
Distance Join Queries

of Multiple Inputs in Spatial Databases

Antonio Corral1�, Yannis Manolopoulos2, Yannis Theodoridis3, and
Michael Vassilakopoulos4

1 Department of Languages and Computation, University of Almeria,
04120 Almeria, Spain. E-mail: acorral@ual.es

2 Department of Informatics, Aristotle University,
GR-54006 Thessaloniki, Greece. E-mail: manolopo@csd.auth.gr

3 Department of Informatics, University of Pireaus,
GR-18534 Pireaus, Greece. E-mail: ytheo@unipi.gr

4 Department of Informatics, Technological Educational Institute of Thessaloniki,
GR-54101 Thessaloniki, Greece. E-mail: vasilako@it.teithe.gr

Abstract. Let a tuple of n objects obeying a query graph (QG) be called
the n-tuple. The “Ddistance-value” of this n-tuple is the value of a linear
function of distances of the n objects that make up this n-tuple, according
to the edges of the QG. This paper addresses the problem of finding the
K n-tuples between n spatial datasets that have the smallest Ddistance-
values, the so-called K-Multi-Way Distance Join Query (K-MWDJQ),
where each set is indexed by an R-tree-based structure. This query can
be viewed as an extension of K-Closest-Pairs Query (K-CPQ) [4] for n
inputs. In addition, a recursive non-incremental branch-and-bound al-
gorithm following a Depth-First search for processing synchronously all
inputs without producing any intermediate result is proposed. Enhanced
pruning techniques are also applied to the n R-trees nodes in order to
reduce the total response time of the query, and a global LRU buffer
is used to reduce the number of disk accesses. Finally, an experimental
study of the proposed algorithm using real spatial datasets is presented.

Keywords: Spatial databases, Distance join queries, R-trees, Performance study

1 Introduction

The term spatial database refers to a database that stores data from phenomena
on, above or below the earth’s surface, or in general, various kinds of multidimen-
sional data of modern life [11]. In a computer system these data are represented
by points, line segments, polygons, volumes and other kinds of 2D/3D geometric
entities and are usually referred to as spatial objects.

� Author supported by the Spanish project with ref. TIC 2002-03968.

Some typical spatial queries appearing in spatial databases are the following.
(a) point (range) query; (b) nearest neighbor query (K-NNQ); (c) pairwise (multi-
way) join query; and (d)distance join or closest pair query (K-CPQ). Moreover,
processing of novel queries, like multi-way spatial join ones, has recently gained
attention [9, 10, 13, 14]. In the majority of those papers, a multi-way spatial join
query is modeled by a query graph whose nodes represent spatial datasets and
edges represent spatial predicates. One way to process this query is as a sequence
of pairwise joins when all join spatial datasets are supported by spatial indexes
or not (pipelined or build-and-match strategies, respectively). Another possible
way, when all join spatial datasets are indexed (using e.g. R-trees), is to combine
the filter and refinement steps in a synchronous tree traversal. Moreover, the
research interest on distance-based queries involving two datasets (e.g. distance
join queries) has increased in the last years, since they are appropriate for data
analysis, decision making, etc. Given two datasets S1 and S2, the K-CPQ finds
the K closest pairs of objects <obj1i, obj2j >, such that obj1i ∈ S1 and obj2j ∈
S2, with the K smallest distances between all possible pairs of objects that can
be formed by choosing one object of S1 and one object of S2 [4, 5, 8, 16]. If both
S1 and S2 are indexed in R-trees, we can use the synchronous tree traversal with
Depth-First or Best-First search for the query processing [4, 5].

From the above, it is clear that the extension of distance join queries to n
inputs with M predicates or constraints (like the multi-way joins) results in a
novel query type, the so-called K-Multi-Way Distance Join Query (K-MWDJQ).
To our knowledge, this query type has not been studied in the literature so far
and this is the aim of this paper.

Definition: Given n non-empty spatial object datasets S1, S2, . . . , Sn and a
query graph QG, the K-Multi-Way Distance Join Query retrieves the K distinct
n-tuples of objects of these datasets with the K smallest Ddistance-values (i.e.
the K Ddistance-smallest n-tuples).

The general environment for this kind of query can be represented by a
network, where nodes correspond to spatial datasets and edges to binary met-
ric relationships (distances), assigning positive real number to the edges. This
framework is similar to the one defined in [10], where the graph is viewed as a
constraint network: the nodes correspond to problem variables (datasets) and
edges to binary spatial constraints (spatial predicates). Therefore, our network is
a weighted directed graph, which directed edges correspond to binary metric re-
lationships (e.g. distances) between pairs of spatial datasets (nodes) with specific
weights (positive real numbers) and directions. We also assume that the weighted
directed graph cannot be split into non-connected subgraphs. Of course, if we
would have such a graph, it could be processed by solving all subgraphs and
computing the appropriate combination.

K-Multi-Way Distance Join Queries are very useful in many applications us-
ing spatial data for decision making (e.g. in logistics) and other demanding data
handling operations. For example, suppose we are given four spatial datasets
consisting of the locations of factories, warehouses, stores and customers, con-
necting as Figure 1.a. A K-MWDJQ will find K different quadruplets (factory,

warehouse, store, customer) that minimize a Ddistance function (the K small-
est Ddistance-values of the quadruplets are sorted in ascending order). Such a
function would be, for example, the sum of distances between a factory and a
warehouse, this warehouse and a store and this store and a customer. Such in-
formation could then be exploited by a transport agency or a fleet management
system for different purposes (e.g. for minimizing transport cost). Moreover, the
way to connect the spatial datasets could be more complex than a simple se-
quence. For example, in Figure 1.b, we can observe the case when the containers
of products must be recycled from customers to factories through stores, and
new distances must be considered for computing Ddistance. We have considered
directed graphs instead of undirected graphs, because the former allow us the
configuration of itineraries following a specific order; and the users can assign
directions and weights to the arcs (directed edges) of the itineraries.

�������	�	
������	

�����	��	�����	

���

�������	�	
������	

�����	��	�����	

���
�

Fig. 1. Directed graphs for factories, warehouses, stores and customers.

The fundamental assumption in this paper is that the n spatial datasets
are indexed by R-tree-based structures [7]. R-trees are hierarchical, height bal-
anced multidimensional data structures in secondary storage, and they are used
for the dynamic organization of a set of d-dimensional geometric objects rep-
resented by their Minimum Bounding d-dimensional hyper-Rectangles (MBRs).
These MBRs are characterized by “min” and “max” points of hyper-rectangles
with faces parallel to the coordinate axis. Using the MBR instead of the ex-
act geometrical representation of the object, its representational complexity is
reduced to two points where the most important features of the object (posi-
tion and extension) are maintained. R-trees are considered an excellent choice
for indexing various kinds of spatial data (points, line segments, polygons, etc.)
and have already been adopted in commercial systems, such as Informix [3] and
Oracle [12]. Moreover, we must highlight that, in case of non-point objects, an
R-tree index can only organize objects’ MBRs, together with the pointers to
the place where their actual geometry has been stored. Under this framework,
K-MWDJQ processing algorithms using R-trees produce only a set of n-tuples
of MBRs (hence, candidate objects) in the filter step. For the refinement step,
the exact geometry of the spatial objects has to be retrieved and exact distances
have to be computed, according to the Ddistance function based on the query
graph. The algorithm proposed in this paper addresses only the filter step.

The organization of the paper is as follows: In Section 2, we review the lit-
erature (K-closest-pairs queries and multi-way join queries) and motivate the
research reported here. In Section 3, an expression for a linear distance func-
tion based on a given query graph, the definition of K-MWDJQ, an MBR-

based distance function and a pruning heuristic are presented. In Section 4, en-
hanced pruning techniques and a recursive non-incremental branch-and-bound
algorithm (called MPSR) for K-MWDJQ are proposed. Section 5 exhibits a de-
tailed experimental study of the algorithm for K-MWDJQ, including the effect
of the increase of K and n, in terms of performance (number of disk accesses
and response time). Finally, in Section 6, conclusions on the contribution of this
paper and related future research plans are summarized.

2 Related Work and Motivation

The K-Multi-Way Distance Join Query can be seen as a “combination” of K-
Closest-Pairs query and Multi-way Spatial Join Query; therefore, we review these
query types, focusing on the processing techniques of the query algorithms.

K-Closest-Pair (or distance join) Queries: [4, 5] presented recursive and
iterative branch-and-bound algorithms for K-CPQ following a non-incremental
approach, which computes the operation when K is known in advance and the
K elements, belonging to the result, are reported all together at the end of
the algorithm, i.e. the user can not have any result until the algorithm ends.
The main advantage of this approach is that the pruning process during the
execution of the algorithm is more effective even when K is large enough. On the
other hand, the incremental approach for solving the distance join queries [8, 16]
computes the operation in the sense that the number of desired elements in the
result is reported one-by-one in ascending order of distance (pipelined fashion),
i.e. the user can have part of the final result before ending the algorithm. The
incremental algorithms work in the sense that having obtained K elements in
the result, if we want to find the (K + 1)-th, it is not necessary to restart the
algorithm for K + 1, but just to perform an additional step.

Multi-way Spatial Join Queries: [9] proposed a pairwise join method that
combines pairwise join algorithms in a processing tree where the leaves are input
relations indexed by R-trees and the intermediate nodes are joins operator. [14]
proposed a multi-way spatial join by applying systematic search algorithms that
exploit R-trees to efficiently guide search, without building temporary indexes
or materializing intermediate results. On the other hand, [13] proposed a multi-
way R-tree join as a generalization of the original R-tree join [2], taking into
account its optimization techniques (the search space restriction and the plane-
sweep method). In addition, a recent work [10] reviews pairwise spatial join
algorithms and shows how they can be combined for multiple inputs, explores the
applications of synchronous tree traversal for processing synchronously all inputs
without producing intermediate results; and then, integrates the two approaches
(synchronous tree traversal and pairwise algorithms) in an engine using dynamic
programming to determine the optimal execution plan.

All the previous efforts have mainly been focused over multi-way spatial join
queries, using a sequence of pairwise join algorithms or synchronous tree traversal
over R-tree structures on the filter step. Thus, the main objective of this paper is
to investigate the behavior of recursive branch-and-bound algorithms in a non-

incremental manner for K-MWDJQ as a generalization of K-CPQ between n
spatial datasets indexed by R-trees, without producing any intermediate result.
To do this, we extend the distance metrics and the pruning heuristic based on
the query graph for solving this kind of distance-based query. In addition, we
apply techniques for improving the performance with respect to the I/O activity
(buffering) and response time (distance-based plane-sweep) in our experiments
over real spatial datasets of different nature (points and line segments).

3 K-Multi-Way Distance Join Queries using R-trees

Let us recall the assumptions we make: (a) n spatial datasets are involved, each
supported by an R-tree structure; (b) M (M ≥ n− 1) spatial predicates (metric
relationships) between pairs of objects are defined; and (c) a query graph declares
the spatial constraints that have to be fulfilled. In the following, we state more
formally the details of the problem.

3.1 The Query Graph and the D�������� Function

Query Graph (QG). A query graph QG = (S, E) is a weighted directed graph
which consists of a finite non-empty set of nodes S = {s1, s2, . . . , sn} and a finite
set of directed edges E = {ei,j = (si → sj) : si, sj ∈ S}. Each directed edge ei,j

connects an ordered pair of nodes (si → sj), where si and sj are called start and
end nodes of the directed edge, respectively. Associated with each directed edge
ei,j , there exists a weight wi,j , which is a positive real number (wi,j ∈ �+). We
assume that the reader is familiar with the related concepts of weighted directed
graphs (path, circuit, cycle, self-loop, etc.).

Different configurations of QG depending on the required results by the users
are possible. Examples include sequential or “chain” queries (Figure 1.a), where
QG is a acyclic weighted directed graph among all datasets, obeying the con-
straints of a simple directed path and it does not contain any directed circuit.
Queries with cycles (Figure 1.b) correspond to a QG, with at least one simple
directed circuit among the nodes existing there (i.e. ordered sequences of nodes
with simple directed circuits). Based on this query graph definition, we can define
the Ddistance function as follows:

Ddistance Function. Given n non-empty spatial object datasets S1, S2, . . . ,
Sn, organized according to a query graph QG and an n-tuple t of spatial objects
of these datasets, Ddistance(t) is a linear function of distance values of the pairs
of spatial objects belonging in the n-tuple t that result from the directed edges
of QG. More formally, we can define Ddistance(t) as follows:

Ddistance(t) =
∑

ei,j∈EQG

wi,j distance(obji, objj)

where t = (obj1, obj2, . . . , objn) ∈ S1×S2×. . .×Sn, the datasets of the objects of
the ordered pair (obji, objj) are connected in QG by the directed edge ei,j , wi,j ∈
�+ is the weight of ei,j and distance may represent any Minkowski distance norm
(Euclidean, Manhattan, etc.) between pairs of spatial objects.

3.2 Definition of the K-Multi-Way Distance Join Query

We define the K-Multi-Way Distance Join Query in the spatial database envi-
ronment as follows:

K-Multi-Way Distance Join Query. Let n non-empty spatial object
datasets S1, S2, . . . , Sn, organized according to a query graph QG, where a
Ddistance function is defined. Assume that obj ⊆ Ed (Ed denotes the d-dimen-
sional Euclidean space), for each object obj of any of the above datasets. The
result of the K-Multi-Way Distance Join Query, K-MWDJQ(S1, S2, . . . , Sn,
QG, K), is a set of ordered sequences of K (1 ≤ K ≤ | S1 | · | S2 | · . . . · | Sn |)
different n-tuples of spatial objects of S1 × S2 × . . . × Sn, with the K small-
est Ddistance-values between all possible n-tuples of spatial objects that can be
formed by choosing one spatial object from each spatial dataset (i.e. the K
Ddistance-smallest n-tuples):

K-MWDJQ(S1, S2, . . . , Sn, QG, K) =
{(t1, t2, . . . , tK) : ti ∈ S1 × S2 × . . . × Sn and ti �= tj ∀i �= j, 1 ≤ i, j ≤ K and
∀t ∈ S1 × S2 × . . . × Sn − {(t1, t2, . . . , tK)}, Ddistance(t) ≥ Ddistance(tK) ≥

Ddistance(t(K−1)) ≥ . . . ≥ Ddistance(t2) ≥ Ddistance(t1)}

In other words, the K Ddistance-smallest n-tuples from the n spatial ob-
ject datasets obeying the query graph QG are the K n-tuples that have the
K smallest Ddistance-values between all possible n-tuples of spatial objects that
can be formed by choosing one spatial object of S1, one spatial object of S2, . . .,
and one spatial object of Sn. Of course, K must be smaller than or equal to
| S1 | · | S2 | · . . . · | Sn | (| Si | is the cardinality of the dataset Si) i.e.
the number of possible n-tuples that can be formed from S1, S2, . . . , Sn. Note
that, due to ties of Ddistance-values, the result of the K-Multi-Way Distance
Join Query may not be unique for a specific K and a set of n spatial datasets
S1, S2, . . . , Sn. The aim of the presented algorithm is to find one of the possible
instances, although it would be straightforward to obtain all of them.

3.3 MBR-based Distance Function and Pruning Heuristic

The following distance functions between MBRs in Ed have been proposed for the
K-CPQ [4, 5] as bounds for the non-incremental branch-and-bound algorithms:
MINMINDIST (it determines the minimum distance between two MBRs, and it
is a generalization of the function that calculates the minimum distance between
points and MBRs), MINMAXDIST and MAXMAXDIST.

In the following the definition of the new metric, called DMINMINDIST, be-
tween n MBRs that depends on the query graph and is based on MINMINDIST
distance function between two MBRs in Ed (i.e. DMINMINDIST can be viewed
as an instance of Ddistance for MINMINDIST function) is presented.

MINMINDIST Function. Let M(A, B) represent an MBR in Ed, where
A = (a1, a2, . . . , ad) and B = (b1, b2, . . . , bd), such that ai ≤ bi, 1 ≤ i ≤ d, be

the endpoints of one of its major diagonals. Given two MBRs M1(A, B) and
M2(C, D) in Ed, MINMINDIST(M1(A, B), M2(C, D)) is defined as:

MINMINDIST(M1, M2) =

√√√√ d∑
i=1

yi
2, yi =

ci − bi, if ci > bi

ai − di, if ai > di

0, otherwise

DMINMINDIST Function. Let M(A, B) represent an MBR in Ed, where
A = (a1, a2, . . . , ad) and B = (b1, b2, . . . , bd), such that ai ≤ bi, 1 ≤ i ≤ d, are
the endpoints of one of its major diagonals. RSi is the R-tree associated to the
dataset Si and QG is a query graph obeyed by the n R-trees RS1 , RS2 , . . . , RSn .
Given an n-tuple t of MBRs stored in n R-trees (i.e. t is a tuple of n MBRs
from RS1 , RS2 , . . . , RSn) DMINMINDIST(t) is a linear function of MINMINDIST
distance function values of the pairs of t that result from the edges of QG. More
formally, we can define DMINMINDIST(t) as follows:

DMINMINDIST(t) =
∑

ei,j∈EQG

wi,jMINMINDIST(Mi, Mj)

where t = (M1, M2, . . . , Mn) with Mi an MBR of the R-tree RSi (1 ≤ i ≤ n),
the R-trees of the MBRs of the ordered pair (Mi, Mj) are connected by the
directed edge ei,j in QG and wi,j ∈ �+ is the weight of ei,j . In other words,
DMINMINDIST represents our Ddistance function based on MINMINDIST metric
for each possible pair of MBRs that belongs in the n-tuple t and satisfies QG.

DMINMINDIST expresses the minimum possible distance of any n-tuple con-
taining n MBRs. For example, in Figure 2, six MBRs (a 6-tuple of MBRs, t
= (M11, M23, M32, M44, M52, M65)) and their MINMINDIST distances are de-
picted for a sequential query (QG = (S1 → S2 → S3 → S4 → S5 → S6)).
DMINMINDIST represents the sum of their MINMINDIST distance values.

���

���

������

���

���

�

Fig. 2. Example of DMINMINDIST for a sequential query.

We can extend the same properties of MINMINDIST metric between two
MBRs to the DMINMINDIST for an n-tuple of MBRs. The most basic properties
of DMINMINDIST are the following:

(a) Given an n-tuple t of MBRs, the value of DMINMINDIST, for a given dimen-
sion i, 1 ≤ i ≤ d, is always smaller than or equal to the total computation
of DMINMINDIST: DMINMINDIST(t, i) ≤ DMINMINDIST(t), 1 ≤ i ≤ d

(b) Lower-bounding property. For each n-tuple t of spatial objects, enclosed by
a n-tuple of MBRs t́, it holds that: DMINMINDIST(t́) ≤ Ddistance(t)

(c) DMINMINDIST, like MINMINDIST, is monotonically non-decreasing with
the R-tree heights. This means that, for a given n-tuple t of MBRs enclosed
by another n-tuple of MBRs t́ (where each MBR of t́ covers its respective
MBR in t), it holds that: DMINMINDIST(t́) ≤ DMINMINDIST(t)

In [5], a pruning heuristic (based on MINMINDIST) was presented in order
to minimize the pruning distance (distance value of the K-th closest pair that
has been found so far) during the processing of branch-and-bound algorithms for
K-CPQ. It declared that, if MINMINDIST(M1, M2) > z, then the pair of MBRs
(M1, M2) can be discarded, where z can be obtained from the distance of the K-th
closest pair of spatial object found so far. We can extend this pruning heuristic
for our new DMINMINDIST function as follows: if DMINMINDIST(t) > z, then
the n-tuple of MBRs t can be pruned, where z is the Ddistance-value of the K-th
n-tuple of spatial objects discovered so far.

4 An Algorithm for K-Multi-Way Distance Join Queries

In this section, based on DMINMINDIST function and the pruning heuristic,
we are going to propose a recursive non-incremental algorithm for solving the
K-Multi-Way Distance Join Query, processing all inputs (n R-trees, indexing
n spatial datasets) without producing any intermediate result. This recursive
algorithm follows a Depth-First search between n spatial objects indexed in n
R-trees. Moreover, enhanced pruning techniques are used in the pruning process
for avoiding considering all possible n-tuples of MBRs from n R-tree nodes.

4.1 Enhancing the Pruning Process

An improvement over branch-and-bound algorithms consists in exploiting the
spatial structure of the indexes using the plane-sweep technique [15]. We extend
the distance-based plane-sweep technique proposed in [5] for K-CPQ in order to
restrict all possible combinations of n-tuples of MBRs from n R-tree nodes in a
similar way as in the processing of multi-way join query presented in [10].

Plane-sweep is a common technique for computing intersections [15]. The
basic idea is to move a line, called sweep-line, perpendicular to one of the di-
mensions, e.g. X-axis, from left to right. We apply this technique for restricting
all possible combinations of n-tuples of MBRs from n R-tree nodes stored in
n R-trees. If we do not use this technique, then we must create a list with all
possible combinations of n-tuples from n R-tree nodes and process it.

The distance-based plane-sweep technique starts by sorting the entries of the
n current R-tree nodes Ni(1 ≤ i ≤ n) from the n R-trees, based on the coordi-
nates of one of the corners of their MBRs (e.g. lower left corner) in increasing
or decreasing order (according to the choice of the sweeping direction and the
sweeping dimension, based on the sweeping axis criteria [16]). Suppose that this

order is increasing and that Sweeping Dimension = 0, or X-axis. Then, a set
of n pointers (one for each R-tree node) is maintained, initially pointing to the
first entry of each X-sorted R-tree node. Among all these entries, let Eix ∈ Ni

(1 ≤ x ≤ CNi , where CNi is the capacity of the R-tree node Ni) be the one
with the smallest X-value of lower left corner of MBR. We fix the current pivot
P = Eix. The MBR of the pivot P must be paired up with all the MBRs of
the entries of the other n − 1 R-tree nodes Nj(1 ≤ j ≤ n and j �= i) from left
to right that satisfy MINMINDIST(P.MBR, Ejy .MBR, Sweeping Dimension)
≤ z, where Ejy (1 ≤ y ≤ CNj) is an entry of the R-tree node Nj and z is the
Ddistance-value of the K-th n-tuple of spatial objects found so far. A set of n-
tuples of MBRs, ENTRIES = {t1, t2, . . .} (empty at the beginning), is obtained.
After all these n-tuples of MBRs been processed, the pointer currently pointing
Eix is advanced to the next entry of Ni (according to X-order), P is updated
with the entry with the next smallest value of lower left corner of MBR pointed
by one of the n pointers, and the process is repeated.

Notice that we apply MINMINDIST(Mix, Mjy, Sweeping Dimension) be-
cause the distance over one dimension between a pair of MBRs is always smaller
than or equal to their MINMINDIST(Mix, Mjy) (a direct extension of the prop-
erty of MINMINDIST distance function [5]). Moreover, the searching is restricted
only to the closest MBRs (belonging to the remainder n− 1 R-tree nodes) from
the pivot P according to the z value, and no duplicated n-tuples are obtained
because the rectangles are always checked over sorted R-tree nodes. The ap-
plication of this technique can be viewed as a sliding window on the sweeping
dimension with a width equal to z plus the length of the MBR of the pivot P
on the sweeping dimension, where we only choose all possible n-tuples of MBRs
that can be formed using the MBR of the pivot P and the other MBRs from the
remainder n − 1 R-tree nodes that fall into the current sliding window.

For example, Figure 3 illustrates three sets of MBRs of (n =) 3 R-tree nodes:
{MP1, MP2, MP3, MP4, MP5, MP6}, {MQ1, MQ2, MQ3, MQ4, MQ5, MQ6,
MQ7}, and {MR1, MR2, MR3, MR4, MR5, MR6}. Without applying this tech-
nique we should generate 6*7*6 = 252 triples of MBRs and process them. If we
apply the previous method over the X-axis (sweeping dimension), this number
of possible triples will be considerably reduced. First of all, we fix the MBR of
the pivot P = MP1 and it must be paired up with {MQ1, MQ2, MQ3, MQ4}
and {MR1, MR2, MR3} because all triples that can be formed from them have
MINMINDIST(MP1, MRy, Sweeping Dimension) ≤ z and the other MBRs can
be discarded: {MQ5, MQ6, MQ7} and {MR4, MR5, MR6}. In this case, we will
obtain a set of 12 triples of MBRs: {(MP1, MQ1, MR1), (MP1, MQ1, MR2),
(MP1, MQ1, MR3), (MP1, MQ2, MR1), . . . , (MP1, MQ4, MR3)}. When process-
ing is finished with P = MP1, the algorithm must establish the pivot P = MQ1

that is the next smallest value of lower left corner and the process is repeated.
At the end, the number of triples of MBRs is 193 = |ENTRIES| (we save 59
3-tuples).

After obtaining a reduced set of candidate n-tuples of MBRs from n R-tree
nodes (ENTRIES), applying the distance-based plane-sweep technique, we can

consider the DMINMINDIST function based on the query graph (QG) over the
Sweeping Dimension as another improvement of the pruning process. Thus, we
will only choose for processing those n-tuples of MBRs for which it holds that
DMINMINDIST(t, Sweeping Dimension) ≤ z. This is called DMINMINDIST-
Sweeping Dimension filter (i.e. apply the pruning heuristic over the Sweep-
ing Dimension, preserving the order of entries in this dimension). In the pre-
vious example of Figure 3, we can reduce the number of 3-tuples of MBRs (EN-
TRIES), depending on the organization of the query graph. If it is a sequential
query (RP → RQ → RR) and P = MP1, then the 3-tuples of MBRs {(MP1,
MQ4, MR1), (MP1, MQ4, MR2)} can be discarded. At the end of the processing
of this second filter |ENTRIES| = 164 (we save 29 3-tuples). On the other hand,
if the query graph is a cycle (RP → RQ → RR → RP) and P = MP1, then the
3-tuples of MBRs {(MP1, MQ2, MR3), (MP1, MQ3, MR2), (MP1, MQ3, MR3),
(MP1, MQ4, MR1), (MP1, MQ4, MR2), (MP1, MQ4, MR3)} can be discarded,
considering only a set of 6 3-tuples of MBRs. At the end of the processing of this
second filter |ENTRIES| = 107 (we save 86 3-tuples). In summary, the pruning
process over n R-tree nodes consists of two consecutive filters:

(1) Apply the distance-based plane-sweep technique: select all possible n-tuples
of MBRs that can be formed using an MBR as pivot and the others MBRs
from the remainder n − 1 R-tree nodes that fall into a sliding window
with width equal to z plus the length of the pivot MBR on the Sweep-
ing Dimension (ENTRIES), since MINMINDIST(Mix, Mjy, Sweeping Di-
mension) ≤ MINMINDIST(Mix, Mjy).

(2) Apply the DMINMINDIST-Sweeping Dimension filter: consider from EN-
TRIES, only those n-tuples of MBRs that satisfy DMINMINDIST(t, Sweep-
ing Dimension) ≤ z, since DMINMINDIST(t, Sweeping Dimension) ≤
DMINMINDIST(t).

���
���

���

�������� 	�
������

���

���

���

���
��	

���

���

���

���
��	

�
�

�
	
�
�

�
�

�
�

�
�

������� ����	

�

Fig. 3. Using the plane-sweep technique over the MBRs from three R-tree nodes.

4.2 A Recursive Branch-and-Bound Algorithm for K-MWDJQ

The recursive non-incremental branch-and-bound algorithm follows a Depth-
First searching strategy making use of recursion and the previous pruning heuris-
tic based on the DMINMINDIST function. In addition, we employ the distance-
based plane-sweep technique and DMINMINDIST-Sweeping Dimension filter for
obtaining a reduced set of candidate n-tuples of entries from n R-tree nodes (EN-
TRIES). Then, it iterates over the ENTRIES set and propagates downwards only
for the n-tuples of entries with DMINMINDIST-value smaller than or equal to
z (Ddistance-value of the K-th n-tuple of spatial objects found so far). Also, we
need an additional data structure, organized as a maximum binary heap (called
K-heap) that holds n-tuples of spatial objects according to their Ddistance-values
and stores the K Ddistance-smallest n-tuples and helps us to update z (pruning
distance). The MPSR algorithm (extension of the PSR algorithm [5] for K-
Multi-Way Distance Join Query) for n R-trees storing spatial objects (points or
line-segments) on the leaf nodes, with the same height can be described by the
following steps.

MPSR1 Start from the roots of the n R-trees and set z to ∞.

MPSR2 If you access to a set of n internal nodes, apply the distance-based
plane-sweep technique and the DMINMINDIST-Sweeping Dimension filter in
order to obtain the set of n-tuples of candidate MBRs, ENTRIES. Propagate
downwards recursively only for those n-tuples of MBRs from ENTRIES that
have DMINMINDIST-value ≤ z.

MPSR3 If you access a set of n leaf nodes, apply the distance-based plane-
sweep technique and the DMINMINDIST-Sweeping Dimension filter to ob-
tain the set of candidate n-tuples of entries, ENTRIES. Then calculate the
Ddistance-value of each n-tuple of spatial objects stored in ENTRIES. If this
distance is smaller than or equal to z, remove the n-tuple of spatial objects
in the root of K-heap and insert the new one, updating z and K-heap.

In general, the algorithm synchronously processes the n R-tree indexes of
all spatial datasets involved in the query (following a Depth-First traversal pat-
tern), using the combinations of R-tree nodes reported by the application of the
distance-based plane-sweep technique and DMINMINDIST-Sweeping Dimension
filter that satisfy the query graph and pruning the n-tuples with DMINMINDIST-
value (n internal nodes) or Ddistance-value (n leaf nodes) larger than z.

The advantage of the algorithm that synchronously traverses, with a Depth-
First search strategy, all R-trees is that it transforms the problem in smaller local
subprolems at each tree level and it does not produce any intermediate result.
The downward propagation in step MPSR2 is done in the order produced by
the distance-based plane-sweep technique; and this order is quite good, since it
leads to very accurate results quickly. In addition, the algorithm consumes an
amount of space that is only a linear function of the heights of the trees and
n (number of inputs), and its implementation is relatively easy, because we can
use of the recursion. A disadvantage of this algorithm (Depth-First search) is

that it tends to consume time to exit, once it deviates from the branches where
no optimal solutions of the initial problem are located and the recursion is more
expensive with the increase of n.

5 Experimental Results

This section provides the results of an experimentation study aiming at measur-
ing and evaluating the efficiency of the MPSR algorithm. In our experiments, we
have used the R*-tree [1] as the underlying disk-resident access method and a
global LRU buffer over the n R*-trees with 512 pages. R*-trees nodes, disk pages
and buffer pages will have the same size. If the R*-trees have different heights,
we will use the fix-at-leaves technique [4]. All experiments were run on an In-
tel/Linux workstation at 450 MHz with 256 Mbytes RAM and several Gbytes
of secondary storage.

In order to evaluate the behavior of the K-MWDJQ algorithm, we have used
four real spatial datasets of North America in the same workspace from [6],
representing (a) populated places (NApp) consisting of 24,493 2d-points, (b)
cultural landmarks (NAcl) consisting of 9,203 2d-points, (c) roads (NArd) con-
sisting of 569,120 line-segments, and (d) railroads (NArr) consisting of 191,637
line-segments. Besides, we have generated (e) a ’pseudo-real’ dataset from the
’populated places’, simulating archeological places (NAap) of North America
and consisting of 61,012 2d-points. With all these datasets, we have designed
the following configurations for our experiments, where SQ represents sequential
query and CY means query with cycles in the query graph (the weights of the
directed edges: wi,j = 1.0).

• n = 2: K-MWDJQ(NApp, NAcl, QG, K): QG = (NApp → NAcl).
• n = 3: K-MWDJQ(NApp, NArd, NAcl, QG, K): QGSQ = (NApp → NArd
→ NAcl); QGCY = (NApp → NArd → NAcl → NApp).

• n = 4: K-MWDJQ(NApp, NArd, NArr, NAcl, QG, K): QGSQ = (NApp →
NArd → NArr → NAcl); QGCY = (NApp → NArd → NArr → NAcl →
NArr → NApp).

• n = 5: K-MWDJQ(NApp, NArd, NAap, NArr, NAcl, QG, K): QGSQ =
(NApp → NArd → NAap → NArr → NAcl); QGCY = (NApp → NArd →
NAap → NArr → NAcl → NArr → NApp).

We have measured the performance of our algorithm based on the following
two metrics: (1) number of Disk Accesses (DA), which represents the number
of R*-tree nodes fetched from disk, and may not exactly correspond to actual
disk I/O, since R*-tree nodes can be found in system buffers, and (2) Response
Time (RT), which is reported in seconds and represents the overall CPU time
consumed, as well as the total I/O performed by the algorithm (i.e. the total
query time). Moreover, due to the different nature of the spatial objects (points
and line-segments) involved in the query, we have implemented the minimum
distances between points and line-segments.

1/2 Kbyte 1 Kbyte 2 Kbytes 4 Kbytes 8 Kbytes

n DA RT DA RT DA RT DA RT DA RT

2 2029 0.35 996 0.41 492 0.43 237 0.46 122 0.51

3 32158 16.95 17884 19.39 9436 27.99 4477 34.28 2250 49.75

4 39720 423.38 24551 932.36 13292 2765.1 6384 16603.1 3041 17723.2

Table 1. Comparison of the MPSR algorithm, varying the R*-tree node size.

The first experiment studies the page size for the K-MWDJQ algorithm
(MPSR), since the smaller the R*-tree node size is, the smaller the number of n-
tuples of R*-tree items have to be considered in the algorithm. We have adopted
the following query configurations for MPSR: n = 2, 3 and 4; QGSQ (sequential
query graphs) and K = 100. Table 1 compares the performance measurements
for different R*-tree node sizes, where Cmax is the maximum R*-tree node
capacity: 1/2 Kbyte (Cmax = 25), 1 Kbyte (Cmax = 50), 2 Kbytes (Cmax =
102), 4 Kbytes (Cmax = 204) and 8 Kbytes (Cmax = 409). We use as minimum
R*-tree node capacity Cmin =
Cmax*0.4�, according to [1], for obtaining the
best query performance.

We can observe from the previous table that the smaller the R*-tree node
size is, the faster the MPSR algorithm is, although it obviously needs more disk
accesses (using a global LRU buffer, which minimizes the extra I/O cost). As ex-
pected, there is a balance between I/O activity (DA) and CPU cost (RT). Since
deriving the optimum page size is an unmanageable task due to the number of
parameters, we rather focus on the algorithmic issues and not on the previous
question. On the other hand, hardware developments are rapid and manufactur-
ers provide disks with larger page sizes year-after-year. Thus, we provide results
for the case of page size (R*-tree node size) equal to 1 Kbyte (resulting in the
following values of the branching factors for the R*-trees: Cmax = 50 and Cmin
= 20, and the reader can extrapolate the method performance for other page
sizes. For example, if we compare the size 1 Kbyte and 4 Kbytes for n = 4, 1
Kbyte becomes faster than 4 Kbytes by a factor of 17.8, although the increase
of disk accesses is only a factor 3.8 using a global LRU buffer with 512 pages.

n = 2 n = 3 n = 4 n = 5
DA RT DA RT DA RT DA RT

SQ 996 0.45 17884 19.43 24551 932.36 42124 93942.51

CY 17773 26.47 24088 1169.20 38947 120550.21

Table 2. Comparison of the MPSR algorithm, as a function of the number of inputs.

The second experiment studies the behavior of MPSR algorithm as a function
of the number of the spatial datasets involved in the K-MWDJQ. In particular,
we use n = 2, 3, 4 and 5, K = 100, SQ and CY (configurations of the query graph)
as the algorithmic parameters for the query. Table 2 shows the performance
measurements (DA and RT) of the experiment. We can observe that the increase
of the response time is almost exponential with respect to the number of inputs,
whereas the increase of the number of disk accesses is almost linear. This is due
to the fact that the number of distance computations depends on the number of

considered items in the combination of n R-tree nodes; and it is an exponential
function of the R-tree structures (fan-outs: Cmin and Cmax, heights, etc.) and n
(Cminn). For example, if we compare n = 4 and n = 5 with QGSQ, the increases
of DA and RT are by a factor of 1.7 and 100.7, respectively. Therefore, we can
conclude that the response time is more affected than the disk accesses with the
increase of the number of inputs in this kind of distance-based query.

�����

�����

�����

�����

�����

�����

	 	� 	�� 	��� 	���� 	�����

 ����������� �� ��� �������

�
��
�
�
�
�
�
�
�
�
�

�� �

�

����

����

�����

�����

�����

� �� ��� ���� ����� ������

	 ���������� �� ��� �������

�
�
�
�
�
�
�
�
�
	

�

�� ��

Fig. 4. Performance comparison of the MPSR algorithm for K-MWDJQ varying K for
disk accesses (left) and response time (right).

The last experiment studies the performance of the MPSR algorithm with
respect to the increase of K (number of n-tuples in the result) values, varying
from 1 to 100000. Figure 4 illustrates the performance measurements for the
following configuration: n = 4 (for n = 3, the trends were similar), SQ and
CY. We can notice from the left chart of the figure that the I/O activity of
the algorithm gets higher as K increases and both query graph configurations
have similar I/O trends. Moreover, the deterioration is not smooth, although
the increase of DA from K = 1 to K = 100000 is only around a 20%. In the
right diagram, we can see that the larger the K values are, the slower the MPSR
algorithm becomes, mainly for large K values. For instance, when K = 1 and
K = 10000, the algorithm becomes slower by a factor of 6, and from K = 1 to
K = 100000 the algorithm is 23 times slower for SQ and 27 for CY. From these
results, we must highlight the huge response time necessary to report the exact
result for large K values and the very small number of required disk accesses.

6 Conclusions and Future Work

In this paper, we have presented the problem of finding the K n-tuples between n
spatial datasets that have the smallest Ddistance-values, K-Multi-Way Distance
Join Query (K-MWDJQ), where each dataset is indexed by an R-tree-based
structure. In addition, we have proposed a recursive non-incremental branch-and-
bound algorithm following a Depth-First search for processing synchronously all
inputs without producing any intermediate result (MPSR). To the best of our
knowledge, this is the first algorithm that solves this new and complex distance-
based query. The most important conclusions drawn from our experimental study
using real spatial datasets are the following: (1) The smaller the R*-tree node
size is, the faster the MPSR algorithm becomes. (2) The response time of the
query is more affected than the number of disk accesses with the increase of n

for a given K, mainly due to the necessary number of distance computations; a
similar behavior is obtained from the increase of K for a given n.

Future work may include: (1) The extension of our recursive non-incremental
branch-and-bound algorithm to K-Self-MWD Join Query, Semi-MWD Join Qu-
ery, as well as, the development of algorithms for finding the K Ddistance-largest
n-tuples. (2) The use of approximation techniques in our MPSR algorithm that
reduce the search space and produce approximate results faster than the precise
ones. Further, the study of the trade-off between cost and accuracy of the results
obtained by such techniques.

References

1. N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger; “The R*-tree: and Efficient
and Robust Access Method for Points and Rectangles”, Proc. ACM SIGMOD Conf.,
pp.322-331, 1990.

2. T. Brinkhoff, H.P. Kriegel and B. Seeger; “Efficient Processing of Spatial Joins Using
R-trees”, Proc. ACM SIGMOD Conf., pp.237-246, 1993.

3. P. Brown; Object-Relational Database Development: A Plumber’s Guide, Prentice
Hall, 2001.

4. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos; “Closest Pair
Queries in Spatial Databases”, Proc. ACM SIGMOD Conf., pp.189-200, 2000.

5. A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos; “Algorithms
for Processing K Closest Pair Queries in Spatial Databases”, Technical Report,
Department of Informatics, Aristotle University of Thessaloniki (Greece), 2001.

6. Digital Chart of the World: Real spatial datasets of the world at 1:1,000,000 scale.
1997 (http://www.maproom.psu.edu/dcw).

7. A. Guttman; “R-trees: A Dynamic Index Structure for Spatial Searching”, Proc.
ACM SIGMOD Conf., pp. 47-57, 1984.

8. G.R. Hjaltason and H. Samet; “Incremental Distance Join Algorithms for Spatial
Databases”, Proc. ACM SIGMOD Conf., pp.237-248, 1998.

9. N. Mamoulis and D. Papadias; “Integration of Spatial Join Algorithms for Process-
ing Multiple Inputs”, Proc. ACM SIGMOD Conf., pp. 1-12, 1999.

10. N. Mamoulis and D. Papadias; “Multiway Spatial Joins”, ACM Transactions on
Database Systems (TODS), Vol. 26, No. 4, pp. 424-475, 2001.

11. Y. Manolopoulos, Y. Theodoridis and V. Tsotras; Advanced Database Indexing,
Kluwer Academic Publishers, 1999.

12. Oracle Technology Network; Oracle Spatial, an Oracle Technical White Paper, 2001
(http://otn.oracle.com/products/oracle9i/pdf/OracleSpatial.pdf).

13. H.H. Park, G.H. Cha and C.W. Chung; “Multi-way Spatial Joins Using R-
Trees: Methodology and Performance Evaluation”, Proc. 6th Int. Symp. of Spatial
Databases (SSD), pp.229-250, 1999.

14. D. Papadias, N. Mamoulis and Y. Theodoridis; “Processing and Optimization of
Multiway Spatial Joins Using R-Trees”, Proc. ACM Symp. on Principles of Database
Systems (PODS), pp.44-55, 1999.

15. F.P. Preparata and M.I. Shamos; Computational Geometry: An Introduction,
Springer-Verlag, 1985.

16. H. Shin, B. Moon and S. Lee; “Adaptive Multi-Stage Distance Join Processing”,
Proc. ACM SIGMOD Conf., pp. 343-354, 2000.

