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ABSTRACT 

Composition of temporal and spatial properties of real world 
objects in a unified data framework results into Moving Object 
Databases (MOD). MODs are able to process, manage and 
analyze discretely or continuously changing spatio-temporal data. 
This paper presents HERMES Moving Data Cartridge, which 
provides MOD functionality to OpenGIS-compatible state-of-the-
art Object-Relational DBMS. HERMES is designed to be used as a 
pure temporal or a pure spatial system, however, its main 
application is to support modeling and querying of moving 
objects. A relevant collection of abstract data types (ADT) and 
their corresponding operations are defined, developed and 
provided as a data cartridge extending SQL-like query languages 
with MOD semantics. The usefuleness of the resulting query 
language is demonstrated by developing an application on top of 
this framework, which builds and visualizes the results of a palette 
of spatio-temporal queries that have been proposed in the 
literature as an advanced Location-Based Services (LBS) 
benchmarking framework for the evaluation of MOD engines. 

Categories and Subject Descriptors: H.2.4 [Database 

Management]: Systems 

General Terms: Design 

Keywords: HERMES, Moving Object Databases, Location-Based 
Services, Data Cartridge, Benchmark Queries. 

1. INTRODUCTION 
Spatial database research has focused on supporting the modeling 
and querying of geometries stored in a database. On the other 
hand, temporal databases have focused on extending the 
knowledge kept about the current state of the real world to include 
the past, in the two senses of “the past of the real world” (valid 
time) and “the past states of the database” (transaction time). 
About a decade efforts attempt to achieve an appropriate kind of 
interaction between both sub-areas of database research. Spatio-
temporal databases are the outcome of the aggregation of time and 
space into a single framework [15], [1], [16], [10]. 

As delineated in the review papers just cited, a serious weakness 
of existing approaches is that each of them deals with few 
common characteristics found across a number of specific 
applications. Thus, the applicability of each approach to different 
cases fails on spatio-temporal behaviors not anticipated by the 
application used for the initial model development. The aim of 
this paper is to describe a robust framework capable of aiding a 
spatio-temporal database developer in modeling, constructing and 
querying a database with objects that change location, shape and 
size, either discretely or continuously in time. Objects that change 
location continuously are much more difficult to accommodate in 
a database in contrast to discretely changing objects. Supporting 
both types of spatio-temporal objects (the so-called moving 

objects) is one of the challenges adopted by this paper. 

In particular, we present an integrated and comprehensive design 
of moving object data types in the form of a data cartridge, called 
HERMES Moving Data Cartridge (HERMES-MDC). HERMES-MDC 
is the core component of the object-relational part of the HERMES 
system architecture [14]. HERMES provides the functionality to 
construct a set of moving, expanding and/or shrinking geometries, 
modeled as sequences of simple continuous functions that obtain 
hypostasis when projected to the spatial domain at a specific 
instant associated with of time. Each one of these geometries is 
casted with a set of methods that facilitate the cartridge user to 
query and analyze spatio-temporal data. Embedding this 
functionality offered by HERMES-MDC in the data manipulation 
language of an OpenGIS-compatible state-of-the-art object-
relational DBMS, one obtains a moving object query language 
that outperforms related work, in terms of flexibility, 
expressiveness and ease of use. 

One could mention a series of applications of HERMES (from the 
name of the ancient Greek god of Commerce) at various levels in 
the context of mobile services. For example, HERMES can be used 
as a plug-in in telecom data warehouses that handle spatio-
temporal content. This example refers to offline processing of 
such historical data. Besides, HERMES supports the data 
management of real-time mobile services, addressing the issues of 
emerging online applications. For instance, imagine a user 
(traveler, consumer, etc.) moving around a city with a high 
technology mobile terminal at hand (e.g. a smartphone or PDA 
equipped with a GPS receiver), receiving hints of information, 
commercial spots etc. Motivated from such kind of application 
scenarios, recent research has tried to model spatio-temporal 
databases using this concept of moving objects and integrate them 
into any extensible DBMS [3], [4], [6], [8].  On the other hand, 
commercial relational or object-relational database systems offer 
limited capability of handling this kind of non-traditional data 
(object trajectories, in time and space). HERMES is the partial 
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realization of the above discussed research vision in state-of-the-
art Object-Relational DBMS. 

In order to demonstrate the usefulness and applicability of the 
server-side extensions provided by HERMES we implement an LBS 
application on top of this MOD functionality. The general idea is 
to provide a flexible linkage for a non-expert user to pose a palette 
of MOD queries that have been proposed in the literature [19] as 
an advanced (LBS) benchmarking framework for the evaluation of 
MOD engines. To the best of our knowledge, this is the first work 
trying to boost LBS utilizing a MOD engine. 

In the rest of the paper, we first present our data type model 
introduced by HERMES-MDC (Section 2), and then we propose an 
appropriate set of operations for the above types that extend SQL 
with MOD semantics (Section 3). For evaluation purposes, 
HERMES-MDC is applied to the previously discussed LBS case 
study (Section 4). Subsequently, the paper presents related work 
in the field in comparison with HERMES-MDC functionality 
(Section 5). Finally, the paper winds up and at the same time 
points out some interesting future research directions (Section 6). 

2. HERMES MOVING DATA CARTRIDGE 
In this section, we design a data type model for the endorsement 
of extending a query language with constructs that would enable 
the querying of MODs. We focus on capturing spatio-temporal 
processes that change continuously as this is the most challenging 
and also allow us to capture spatio-temporal phenomena that 
change in discrete steps as a special case of continuous change. 
The data types are classified into two main categories. The first 
category consists of off-the-shelf base, (static) spatial and 
temporal types and the second category introduces types that 
describe moving objects. 

2.1 Base, Temporal and Spatial Types 
Base types are the standard database types built into most DBMS, 
such as integer, real numbers etc. These types form a subset of the 
atomic literal types needed to define the temporal types. Temporal 
types are introduced by TAU Temporal Literal Library (TAU-

TLL) in [13], which is the component of HERMES system 
responsible for providing HERMES-MDC with pure temporal 
object-relational functionality. Basically, this cartridge 
implements the Time Model, adopted by the TAU Temporal 

Object Model [9], and augments the four temporal literal data 
types found in ODMG object model [2] (namely, Date, Time, 
Timestamp and Interval) with three new temporal object data 
types (namely, Timepoint, Period and Temporal Element). TAU-
TLL provides clear semantics about the time boundaries, time 
order, time reference, temporal granularities, and the supported 
calendar. On the other hand, static spatial types are supported by a 
data cartridge providing an integrated set of functions and 
procedures that enable spatial data to be stored, accessed, and 
analyzed quickly and efficiently, such as Oracle Spatial [12]. 

2.2 Moving Types 
As discussed in [20], the data obtained from moving point objects 
is similar to a “string”, arbitrary oriented in 3D space, where two 
dimensions correspond to 2D (x-, y-) plane and one dimension 
corresponds to time. Instead of a “string” and due to 
discretization, a MOD stores and manipulates a 3D polyline 

representing the trajectory of the object (i.e., a sequence of 3D 
line segments, where each segment represents the continuous 
development of the moving object during sampled locations). 

This idea is extended by HERMES-MDC in a way that a moving 
point can be defined as a sequence of different types of simple 
functions. The general idea is to decompose the definition of each 
moving type into several definitions, one for each of the simple 
functions, and then compose these sub-definitions as a collection 
to define the moving type. Each one of the sub-definitions 
corresponds to a so-called unit moving type. In order to define a 
unit moving type, we need to associate a period of time with the 
description of a simple function that models the behavior of the 
moving type in that specific time period. Based on this approach, 
two real-world notions are directly mapped to our model as object 
types, namely time period and function. The first concept (called 
Period<SEC> in TAU-TLL terminology [13]) implies a closed-
open time interval (i.e. [b, e), where b is the beginning and e is the 
ending point of the period) with granularity at the second level 
(other granularities are also supported i.e. minute, hour etc). The 
second concept is an object type, named Unit_Function, defined 
as a triplet of (x, y) coordinates together with some additional 
motion parameters. The first two coordinates represent the initial 
(xi, yi) and ending (xe, ye) coordinates of the sub-motion defined, 
while the third coordinate (xc, yc) corresponds to the centre of a 
circle upon which the object is moving. Whether we have 
constant, linear or arc motion between (xi, yi) and (xe, ye) is 
implied by a flag indicating the type of the simple function. Since 
we require that HERMES manages not only historical data, but also 
online and dynamic applications, we further let a Unit_Function 
to model the case where a user currently (i.e., at an initial 
timepoint) is located at (xi, yi) and moves with initial velocity v 
and acceleration a on a linear or circular arc route. Figure 1 
depicts a point moving with different kind of functions along 
subsequent temporal periods. 
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Figure 1 Moving Point with various types of movement 

In the case of arc motions, following the categorization of realistic 
arc motions initially discussed in [23], we classify them according 
to the quadrant the motion takes place and motion heading 
(clockwise or counterclockwise). Figure 2 illustrates one of the 
possible eight cases (e.g. quadrant I - clockwise direction). 

φ

 
Figure 2 Motion on a circular arc 



For constant and linear motions, the interpolation of a moving 
point’s location in an intermediate timepoint t is straightforward. 
For arc motions, there is need of some trigonometric calculations. 
For the case of Figure 2 the necessary operations are illustrated in 
Eq. 1. Following a similar process, we develop all kinds of arc 
functions in each quadrant and direction. 
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Eq. 1 

Consequently, Unit_Function is defined as follows: 

Definition 1: Unit_Function = 

d  xi:double, yi:double, xe:double, ye:double, xc:double, yc:double, 

v:double, a:double, flag:TypeOfFunction , where  

Π TypeOfFunctionΤ={ CONST, PLNML_1, ARC_<1..8> } 

Combining Unit_Function and Period<SECOND> object types 
together, the most primitive and simplest unit object type is 
defined, namely Unit_Moving_Point. This is a fundamental type 
since all the successor unit types are defined based upon it. As 
such, 

Definition 2: Unit_Moving_Point = 

d p: Period〈SEC〉, m: Unit_Function  

Following this, we define two unit moving types directly based on 
Unit_Moving_Point, namely Unit_Moving_Circle and Unit_ 

Moving_Rectangle. As it is easily inferred, these two object types 
model circular and rectangular geometry constructs that change 
their position and/or extent over time. Unit_Moving_Circle 
consists of three Unit_Moving_Point objects, representing the 
three points (f, s, t) needed to define a valid circle. In the same 
way, Unit_Moving_Rectangle is composed of two 
Unit_Moving_Point objects, modeling the lower-left (ll) and 
upper-right (ur) point needed to define a valid rectangle. An 
intuitive constraint is that time periods during which these unit 
points are moving must be equal. More formally, 

Definition 3: Unit_Moving_Circle = 

d { f: Unit_Moving_Point, s: Unit_Moving_Point, 

 t: Unit_Moving_Point |  equal (f.p, s.p, t.p) } 

Definition 4: Unit_Moving_Rectangle = 

d { ll: Unit_Moving_Point, ur: Unit_Moving_Point |  

equal (ll.p, ur.p) } 

For modeling object types such as Unit_Moving_Polygon and 
Unit_Moving_LineString there is need for an intermediate object 
type called Unit_Moving_Segment object, which models a simple 
line or arc segment that changes its shape and size according to its 
starting and ending points. As such, Unit_Moving_Segment is 
formed by three Unit_Moving_ Point objects and a flag indicating 
the kind of interpolation between the starting and ending point of 
the LineString geometry. The simplest part of a LineString 
geometry can be either a linear or an arc segment. In other words, 
this flag exemplifies the usage of the other attributes of 
Unit_Moving_Segment. This is clarified in Figure 3 where a 

moving segment is mapped to a line segment at two different time 
instants t1 and t2. During the time period between t1 and t2, the 
starting unit moving point mp1 follows a simple linear trajectory, 
while the ending unit moving point mp2 follows an arc trajectory. 
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Figure 3 Linear Unit Moving Segment 

Definition 5: Unit_Moving_Segment = 

d { b: Unit_Moving_Point, e: Unit_Moving_Point, 

 m: Unit_Moving_Point, kind:TypeOfSegment |  (kind = SEG 

⇒ equal (b.p, e.p)) ∧ (kind = ARC ⇒ equal (b.p, e.p, m.p)) }, 

where Π TypeOfSegment Τ = { SEG, ARC } 

Consequently, a Unit_Moving_LineString is defined as a set of 
Unit_Moving_Segment objects, while a Unit_Moving_Polygon is 
a collection of Unit_Moving_Segment objects, with an additional 
flag indicating if this set of moving segments forms the exterior 
ring of a polygon or an interior (hole) ring, which at any time does 
not cross or touch the exterior boundary. In terms of set theory, 

Definition 6: Unit_Moving_Linestring = 

d { l: set〈Unit_Moving_Segment〉 |  

∀ i, j ∈ ulong:  i≠ j ⇒ equal (li.b.p, lj.e.p) } 

Definition 7: Unit_Moving_Polygon = 

d {  l: set〈Unit_Moving_ Segment〉, hole:boolean |  

∀ i, j ∈ ulong:  i≠ j ⇒ equal (li.b.p, lj.e.p) } 

Having defined the fundamental unit moving types, we now 
introduce the moving types that play the dominant role in HERMES 
data type system. The process that is followed to define the 
moving types is to introduce a moving type as a collection of the 
corresponding unit moving type. Having this in mind, we 
construct a Moving_Point object type as a collection of 
Unit_Moving_Point objects, whose periods must be sequential 
and should not overlap. The projection of a Moving_Point to the 
spatial dimension should result to a valid point geometry. In other 
words, 

Definition 8: Moving_Point = 

d { tab: set〈Unit_Moving_Point〉 | ∀ i, j ∈ ulong, 1≤ i, j≤ | 

set〈Unit_Moving_Point〉 |:  j= i+1 ⇒ before(tabi.p, tabj.p) ∧ 

¬overlaps(tabi.p, tabj.p) ∧ ∀ t ∈ double: inside(t, tabi.p) ⇒ 

at_instant(t) ∈ Geometry(point)} 

Similarly to the Moving_Point, other moving types are 
constructed as collections of their unit counterparts. Due to space 
limitations, we only present the definition of a Moving_ 

Linestring. 

Definition 9: Moving_LineString = 

d { line: set〈Unit_Moving_ LineString〉 | ∀ i, j ∈ ulong, 1≤ i, j≤ | 

set〈Unit_Moving_ LineString〉|: j= i+1 ⇒ before(linei.l1.b.p, 

linej.l1.e.p) ∧ ¬overlaps(linei.l1.b.p, linej.l1.e.p) ∧ ∀ t ∈ double: 

inside(t, linei.l1.b.p)⇒at_instant(line,t)∈ Geometry(linestring) } 

The definition of Moving_Polygon is very close to that of 
Moving_LineString. Actually, the differences between these two 



moving types arise from the different utilization of their 
collections of moving segments by the object methods. For 
example, an operation that maps a Moving_LineString to a 
LineString geometry checks for inequality on the starting and 
ending points of the line and this is a prerequisite for constructing 
the geometry. On the contrary, the corresponding method for a 
moving polygon checks for the opposite, in order to be able to 
construct a valid polygon. Another discrepancy of 
Moving_Polygon, in contrast to all the other moving types, is that 
in case it includes interior moving holes, then several 
Unit_Moving_Polygon objects need to be accessed in order to 
transform it to its corresponding OpenGIS-compatible spatial 
geometry at a specific instant. 

Similarly, in order to model homogeneous collections of moving 
types, multi-moving types are defined as collections of the 
corresponding moving types. Consequently, the proposed spatio-
temporal model is augmented by the following object types: 
Multi_Moving_Point, Multi_Moving_Circle, Multi_Moving_ 

Rectangle, Multi_Moving_LineString and Multi_Moving_ 

Polygon. An interesting issue here is that the previously 
mentioned multi-moving types do not carry their own methods 
interface. The functionality for these types can be invoked by the 
methods of another object type, called Moving_Collection, 
standing as the supertype and aggregating the interfaces, the 
object methods and the spatio-temporal semantics of all the multi 
moving types. Furthermore, Moving_Collection is able to 
represent heterogeneous collections of moving types. The 
methods of Moving_Collection treat all the multi moving types 
uniformly and they do not have the knowledge whether they are 
dealing with a homogeneous or heterogeneous collection. The 
formal definition of Moving_Collection is omitted as a trivial one. 

We also introduce an object that encapsulates all semantics and 
functionality offered by all moving types. The so-called 
Moving_Object object type is the conjunction of all the other 
moving object types, which implies that this object can 
completely substitute any other moving type. Furthermore, 
Moving_Object models any moving type that can be the result of 
an operation between moving objects. For example, the 
intersection of a Moving_Point with a polygon geometry forms a 
second Moving_Point that is the restriction of the first 
Moving_Point inside the polygon. This result can be modeled as a 
Moving_Object. If the result of an operation is not a moving 
geometry then Moving_Object plays the role of a degenerated 
moving type. For example, let us assume an operation that 
requests the perimeter of Moving_Polygon; obviously, the result 
of this method is a time-varying real number (Moving_Real). Such 
collapsed moving types like moving real, string, and boolean are 
also modeled using the Moving_Object object type. 
Moving_Object is not intended to be directly used or constructed 
by HERMES user. On the contrary, it is intended to be the result 
type of operations of the other moving types (i.e., system 
generated). For a detailed description of Moving_Object type the 
interested reader is referred to [13]. Figure 4 illustrates the UML 
class diagram of the above defined moving object data types [14]. 

3. OPERATIONS ON MOVING OBJECTS 
The design of the operations of the object types introduced by 
HERMES-MDC adheres to three principles: a) design operations as 
generic as possible; b) achieve consistency between operations on 

pure spatial, pure temporal and spatio-temporal types; c) capture 
the interesting phenomena. 

 
Figure 4 HERMES-MDC Class Diagram 

For the first principle we focus on properties shared by many 
types. In order to achieve consistency of operations on spatial, 
temporal and moving types, we first study operations proposed in 
the literature for pure spatial types and we select those operations 
that we would like to associate with temporal semantics. In a 
second step, we use the functionality of the temporal types 
introduced by the temporal component of HERMES (TAU-TLL) 
and we systematically extend the operations defined in the first 
step to the temporal variants of the respective types. The third step 
takes the previous time-dependant operations as its outset and 
removes their time dimension thus not returning pure spatial, 
temporal or standard data types, but other moving types (e.g. the 
length of a moving linestring independently of a specific time 
point). Finally, to achieve closure of “interesting phenomena”, our 
development is driven by state-of-the-art emerging applications 
such as LBS. 

The following sections describe the functionality with which 
SQL-like query languages are enhanced by the use of HERMES 
functionality. The presentation of the operations hides the 
technical details that would disorient us from expressing the 
power of the resulted query language. As such, we abstractly 
describe the algorithms for only a motivating set of operations. 
Due to space limitations we focus our discussion on methods 
defined on Moving_Point type (as the most challenging and LBS 
relevant); however operations with similar semantics are also 
defined for the rest types. 

3.1 Topological and Distance Predicates 
HERMES-MDC provides object methods in the form of predicates 
to describe relationships between moving types. There are two 
sets of predicates supported by HERMES-MDC, namely 
within_distance and relate. Each set of predicates consists of eight 
operations, each of which models the relationship of the caller 
moving type with any time-varying (or not) geometry object. Each 
operation comes with two different overloaded signatures, 
modeling different semantics: the first signature is time-dependent 
while the second is independent to the time dimension. Below, the 
reader can find the pair of signatures of only one of the eight 



operations. The time-dependent signature of the method is the one 
without the brackets, while the time-independent version of the 
operation can be obtained by substituting the return type of the 
operation with the type in the brackets { } and by removing the 
Timepoint<SEC> argument from the parameter list. This is a 
common notation in the remainder of the paper. 

• boolean {Moving_Object} within_distance (distance, 

Moving_Point, tolerance, Timepoint<SEC>) 

The time-dependent predicate determines whether two moving 
objects are within some specified Euclidean distance from each 
other at a user-defined time point. After mapping the moving 
objects to physical spatial geometries at the given instant, the 
function returns true for object pairs that are within the specified 
distance; returns false otherwise. The distance between two non-
point objects (such as lines and polygons) is defined as the 
minimum distance between these two objects. 

Many object methods in HERMES-MDC accept a tolerance 
parameter. If the distance between two points is less than or equal 
to the tolerance, the cartridge considers the two points to be a 
single point. Thus, tolerance is usually a reflection of how 
accurate or precise users perceive their spatio-temporal data to be. 
Also, the time-independent within_distance operation differs from 
the above predicate in that the return value is a Moving_Object 
that represents a time-varying boolean value. This implicitly 
defined “moving boolean” object models the sequence of the time 
intervals that the two related objects are within or not some 
specified Euclidean distance. 

• Varchar2 {Moving_Object} relate (mask, Moving_Polygon, 

tolerance, Timepoint<SEC>) 

This generic predicate examines two moving objects and 
determines their topological relationship. As previously, the relate 
predicate appears with two overloaded versions. The first 
evaluates the topological relationship upon a specific user-defined 
time point, while the second version returns a Moving_Object 
modeling a time-varying string, which describes the evolution in 
the topological relationship between the related objects. The user 
can specify the kind of any of the well-known topological 
relationships that he/she requires to check via the mask parameter. 

3.2 Interaction with the Temporal and Spatial 

Domains 
HERMES-MDC provides object methods for restricting and/or 
projecting moving types to the temporal and the spatial domain. 
Subsequently, we present the most important operations defined 
for Moving_Point. 

• Unit_Moving_Point unit_type (Timepoint<SEC>) 

The simple but very important task that this function performs is 
that it finds the unit moving object whose attribute time period 
“contains” the user-defined time point. In other words, it returns 
that unit-moving type where the time instant represented by the 
argument Timepoint<SEC> object is “inside” the time period that 
characterizes the unit-moving type. 

• Moving_Point add_unit (Unit_Moving_Point) 

This operation adds a new coming unit of movement as this is 
described by a Unit_Moving_Point object. Naturally, the method 

performs special consistency operations (e.g. the period of the 
argument must not overlap with the lifespan of the initial object) 
to assert the soundness of the constructed object. 

• Union_Output at_instant (Timepoint<SEC>) 

The at_instant operation is the operation that maps the moving 
types to meaningful OpenGIS-compatible spatial objects. The 
return type (Union_Output) is an object that represents the union 
of all the possible results of the projection of a Moving_Object at 
a user-defined time point. In other words, if Moving_Object 
represents a time-varying geometry then Union_Output is 
basically a Geometry object. If Moving_Object represents a 
“moving” real or string then Union_Output is a real number or a 
string, respectively. In the case of Moving_Collection, this 
operation invokes the at_instant operations of all the moving 
types of the multi moving objects and subsequently applies a 
special “union” operation upon the projected geometries by 
“concatenating” them in a collection object and returns the result 
of the “concatenation”. 

• Moving_Point at_period (Period<SEC>) 

The at_period object method is an operation that restricts a 
moving object to the temporal domain. In other words, by using 
this function the user can delimit the time period that is 
meaningful to ask the projection of the moving object to the 
spatial domain. More specifically, the time period passed as 
argument to the method is compared with the Period<SEC> 
objects that characterize the unit moving objects. If the parameter 
period does not overlap with the compared period then the 
corresponding unit type is omitted. If it overlaps, then the time 
period that defines a unit-moving object becomes its 
“intersection” with the given period.  

• Temp_Element<SEC> temp_element () 

The temp_element operation gives HERMES-MDC user the 
capability to project the time periods that form the unit moving 
objects that compose a moving type on the time line and 
subsequently “concatenate” all these distinct time periods to 
construct a temporal element. Figure 5 depicts the result of the 
temp_element operation when applied to a Moving_Point object.  
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Figure 5 Projection of a Moving Point on the time axis 

• Moving_Point at_temp_element (Temp_Element<SEC>) 

Similarly to the at_period operation, the at_temp_element method 
restricts the moving object to the temporal domain, but the 
process of restricting the periods between which the moving 
object is valid is driven by a collection of Period<SEC> objects 
and not just one Period<SEC> object as in the previous case. 

• Moving_Point at_linestring (Geometry) 



Being aware that an object moves on a linestring geometry during 
a part of its route (e.g. a car moving along a street), we may wish 
to find the portion of the Moving_Point restricted by this 1-
dimensional geometry. This is exactly the output of this method. 

• Union_Output initial () 

The initial object method is basically the at_instant operation 
invoked at the first instant of time that the moving object is valid, 
meaning the first second of the closed-open period that identifies 
the least recent unit moving object.  

• Union_Output final () 

Similarly to the initial object method, the final operation projects 
the moving object at the last valid instant of the time period that 
characterizes the most recent unit moving object.  

• Geometry trajectory () 

This operation reconstructs the trajectory traveled by a 
Moving_Point. More specifically, the operation projects the 
movement of a Moving_Point to the Cartesian plane by mapping 
the component Unit_Moving_Point objects to single linear or arc 
segments, while a process of merging these segments follows, to 
form the returned LineString geometry. 

3.3 Distance and Direction Operations 
The following methods assist the cartridge user to calculate the 
minimum distance or the directional relationship between moving 
objects. 

• number {Moving_Object} distance (Moving_Point, 

tolerance, Timepoint<Sec>) 

HERMES-MDC provides a distance measure that exists for all 
moving types, which either computes the distance between two 
instantiated moving objects (time-dependent version) or returns a 
time-varying real number that represents the minimum distance 
between these moving types at any time (time-independent 
version). The distance between two objects is the distance 
between the closest pair of points or segments of the two objects. 

• number {Moving_Object} direction (Moving_Point, 

Timepoint<Sec>) 

The direction function returns the angle of the line from the first 
to the second moving point (measured in degrees, 

°<≤° 3600 angle ), after these have been projected to the 

Cartesian plane at a specific time point. The time-independent 
version of the function returns a Moving_Object modeling a 
“moving real”, which corresponds to the time-changing angle 
formed by the conceptual line segment that joins the two moving 
points and the xx’ axis. 

• boolean left (Geometry, Timepoint<Sec>, from, to) 

The left operation returns true if the location of the point at the 
user defined timepoint is left from the argument geometry (i.e. the 
centroid in case of geometries with extent), which is the case 
when it falls inside the area formed by the argument angles from 
and to. Similarly, we define right, front, behind operations. 
Furthermore, we augment our operator set with a related set of 
methods that identify whether a moving point is located west, 
east, north, south of a geometry. These methods are differentiated 

from the previous as we do not care for the heading of the moving 
point. 

3.4 Set Relationships 
HERMES-MDC provides four object methods for describing set-
relationships between moving types. Subsequently, we present 
only one (intersection) between a Moving_Point and a Geometry, 
while the rest of them (union, difference, xor) are omitted. 

• Geometry {Moving_Point} intersection (Geometry, 

tolerance, Timepoint<Sec>) 

Invoking intersection method for a Moving_Point, as one would 
expect, the result of this operation is the projection of itself on the 
spatial domain (point geometry) at time instants that intersects 
with other moving types or static geometries and null at time 
instants where it is not on the boundary or the interior of 
linestrings and polygons or it coincides with none of the points in 
a collection of them. The time-independent version returns the 
portion of the Moving_Point that intersects with the reference 
object. Figure 6 depicts the projection of a Moving_Point 
modeling its intersection with a polygon, at three different 
timepoints t1, t2, and t3.  

Intersection

time

Polygon
boundaries

t1 t3t2

Moving Point  
Figure 6 Demonstrating intersection operation 

At timepoint t1 it is obvious the result of such an operation is a 
linestring geometry. At timepoint t2 this intersection has as result 
a multi-linestring geometry due to the development of 
Moving_Point, while at timepoint t3 the resulted geometry is a 
heterogeneous collection of lines and points. This operation 
allows us to define methods returning the entering/leaving 
locations (as well as the respective timepoints) wherefrom a 
moving point passes when traversing spatial regions (Figure 7). 

3.5 Rate of Change 
An important property of any time-dependent value is its rate of 
change, i.e., its derivative. At least three properties of the 
Moving_Point permit the definition of derivative, namely the 
Euclidian distance, the direction and the vector difference (by 
viewing points as two-dimensional vectors). This leads to three 
different derivative operations, called speed, turn and velocity, 
respectively. 

Due to space constraints, we omit signatures and descriptions of 
these three operations. The reader interested in these operations as 
well as in other operations as the area traversed by a moving 
polygon, building moving buffer of specific width around a path, 
constructing moving points from the centroid of moving areas, 
and finding the num_of_components of collections of moving 
types is referred to [13]. 

4. HERMES LBS TOOL 
HERMES-MDC has been developed [14] as a system extension that 
provides MOD functionality to Oracle10g Object-Relational 
DBMS and, as such, the cartridge functionality extends PL/SQL 



[7]. In order to demonstrate the usefulness and applicability of the 
server-side extensions provided by HERMES we implement a 
prototype application on top of this functionality which provides a 
graphical means to realize the majority of benchmark queries for 
LBS proposed in [19]. Especially, we develop an LBS application 
scenario for travelers entering the area of an airport, construct a 
spatial database modeling the ground plan of the airport, and 
input random trajectories of travelers moving around the area. The 
tool provides the ability to pose queries following the same 
classification as proposed in [19]. The idea is that a user selects 
one from a palette of such queries and according to his/her choice 
a wizard drives the user to parameterize his request. A query 
builder dynamically constructs the query using HERMES-MDC 
operations, sends the query to the server and visualizes the results 
using MapViewer [12]. 

Indicative supported queries include: 

• Queries on stationary reference objects;  
o point (e.g. does this check-in serve my flight?),  
o range (e.g. are there any fellow travelers in the area in 

front of this check-in?),  
o distance-based (e.g. find the closest check-in),  
o nearest-neighbor (e.g. find the closest coffee shops to my 

current location) and  
o topological queries (e.g. find travelers crossed this gate 

during the past hour); 

• Queries on moving reference objects;  
o distance-based (e.g. find travelers passed close to me this 

evening) and  
o similarity-based queries (e.g. find the three most similar 

trajectories to the one I have followed so far in the 
airport); 

• Join queries;  
o distance-join (find the closest check-ins to travelers of 

this flight) and  
o similarity-join queries (find the two most similar pairs of 

travelers’ trajectories); 

• Queries involving unary operators, such as traveled distance 
or speed (e.g. find the average speed of travelers on Saturday 
nights). 

 

 
Figure 7 Visualization of enter/leave points in an area of 

interest 

5. COMPARISON WITH RELATED WORK 
Several research efforts have tried to model spatio-temporal 
databases using the concept of ADTs for moving objects. Such 
types for moving points and moving regions have been introduced 
by Güting and colleagues in [8], together with a set of operations 
on such entities. This model was the first attempt to deal with 
continuous motion, while in [6] the definition of the discrete 
representation of the above-discussed ADTs was presented. The 
next step in this development was the study of algorithms for the 
rather large set of operations defined in [8]. Whereas [6] just 
provides a brief look into this issue, in [11] the authors present a 
comprehensive, systematic study of algorithms for a subset of the 
operations introduced in [8]. This paper also proposed a blueprint 
for implementing such a “moving objects” extension package for 
suitable extensible database architectures. 

Another model using moving objects is proposed by Wolfson and 
colleagues in [17], [22] and [21]. The authors propose the so-
called Moving Objects Spatio-Temporal (MOST) data model for 
databases with dynamic attributes, i.e. attributes that change 
continuously as a function of time, without being explicitly 
updated. The authors also offer a query language (Future 
Temporal Logic - FTL) based on temporal logic to formulate 
questions about the near future movement. The approach is 
restricted to moving points and does not address more complex 
time-varying geometries such as moving regions.  

As an extension to the abstract model in [8], the concept of 
spatio-temporal predicates is introduced in [5]. The goal is to 
investigate temporal changes of topological relationships induced 
by temporal changes of spatial objects. Further work on modeling 
includes [18] where the authors focus on moving point objects 
and the inclusion of concepts of differential geometry (speed, 
acceleration) in a calculus based query language. 

In contrast to the previous approaches, which offer limited 
temporal functionality, HERMES provides a full operative 
framework for the management of any temporal related type of 
data, as moving objects are. This is realized through the 
implementation of TLL [9] as a data cartridge [13]. TAU-TLL 
provides clear semantics for the time line including the time 
boundaries, time order, time reference, multiple temporal 
granularities, and the supported calendar. In addition, it provides 
an extensive set of object types and methods (superset of the 
corresponding ODMG [2]) for these temporal types. 

In HERMES, the spatial functionality is provided by an OpenGIS-
compatible ORDBMS as a separate data cartridge. The models 
proposed in the literature, provide separate objects for 
constructing different spatial geometries (e.g. points, lines, 
regions). In our case, we have a uniform representation of all 
kinds of geometries under the same spatial object, which increases 
the flexibility and the interoperability between moving types and 
pure spatial objects. 

HERMES-MDC introduces a rich type system of time-varying 
geometries that change location or shape in discrete steps and/or 
continuously. An extensive set of object methods is developed 
that expresses all the interesting spatio-temporal phenomena and 
processes. This set of operations is a superset of the operations 
introduced in [8]. HERMES Type System introduces new objects 
like Moving_Circle, Moving_Rectangular, Moving_Collection, 
Moving_Object. The Moving_Collection object supports not only 

select shape from gates 

select v.route.get_enter_leave_points  
       (select gates.shape from gates where gates.id=1) 
from visitors v where v.id=1 



a homogeneous collection of moving types but also 
heterogeneous. The Moving_Object can substitute any of the other 
moving types, as well as moving geometries that result as 
operations on other moving geometries and, moreover, it can 
model time-varying objects like the time-changing perimeter of a 
moving region. In [8], such degenerated moving types (e.g. 
moving real) are constructed as separate objects, leading to a 
unnecessary proliferation of object types. What is more, the 
flexibility of HERMES-MDC can be demonstrated in various ways. 
For example, moving linestrings that intersect themselves during 
their development are adopted by HERMES, while they are 
forbidden in [8]. Apart from linear interpolations of spatial and 
moving types utilized in [6], HERMES also utilizes arc 
interpolations. The expressiveness of the query language was 
established in Section 4. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, a data cartridge for moving objects, called HERMES-
MDC, was introduced. This data cartridge is a system extension 
that provides spatio-temporal functionality to OpenGIS-
compatible ORDBMS and supports modeling and querying of 
moving objects changing location either in discrete steps or 
continuously. To evaluate HERMES server-side MOD extensions 
we implemented a prototype application whose purpose is to 
provide a flexible means to apply benchmark queries proposed for 
the evaluation of systems providing location based services. 
Future work includes considering query optimization as well as 
indexing extensibility interfaces of current ORDBMS in order to 
enhance the performance of HERMES-MDC data cartridge, as well 
as knowledge discovery from MODs using data mining 
techniques. 
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