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ABSTRACT 

The usage of location aware devices, such as mobile phones and 
GPS-enabled devices, is widely spread nowadays, allowing access 
to large spatiotemporal datasets. The space-time nature of this 

kind of data results in the generation of huge amounts of mobility 
data and imposes new challenges regarding the analytical tools 
that can be used for transforming raw data to knowledge. In our 
research, we investigate the extension of Data Warehousing and 
data mining technology so as to be applicable on mobility data. In 
this paper, we present the, so far, developed framework for 
analyzing mobility data and some preliminary results.  

1. INTRODUCTION 
The flow of data generated from low-cost modern sensing 
technologies and wireless telecommunication devices enables 
novel research fields related to the management of this new kind 
of data and the implementation of appropriate analytics for 
knowledge extraction.The analysis of such mobility data raises 
opportunities for discovering behavioral patterns that can be 

exploited in applications like mobile marketing, traffic 
management etc.  

Online analytical processing (OLAP) and data mining (DM) 
techniques can be employed in order to convert this vast amount 
of raw data into useful knowledge. Their application on 
conventional data has been extensively studied during the last 
decade. The high volume of generated mobility data arises the 
challenge of applying analytical techniques on such data. In order 

to achieve this aim, we have to take into consideration the 
complex nature of spatiotemporal data and thus to extend 
appropriately the two aforementioned techniques to handle them 
in an efficient way.  

Towards this direction, we provide two motivation scenarios. 
Firstly, let us consider an advertising company which is interested 
in analyzing mobility data in different areas of a city so as to 
decide upon road advertisements (placed on panels on the roads). 

They are interested in analyzing the demographical profiles of the 
people visiting different urban areas of the city at different time 
zones of the day so as to decide about the proper sequence of 
advertisements that will appear on the panels at different time 

periods. This knowledge will enable them to execute more 
focused marketing campaigns and apply a more effective strategy.    

Indicatively, a Trajectory Data Warehouse (TDW) can serve this 
aim by analyzing various measures such as the number of moving 
objects in different urban areas, the average speed of vehicles, the 
ups and downs of vehicles’ speed as well as useful insights, like 
discovering popular movements.  

Secondly, trying to understand, manage and predict the traffic 
phenomenon in a city is both interesting and useful. For instance, 
city authorities, by studying the traffic flow, would be able to 
improve traffic conditions, to react effectively in case of some 
traffic problems and to arrange the construction of new roads, the 
extension of existing ones, and the placement of traffic lights. 

The above targets can be served by analyzing traffic data so as to 
monitor the traffic flow and thus to discover traffic related 
patterns. These patterns can be expressed through relationships 

among the road segments of the city network. In other words, we 
aim to discover, by using aggregated mobility data, how the traffic 
flows in this network, the road segments that contribute to the 
flow and how this happens. 

In order to realize the two above scenarios, but also many others, 
we work on a framework for Mobility Data Warehousing and 
Mining that takes into consideration the complete flow of tasks 
required for the development of a TDW and the application of 

trajectory-inspired mining algorithms so as to extract traffic 
patterns.   

The rest of the paper is organized as follows. Section 2 presents 
the related work in the area of trajectory warehousing and mining. 
Section 3 constitutes the core of the paper, where we present the 
different components of the framework we have developed. 
Conclusions are outlined in Section 4. 

2. RELATED WORK 

2.1 Warehousing spatial and mobility data 
The pioneering work by Han et al. [6] introduces the concept of 

spatial data warehousing (SDW). The authors extend the idea of 
cube dimensions so as to include spatial and non-spatial ones, and 
of cube measures so as to represent space regions and/or calculate 
numerical data. In [15], spatial OLAP operators are studied. One 
step further from modeling a SDW is modeling a TDW.  

Trajectory warehousing [17] is in its infancy but we can 
distinguish three major research directions on this field: modeling, 
aggregation and indexing. From a modeling perspective, the 

definition of hierarchies in the spatial dimension introduces issues 
that should be addressed. The spatial dimension may include not 
explicitly defined hierarchies [7]. Thus, multiple aggregation 
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paths are possible and they should be taken into consideration 
during OLAP operations. Tao and Papadias [22] propose the 
integration of spatial and temporal dimensions and present 
appropriate data structures that integrate spatiotemporal indexing 
with pre-aggregation. Choi et al. [2] try to overcome the 

limitations of multi-tree structures by introducing a new index 
structure that combines the benefits of Quadtrees and Grid files. 
However, the above frameworks focus on calculating simple 
measures (e.g. count customers).  

Furthermore, an attempt to model and maintain a TDW is 
presented in [14] where a simple data cube consisting of spatial / 
temporal dimensions and numeric measures concerning 
trajectories is defined. In our research, we investigate efficient 

solutions to support complex measures and to define the complete 
flow of processes in a TDW.  

2.2 Mining patterns from mobility data 
In [11], a distributed traffic stream mining system is proposed: the 
central server performs the mining tasks and ships the discovered 

patterns back to the sensors, whereas the sensors monitor whether 
the incoming traffic violates the patterns extracted from the 
historical data. This work emphasizes on the description of the 
distributed traffic stream system, rather on the discovery of traffic 
related patterns. 

Also, relative to our research is the work by [10] for the discovery 
of hot routes (sequences of road segments with heavy traffic) in a 
road network. The authors propose a density-based algorithm, 

called FlowScan, which cluster road segments based on the 
density of the common traffic they share. The algorithm, however, 
requires the trajectories of the objects that move within the 
network, thus cannot be applied in our problem settings (as we 
already mentioned and will be further explained in Section 3.4, we 
assume aggregated mobility data and not the trajectories of each 
object). 

A line of research relevant to our work is that of spatiotemporal or 
trajectory clustering that aims at grouping trajectories of moving 

objects into groups of similar trajectories. 

Lee et al. [9] propose a partition-and-group framework for 
trajectory clustering. Similar line segments are grouped into a 
cluster using a density based clustering method. For each cluster, 
the representative trajectory is discovered which is defined as the 
trajectory describing the overall movement of the trajectory 
partitions that belong to the same cluster. This work concerns the 
trajectories of the moving objects, free movement and no some 

predefined network like, in our case, the road network. 

Giannoti et al. [4] propose the notion of trajectory patterns (T-
patterns) and introduce appropriate trajectory mining algorithms 
for their discovery. Trajectory patterns represent sequences of 
spatial areas of interest that are temporally related. Such areas of 
interest can be predefined by the user or they can be discovered in 
a dynamic way using some density-based algorithm. 

Kalnis et al. [8] introduce the notion of moving clusters for 

discovering groups of objects that move close to each other for a 
long time interval. However, their method requires the IDs of the 
objects and considers unconstrained environments.  

Also, relevant to our work is the work on change detection. For 
example, the MONIC framework has been proposed [20] for 
modeling and detecting transitions between clusters discovered at 

consequent time points. However, their method relies on cluster 
members (IDs of the objects), thus cannot be directly applied to 
our problem settings. 

Nakata and Takeuchi [21] employ probe-car data for collecting 
traffic information concerning much larger areas than by 

traditional fixed sensors. They model traffic time as time series 
and they apply the Auto Regression Model after removing 
periodic patterns. However, in this work spatial information is not 
taken into consideration. 

3. RESEARCH AGENDA & 

PRELIMINARY RESULTS 
Our proposed framework for Mobility Data Warehousing and 
Mining (MDWM) consists of various components (actually, KDD 
steps) which are illustrated in Figure 1. Below, we present these 
components accompanied by our contributions: 

 First, sampled positions received by GPS-enabled devices 
need to be converted into trajectory data and to be stored in a 

MOD; to this end, we propose a trajectory reconstruction 
technique that transforms sequences of raw sample points 
into meaningful trajectories. 

 Second, the TDW is to be fed with aggregate trajectory data; 

to achieve it we propose two alternative solutions: a (index-
based) cell-oriented and a (non-index-based) trajectory-
oriented ETL process. 

 Third, aggregation capabilities over measures are offered for 

OLAP purposes. The peculiarity with trajectory data is that a 
trajectory might span multiple base cells (the so called 
distinct count problem [23]). This causes aggregation 
hindrances in OLAP operations. We provide approximation 
solutions for this problem, which turn out to perform 
effectively. 

 Fourth, our framework provides mining capabilities over 
mobility data (generated from vehicles) that are stored in 

MOD. We focus on the detection of traffic patterns and we 
propose algorithms for the detection of traffic relationships 
between the different road segments of a city network. 
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Figure 1. The architecture of our MDWM framework. 

3.1 From raw locations to trajectories: the 

trajectory reconstruction problem 
As already discussed, collected raw data represent time-stamped 
geographical locations (Figure 2a). Apart from storing these raw 



data in the MOD, we are also interested in reconstructing 
trajectories (Figure 2b). The so-called trajectory reconstruction 
task is not a straightforward procedure. Having in mind that raw 
points arrive in bulk sets, we need a filter that decides if the new 
series of data is to be appended to an existing trajectory or not. 

 

Figure 2. a) raw locations, b) reconstructed trajectories.  

In [12], we proposed a method for determining different 
trajectories. The proposed trajectory reconstruction algorithm 
employs the idea of a filter based on appropriate parameters. The 
input of the algorithm includes raw data points (i.e., time-stamped 
positions) along with object-id, and a list containing the partial 
trajectories processed so far by the trajectory reconstruction 

module; these partial trajectories are composed by several of the 
most recent trajectory points, depending on the values of these 
parameters. Due to the fact that the notion of trajectory cannot be 
the same in every application, we define the following generic 
trajectory reconstruction parameters: 

 Temporal gap between trajectories gaptime: the maximum 

allowed time interval between two consecutive time-stamped 
positions of the same trajectory for a single moving object 
(case a in Figure 2a). 

 Spatial gap between trajectories gapspace: the maximum 

allowed distance in 2D plane between two consecutive time-
stamped positions of the same trajectory (case b in Figure 2a). 

 Maximum speed Vmax: the maximum allowed speed of a 

moving object. When a new time-stamped location of object oi 
is received, it is checked with respect to the last known 
position of that object, and the corresponding instant speed is 

calculated. If it exceeds Vmax, this location is considered as 
noise and (temporarily) it is not considered in the trajectory 
reconstruction process (however, it is kept separately as it may 
turn out to be useful again – see the parameter that follows) 
(case c in Figure 2a).  

  Maximum noise duration noisemax: the maximum duration of a 

noisy part of a trajectory. For example, consider an application 
recording positions of pedestrians where the maximum speed 
set for a pedestrian is Vmax = 3 m/sec. When he/she picks up a 
transportation mean (e.g., a bus), the recorded instant speed 
will exceed Vmax, flagging the positions on the bus as noise. 
The maximum noise length parameter stands for supporting 
this scenario: when the duration of this sequence of ‘noise’ 
exceeds noisemax, a new trajectory containing all these 
positions is created (case d in Figure 2a). 

 Tolerance distance Dtol: the tolerance of the transmitted time-

stamped positions. In other words, it is the maximum distance 
between two consecutive time-stamped positions of the same 
object in order for the object to be considered as stationary 
(case e in Figure 2a).   

Figure 3 illustrates the efficiency of our trajectory reconstruction 
technique. It is clear that our algorithm performs linear with the 
size of the input dataset (and allows the processing of the full 
dataset in about 2 min). Furthermore, the average processing rate 
is almost stable (~ 50K records/sec). The complete evaluation 

study can be found in [12]. 

 
Figure 3. Performance of trajectory reconstruction  

(solid line: processing time; dotted line: processing rate) 

Our ongoing work on this topic explores intelligent ways to 
automatically extract proper values of trajectory reconstruction 
parameters according to a number of characteristics of datasets. 
Furthermore, we are interested in extending this technique so as to 
be able to identify different movement types (pedestrian, bicycle, 
motorbike, car, truck etc) so as to apply customized trajectory 
reconstruction. 

3.2 Trajectory data cube design and the ETL 

process 
In [17], we investigated the prerequisites and the constraints 

imposed when describing the design of a TDW from a user 
perspective (i.e. conceptual model), as well as when describing 
the final application as a system in a platform-independent tool 
(i.e. logical model). 

Following the multidimensional model [1], a data cube for 
trajectories consists of a fact table containing keys to dimension 
tables and a number of appropriate measures. Dimension tables 
might have several attributes in order to build multiple hierarchies 

so as to support OLAP analysis whereas measures could be 
trajectory-oriented (e.g., number of trajectories, number of 
objects, average speed, etc.). For each dimension we define a 
finest level of granularity which refers to the detail of the data 
stored in the fact table.  

Definitely, a TDW should include a spatial and a temporal 
dimension describing geography and time, respectively. Another 
dimension regarding conventional information about moving 
objects (including demographical information, such as gender, 

age, occupation etc.) could be considered as well.  

Based on the above, we highlight the following dimensions and 
measures (the corresponding star schema is illustrated in Figure 4) 
[12]: 

 Geography: the spatial dimension (SPACE_DIM) allows us to 

define spatial hierarchies. Handling geography at the finest 
level of granularity could include (as alternative solutions) a 
simple grid, a road network or even coverage of the space 
with respect to the mobile cell network. According to the first 
alternative, the space is divided in explicitly defined (usually, 
rectangular) areas.  
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 Time: the temporal dimension (TIME_DIM) defines temporal 

hierarchies. Time dimension has been extensively studied in 
the data warehousing literature [1]. At the finest level of 
granularity, we assume user-defined time intervals. 

 User Profile: the thematic dimension (OBJECT_PROFILE_DIM) 
refers to demographic and technographic information. 

Apart from keys to dimension tables, the fact table also contains a 
set of measures including aggregate information. The measures 
considered in the TDW schema of Figure 4 include the number of 
distinct trajectories (COUNT_TRAJECTORIES), the number of 

distinct users (COUNT_USERS), the average traveled distance 
(AVG_DISTANCE_TRAVELED), the average travel duration 
(AVG_TRAVEL_DURATION), the average speed (AVG_SPEED) and 
the average acceleration in absolute values (AVG_ABS_ACCELER), 
for a particular group of people moving in a specific spatial area 
during a specific time period. 

OBJECT_PROFILE_DIM

PK OBJPROFILE_ID

 GENDER

 BIRTHYEAR

 PROFESSION

 MARITAL_STATUS

 DEVICE_TYPE 

FACT_TBL

PK,FK3 INTERVAL_ID

PK,FK2 PARTITION_ID

PK,FK1 OBJPROFILE_ID

 COUNT_TRAJECTORIES

 COUNT_USERS

 AVG_DISTANCE_TRAVELED

 AVG_TRAVEL_DURATION

 AVG_SPEED

 AVG_ABS_ACCELER

SPACE_DIM

PK PARTITION_ID

 PARTITION_GEOMETRY

 DISTRICT

 CITY

 STATE

 COUNTRY

TIME_DIM

PK INTERVAL_ID

 INTERVAL_START

 INTERVAL_END

 HOUR

 DAY

 MONTH

 QUARTER

 YEAR

 DAY_OF_WEEK

 RUSH_HOUR

 

Figure 4. An example of TDW. 

After defining the schema of the TDW, we have to consider ETL 
issues: load trajectories stored in the MOD and feed the TDW. 
Loading data into the dimension tables is straightforward; 

however, this is far more complex for the fact table. In particular, 
the main task is to fill in the measures with the appropriate 
numeric values for each of the base cells that are identified by the 
foreign keys of the fact table. 

As already mentioned, in order to calculate the measures of the 
data cube, we have to extract the portions of the trajectories that 
fit into the base cells of the cube. We proposed two alternative 
solutions to this problem: (i) a cell-oriented and (ii) a trajectory-

oriented approach in [12]. 

According to the cell-oriented approach (COA), we search for the 
trajectory portions that lie within the base cells. First, we search 
for the portions of trajectories under the concurrent constraint that 
they reside inside a spatiotemporal cell C. The efficiency of the 
above described COA solution depends on the effective 
computation of the parts of the moving object trajectories that 
reside in the spatiotemporal cells. This step is actually a 
spatiotemporal range query that returns not only the identifiers but 

also the portions of trajectories that satisfy the range constraints. 
To efficiently support this trajectory-based query processing 
requirement, we employ the TB-tree [18], a state-of-the-art index 
for trajectories that can efficiently support trajectory query 
processing. 

According to the trajectory-oriented approach (TOA), we 
discover the spatiotemporal cells where each trajectory resides in. 
In order to avoid checking all cells, we use a rough approximation 

of the trajectory, its Minimum Bounding Rectangle (MBR), and 
we exploit the fact that the granularity of cells is fixed in order to 
detect (possibly) involved cells in constant time. Then, we 
identify the portions of the trajectory that fits into each of those 
cells.  

For the evaluation of the ETL process we compared the 
performance of the TOA vs. the index-based COA approaches. 
Both approaches were implemented in Hermes, a prototype MOD 
engine [16]. We used a large real dataset: a part of the e-Courier 
dataset [3] consisting of 6.67 millions of raw location records (a 
file of 504 Mb, in total), that represent the movement of 84 
couriers moving in London (covered area 66,800 km2) during a 
one month period with a 10 sec sample rate. For all the 

experiments we used a PC with 1 Gb RAM and P4 3 GHz CPU. 

We used two different granularities to partition the spatial and the 
temporal hierarchies; a spatial grid of equally sized squares of 
10×10 Km2 (100×100 Km2, respectively) and a time interval of 
one (six, respectively) hours. The results of the four cases are 
illustrated in Figure 5, where it is clear that the choice of a 
particular method is a trade-off between the selected granularity 
level and the number of trajectories. 

 

Figure 5. Comparison of alternative ETL processes 

Our ongoing work on this topic includes the design of a trajectory 

data cube that will be more flexible in the sense of taking into 
consideration different semantic definitions of trajectories [19]. 
Let us consider, e.g., the case of a tracked user traveling from 
home to work in the morning, from work to the supermarket in the 
afternoon and, after a while, back to home. Different application 
scenarios may consider a different number of trajectories in the 
above example. Our approach proposed in [12] considers a 
specific semantic definition of trajectories that was fixed during 

the reconstruction stage. Hence, to achieve flexibility, we revisit 
basic components of the data warehouse (fact table, dimensions, 
materialization etc) so as to build a system suitable for ad-hoc 
analysis on trajectory data.  

3.3 Trajectory-oriented OLAP and the 

distinct count problem 
During the ETL process, measures can be computed in an 
accurate way by executing MOD queries based on the formulas 
provided in [12]. However, once the fact table has been fed, the 
trajectory and user identifiers are not maintained and only 
aggregate information is stored inside the TDW.  

The aggregate functions to obtain super-aggregates for the main 
measures presented in Figure 4 are classified as holistic [5] and as 
such they require the MOD data to compute super-aggregates in 
all levels of dimensions. This is due to the fact that COUNT_USERS, 
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COUNT_TRAJECTORIES and, as a consequence, the other measures 
defined in terms of COUNT_TRAJECTORIES (e.g. the AVG 
measures) are subject to the distinct count problem [23]: if an 
object remains in the query region for several timestamps during 
the query interval, instead of counting this object once, it is 

counted multiple times in the result.  

Notice that once a technique for rolling-up the 
COUNT_TRAJECTORIES measure is devised, it is straightforward to 
define a roll-up operation for the AVG measures. In fact the latter 
can be implemented as the sum of the corresponding auxiliary 
measures divided by the result of the roll-up of 
COUNT_TRAJECTORIES.  As such, diminishing the calculations in 
the numerator, hereafter, we focus on the (denominator) number 

of distinct trajectories (COUNT_TRAJECTORIES); COUNT_USERS is 
handled in a similar way. 

In order to implement a roll-up operation over this measure, a first 
solution is to define a distributive aggregate function [5] which 
simply obtains the super-aggregate of a cell C by summing up the 
measures COUNT_TRAJECTORIES in the base cells composing C. 
Following the proposal in [14], an alternative solution is to define 
an algebraic aggregate function. The idea is to store in the base 

cells a tuple of auxiliary measures that will help us to correct the 
errors caused due to the duplicates when rolling-up. Hence, for the 
base cell C(x,y),t,p we store:    

 C(x,y),t,p.Traj: the number of distinct trajectories of profile p 
intersecting the cell. 

 C(x,y),t,p.cross-x: the number of  distinct trajectories of profile p 

crossing the spatial border between C(x-1,y),t,p  (adjacent cell 
along with x- axis) and C(x,y),t,p 

 C(x,y),t,p.cross-y:  the number of  distinct trajectories of  profile 

p crossing the spatial border between C(x,y-1),t,p (adjacent cell  
along with y- axis) and C(x,y),t,p 

 C(x,y),t,p.cross-t: the number of  distinct trajectories of profile p 

crossing the temporal border between C(x,y),t-1,p (adjacent cell  
along with t- axis) and C(x,y),t,p  

Let C(x’,y’),t’,p’ be a cell consisting of the union of two adjacent cells 
with respect to a spatial/temporal dimension, for example 

C(x’,y’),t’,p’ = C(x,y),t.p C(x+1,y),t,p (when aggregating along x- axis). In 

order to compute the super-aggregate corresponding to C(x’,y’),t’,p’, 
we proceed as follows: 

C(x’,y’),t’,p’.Traj = C(x,y),t,p.Traj + C(x+1,y),t,p.Traj – C(x+1,y),t,p .cross-x 

The computation of C(x’,y’),t’,p’.Traj can be thought of as an 
application of the well-known Inclusion/Exclusion principle for 

sets: A B  = A  + B   A B .  However, it is worth noticing 

that the agility of a trajectory affects the error in the roll-up 
computation. Due to space limitations, we omit the experimental 
study of this approach, which can be found in [12].  

We plan to extend the TDW so as to include both numerical and 
movement based measures. An example of such a measure is the 
so-called typical trajectory (e.g. [4], [9]) that describes the trend 
of movement within a cell. This is a rather challenging problem as 
it is not straightforward to derive the typical trajectory of a cell 
based on the typical trajectories of its sub-cells. 

3.4 Trajectory-inspired mining: discovering 

traffic patterns 
Detecting traffic relationships between the different road 
segments is an interesting problem. We consider a road network 

modeled as a directed graph G = (V, E) where the set V of vertices 
indicates locations (e.g. shopping centers, workplaces, crossings) 
and the set E of edges corresponds to direct connections (i.e., road 
segments) between them. We assume that aggregated mobility 
data are available and more specifically: for each edge, the traffic 

volume at adjacent time periods. These data can be derived either 
from sensors that are placed along the network and transmit traffic 
information at adjacent time periods or by GPS data that are map 
matched on edges and are aggregated at a specific temporal 
granularity. Both situations drive to time series that can be further 
analyzed so as to discover relationships among the different 
edges/road segments of the network. 

The traffic series of a network edge e is defined as a time ordered 

sequence of traffic measurements: TS = (vi, ti), where vi is the 
number of cars crossing e during [ti, ti+Δt]. The parameter Δt is 
the transmission rate of the sensor and is common for all sensors 
in the network.  

In [13], we defined various relationships between the edges of the 
network graph during specific time periods: traffic propagation 
from one edge to some other edge, split of traffic from one edge 
into multiple edges, merge of traffic from multiple edges into a 

single edge. We worked on efficient methods for the discovery of 
such traffic relationships which are based on appropriate distance 
measures defined on the time series of edges.  

Let e1, e2 be two network edges and let TS1={(v1i,ti)},  TS2 

={(v2i,ti)} be their corresponding traffic (time) series, ti  [ts, te]. 

In [13] we proposed a distance between two traffic edges e1, e2 is 
given as a weighted combination of their corresponding value 
based, shape based and structure based distances: 

dis(e1, e2) = a*disshape(e1, e2) + b*disstruct(e1, e2) + c*disvalue(e1, e2) 

where disvalue(e1, e2)  is the value based distance between e1 and e2 

which is given by the Euclidean distance of their corresponding  
traffic series (TS1, TS2), disstruct(e1, e2) is the shape based distance 

between e1 and e2 which is given by the Euclidean distance of 
their corresponding  normalized (to avoid differences in baselines, 

scales) traffic series . Finally, disshape(e1, e2) is the 

structure based distance between two traffic edges e1 and e2 and 
equals to the minimum number of edges between end(e1) and 
start(e2). For each application, we can instantiate the weights a, b, 
c according to the measure(s) on which we wish to emphasize.  

If we consider the three measures separately, we realise that each 
measure further filters the initial set of traffic edges. More 
specifically, the shape based measure returns groups of edges with 
similar traffic shape, the structure measure looks further for 

neighbour edges, and finally the value measure further restricts 
the result set by searching also for value based similar traffic 
edges. This rationale provides a hierarchy of traffic flow 
organised in three levels: the level of similar traffic shape edges 
(L1), the level of similar traffic shape edges that are also nearby in 
the graph network (L2) and finally, the level of similar traffic 
value edges (L3).  

To detect such a hierarchy, in [13] we proposed a divisive 

hierarchical clustering algorithm. The distance measure is that of 
equation of dis(e1, e2), which combines the three notions of 
distance between traffic edges. The algorithm works as follows: 
Initially all traffic edges are placed in one cluster. At each step of 
the algorithm, a cluster is further split into subclusters according 
to the following three steps: 



 Step 1 [Edges of similar shape]: A cluster is split into 

subclusters based on the shape similarity of its traffic edge 
members. This process is continued until a split is caused by 
the next distance measure, the structure based distance. At 
the end of this step, the clusters contain edges with similar 
traffic shape. 

 Step 2 [Nearby edges]: The clusters generated by the 

previous step are further split based on the structural distance 
measure until a spit is caused by the traffic values distance. 
At this moment, the clusters contain neighbouring traffic 
edges with similar shape. 

 Step 3 [Edges of similar values]: The clusters generated by 

the previous step are further split based on the similar values 
distance. At the end of the execution, the clusters contain 
neighbouring edges with similar values, and similar shape as 
well. 

Our ongoing work on this topic includes the enhancing of the 
above approach so as to discover time focused relationships (at 
specific periods). To achieve this, we redefine the value based 
distance as the absolute distance of their corresponding traffic 
series at these periods. Changes apply also to the shape based 
distance, where we evaluate different time series comparison 
techniques (DTW, correlation-coefficient etc). Finally, we extend 
the relationships so as to include traffic sink to an edge and traffic 
source from an edge.   

4. CONCLUSIONS 
In this paper, we provided a brief outline of the framework we 
propose for efficient and effective Mobility Data Warehousing 
and Mining. We described its different components and provided 
some preliminary results as well as hints about ongoing work per 

topic.  
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