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Abstract. One of the most important operations involving Data Mining patterns 
is computing their similarity. In this paper we present a general framework for 
comparing both simple and complex patterns, i.e., patterns built up from other 
patterns. Major features of our framework include the notion of structure and 
measure similarity, the possibility of managing multiple coupling types and ag-
gregation logics, and the recursive definition of similarity for complex patterns. 

1 Introduction 
Data Mining and Knowledge Discovery techniques are commonly used to extract 
condensed artifacts, like association rules, clusters, keywords, etc., from huge data-
sets. Among the several interesting operations on such patterns (modeling, storage, re-
trieval), one of the most important is that of comparison, i.e., establishing whether 
two patterns are similar or not [1]. Such operation could be of valuable use whenever 
we have to measure differences of patterns describing evolving data or data extracted 
from different sources, and to measure the different behavior of Data Mining algo-
rithms over a same dataset. A similarity operator between patterns could also be used 
to express similarity queries over pattern bases [5]. 

In the following we present a general framework for the assessment of similarity 
between both simple and complex patterns. Major features of our framework include 
the notion of structure and measure similarity, the possibility of managing multiple 
coupling types and aggregation logics, and the recursive definition of similarity for 
complex patterns, i.e., patterns whose structure consists of other patterns. This con-
siderably extends FOCUS [1], the only existing framework for the comparison of pat-
terns, which does not consider complex patterns, neither it allows different matching 
criteria (i.e., coupling types), since it limits itself to a fixed form of matching (based 
on a so-called greatest common refinement). 

2 A Framework for the Evaluation of Pattern Similarity 
We approach the problem of defining a general framework able to guarantee flexi-

bility with respect to pattern types and their similarity criteria and, at the same time, to 
exploit common aspects of the comparison problem, by starting from the logical 
model proposed in [3], where each pattern type includes a structure schema ss, defin-
ing the pattern space, and a measure schema ms, describing the measures that quantify 
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the quality of the source data representation achieved by each pattern. A pattern p of 
type pt instantiates the structure schema and the measure schema, thus leading to a 
structure, p.s, and a measure, p.m. In the basic case, the similarity between patterns is 
computed by means of a similarity operator, sim, which has to take into account both 
the similarity between the patterns’ structures and the similarity between the meas-
ures. A pattern is called simple if its structure does not include other patterns, other-
wise it is called a complex pattern. For instance, an Euclidean cluster in a D-
dimensional space is a simple pattern whose structure is represented by the center (a 
D-dimensional vector) and radius (a real value) of the cluster. Measures for a cluster 
might include, for example, the average intra-cluster distance and its support (fraction 
of the data points represented by the cluster). 

The similarity between two simple patterns of the same type pt can be computed 
by combining, by means of an aggregation function faggr, the similarity between both 
the structure and the measure components: 

sim(p1, p2) = faggr(simstruct(p1.s, p2.s), simmeas(p1.m, p2.m)) (1) 

If the two patterns have the same structural component, then simstruct(p1.s, p2.s) = 1, 
and the measure of similarity naturally corresponds to a comparison of the patterns’ 
measures, e.g., by aggregating differences between each measure. In the general case, 
however, the patterns to be compared have different structural components, thus a 
preliminary step is needed to “reconcile” the two structures to make them comparable. 

The computation of similarity between simple patterns is summarized in Fig. 1. It 
has to be remarked that the simstruct block could also encompass the use of an underly-
ing domain knowledge. For instance, if we are comparing keywords extracted from 
textual documents (i.e., the pattern is a keyword), the similarity between them can be 
computed by exploiting the presence of an ontology, such as WordNet [2]. 

p2.m 

p2.s 

p1.m 

p1.s 
simstruct 

simmeas(p1.m, p2.m) 

simstruct(p1.s, p2.s) 

simmeas 

faggr

p1 
p2 

sim(p1, p2) 

Fig. 1. Assessment of similarity between patterns. 

The case of complex patterns, i.e., patterns whose structure includes other patterns, 
is particularly challenging, because the similarity between structures of complex pat-
terns depends in turn on the similarity between component patterns. For instance, a 
clustering pattern is the composition of cluster patterns. 

Evaluation of similarity between complex pattern follows the same basic rationale 
shown in Fig. 1 of aggregating similarities between measure and structure compo-
nents. However, the structure of complex patterns now consists of several other pat-
terns. In our framework, the similarity between the structure of complex patterns is 
conceptually evaluated in a bottom-up fashion, and can be adapted to specific 
needs/constraints by acting on two fundamental abstractions, namely the coupling 
type, which is used to establish how component patterns can be matched, and the ag-
gregation logic, which is used to combine the similarity scores obtained for coupled 

 



component patterns into a single overall score representing the similarity between the 
complex patterns. 

Coupling type: Since every complex pattern can be eventually decomposed into a 
number of component patterns, in comparing two complex patterns, cp1 and cp2, we 
need a way to associate component patterns of cp1 to component patterns of cp2. To 
this end, the coupling type just establishes the way component patterns can be 
matched. Assume without loss of generality that component patterns are given an or-
dinal number, thus the structure of each complex pattern can be represented as cp.s = 
(p1, p2, …, pN). Each coupling between cp1 and cp2 can be represented by a matching 
matrix XN�M = (xij), where each xij � [0,1] (i = 1, …, N; j = 1, …, M) represents the 
(amount of) matching between p1

i and p2
j. Different coupling types essentially intro-

duce a number of constraints on the xij coefficients, e.g.: 
– 1–1 matching: In this case we accept at most one matching for each component pat-

tern p1
i or p2

j. 
– EMD matching: The Earth Mover’s Distance (EMD) [4] is used to compare two 

distributions and is a particular N–M matching. Computing EMD is based on solv-
ing the well-known transportation problem. EMD has been applied, among others, 
to compare images by taking into account existing inter-color similarities [4]. 
Aggregation logic: Among all the feasible matchings, the rationale is to pick the 

“best” one. To this end, the overall similarity between complex patterns is computed 
by aggregating similarity scores obtained for matched component patterns, and then 
taking the maximum over all legal matchings. Formally, each pairing (p1

i, p2
j) con-

tributes to the overall score, as evaluated by the matching aggregation function gaggr, 
with the similarity, sim(p1

i, p2
j), between its matched component patterns: 

simstruct(cp1.s, cp2.s) = maxX(gaggr((p1
1, p1

2, …, p1
N), (p2

1, p2
2, …, p2

M), X)) (2) 

The process of computing the structure similarity between complex patterns can be 
conceptually summarized as follows. Given a coupling type, any possible legal 
matching is generated, and the similarity scores between pairs of matched patterns are 
computed as in Fig. 1. Then, such similarity scores are combined together by means 
of the matching aggregation function. Finally, the matching attaining the highest 
overall similarity score is determined. In case of multi-level aggregations, this process 
has to be recursively applied to component sub-patterns. 

The above-described scheme can turn to be highly inefficient. For this reason, 
when efficient evaluation of simstruct(cp1.s, cp2.s) is an issue, we provide efficient algo-
rithms for the solution of the best-coupling problem which do not require going 
through all possible matchings. 
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