
Boosting Location-Based Services with a Moving Object
Database Engine

Nikos Pelekis
Dept of Informatics

Univ. of Piraeus, Hellas
npelekis@unipi.gr

Yannis Theodoridis
Dept of Informatics

Univ. of Piraeus, Hellas
ytheod@unipi.gr

ABSTRACT

Composition of temporal and spatial properties of real world
objects in a unified data framework results into Moving Object
Databases (MOD). MODs are able to process, manage and
analyze discretely or continuously changing spatio-temporal data.
This paper presents HERMES Moving Data Cartridge, which
provides MOD functionality to OpenGIS-compatible state-of-the-
art Object-Relational DBMS. HERMES is designed to be used as a
pure temporal or a pure spatial system, however, its main
application is to support modeling and querying of moving
objects. A relevant collection of abstract data types (ADT) and
their corresponding operations are defined, developed and
provided as a data cartridge extending SQL-like query languages
with MOD semantics. The usefuleness of the resulting query
language is demonstrated by developing an application on top of
this framework, which builds and visualizes the results of a palette
of spatio-temporal queries that have been proposed in the
literature as an advanced Location-Based Services (LBS)
benchmarking framework for the evaluation of MOD engines.

Categories and Subject Descriptors: H.2.4 [Database

Management]: Systems

General Terms: Design

Keywords: HERMES, Moving Object Databases, Location-Based
Services, Data Cartridge, Benchmark Queries.

1. INTRODUCTION
Spatial database research has focused on supporting the modeling
and querying of geometries stored in a database. On the other
hand, temporal databases have focused on extending the
knowledge kept about the current state of the real world to include
the past, in the two senses of “the past of the real world” (valid
time) and “the past states of the database” (transaction time).
About a decade efforts attempt to achieve an appropriate kind of
interaction between both sub-areas of database research. Spatio-
temporal databases are the outcome of the aggregation of time and
space into a single framework [15], [1], [16], [10].

As delineated in the review papers just cited, a serious weakness
of existing approaches is that each of them deals with few
common characteristics found across a number of specific
applications. Thus, the applicability of each approach to different
cases fails on spatio-temporal behaviors not anticipated by the
application used for the initial model development. The aim of
this paper is to describe a robust framework capable of aiding a
spatio-temporal database developer in modeling, constructing and
querying a database with objects that change location, shape and
size, either discretely or continuously in time. Objects that change
location continuously are much more difficult to accommodate in
a database in contrast to discretely changing objects. Supporting
both types of spatio-temporal objects (the so-called moving

objects) is one of the challenges adopted by this paper.

In particular, we present an integrated and comprehensive design
of moving object data types in the form of a data cartridge, called
HERMES Moving Data Cartridge (HERMES-MDC). HERMES-MDC
is the core component of the object-relational part of the HERMES
system architecture [14]. HERMES provides the functionality to
construct a set of moving, expanding and/or shrinking geometries,
modeled as sequences of simple continuous functions that obtain
hypostasis when projected to the spatial domain at a specific
instant associated with of time. Each one of these geometries is
casted with a set of methods that facilitate the cartridge user to
query and analyze spatio-temporal data. Embedding this
functionality offered by HERMES-MDC in the data manipulation
language of an OpenGIS-compatible state-of-the-art object-
relational DBMS, one obtains a moving object query language
that outperforms related work, in terms of flexibility,
expressiveness and ease of use.

One could mention a series of applications of HERMES (from the
name of the ancient Greek god of Commerce) at various levels in
the context of mobile services. For example, HERMES can be used
as a plug-in in telecom data warehouses that handle spatio-
temporal content. This example refers to offline processing of
such historical data. Besides, HERMES supports the data
management of real-time mobile services, addressing the issues of
emerging online applications. For instance, imagine a user
(traveler, consumer, etc.) moving around a city with a high
technology mobile terminal at hand (e.g. a smartphone or PDA
equipped with a GPS receiver), receiving hints of information,
commercial spots etc. Motivated from such kind of application
scenarios, recent research has tried to model spatio-temporal
databases using this concept of moving objects and integrate them
into any extensible DBMS [3], [4], [6], [8]. On the other hand,
commercial relational or object-relational database systems offer
limited capability of handling this kind of non-traditional data
(object trajectories, in time and space). HERMES is the partial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiDE’06, June 25, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-436-7/06/0006...$5.00.

realization of the above discussed research vision in state-of-the-
art Object-Relational DBMS.

In order to demonstrate the usefulness and applicability of the
server-side extensions provided by HERMES we implement an LBS
application on top of this MOD functionality. The general idea is
to provide a flexible linkage for a non-expert user to pose a palette
of MOD queries that have been proposed in the literature [19] as
an advanced (LBS) benchmarking framework for the evaluation of
MOD engines. To the best of our knowledge, this is the first work
trying to boost LBS utilizing a MOD engine.

In the rest of the paper, we first present our data type model
introduced by HERMES-MDC (Section 2), and then we propose an
appropriate set of operations for the above types that extend SQL
with MOD semantics (Section 3). For evaluation purposes,
HERMES-MDC is applied to the previously discussed LBS case
study (Section 4). Subsequently, the paper presents related work
in the field in comparison with HERMES-MDC functionality
(Section 5). Finally, the paper winds up and at the same time
points out some interesting future research directions (Section 6).

2. HERMES MOVING DATA CARTRIDGE
In this section, we design a data type model for the endorsement
of extending a query language with constructs that would enable
the querying of MODs. We focus on capturing spatio-temporal
processes that change continuously as this is the most challenging
and also allow us to capture spatio-temporal phenomena that
change in discrete steps as a special case of continuous change.
The data types are classified into two main categories. The first
category consists of off-the-shelf base, (static) spatial and
temporal types and the second category introduces types that
describe moving objects.

2.1 Base, Temporal and Spatial Types
Base types are the standard database types built into most DBMS,
such as integer, real numbers etc. These types form a subset of the
atomic literal types needed to define the temporal types. Temporal
types are introduced by TAU Temporal Literal Library (TAU-

TLL) in [13], which is the component of HERMES system
responsible for providing HERMES-MDC with pure temporal
object-relational functionality. Basically, this cartridge
implements the Time Model, adopted by the TAU Temporal

Object Model [9], and augments the four temporal literal data
types found in ODMG object model [2] (namely, Date, Time,
Timestamp and Interval) with three new temporal object data
types (namely, Timepoint, Period and Temporal Element). TAU-
TLL provides clear semantics about the time boundaries, time
order, time reference, temporal granularities, and the supported
calendar. On the other hand, static spatial types are supported by a
data cartridge providing an integrated set of functions and
procedures that enable spatial data to be stored, accessed, and
analyzed quickly and efficiently, such as Oracle Spatial [12].

2.2 Moving Types
As discussed in [20], the data obtained from moving point objects
is similar to a “string”, arbitrary oriented in 3D space, where two
dimensions correspond to 2D (x-, y-) plane and one dimension
corresponds to time. Instead of a “string” and due to
discretization, a MOD stores and manipulates a 3D polyline

representing the trajectory of the object (i.e., a sequence of 3D
line segments, where each segment represents the continuous
development of the moving object during sampled locations).

This idea is extended by HERMES-MDC in a way that a moving
point can be defined as a sequence of different types of simple
functions. The general idea is to decompose the definition of each
moving type into several definitions, one for each of the simple
functions, and then compose these sub-definitions as a collection
to define the moving type. Each one of the sub-definitions
corresponds to a so-called unit moving type. In order to define a
unit moving type, we need to associate a period of time with the
description of a simple function that models the behavior of the
moving type in that specific time period. Based on this approach,
two real-world notions are directly mapped to our model as object
types, namely time period and function. The first concept (called
Period<SEC> in TAU-TLL terminology [13]) implies a closed-
open time interval (i.e. [b, e), where b is the beginning and e is the
ending point of the period) with granularity at the second level
(other granularities are also supported i.e. minute, hour etc). The
second concept is an object type, named Unit_Function, defined
as a triplet of (x, y) coordinates together with some additional
motion parameters. The first two coordinates represent the initial
(xi, yi) and ending (xe, ye) coordinates of the sub-motion defined,
while the third coordinate (xc, yc) corresponds to the centre of a
circle upon which the object is moving. Whether we have
constant, linear or arc motion between (xi, yi) and (xe, ye) is
implied by a flag indicating the type of the simple function. Since
we require that HERMES manages not only historical data, but also
online and dynamic applications, we further let a Unit_Function
to model the case where a user currently (i.e., at an initial
timepoint) is located at (xi, yi) and moves with initial velocity v
and acceleration a on a linear or circular arc route. Figure 1
depicts a point moving with different kind of functions along
subsequent temporal periods.

yy '

xx '

tt'

t1 t4t3t2

t ε [t1 , t2) -> L in ea r m ove m e n t

t ε [t2, t3) -> A rc m o ve m e nt

t5

t ε [t3 , t4) -> C on s t m o ve m en t

t ε [t4 , t5) -> L in ea r m ove m e n t

Figure 1 Moving Point with various types of movement

In the case of arc motions, following the categorization of realistic
arc motions initially discussed in [23], we classify them according
to the quadrant the motion takes place and motion heading
(clockwise or counterclockwise). Figure 2 illustrates one of the
possible eight cases (e.g. quadrant I - clockwise direction).

φ

Figure 2 Motion on a circular arc

For constant and linear motions, the interpolation of a moving
point’s location in an intermediate timepoint t is straightforward.
For arc motions, there is need of some trigonometric calculations.
For the case of Figure 2 the necessary operations are illustrated in
Eq. 1. Following a similar process, we develop all kinds of arc
functions in each quadrant and direction.

[) ()+∞∞−∈∈≥

×
−

−
+=

××+×=

×
××=

×+×+=⇒

−

,,,,0

2
)(

2

2

1

)
2

(2

),(),()(1_

1

2

φ

π
φ

φφ ιι

ei

tic

t

t

t

tttt

tttv

R

S

R

yy
Sin

tatvS

R

S
SinRL

SinLyCosLxyxtARC

Eq. 1

Consequently, Unit_Function is defined as follows:

Definition 1: Unit_Function =

d xi:double, yi:double, xe:double, ye:double, xc:double, yc:double,

v:double, a:double, flag:TypeOfFunction , where

Π TypeOfFunctionΤ={ CONST, PLNML_1, ARC_<1..8> }

Combining Unit_Function and Period<SECOND> object types
together, the most primitive and simplest unit object type is
defined, namely Unit_Moving_Point. This is a fundamental type
since all the successor unit types are defined based upon it. As
such,

Definition 2: Unit_Moving_Point =

d p: Period〈SEC〉, m: Unit_Function

Following this, we define two unit moving types directly based on
Unit_Moving_Point, namely Unit_Moving_Circle and Unit_

Moving_Rectangle. As it is easily inferred, these two object types
model circular and rectangular geometry constructs that change
their position and/or extent over time. Unit_Moving_Circle
consists of three Unit_Moving_Point objects, representing the
three points (f, s, t) needed to define a valid circle. In the same
way, Unit_Moving_Rectangle is composed of two
Unit_Moving_Point objects, modeling the lower-left (ll) and
upper-right (ur) point needed to define a valid rectangle. An
intuitive constraint is that time periods during which these unit
points are moving must be equal. More formally,

Definition 3: Unit_Moving_Circle =

d { f: Unit_Moving_Point, s: Unit_Moving_Point,

 t: Unit_Moving_Point | equal (f.p, s.p, t.p) }

Definition 4: Unit_Moving_Rectangle =

d { ll: Unit_Moving_Point, ur: Unit_Moving_Point |

equal (ll.p, ur.p) }

For modeling object types such as Unit_Moving_Polygon and
Unit_Moving_LineString there is need for an intermediate object
type called Unit_Moving_Segment object, which models a simple
line or arc segment that changes its shape and size according to its
starting and ending points. As such, Unit_Moving_Segment is
formed by three Unit_Moving_ Point objects and a flag indicating
the kind of interpolation between the starting and ending point of
the LineString geometry. The simplest part of a LineString
geometry can be either a linear or an arc segment. In other words,
this flag exemplifies the usage of the other attributes of
Unit_Moving_Segment. This is clarified in Figure 3 where a

moving segment is mapped to a line segment at two different time
instants t1 and t2. During the time period between t1 and t2, the
starting unit moving point mp1 follows a simple linear trajectory,
while the ending unit moving point mp2 follows an arc trajectory.

yy'

xx'

t1 t2

mp1

mp1

mp2
mp2

Figure 3 Linear Unit Moving Segment

Definition 5: Unit_Moving_Segment =

d { b: Unit_Moving_Point, e: Unit_Moving_Point,

 m: Unit_Moving_Point, kind:TypeOfSegment | (kind = SEG

⇒ equal (b.p, e.p)) ∧ (kind = ARC ⇒ equal (b.p, e.p, m.p)) },

where Π TypeOfSegment Τ = { SEG, ARC }

Consequently, a Unit_Moving_LineString is defined as a set of
Unit_Moving_Segment objects, while a Unit_Moving_Polygon is
a collection of Unit_Moving_Segment objects, with an additional
flag indicating if this set of moving segments forms the exterior
ring of a polygon or an interior (hole) ring, which at any time does
not cross or touch the exterior boundary. In terms of set theory,

Definition 6: Unit_Moving_Linestring =

d { l: set〈Unit_Moving_Segment〉 |

∀ i, j ∈ ulong: i≠ j ⇒ equal (li.b.p, lj.e.p) }

Definition 7: Unit_Moving_Polygon =

d { l: set〈Unit_Moving_ Segment〉, hole:boolean |

∀ i, j ∈ ulong: i≠ j ⇒ equal (li.b.p, lj.e.p) }

Having defined the fundamental unit moving types, we now
introduce the moving types that play the dominant role in HERMES
data type system. The process that is followed to define the
moving types is to introduce a moving type as a collection of the
corresponding unit moving type. Having this in mind, we
construct a Moving_Point object type as a collection of
Unit_Moving_Point objects, whose periods must be sequential
and should not overlap. The projection of a Moving_Point to the
spatial dimension should result to a valid point geometry. In other
words,

Definition 8: Moving_Point =

d { tab: set〈Unit_Moving_Point〉 | ∀ i, j ∈ ulong, 1≤ i, j≤ |

set〈Unit_Moving_Point〉 |: j= i+1 ⇒ before(tabi.p, tabj.p) ∧

¬overlaps(tabi.p, tabj.p) ∧ ∀ t ∈ double: inside(t, tabi.p) ⇒

at_instant(t) ∈ Geometry(point)}

Similarly to the Moving_Point, other moving types are
constructed as collections of their unit counterparts. Due to space
limitations, we only present the definition of a Moving_

Linestring.

Definition 9: Moving_LineString =

d { line: set〈Unit_Moving_ LineString〉 | ∀ i, j ∈ ulong, 1≤ i, j≤ |

set〈Unit_Moving_ LineString〉|: j= i+1 ⇒ before(linei.l1.b.p,

linej.l1.e.p) ∧ ¬overlaps(linei.l1.b.p, linej.l1.e.p) ∧ ∀ t ∈ double:

inside(t, linei.l1.b.p)⇒at_instant(line,t)∈ Geometry(linestring) }

The definition of Moving_Polygon is very close to that of
Moving_LineString. Actually, the differences between these two

moving types arise from the different utilization of their
collections of moving segments by the object methods. For
example, an operation that maps a Moving_LineString to a
LineString geometry checks for inequality on the starting and
ending points of the line and this is a prerequisite for constructing
the geometry. On the contrary, the corresponding method for a
moving polygon checks for the opposite, in order to be able to
construct a valid polygon. Another discrepancy of
Moving_Polygon, in contrast to all the other moving types, is that
in case it includes interior moving holes, then several
Unit_Moving_Polygon objects need to be accessed in order to
transform it to its corresponding OpenGIS-compatible spatial
geometry at a specific instant.

Similarly, in order to model homogeneous collections of moving
types, multi-moving types are defined as collections of the
corresponding moving types. Consequently, the proposed spatio-
temporal model is augmented by the following object types:
Multi_Moving_Point, Multi_Moving_Circle, Multi_Moving_

Rectangle, Multi_Moving_LineString and Multi_Moving_

Polygon. An interesting issue here is that the previously
mentioned multi-moving types do not carry their own methods
interface. The functionality for these types can be invoked by the
methods of another object type, called Moving_Collection,
standing as the supertype and aggregating the interfaces, the
object methods and the spatio-temporal semantics of all the multi
moving types. Furthermore, Moving_Collection is able to
represent heterogeneous collections of moving types. The
methods of Moving_Collection treat all the multi moving types
uniformly and they do not have the knowledge whether they are
dealing with a homogeneous or heterogeneous collection. The
formal definition of Moving_Collection is omitted as a trivial one.

We also introduce an object that encapsulates all semantics and
functionality offered by all moving types. The so-called
Moving_Object object type is the conjunction of all the other
moving object types, which implies that this object can
completely substitute any other moving type. Furthermore,
Moving_Object models any moving type that can be the result of
an operation between moving objects. For example, the
intersection of a Moving_Point with a polygon geometry forms a
second Moving_Point that is the restriction of the first
Moving_Point inside the polygon. This result can be modeled as a
Moving_Object. If the result of an operation is not a moving
geometry then Moving_Object plays the role of a degenerated
moving type. For example, let us assume an operation that
requests the perimeter of Moving_Polygon; obviously, the result
of this method is a time-varying real number (Moving_Real). Such
collapsed moving types like moving real, string, and boolean are
also modeled using the Moving_Object object type.
Moving_Object is not intended to be directly used or constructed
by HERMES user. On the contrary, it is intended to be the result
type of operations of the other moving types (i.e., system
generated). For a detailed description of Moving_Object type the
interested reader is referred to [13]. Figure 4 illustrates the UML
class diagram of the above defined moving object data types [14].

3. OPERATIONS ON MOVING OBJECTS
The design of the operations of the object types introduced by
HERMES-MDC adheres to three principles: a) design operations as
generic as possible; b) achieve consistency between operations on

pure spatial, pure temporal and spatio-temporal types; c) capture
the interesting phenomena.

Figure 4 HERMES-MDC Class Diagram

For the first principle we focus on properties shared by many
types. In order to achieve consistency of operations on spatial,
temporal and moving types, we first study operations proposed in
the literature for pure spatial types and we select those operations
that we would like to associate with temporal semantics. In a
second step, we use the functionality of the temporal types
introduced by the temporal component of HERMES (TAU-TLL)
and we systematically extend the operations defined in the first
step to the temporal variants of the respective types. The third step
takes the previous time-dependant operations as its outset and
removes their time dimension thus not returning pure spatial,
temporal or standard data types, but other moving types (e.g. the
length of a moving linestring independently of a specific time
point). Finally, to achieve closure of “interesting phenomena”, our
development is driven by state-of-the-art emerging applications
such as LBS.

The following sections describe the functionality with which
SQL-like query languages are enhanced by the use of HERMES
functionality. The presentation of the operations hides the
technical details that would disorient us from expressing the
power of the resulted query language. As such, we abstractly
describe the algorithms for only a motivating set of operations.
Due to space limitations we focus our discussion on methods
defined on Moving_Point type (as the most challenging and LBS
relevant); however operations with similar semantics are also
defined for the rest types.

3.1 Topological and Distance Predicates
HERMES-MDC provides object methods in the form of predicates
to describe relationships between moving types. There are two
sets of predicates supported by HERMES-MDC, namely
within_distance and relate. Each set of predicates consists of eight
operations, each of which models the relationship of the caller
moving type with any time-varying (or not) geometry object. Each
operation comes with two different overloaded signatures,
modeling different semantics: the first signature is time-dependent
while the second is independent to the time dimension. Below, the
reader can find the pair of signatures of only one of the eight

operations. The time-dependent signature of the method is the one
without the brackets, while the time-independent version of the
operation can be obtained by substituting the return type of the
operation with the type in the brackets { } and by removing the
Timepoint<SEC> argument from the parameter list. This is a
common notation in the remainder of the paper.

• boolean {Moving_Object} within_distance (distance,

Moving_Point, tolerance, Timepoint<SEC>)

The time-dependent predicate determines whether two moving
objects are within some specified Euclidean distance from each
other at a user-defined time point. After mapping the moving
objects to physical spatial geometries at the given instant, the
function returns true for object pairs that are within the specified
distance; returns false otherwise. The distance between two non-
point objects (such as lines and polygons) is defined as the
minimum distance between these two objects.

Many object methods in HERMES-MDC accept a tolerance
parameter. If the distance between two points is less than or equal
to the tolerance, the cartridge considers the two points to be a
single point. Thus, tolerance is usually a reflection of how
accurate or precise users perceive their spatio-temporal data to be.
Also, the time-independent within_distance operation differs from
the above predicate in that the return value is a Moving_Object
that represents a time-varying boolean value. This implicitly
defined “moving boolean” object models the sequence of the time
intervals that the two related objects are within or not some
specified Euclidean distance.

• Varchar2 {Moving_Object} relate (mask, Moving_Polygon,

tolerance, Timepoint<SEC>)

This generic predicate examines two moving objects and
determines their topological relationship. As previously, the relate
predicate appears with two overloaded versions. The first
evaluates the topological relationship upon a specific user-defined
time point, while the second version returns a Moving_Object
modeling a time-varying string, which describes the evolution in
the topological relationship between the related objects. The user
can specify the kind of any of the well-known topological
relationships that he/she requires to check via the mask parameter.

3.2 Interaction with the Temporal and Spatial

Domains
HERMES-MDC provides object methods for restricting and/or
projecting moving types to the temporal and the spatial domain.
Subsequently, we present the most important operations defined
for Moving_Point.

• Unit_Moving_Point unit_type (Timepoint<SEC>)

The simple but very important task that this function performs is
that it finds the unit moving object whose attribute time period
“contains” the user-defined time point. In other words, it returns
that unit-moving type where the time instant represented by the
argument Timepoint<SEC> object is “inside” the time period that
characterizes the unit-moving type.

• Moving_Point add_unit (Unit_Moving_Point)

This operation adds a new coming unit of movement as this is
described by a Unit_Moving_Point object. Naturally, the method

performs special consistency operations (e.g. the period of the
argument must not overlap with the lifespan of the initial object)
to assert the soundness of the constructed object.

• Union_Output at_instant (Timepoint<SEC>)

The at_instant operation is the operation that maps the moving
types to meaningful OpenGIS-compatible spatial objects. The
return type (Union_Output) is an object that represents the union
of all the possible results of the projection of a Moving_Object at
a user-defined time point. In other words, if Moving_Object
represents a time-varying geometry then Union_Output is
basically a Geometry object. If Moving_Object represents a
“moving” real or string then Union_Output is a real number or a
string, respectively. In the case of Moving_Collection, this
operation invokes the at_instant operations of all the moving
types of the multi moving objects and subsequently applies a
special “union” operation upon the projected geometries by
“concatenating” them in a collection object and returns the result
of the “concatenation”.

• Moving_Point at_period (Period<SEC>)

The at_period object method is an operation that restricts a
moving object to the temporal domain. In other words, by using
this function the user can delimit the time period that is
meaningful to ask the projection of the moving object to the
spatial domain. More specifically, the time period passed as
argument to the method is compared with the Period<SEC>
objects that characterize the unit moving objects. If the parameter
period does not overlap with the compared period then the
corresponding unit type is omitted. If it overlaps, then the time
period that defines a unit-moving object becomes its
“intersection” with the given period.

• Temp_Element<SEC> temp_element ()

The temp_element operation gives HERMES-MDC user the
capability to project the time periods that form the unit moving
objects that compose a moving type on the time line and
subsequently “concatenate” all these distinct time periods to
construct a temporal element. Figure 5 depicts the result of the
temp_element operation when applied to a Moving_Point object.

y y '

x x '

t i m e l i n e

t 1 t 4t 3t 2

p 1 - > [t 1 , t 2)

t 6t 5

p 4 - > [t 5 , t 6)

p 3 - > [t 4 , t 5)

p 2 - > [t 2 , t 3)

p 1 p 4p 3p 2

t e m p _ e l e m e n t - - > p 1 + p 2 + p 3 + p 4
Figure 5 Projection of a Moving Point on the time axis

• Moving_Point at_temp_element (Temp_Element<SEC>)

Similarly to the at_period operation, the at_temp_element method
restricts the moving object to the temporal domain, but the
process of restricting the periods between which the moving
object is valid is driven by a collection of Period<SEC> objects
and not just one Period<SEC> object as in the previous case.

• Moving_Point at_linestring (Geometry)

Being aware that an object moves on a linestring geometry during
a part of its route (e.g. a car moving along a street), we may wish
to find the portion of the Moving_Point restricted by this 1-
dimensional geometry. This is exactly the output of this method.

• Union_Output initial ()

The initial object method is basically the at_instant operation
invoked at the first instant of time that the moving object is valid,
meaning the first second of the closed-open period that identifies
the least recent unit moving object.

• Union_Output final ()

Similarly to the initial object method, the final operation projects
the moving object at the last valid instant of the time period that
characterizes the most recent unit moving object.

• Geometry trajectory ()

This operation reconstructs the trajectory traveled by a
Moving_Point. More specifically, the operation projects the
movement of a Moving_Point to the Cartesian plane by mapping
the component Unit_Moving_Point objects to single linear or arc
segments, while a process of merging these segments follows, to
form the returned LineString geometry.

3.3 Distance and Direction Operations
The following methods assist the cartridge user to calculate the
minimum distance or the directional relationship between moving
objects.

• number {Moving_Object} distance (Moving_Point,

tolerance, Timepoint<Sec>)

HERMES-MDC provides a distance measure that exists for all
moving types, which either computes the distance between two
instantiated moving objects (time-dependent version) or returns a
time-varying real number that represents the minimum distance
between these moving types at any time (time-independent
version). The distance between two objects is the distance
between the closest pair of points or segments of the two objects.

• number {Moving_Object} direction (Moving_Point,

Timepoint<Sec>)

The direction function returns the angle of the line from the first
to the second moving point (measured in degrees,

°<≤° 3600 angle), after these have been projected to the

Cartesian plane at a specific time point. The time-independent
version of the function returns a Moving_Object modeling a
“moving real”, which corresponds to the time-changing angle
formed by the conceptual line segment that joins the two moving
points and the xx’ axis.

• boolean left (Geometry, Timepoint<Sec>, from, to)

The left operation returns true if the location of the point at the
user defined timepoint is left from the argument geometry (i.e. the
centroid in case of geometries with extent), which is the case
when it falls inside the area formed by the argument angles from
and to. Similarly, we define right, front, behind operations.
Furthermore, we augment our operator set with a related set of
methods that identify whether a moving point is located west,
east, north, south of a geometry. These methods are differentiated

from the previous as we do not care for the heading of the moving
point.

3.4 Set Relationships
HERMES-MDC provides four object methods for describing set-
relationships between moving types. Subsequently, we present
only one (intersection) between a Moving_Point and a Geometry,
while the rest of them (union, difference, xor) are omitted.

• Geometry {Moving_Point} intersection (Geometry,

tolerance, Timepoint<Sec>)

Invoking intersection method for a Moving_Point, as one would
expect, the result of this operation is the projection of itself on the
spatial domain (point geometry) at time instants that intersects
with other moving types or static geometries and null at time
instants where it is not on the boundary or the interior of
linestrings and polygons or it coincides with none of the points in
a collection of them. The time-independent version returns the
portion of the Moving_Point that intersects with the reference
object. Figure 6 depicts the projection of a Moving_Point
modeling its intersection with a polygon, at three different
timepoints t1, t2, and t3.

Intersection

time

Polygon
boundaries

t1 t3t2

Moving Point
Figure 6 Demonstrating intersection operation

At timepoint t1 it is obvious the result of such an operation is a
linestring geometry. At timepoint t2 this intersection has as result
a multi-linestring geometry due to the development of
Moving_Point, while at timepoint t3 the resulted geometry is a
heterogeneous collection of lines and points. This operation
allows us to define methods returning the entering/leaving
locations (as well as the respective timepoints) wherefrom a
moving point passes when traversing spatial regions (Figure 7).

3.5 Rate of Change
An important property of any time-dependent value is its rate of
change, i.e., its derivative. At least three properties of the
Moving_Point permit the definition of derivative, namely the
Euclidian distance, the direction and the vector difference (by
viewing points as two-dimensional vectors). This leads to three
different derivative operations, called speed, turn and velocity,
respectively.

Due to space constraints, we omit signatures and descriptions of
these three operations. The reader interested in these operations as
well as in other operations as the area traversed by a moving
polygon, building moving buffer of specific width around a path,
constructing moving points from the centroid of moving areas,
and finding the num_of_components of collections of moving
types is referred to [13].

4. HERMES LBS TOOL
HERMES-MDC has been developed [14] as a system extension that
provides MOD functionality to Oracle10g Object-Relational
DBMS and, as such, the cartridge functionality extends PL/SQL

[7]. In order to demonstrate the usefulness and applicability of the
server-side extensions provided by HERMES we implement a
prototype application on top of this functionality which provides a
graphical means to realize the majority of benchmark queries for
LBS proposed in [19]. Especially, we develop an LBS application
scenario for travelers entering the area of an airport, construct a
spatial database modeling the ground plan of the airport, and
input random trajectories of travelers moving around the area. The
tool provides the ability to pose queries following the same
classification as proposed in [19]. The idea is that a user selects
one from a palette of such queries and according to his/her choice
a wizard drives the user to parameterize his request. A query
builder dynamically constructs the query using HERMES-MDC
operations, sends the query to the server and visualizes the results
using MapViewer [12].

Indicative supported queries include:

• Queries on stationary reference objects;
o point (e.g. does this check-in serve my flight?),
o range (e.g. are there any fellow travelers in the area in

front of this check-in?),
o distance-based (e.g. find the closest check-in),
o nearest-neighbor (e.g. find the closest coffee shops to my

current location) and
o topological queries (e.g. find travelers crossed this gate

during the past hour);

• Queries on moving reference objects;
o distance-based (e.g. find travelers passed close to me this

evening) and
o similarity-based queries (e.g. find the three most similar

trajectories to the one I have followed so far in the
airport);

• Join queries;
o distance-join (find the closest check-ins to travelers of

this flight) and
o similarity-join queries (find the two most similar pairs of

travelers’ trajectories);

• Queries involving unary operators, such as traveled distance
or speed (e.g. find the average speed of travelers on Saturday
nights).

Figure 7 Visualization of enter/leave points in an area of

interest

5. COMPARISON WITH RELATED WORK
Several research efforts have tried to model spatio-temporal
databases using the concept of ADTs for moving objects. Such
types for moving points and moving regions have been introduced
by Güting and colleagues in [8], together with a set of operations
on such entities. This model was the first attempt to deal with
continuous motion, while in [6] the definition of the discrete
representation of the above-discussed ADTs was presented. The
next step in this development was the study of algorithms for the
rather large set of operations defined in [8]. Whereas [6] just
provides a brief look into this issue, in [11] the authors present a
comprehensive, systematic study of algorithms for a subset of the
operations introduced in [8]. This paper also proposed a blueprint
for implementing such a “moving objects” extension package for
suitable extensible database architectures.

Another model using moving objects is proposed by Wolfson and
colleagues in [17], [22] and [21]. The authors propose the so-
called Moving Objects Spatio-Temporal (MOST) data model for
databases with dynamic attributes, i.e. attributes that change
continuously as a function of time, without being explicitly
updated. The authors also offer a query language (Future
Temporal Logic - FTL) based on temporal logic to formulate
questions about the near future movement. The approach is
restricted to moving points and does not address more complex
time-varying geometries such as moving regions.

As an extension to the abstract model in [8], the concept of
spatio-temporal predicates is introduced in [5]. The goal is to
investigate temporal changes of topological relationships induced
by temporal changes of spatial objects. Further work on modeling
includes [18] where the authors focus on moving point objects
and the inclusion of concepts of differential geometry (speed,
acceleration) in a calculus based query language.

In contrast to the previous approaches, which offer limited
temporal functionality, HERMES provides a full operative
framework for the management of any temporal related type of
data, as moving objects are. This is realized through the
implementation of TLL [9] as a data cartridge [13]. TAU-TLL
provides clear semantics for the time line including the time
boundaries, time order, time reference, multiple temporal
granularities, and the supported calendar. In addition, it provides
an extensive set of object types and methods (superset of the
corresponding ODMG [2]) for these temporal types.

In HERMES, the spatial functionality is provided by an OpenGIS-
compatible ORDBMS as a separate data cartridge. The models
proposed in the literature, provide separate objects for
constructing different spatial geometries (e.g. points, lines,
regions). In our case, we have a uniform representation of all
kinds of geometries under the same spatial object, which increases
the flexibility and the interoperability between moving types and
pure spatial objects.

HERMES-MDC introduces a rich type system of time-varying
geometries that change location or shape in discrete steps and/or
continuously. An extensive set of object methods is developed
that expresses all the interesting spatio-temporal phenomena and
processes. This set of operations is a superset of the operations
introduced in [8]. HERMES Type System introduces new objects
like Moving_Circle, Moving_Rectangular, Moving_Collection,
Moving_Object. The Moving_Collection object supports not only

select shape from gates

select v.route.get_enter_leave_points
 (select gates.shape from gates where gates.id=1)
from visitors v where v.id=1

a homogeneous collection of moving types but also
heterogeneous. The Moving_Object can substitute any of the other
moving types, as well as moving geometries that result as
operations on other moving geometries and, moreover, it can
model time-varying objects like the time-changing perimeter of a
moving region. In [8], such degenerated moving types (e.g.
moving real) are constructed as separate objects, leading to a
unnecessary proliferation of object types. What is more, the
flexibility of HERMES-MDC can be demonstrated in various ways.
For example, moving linestrings that intersect themselves during
their development are adopted by HERMES, while they are
forbidden in [8]. Apart from linear interpolations of spatial and
moving types utilized in [6], HERMES also utilizes arc
interpolations. The expressiveness of the query language was
established in Section 4.

6. CONCLUSIONS AND FUTURE WORK
In this paper, a data cartridge for moving objects, called HERMES-
MDC, was introduced. This data cartridge is a system extension
that provides spatio-temporal functionality to OpenGIS-
compatible ORDBMS and supports modeling and querying of
moving objects changing location either in discrete steps or
continuously. To evaluate HERMES server-side MOD extensions
we implemented a prototype application whose purpose is to
provide a flexible means to apply benchmark queries proposed for
the evaluation of systems providing location based services.
Future work includes considering query optimization as well as
indexing extensibility interfaces of current ORDBMS in order to
enhance the performance of HERMES-MDC data cartridge, as well
as knowledge discovery from MODs using data mining
techniques.

7. ACKNOWLEDGMENTS
Research partially supported by the FP6-14915 IST/FET Project
GeoPKDD (Geographic Privacy-aware Knowledge Discovery and
Delivery) funded by the European Union and the Pythagoras
EPEAEK II Programme of the Greek Ministry of National
Education and Religious Affairs, co-funded by the European
Union.

8. REFERENCES
[1] T. Abraham, J.F. Roddick. Survey of Spatio-Temporal

Databases. GeoInformatica, 3:61-99, 1999.
[2] R.G.G. Cattel, D.K. Barry (eds.). The Object Database

Standard: ODMG 2.0. Morgan Kaufmann, May 1997.
[3] S. Dieker and R. H. Guting, “Plug and Play with Query

Algebras: Secondo. A Generic DBMS Development
Environment”, Proc. Int’l Database Engineering and

Applications Symposium (IDEAS), 2000.
[4] M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis.

Spatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases. GeoInformatica,
3(3): 265-291, 1999.

[5] M. Erwig and M. Schneider. Spatio-Temporal Predicates.
IEEE Transactions on Knowledge and Data Engineering,
14(4): 881-901, 2002.

[6] L. Forlizzi, R. H. Güting, E. Nardelli, M. Schneider. A Data
Model and Data Structures for Moving Objects Databases.
Proc. ACM SIGMOD Int’l Conf. on Management of Data,
Dallas, Texas, USA, 2000.

[7] S. Feuerstein and B. Pribyl. Oracle PL/SQL Programming.
O’Reilly & Associates, 1997.

[8] R.H. Güting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A
Foundation for Representing and Querying Moving Objects.
ACM Transactions on Database Systems, 25(1): 1-42, 2000.

[9] I. Kakoudakis. The TAU Temporal Object Model. MPhil
Thesis, UMIST, Department of Computation, 1996.

[10] M. Koubarakis, T. Sellis et al. (eds.). Spatio-temporal

Databases: The Chorochronos Approach. Springer, 2003.
[11] J. A. C. Lema, L. Forlizzi, R. H. Güting, E. Nardelli, M.

Schneider. Algorithms for Moving Objects Databases. The

Computer Journal 46(6): 680-712, 2003.
[12] Oracle Corp. Oracle Database Documentation Library, 10g

Release 1 (10.1), URL: http://otn.oracle.com/pls/db10g/.
(accessed on 10 April 2006).

[13] N. Pelekis. STAU: A Spatio-Temporal Extension to ORACLE

DBMS. PhD Thesis, UMIST, Department of Computation,
2002.

[14] N. Pelekis, Y. Theodoridis, S. Vosinakis, T.
Panayiotopoulos. Hermes - A Framework for Location-Based
Data Management. Proc. 10th Int’l Conference on Extending

Database Technology (EDBT), LNCS 3896, Munich,
Germany, 2006.

[15] N. Pelekis, B. Theodoulidis, I. Kopanakis, Y. Theodoridis.
Literature Review of Spatio-Temporal Database Models. The

Knowledge Engineering Review journal, 19(3), 235-274,
June 2005.

[16] D. Peuquet. Making Space for Time: Issues in Spase-Time
Data Representation. GeoInformatica, 5: 11-32, 2001.

[17] P. Sistla, O. Wolfson, S. Chamberlain, S.Dao. Modeling and
Querying Moving Objects. Proc. 13th Int’l Conf. on Data

Engineering (ICDE13), Birmingham, UK, 1997.
[18] J. Su, H. Xu and O. Ibarra. Moving Objects: Logical

Relationships and Queries. Proc. 7th Int’l Symp. on Spatial

and Temporal Databases (SSTD), Redondo Beach,
California, USA, 2001.

[19] Y. Theodoridis. Ten Benchmark Database Queries for
Location-based Services, The Computer Journal, 46(6):713-
725, 2003.

[20] D. Pfoser, C. S. Jensen, and Y. Theodoridis, Novel
Approaches to the Indexing of Moving Object Trajectories,
Proc. 26th Int’l Conf. on Very Large Data Bases, Cairo,
Egypt, 2000.

[21] O. Wolfson, A. P. Sistla, S. Chamberlain and Y. Yesha.
Updating and Querying Databases that Track Mobile Units.
Distributed and Parallel Databases, 7 (3): 257-387, 1999.

[22] O. Wolfson, B. Xu, S. Chamberlain, L. Jiang. Moving
Objects Databases: Issues and Solutions. Proc. 10th Int’l

Conf. on Scientific and Statistical Database Management,
Capri, Italy, 1998.

[23] P. Zhang. The Spatial Movement Extensions of STAU. MPhil
Thesis, UMIST, Department of Computation, 2003.

