarly, the 
dashed and the solid thin fractions result to its non-

membership and hesitancy, respectively. Technically 
speaking, the thick portion is the result of the intersection 
of (ck,l  ε) with the segment, while the dashed portion is 
the topological difference of the segment with (ck,l ⊕ ε).  

Let us return to our discretized world; as we assume 

that, after the initial preprocessing, we handle 
i

T , i.e., the 

set of ck,l that are definitely crossed by Ti, we can 
approximate the previous probabilities by counting the 
number of cells of ri,j and uri,j. Formally, given the 
membership µΑ(uri,j) and non-membership γΑ(uri,j) of an 



uncertain region uri,j to the fuzzy set A containing the 
trajectories that have or have not, respectively, traversed 
this region with 100% probability, we provide the 
following notion of Intuitionistic Uncertain Trajectory: 
Definition 5. Given an uncertain trajectory UnTra ( )

i
T , its 

intuitionistic counterpart, I-UnTra ( )
i

T , is defined as a p-
dimensional vector of triplets ‚(uri,j, µΑ(uri,j), γΑ(uri,j)), …, 
(uri,p, µΑ(uri,p), γΑ(uri,p))Ú where each triplet consists of an 
uncertain region uri,j, its membership µΑ(uri,j), and its non-
membership γΑ(uri,j)), with the latter two being defined as: 

( ), ,( )A i j i j iur r UnTra Tµ = , (1) 

( )( ) ( ), ,( )A i j i i j iur UnTra T ur UnTra Tγ = −  (2) 

and ..  notating the number of cells of ( )iUnTra T . � 

Similarly, the hesitancy πΑ(uri,j), namely, the degree that it 
is not certain whether the trajectory has passed or not from 
uri,j, is given by the following equation: 

( ) ( )( )
j j jA i i i iur ur r UnTra Tπ = −  (3) 

Note that it is a straightforward task to prove the 
intuitionistic property that πΑ(uri,j) = 1 − µΑ(uri,j) − γΑ(uri,j). 
 

4. A distance metric for I-UnTra 
 

In this section we propose a novel distance metric 
modeling the dis-similarity between two I-UnTra 
instantiations. The key observation is that such a metric 
can be decomposed in two parts, one measuring the 
distance between the sequences of regions of the two 
trajectories (DUnTra), and the other measuring the distance 
between intuitionistic fuzzy sets, based only on the 
corresponding membership and non-membership values 
(DIFS); then, we can combine them into a single one using 
an aggregate function g(•), e.g., the average (or the 
weighted sum) of the two components. As an example, the 
total distance Dtotal between two I-UnTra A and B can be 
expressed as follows: 

( )( , ) ( , ) ( , ) 2
UnTra

total UnTra IFSIFS
D A B A B D A B D A B= − = +  (4) 

If we assume that DUnTra and DIFS satisfy the metric space 
properties, it is straightforward to prove that Dtotal as 
defined above is a metric. As such, the two steps that are 
required include the proposals of distance metrics for 
DUnTra and DIFS (Sections 4.1 and 4.2, respectively). 

 
4.1 A Distance Metric for Sequences of Regions 

In order to measure the distance DUnTra between two 
UnTra, we propose an appropriate modification of the Edit 
distance with Real Penalty (ERP) [6]. Among several 
proposals in the literature, we chose to modify ERP, given 
that the Euclidean distance has poor performance at the 
presence of noise and local time shift, while LCSS [20], 
DTW [23], and EDR [7] do not satisfy the metric space 
properties [6]. Below we give the definition of the distance 

between two regions (i.e., sets of cells) that is the building 
element of the DUnTra definition. 
Definition 6. Given two uncertain regions uri and urj, their 
distance |uri − urj|d is defined in two different versions 
using two different distances d ∈ {min, ext} between their 
corresponding Minimum Bounding Rectangles (mbr): 

( ) ( )( )i j i jmin
ur ur MinDist mbr ur mbr ur MaxCellDist− = −   (5)

and 

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

21
1

2

2

x i x j

x i j

i j ext

y i y j

y i j

ext mbr ur ext mbr ur

ext mbr ur ur
ur ur

ext mbr ur ext mbr ur

ext mbr ur ur

 +
 +
 ⋅ ∪
 − = −
 + 
 ⋅ ∪ 

, (6) 

where the former represents the minimum Euclidean 
distance between  the MBRs of uri and urj, and the latter 
exploits on the extent of MBRs in the two axes; e.g. 

( )( )
x i

ext mbr ur  is the extent of the mbr of uri along the x 

axis. � 
It is self-evident that |uri − urj|ext always results into 

[0,1]. Intuitively, |uri − urj|ext takes into account both the 
Euclidean distance between two regions and their extents, 
while it produces non-zero results in the case of 
overlapping regions; in the latter case, |uri − urj|min yields 
zero. Therefore, one may choose |uri − urj|ext instead of |uri 
− urj|min when refinement into the details of the uri, urj is 
desired. Finally, in order for |uri − urj|min to be normalized 
in [0,1] it should be divided by the maximum possible 
distance of two regions, called MaxCellDist in Eq. (5), i.e., 
the distance between the two diagonal cells (i.e. the bottom 
left and the upper right) of the grid.  

Now, the distance DUnTra between two UnTra() is 
defined as follows: 
Definition 7. Given a regular grid G of cells ck,l, the 
distance DUnTra between two uncertain trajectories 

( )iUnTra T  and ( )jUnTra T , is given by: 

( ) ( )( )
( )( ) ( )( )( )

( )( ) ( )( )
( ) ( )( )( )

,1 ,1

,1

,1

, min

, ,

, ,

,

UnTra i j

UnTra i j i j d

UnTra i j i d

UnTra i j j d

D UnTra T UnTra T

D Rst UnTra T Rst UnTra T ur ur

D Rst UnTra T UnTra T ur gap

D UnTra T Rst UnTra T ur gap

=

 + −
 
 

+ − 
 
 + −
 

 (7) 

where ( )( )i
Rst UnTra T  denotes the remaining regions of 

( )( )i
Rst UnTra T  after removing uri,1, and gap is the region 
containing the first cell of our grid (i.e., cell c1,1). �  

The value of the gap element is given in a way similar 
with [6] where it is determined as the first value of the time 
scale for the time series (i.e., typically gap = 0). Note that 
as all UnTra have the same dimensionality p, gap regions 
may be introduced not due to difference in lengths rather 
than the lack of motion of an individual trajectory during 
this particular period. Next we present Lemma 1, required 
by Theorem 1 that proves that DUnTra is a metric. 



Lemma 1 For any three regions urq, uri, urj, any of which 
may be a gap region, it is always true that 

q j q i i jd d d
ur ur ur ur ur ur− ≤ − + − . 

Proof: It has been proven by Waterman et al. [22]. � 
Theorem 1 The distance measure DUnTra between 

( )iUnTra T  and ( )jUnTra T , is a metric.  

Proof: It is straightforward that isolation and symmetry 
properties hold for DUnTra. Due to Lemma 1, the triangular 
inequality property also holds for DUnTra. � 
 
4.2 A Distance Metric for Intuitionistic Fuzzy 

Sets 

Given a finite universe E = {x1, x2, …, xn} and an 
intuitionistic A = {‚x, µA(x), γA(x)Ú | x œ E} fuzzy set, we 
define three fuzzy sets MA = {µA(x)}, ΓA = {γA(x)}, ΠA = 
{πA(x)}, containing the values of membership, non-
membership, and hesitancy, respectively, for every x A∈ . 
Under this connection, A can be also described by the 
triplet (MA, ΓA, ΠA). Exploiting the aforementioned 
description of a fuzzy set A, we devise a method for 
measuring the similarity between intuitionistic fuzzy sets, 
based on the membership, non-membership, and hesitancy 
values of their elements.  
Definition 8. Considering a finite universe E = {x1,  x2, ...,  
xn} and two intuitionistic fuzzy sets on it, A = (MA, ΓA, ΠA) 
and B = (MB, ΓB, ΠΒ), with the same cardinality n, the 
similarity measure Z between A and B is given by the 
following equation: 

( ) ( ) ( ) ( )( )1
3, , , ,A B A B A BZ A B z M M z z= + Γ Γ + Π Π  (8) 

where z(A’,B’) for fuzzy sets A' and B' (e.g. for MA, MB) is 
defined as:  

( )
( ) ( )( )
( ) ( )( )

' '1

' '1

min ,
,    ' '  

', ' max ,

1,                                          ' '
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
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∑
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and similarly for ΓA, ΓB and ΠA, ΠB. � 

The above definitions can be demonstrated by the 
following simple numeric example: Assuming three 
intuitionistic fuzzy sets A, B, C with A = {x, 0.4, 0.2}, B = 
{x, 0.5, 0.3}, C = {x, 0.5, 0.2} we want to find whether B 
or C is more similar to A. Using the equations of Definition 
8 we compute the similarity of B and C to set A: Z(A,B) = 
(0.4/0.5 + 0.2/0.3 + 0.2/0.4) / 3 = 0.65, and Z(A,B) = 
(0.4/0.5 + 0.2/0.2 + 0.3/0.4) / 3 = 0.85, concluding that C is 
more similar to A than B. 

Finally, the intuitionistic fuzzy set distance DIFS 
between two I-UnTra A and B, can be expressed as: 

( , ) 1 ( , )
IFS

D A B Z A B= −  (10) 

which is proven to be a distance metric. 
Lemma 2. The intuitionistic fuzzy set distance DIFS 
between two I-UnTra A and B is a metric. 

Proof sketch: One can easily verify that isolation, 
symmetry, and triangular inequality properties hold for 
DIFS. � 

The proposed intuitionistic similarity measure uses the 
aggregation of the minimum and maximum membership, 
non-membership, and hesitancy values. It is simple to 
calculate, sensitive to small value variations, and deals 
well with all the counter-intuitive cases, reported in [15], 
in which other measures fail. For example, the majority of 
the similarity measures reviewed in [15], fail to result to a 
valid intuitionistic value for specific cases; some of them 
result to 0 or 1 suggesting that the compared sets are either 
totally irrelevant or identical, while it is obvious that this is 
false in the general case, while others result in a high 
similarity value for obviously different sets. 
 

5. A novel trajectory clustering algorithm 
 

The majority of the proposed clustering methods so far 
assume that each vector belongs to one cluster only, a 
reasonable assumption when vectors reside in dense and 
well-separated clusters. However, in real-world 
applications where complex input data may form 
overlapping clusters, the degree of membership of a vector 
xk to the i-th cluster uik is a value in the interval [0, 1]. 
Based on this observation, Bezdek et al. [4] introduced the 
FCM algorithm which uses a weighted exponent on the 
fuzzy memberships. FCM iteratively discovers cluster 
centroids that minimize a criterion function measuring the 
quality of a fuzzy partition. A fuzzy partition is denoted by 
a ( c N× )-dimensional matrix U of reals uik œ[0,1], with 1 
§ i § c and 1 § k § N, where c and N are the number of 
clusters and the cardinality of the data vectors, 
respectively. The following constraint is imposed upon uik: 

1 1

1,  0
c N

ik ik

i k

u u N
= =

= < <∑ ∑  (11) 

Given this, the FCM objective function has the form: 

( ) ( ) 2

1 1

,
c N

m

m ik ik

i k

J U V u d
= =

=∑∑  (12) 

where V is a (p µ c)- dimensional matrix storing c 
centroids, p is the dimensionality of the data, dik is an A-
norm measuring the distance between data vector xk and 
cluster centroid vi, and m œ [1,¶) is a weighting exponent. 
The parameter m controls the fuzziness of the clusters. 
When m approximates 1, FCM performs a hard 
partitioning as the k-means algorithm does, while as m 
converges to infinity the partitioning is as fuzzy as 
possible. There is no analytical methodology for the 
optimal choice of m. By iteratively updating the cluster 
centroids and the membership degrees for each feature 
vectors, FCM iteratively moves the cluster centroids to the 
"correct" location within the data set. 

Regarding the centroid calculation, Lee et al. [14] 
presented a first approach to solve this problem in the 
context of TD, providing the notion of representative 



trajectory. Assuming that movement patterns are more or 
less straight lines, they introduce an averaging technique 
between segments that works well when trajectories are 
dense and follow such a linear regression model. However, 
real-world applications involve trajectories that often 
follow circular movement patterns or present large agility. 
Moreover, trajectories that follow similar routes for only a 
portion of their lifespan and then they diverge would result 
in non representative motions patterns that can not be 
described by conventional averaging techniques. In order 
to overpass these obstacles and support real-world 
requirements, we argue that a better representation can be 
succeeded if we utilize local criteria (contrary to global 
criteria via generic distance functions) to decide whether a 
sub-trajectory is part of the movement pattern. For this 
reason next we provide a method that enables this 
calculation exploiting local trajectory matches. 
 

5.1 The Centroid Trajectory algorithm  

We base our proposal for the Centroid Trajectory 
(CenTra) estimation on the definition of I-UnTra. Our 
methodology not only overpasses the previously 
mentioned obstacles, but also, it may be used to represent 
the thickness of the centroid, so as to model the amount of 
trajectories that contribute to its formation. Towards this 
goal, we firstly adopt some local similarity function to 
identify common sub-trajectories (concurrent existence in 
space-time), and secondly we follow a region growing 
approach so as to represent this local cluster. The idea is to 
form CenTra similar to an UnTra, requiring at the same 
time to satisfy some similarity and density constraints. 
Formally: 
Definition 9. Given a regular grid G of granularity m × n 
consisting of cells ck,l (1 § k § m and 1 § l § n), each of 
which has cell density G(k, l) (where cell density is defined 
as the number of distinct trajectories traversing the cell), a 
region density threshold δ, a similarity threshold σ and a 

set S of p-dimensional ( )iUnTra T , we define the CenTra 

of S as an UnTra whose regions at each period pj, 1§j§P, 
correspond to a Local CenTra (L_CenTra), which is an 
Augmented Region (AR) of a seed region that has been 
extended “towards” other regions (i.e. sub-trajectories) if 
and only if (a) the similarity between uri,j (under 
examination) regions and L_CenTra is Sim(L_Centra,uri,j) 
≥ σ, and (b) adopted regions ARi,j have average density 
avg_density(ARi,j)≥ δ. � 

Figure 2 illustrates the developed CenTra algorithm 
used to calculate the centroid trajectories based on 
Definition 9. The background idea is to perform some kind 
of time-focused local clustering using a region growing 
technique under similarity and density constraints. The 
algorithm for each time period (line 2), determines an 
initial seed region, (via the Init_Local_CenTra (line 3)) 
and searches for the maximum region that is composed of 
all sub-trajectories that are similar over σ and dense over δ. 

The seed region is determined as the one with the 
minimum average distance from the rest candidate regions. 
Subsequently, the growing process begins (line 4) and the 
algorithm tries to find the next region to extend (lines 5-6) 
among the k Most Similar Trajectories (k-MST) [10], as 
someone would expect to find the best region in one of 
these k regions. Note that searching for the k-MST 
introduces only a small overhead in the algorithm’s 
execution since the corresponding results are kept in a 
priority queue that has been fed during the initialization of 
the seed region (line 3). Then the algorithm searches 
among the candidates regions, i.e., those that satisfy the 
similarity and density constraints (line 7), in order to find 
the best, i.e., the one that has the maximum similarity, or, 
the one that maximizes the average density after growing 
(lines 9-10). The whole process continues until no more 
growing can be applied (line 11), appending in each 
repetition the temporally local centroid L_CenTra to 
CenTra (line 12). 
 
Algorithm CenTra(set of I-UnTra S, Grid G, Real 

δ, Real σ, Integer k) 

01.  CenTra=∅ ; 

02.  forall temporal periods pj  

03.    L_CenTra = Init_Local_Centra(pj); 

04.    repeat 

05.      forall regions uri,j in k-MST 

06.        ARi,j = L_CenTra extended with uri,j; 

07.        AR ={uri,j|Sim(L_CenTra,uri,j)¥σ  

                     and avg_density(ARi,j)¥δ}; 
08.      if AR ∫ «  

09.        uri,j=argmaxregœAR(Sim(L_CenTra,ARreg), 

                           avg_density(ARreg)); 
10.        L_CenTra=ARi,j; 

11.    until AR ∫ «; 

12.    CenTra=CenTra ∪  L_CenTra; 

13.  return CenTra; 

 
Figure 2: CenTra Algorithm 

 

5.2 The CenTR-I-FCM algorithm for I-UnTra 

Continuing our discussion regarding FCM, it must be 
mentioned that its direct employment in the context of TD 
would result to an inefficient scheme: during the process of 
transforming trajectories to data points, initial trajectories 
should be interpolated at all time instances every other 
trajectory sampled its position, something that would 
prohibitively increase the dimensionality of the problem. 
More importantly, using an A-norm as the mean to 
measure the distance between trajectories, it is expected to 
encounter all the well-known problems being present when 
measuring the similarity in time series data, such as the 
presence of outliers, different speeds, local shifts, different 
baselines and scales. Furthermore, FCM tries to partition 
the dataset simply by looking at the vector values ignoring 
the fact that these vectors may be accompanied by 
qualitative information (i.e., the uncertainty) which may be 
given per dimension.  



Contrary to these shortcomings, we take advantage of 
our intuitionistic trajectory representation I-UnTra, i.e., the 
p-dimensional vectors of triplets (uri,j, µΑ(uri,j), γΑ(uri,j)). 
While it is evident that the FCM algorithm can not utilize 
intrinsically such qualitative information, we propose a 
different perspective by substituting the distance function 
with the distance metric Dtotal introduced in Section 4. As 
such, the fuzzy c-means objective function takes the form: 

( ) ( )
1 1

,
c N

UnTramCenTR I FCM

m ik k i IFS
i k

J U V u x v
− −

= =

= −∑∑  (13) 

Theorem 2. Given a ( p c× )-dimensional matrix V storing 
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and 

( ) ( )
1

1 1

   .
N N

m m

i ik k ik
i c

k k

v u x u
≤ ≤

= =

∀ =∑ ∑  (15) 

� 
Proof sketch: Eqs. (14) and (15) follow from 
straightforward mathematical operations. � 

Note that uik corresponds to the membership of the k-th 
I-UnTra to the i-th cluster and it is different from the 
internal intuitionistic fuzzy memberships of each I-UnTra. 
Moreover, after the centroids’ computation using Eq. (15) 
and before the next iteration, where the memberships 

ik
u to 

the new clusters are updated, we calculate the 
memberships and non-memberships of the new (virtual) 
centroid trajectories. At each iteration and for every 
centroid we extract the membership degree 

jiµ (non-

membership degrees jiγ ) of centroid vi as the average of 

the memberships (non-memberships, respectively) of all I-
UnTra that belong to cluster i. More formally, if Ci is a set 
defined as 

{ }
1

    1 ; , 1
UnTra UnTra

i k i k rIFS IFSi c
C k k N x v x v r c r i

≤ ≤
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∀ = =∑ ∑  (16)

Using the update procedure of Eq. (15) in the TD 
setting we would share the same problems with FCM and 
k-means. Since we are especially interested in the 
representation of real movement patterns, we could use the 
centroid trajectory derived by the density-based CenTra 

algorithm instead of this weighted averaging technique; we 
argue that the adoption of CenTra as the update centroid 
methodology of the product of Theorem 2, will result to 
more meaningful trajectory clustering. The idea is that the 
algorithm implied by Theorem 2 iteratively tries to 
diminish the intra-cluster variance using some global, 
approximate distance metric, and CenTra comes at each 
iteration to push (i.e., grow) the centroid (only the sub-
trajectories and not the whole trajectory) towards 
interesting places, where interestingness in our case means 
high density and similarity. The incorporation of CenTra 
into FCM (named Centroid TRajectory Intuitionistic FCM 
(CenTR-I-FCM)) is a straightforward task and only takes 
place at line 4 of the algorithm in Figure 3 with the 
invocation of CenTra. 
 

Algorithm CenTR-I-FCM (set of I-UnTra S, Real ε, 

Int c) 

01. V
(0)
 = c random I-UnTra; j=1; 

02. repeat 

03.   Calculate membership matrix U
(j)
  

 // use Eq.(14) 

04.   Update the centroids’ matrix V
(j)
  

 using CenTra;  

05.   Compute membership and non-membership  

 degrees of V(j)  // use Eq.(16) 

06. Until ||U
j+1
-U

j
||F≤ε; j=j+1; 

 
Figure 3 CenTR-I-FCM algorithm for clustering I-UnTra 

 

6. Experimental evaluation 
 
In this section, we present an experimental study in 

order to evaluate our approach. The experiments were run 
on a PC with Intel Core Duo at 2.53 GHz, 4 GB RAM and 
240 GB hard disk. We implemented the proposed 
algorithms using C++. 
 
6.1 Datasets 

To the best of our knowledge in the TD domain there is 
no available real dataset already clustered by a domain 
expert in order to be used as ground truth for 
benchmarking. Nevertheless, in this paper, we have used a 
real dataset from which we extracted real clusters. The 
initial dataset consists of the GPS-tracked positions of 50 
trucks transporting concrete in the area of Athens between 
August and September 2002 (the dataset is publicly 
available at http://www.rtreeportal.org). There are 112,300 
position records consisting of the truck identifiers, dates 
and times, and geographical coordinates. The temporal 
spacing is regular and equals 30 seconds. From these raw 
data, we produced 1100 trajectories by splitting the 
recordings of a truck in subsets if there was a temporal gap 
between two consecutive recordings larger than 15 minutes 
(a gap that indicates a stop not due to traffic or traffic 
lights). Subsequently, we used the CommonGIS visual 
analytics tool [2] to manually identify real clusters, thus 
producing four identifiable clusters. More specifically, we 
discovered two clusters of trajectories where the start and 



end locations almost coincide, i.e. each truck returned to its 
original location after performing a round trip; the 
directions of the trips of the two clusters differ (we call 
these two clusters “round trips”). Likewise, we also 
discovered two clusters, moving E � W and W � E, 
respectively, (we call these two clusters “linear trips”). 
 

6.2 Experiments 

We implemented a variation of the classic FCM 
algorithm appropriately modified for our needs. In order to 
be as fair as possible, this algorithm, named TR-FCM, uses 
our point vector representation of trajectories, along with 
the minimum distance between MBRs so as to calculate 
the distance between the cluster’s centroid and each 
candidate trajectory. In our first experiment we employed 
only the two “linear trips” clusters. We then used our 
CenTR-I-FCM and TR-FCM algorithms varying the grid’s 
cell size and ε, and we measured the algorithm’s success as 
the percentage of the correctly classified trajectories. The 
corresponding results regarding CenTR-I-FCM are 
illustrated in Figure 4; note that cell size in Figure 4(a) and 
(b) is demonstrated as percentage of the size of the total 
space. Regarding the other experiment’s parameters, in 
Figure 4(a) we fix the value for the density threshold δ to 
2% (of the total number of trajectories), while in Figure 
4(b), we set ε to 1. In all cases we fix parameters σ to 0.5 
and k to the number of trajectories in each cluster.  

Clearly, Figure 4 demonstrates that CenTR-I-FCM 
achieves very good results, with a typical rate above 70%, 
while it reaches 90% when the cell size is set to its 
maximum value, regardless of the value of δ and ε, as 
clustering is performed at a higher granularity level where 
specific movement details are vanishing. On the other 
hand, when using the same experimental settings over TR-
FCM, it produces rather poor results, with an average 
success of about 53% regardless of the experimental 
settings. We also performed the same experiments on the 
other two clusters (i.e., “round trips”); the respective 
figures are omitted due to space constraints. Nevertheless, 
the general observation obtained from this study, is that the 
CenTR-I-FCM outperforms TR-FCM regardless of the 
experimental setting, verifying that it produces very good 
clustering results, with a typical rate above 65%. 

In order to study the algorithms’ behaviour in cases 
where more than two clusters are present, we performed 
another experiment using different portions of the trucks 
dataset containing three (i.e., the two “round trips” 
clusters, and one of the “linear trips” clusters), and four 
clusters. The results of this experiment are illustrated in 
Figure 5(a); again, CenTR-I-FCM clearly outperforms its 
competitor. On the other hand, the performance of both 
algorithms evidently downgrades as the number of 
requested clusters increases; however the performance of 
our proposal decreases with a smaller ratio, always being 
above 75%. 
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Figure 4: Clustering accuracy scaling (a) cell size, ε and (b) 
density threshold, δ  

 
Regarding the performance of the CenTR-I-FCM 

algorithm, it was evaluated using the whole “trucks” 
dataset by increasing the trajectory cardinality. The results 
illustrated in Figure 5(b) demonstrate the efficiency of the 
proposed algorithm for various numbers of clusters 
requested. It is clear that the performance of the algorithm 
is not affected by the number of clusters, while all curves 
illustrated in Figure 5(b) imply that the algorithm has 
super-linear behaviour regarding the dataset cardinality. 
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Figure 5: (a) Clustering accuracy scaling the number of 
clusters (b) TR-I-FCM performance scaling the dataset 

cardinality 
 

To complete our experimental study, we evaluate the 
quality of the CenTra algorithm. Although starting from 
different base lines and focusing on different applications, 
we compare it with the representative trajectory produced 
by the state-of-the-art TRACLUS algorithm [14]. The 
result of the comparison is illustrated in Figure 6. In 
particular, Figure 6(a) illustrates the outcome of 
TRACLUS. Evidently, the cluster representative (red line) 
does not fit the real movement, mainly due to its averaging 
technique. Recall at this point that TRACLUS clusters 
segments rather than whole trajectories (even considering 
this, the algorithm does not compass the turn occurring at 
the bottom of the figure). On the other hand, Figure 6(b) 
and Figure 6(c) illustrate CenTra, produced with variable 
cell size, ε and density δ. It turns out that CenTra not only 
resides on the data traces, but also vanishes the non-
interesting movement details (the ‘noisy’ infrequent parts 
are not part of the centroid), it catches turns, and it 
becomes thicker in portions where something interesting 
(i.e. dense-similar subtrajectories) happens. 

 



   
(a) (b) (c) 

Figure 6: Representative Trajectories (TRACLUS) (a) and Centroid Trajectories (CenTra) ((b) with cell size=1.3%, ε=0 and 
δ=0.09, and (c) with cell size=2.8%, ε=0 and δ=0.02) in “round trips” dataset 

 
7. CONCLUSION AND FUTURE WORK 
 

In this paper, we proposed a three-step approach for 
clustering trajectories of moving objects, motivated by the 
observation that clustering and representation issues in TD 
that are inherently subject to uncertainty. Based on our 
intuitionistic fuzzy vector representation of trajectories, we 
defined a distance metric consisting of two components, a 
metric for sequences of regions DUnTra and a metric for 
intuitionistic fuzzy sets DIFS, respectively, and used it to 
devise the so-called CenTR-I-FCM algorithm for 
clustering trajectories under uncertainty, which also 
includes a novel technique for discovering the centroid of a 
bundle of trajectories (called CenTra). The effectiveness 
and efficiency of our approach has been experimentally 
shown on a real trajectory dataset. 

Clear future work objectives arise from our proposal: 
we plan to adopt some clever sampling technique for 
multi-dimensional data so as to diminish the effect of 
initialization in our algorithms, while a second direction 
includes the development of an index-based version for 
efficiency purposes and the performance of an extensive 
experimental evaluation using large trajectory datasets. 
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