
Nearest Neighbor Search on Moving Object

Trajectories

Elias Frentzos
1
, Kostas Gratsias

1,2
, Nikos Pelekis

1
, Yannis Theodoridis

1,2

1 Department of Informatics, University of Piraeus, 80 Karaoli-Dimitriou St,

GR-18534 Piraeus, Greece
{efrentzo, gratsias, npelekis,ytheod}@unipi.gr

http://isl.cs.unipi.gr/db

2 Research and Academic Computer Technology Institute, 11 Aktaiou St & Poulopoulou St,

GR-11851 Athens, Greece
{gratsias, ytheod}@cti.gr

Abstract. With the increasing number of Mobile Location Services (MLS), the

need for effective k-NN query processing over historical trajectory data has be-

come the vehicle for data analysis, thus improving existing or even proposing

new services. In this paper, we investigate mechanisms to perform NN search

on R-tree-like structures storing historical information about moving object tra-

jectories. The proposed branch-and-bound algorithms vary with respect to the

type of the query object (stationary or moving point) as well as the type of the

query result (continuous or not). We also propose novel metrics to support our

search ordering and pruning strategies. Using the implementation of the pro-

posed algorithms on a member of the R-tree family for trajectory data (the TB-

tree), we demonstrate their scalability and efficiency through an extensive ex-

perimental study using synthetic and real datasets.

1 Introduction

With the integration of wireless communications and positioning technologies, the

concept of Moving Object Databases (MOD) has become increasingly important, and

has posed a great challenge to the database community. In such implicitly formulated

location-aware environments, moving objects are continuously changing locations;

nevertheless existing DBMSs are not well equipped to handle continuously changing

data. Emerging location-dependent services (including nearby information accessing

and enhanced 911 services) call for new query processing algorithms and techniques

to deal with both the spatial and temporal domains.

Unlike traditional databases, MODs have some distinctive characteristics: First of

all, spatio-temporal queries are continuous in nature. In contrast to snapshot queries,

which are invoked only once, continuous queries require continuous evaluation as the

query result becomes invalid after a short period of time. Secondly, we typically have

to deal with vast volumes of historical data which correspond to a large number of

mobile and stationary objects. As a consequence, querying functionality embedded in

an extensible DBMS that supports moving objects has to present robust behavior in

the above mentioned issues.

An important class of queries that definitely turns out to be useful for MOD proc-

essing is the so-called k nearest neighbor (k-NN) queries, where one is interested in

finding the k closest trajectories to a predefined query object Q. To our knowledge, in

the literature such queries primarily deal with either static ([8], [2], [4]) or continu-

ously moving query points ([11], [13]) over stationary datasets, or queries about the

future positions of a set of continuously moving points ([1], [12], [5]). Apparently,

these types of queries do not cover NN search on historical trajectories.

The challenge accepted in this paper is to describe diverse mechanisms to perform

k-NN search on R-tree-like structures [6] storing historical information. To illustrate

the problem, consider an application tracking the positions of rare species of wild

animals. Such an application is composed of a MOD storing the location dependent

data, together with a spatial index for searching and answering k-NN queries in an

efficient manner. Experts in the field would be advantaged if they could pose queries

about the nearest trajectories of animals to a stationary point (lab, source of food or

other non-emigrational species) or an animal moving from location P1 to P2 during a

period of time. By these types of queries an expert may figure out motion habits and

patterns of wild species or deviations from natural emigration, which could be interre-

lated with environmental and/or ecological changes or destructions. Having in mind

that users of MODs are usually interested in continuous types of queries, the above

queries can be extended to their continuous counterparts, where the result is a time-

varying number (the nearest distance depends on time) along with a collection of tra-

jectory ids and the appropriate time intervals for which each moving object is valid.

To make the previous example more intelligible, Fig. 1 illustrates the trajectories

of six moving animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1

and Q2) representing two sources of food. Now, consider the following queries dem-

onstrated in Fig. 1 (Queries 2 and 4 are the continuous counterparts of Queries 1 and

3, respectively):

x

t

y
Q1

O1 O2

Q2

O3 O6 O4 O5

t1

t4

t2

t6

t3

t5

Fig. 1. Continuous and non-continuous point and trajectory NN queries over moving objects

trajectories

• Query 1. “Find which animal was nearest to the stationary food source Q1 during

the time period [t1, t4]”, resulting to animal O1.

• Query 2. “Find which animal was nearest to the stationary food source Q2 at any

time instance of the time period [t1 t4]”, resulting to a list of objects: O2 for the in-

terval [t1,t3); O1 for the interval [t3,t4].

• Query 3. “Find which animal was nearest to animal O3 during the time period

[t2,t6]”, resulting to O2.

• Query 4. “Find which animal was nearest to animal O6 at any time instance of the

time period [t2,t6]”, resulting to a list of objects: O5 for the interval [t2,t5); O4 for

the interval [t5,t6].

To the best of our knowledge, this is the first work on continuous k-NN query

processing over historical trajectories of moving objects. Outlining the major issues

that will be addressed in this paper, our main contributions are as follows:

• We propose a set of four query processing algorithms to perform NN search on R-

tree-like structures storing historical information about moving objects. The de-

scription of our branch-and-bound traversal algorithms for different queries de-

pends on the type of the query object as well as on whether the query itself is con-

tinuous or not. The algorithms are generalized to find the k nearest neighbors.

• We propose novel metrics to support our search ordering and pruning strategies.

More specifically, the definition of the minimum distance metric MINDIST be-

tween points and rectangles, initially proposed in [8] and extended in [13], is fur-

ther extended in order for our algorithms to calculate the minimum distance be-

tween trajectories and rectangles.

• We conduct a comprehensive set of experiments over synthetic and real datasets

demonstrating that the algorithms are highly scalable and efficient in terms of node

accesses and pruned space.

The rest of the paper is structured as follows. Related work is discussed in Section

2, while Section 3 introduces, at an abstract level, the set of k-NN algorithms over

moving object trajectories, as well as the metrics that support our search ordering and

pruning strategies. Sections 4 and 5 constitute the core of the paper describing in de-

tail the query processing algorithms to perform NN search over historical trajectory

information (Section 4) together with their continuous counterparts (Section 5). Sec-

tion 6 presents the results of our experimental study and Section 7 provides the con-

clusions of the paper and some interesting research directions.

2 Related Work

In the last decade, NN queries have fueled the spatial and spatiotemporal database

community with a series of interesting noteworthy research issues.

The first algorithm for k nearest neighbor search over a moving query point was

proposed in [11]. The algorithm assumes that sites (landmark points) are static and

their locations (known in advance) are stored in an R-tree-like structure. A discrete

time dimension is assumed, thus a periodical sampling technique is applied on the

trace of the moving query point. The location of the query point that lies between two

consecutive sampled locations is estimated using linear or polynomial splines.

Using the TPR-tree (Time Parameterized Tree) structure [9], Benetis et al. [1] pre-

sented efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for

moving objects. (An RNN query returns all the objects that the query object is the

nearest neighbor of.) The proposed algorithm was the first to address continuous RNN

queries, since previous existing RNN algorithms were developed under the assump-

tion that the query point is stationary. The algorithms for both NN and RNN queries in

[1] refer to future (estimated) locations of the query and data points, which are as-

sumed to be continuously moving on the plane. In the same paper, an algorithm for

answering CNN queries is also proposed.

Tao et al. [13] also studied CNN queries and proposed an R-tree based algorithm

(for moving query points and static data points) that avoids the pitfalls of previous

ones (false misses and high processing cost). The proposed tree pruning heuristics

exploit the MINDIST metric presented in [8]. At each leaf entry, the algorithm fo-

cuses on the accurate calculation of the split points (the points of the query segment

that demonstrate a change of neighborhood). A theoretical analysis of the optimal

performance for CNN algorithms was presented and cost models for node accesses

were proposed. Finally, the CNN algorithm was extended for the case of k neighbors

and trajectory inputs.

Shahabi et al. [10] presented the first algorithm for processing the k-NN queries

for moving objects in road networks. Their proposed algorithm, which utilizes the

network distance between two locations instead of the Euclidean, is based on trans-

forming the road network into a higher dimensional space, in which simpler distance

functions can be applied. Using this embedding space, efficient techniques are pro-

posed for finding the shortest path between two points in the road network. The above

procedure, which is utilized in the case of static query points, is slightly modified in

order to support the case of moving query points.

Acknowledging the advantages of the above fundamental techniques, in this paper

we present the first complete treatment of historical NN queries over moving object

trajectories, handling both stationary and moving query objects.

3 Problem Statements and Metrics

We first define the NN queries that are considered in this paper. Subsequently, we

present the heuristics utilized by our algorithms to implement the metrics needed to

formulate our ordering and pruning strategy.

3.1 Problem Statement

Let D be a database of N moving objects with objects ids {O1, O2, …, ON}. The tra-

jectory Ti of a moving object Oi consists of Mi 3D-line segments {
1i

L ,
2i

L , …,
iMi

L }.

Each 3D line segment Lj is of the form ((xj-start, yj-start, tj-start), (xj-end, yj-end, tj-end)), where

t0 ≤ tj-start < tj-end ≤ now. Obviously, as we treat only historical moving object trajecto-

ries, each partial linear movement is temporally restricted between t0, the beginning of

the calendar, and now, the current time point.

We have already stated that NN queries search for the closest trajectories to a

query object Q. In our case, we distinguish two types of query objects: Qp, a point

(x,y) that remains stationary during the time period of the query Qper[tstart, tend], and QΤ ,

a moving object with trajectory T. Furthermore, the MOD is indexed by an R-tree like

structure such as the 3D R-tree [16], the STR-tree or the TB-tree [7]. Having in mind

the previous discussion, we define the following two types of NN queries:

• NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that

remains stationary during a time period Qper, and returns the closest to Qp point pc

from which a moving object Oi passed during the time period Qper, as well as the

implied minimum distance.

• NN_QT (D, QT, Qper) query is similar to the previous with the difference being

upon the query object Q which in the current case is a moving object with trajec-

tory T.

The extensions of the above queries to their continuous counterparts vary in the

output of the algorithms. In the continuous case, each query returns a time-varying real

number, as the nearest distance depends on time. We introduce the following two

types of CNN queries:

• CNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time

period Qper returns a list of triplets consisting of the time-varying real value Ri

along with a moving object Oi (belonging in database D) and the corresponding

time period [ti-start, ti-end) for which the nearest distance between Qp and Oi stands.

These time-varying real values Ri are, in any time instance of their lifetime, smaller

or equal to the distance between any moving object Oj in D and the query point Qp.

The time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.

• Similarly, CNN_QT (D, QT, Qper) differs, compared to the previous, upon the query

object Q which in the current case is a moving object with trajectory T. These

time-varying real values Ri are, in any time instance of their lifetime, smaller or

equal to the distance between any moving object Oj and the query trajectory QT.

The time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.

The above four queries are generalized to produce the corresponding k-NN que-

ries. The generalization of the first two queries is straightforward by simply requesting

the 1-st, 2-nd, …, k-th nearest point – with respect to a query point or a query trajec-

tory – from which a moving object Oi passed during the time period Qper, excluding at

the same time points belonging to a moving object already marked as the j-th nearest

(1 ≤ j < k). The continuous queries are generalized to produce k-CNN requesting to

provide with k lists of {Ri, [ti-start, ti-end), Oi} triplets. Then, for any time during the time

period Qper, the i-th list (1 ≤ i ≤ k) will contain the i-order NN moving object (with

respect to the query point or the query trajectory) at this time instance.

To exemplify the proposed k-NN extensions, let us recall Fig. 1. Searching for the

2-NN versions of the four queries (Query 1, 2, 3 and 4) presented in Section 1, we will

have the following results:

• Query 1 (non-continuous): O1 (1
st
 NN) and O2 (2

nd
 NN)

• Query 2 (continuous): 1-NN list includes O2 for the interval [t1,t3) and O1 for the

interval [t3,t4]; 2-NN list includes O1 for the interval [t1,t3) and O2 for the interval

[t3,t4]

• Query 3 (non-continuous): O2 (1st NN) and O4 (2nd NN)

• Query 4 (continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for the

interval [t5,t6]; 2-NN list includes O4 for the interval [t2,t5) and O5 for the interval

[t5,t6].

3.2 Metrics

We exploit on the definition of the minimum distance metric (MINDIST) presented in

[8] between points and rectangles, in order to calculate, on the one hand, the minimum

distance between line segments and rectangles and, on the other hand, the minimum

distance between trajectories and rectangles that are needed to implement the above

discussed algorithms.

Initially, in [8], Roussopoulos et al. defined the Minimum Distance (MINDIST)

between a point P in the n-dimensional space and a rectangle R in the same space as

the square of the Euclidean distance between P and the nearest edge of R, if P is out-

side R (or zero, if P is inside R).

In the sequel, Tao et al. [13] proposed a method to calculate the MINDIST be-

tween a 2D line segment L and a rectangle M. They initially determine whether L

intersects M; if so, MINDIST is set to zero. Otherwise, they choose the shortest

among six distances, namely the four distances between each corner point of M and L

and the two minimum distances from the start and end point of L to M. Therefore, the

calculation of MINDIST between a line segment and a rectangle involves an intersec-

tion check, four segment-to-point MINDIST calculations and two point-to-rectangle

MINDIST calculations.

In this paper, we propose a more efficient method to calculate MINDIST between

a line segment L and a rectangle M (Fig. 2). As before, if L intersects M, then

MINDIST is obviously zero. Otherwise, we decompose the space in four quadrants

using the two axes passing through the center of M and we determine the quadrants Qs

and Qe in which the start (L.start) and the end (L.end) point of L lie in, respectively.

Then, MINDIST is the minimum among:

• Case 1 (L.start and L.end belong to the same quadrant (Qs= Qe)): (i) MINDIST

between the corner of M in Qs and L, (ii) MINDIST between L.start and M or (iii)

MINDIST between L.end and M.

• Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (i)

MINDIST between the corner of M in Qs and L, (ii) MINDIST between the corner

of M in Qe and L, (iii) MINDIST between L.start and M or (iv) MINDIST between

L.end and M.

• Case 3 (L.start and L.end belong to non adjacent quadrants Qs and Qe, respec-

tively): two MINDIST between the two corners of M, that do not belong in either

Qs or Qe, and L.

This method utilizes a smaller number of (point-to-segment and point-to-rectangle)

distance calculations compared to the corresponding algorithm in [13]. Finally, we

extend the above method in order to calculate the MINDIST metric between the pro-

jection of a trajectory T on the plane (usually called route) and a rectangle M. Since a

route can be viewed as a collection of 2D line segments, the MINDIST between a

route of a trajectory and a rectangle can be computed as the minimum of all MINDIST

between the rectangle and each line segment composing the route. The efficiency of

this calculation can be enhanced by simply not computing twice, with respect to the

query rectangle, the quadrant and the MINDIST of the end and the start of adjacent

line segments.

M

L

d1

d3

d2

M

L

d1

d3

d2

d4

M

L

d1

d2

Case 1: L.start and L.end belong to the same

quadrant

Case 2: L.start and L.end belong to

adjacent quadrants

Case 3: L.start and L.end belong to non

adjacent quadrants

Fig. 2. The proposed calculation method of MINDIST between a line segment and a rectangle

4 NN Algorithms over trajectories

In this section we describe in details the algorithms answering the four types of NN

queries presented in Section 3.1 and, then, we generalize them in order to support the

respective k-NN queries.

4.1 NN algorithm for stationary query objects (points)

The NN algorithm for stationary query objects (PointNNSearch algorithm, illus-

trated in Fig. 3, provides the ability to answer NN queries for a static query object Qp,

during a certain query time period Qper[tstart, tend]. The algorithm uses the same heuris-

tics as in [8] and [2], pruning the search space according to Qper.

The algorithm accesses the tree structure (which indexes the trajectories of the

moving objects) in a depth-first way pruning the tree nodes according to Qper rejecting

those being fully outside it. At leaf level, the algorithm iterates through the leaf entries

checking whether the lifetime of an entry overlaps Qper (Line 4); if the temporal com-

ponent of the entry is fully inside Qper, the algorithm calculates the actual Euclidean

distance between Q and the (spatial component of the) entry; otherwise, if the tempo-

ral component of the entry is only partially inside Qper, a linear interpolation is applied

so as to compute the entry’s portion being inside Qper (Line 5) and calculate the

Euclidean distance between Q and the portion of that entry. When a candidate nearest

is selected, the algorithm, backtracking to the upper level, prunes the nodes in the

active branch list (Line 20) applying the MINDIST heuristic [8] [2].

Algorithm PointNNSearch(node N, 2D point Q, time period Qper, struct
Nearest)
 1. IF N Is Leaf
// Iterate by computing actual Euclidean distance f rom point Q
 2. FOR i = 1 to N.EntriesCount
 3. E = N.Entry(i)
// If entry is (fully or partially) inside the peri od
 4. IF Qper Overlaps (E.TS, E.TE)
// Compute entry’s spatial extent inside the period
 5. nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE))
// Compute actual distance from Q. Update Nearest i f necessary
 6. Dist = Euclidean_Dist_2D(Q, nE)
 7. IF Dist < Nearest.Dist
 8. Nearest.Entry = nE
 9. Nearest.Dist = Dist
10. END IF
11. END IF
12. NEXT
13. ELSE
// Generate branch list with entries overlapping th e query period
14. BranchList = GenBranchList(Q, N, Qper)
// Sort active branch List by MinDist
15. SortBranchList(BranchList)
// Iterate through active branch List
16. FOR i = 1 TO BranchList.Count
17. E = N.Entry(i)
// Visit Child Nodes
18. NN = E.ChildNode
19. PointNNSearch(NN, Q, Qper, Nearest)
// Apply MinDist heuristic to do pruning
20. PruneBranchList(BranchList)
21. NEXT
22. END IF

Fig. 3. Historical NN search algorithm for stationary query points (PointNNSearch)

4.2 NN algorithm for moving query objects (trajectories)

PointNNSearch algorithm can be modified in order to support the second type of NN

query where the query object is a trajectory of a moving point (TrajectoryNN-
Search algorithm, illustrated in Fig. 5). At the leaf level, the algorithm calculates the

minimum horizontal Euclidean Distance between each leaf entry and each query tra-

jectory segment using the Min_Horizontal_Dist function (Line 10) which com-

putes the minimum horizontal Euclidean Distance between two 3D line segments. In

addition, for each segment of trajectory Q and before calculating its distance from the

current entry we first check whether its temporal extent overlaps the temporal extent

of the bounding rectangle of node N.

Algorithm genTrajectoryBranchList(node N, trajectory Q)
 1. FOR i = 1 TO N.EntriesCount
 2. E = N.Entry(i)
// If entry is (fully or partially) inside the traj ectory lifetime
 3. IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)
// Compute trajectory’s spatial extent inside E’s l ifetime
 4. nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE))
// Compute MinDist between the resulted trajectory and the rectangle
 5. Dist=MinDist_Trajectory_Rectangle(nQ, E)
// Add the rectangle along with its calculated dist ance in the list
 6. List.Add(nQ, Dist)
 7. END IF
 8. NEXT
 9. RETURN List

Fig. 4. Generating Branch List of Node N against Trajectory Q

Algorithm TrajectoryNNSearch(node N, trajectory Q, time period Qper,
struct Nearest)
 1. Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))
 2. IF N Is Leaf
 3. FOR j = 1 to Q.Entries
 4. QE=Q.Entry(j)
 5. IF (QE.Ts, QE.Te) Overlaps (N.TS, N.TE)
 6. FOR i = 1 to N.EntriesCount
 7. E = N.Entry(i)
 8. IF (QE.Ts, QE.Te) Overlaps (E.TS, E.TE)
 9. nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE))
10. Dist = Min_Horizontal_Dist(QE, nE)
11. IF Dist < Nearest.Dist
12. Nearest.Entry = nE
13. Nearest.Dist = Dist
14. END IF
15. END IF
16. NEXT
17. END IF
18. NEXT
19. ELSE
20. BranchList = GenTrajectoryBranchList(Q, N)
21. SortBranchList(BranchList)
22. FOR i = 1 TO BranchList.Count
23. E = N.Entry(i)
24. NN = E.ChildNode
25. nQ = Interpolate(Q, Max(Q.TS NN.TS), Min(Q.TE NN.TE))
26. TrajectoryNNSearch(NN, nQ, Nearest)
27. PruneBranchList(BranchList)
28. NEXT
29. END IF

Fig. 5. Historical NN search algorithm for moving query points (TrajectoryNNSearch)

At the non-leaf levels, the algorithm utilizes GenTrajectoryBranchList

function (pseudo-code in Fig. 4) instead of GenBranchList. GenTrajectory-
BranchList(node N, Trajectory Q) utilizes the MinDist_Trajectory_ Rec-
tangle metric introduced in Section 3.2 in order to calculate the MINDIST between

the query trajectory and the rectangle of each entry of the node. Here, we have to point

out that we do not calculate MinDist_Trajectory_Rectangle against the

original query trajectory Q, but against the part of Q being inside the temporal extent

of the bounding rectangle of N, and therefore (if necessary) we have to interpolate to

produce the new query trajectory nQ.

4.3 Extending to k-NN algorithms

In the same fashion as in [8], we generalize the above two algorithms to searching the

k-nearest neighbors by considering the following:

• Using a buffer of at most k (current) nearest objects sorted by their actual distance

from the query object (point or trajectory).

• Pruning according to the distance of the (currently) furthest object in the buffer.

• Updating the distance of each moving object inside the buffer when visiting a node

that contains an entry of the same object closer to the query object.

5 CNN Algorithms over trajectories

The continuous counterparts of the previously described algorithms are also of

branch-and-bound type.

5.1 CNN algorithm for stationary query objects (points)

We first discuss the query that searches for the nearest moving objects to a stationary

query point at any time during a given time period. ContPointNNSearch algo-

rithm used to process this type of query is illustrated in Fig. 6.

All the continuous algorithms use a MovingDist structure (Fig. 6, Line 6), stor-

ing the parameters of the distance function, along with the entry’s temporal extent and

the associated minimum and maximum (Dmin and Dmax respectively) of the function

during its lifetime. We also store the actual entry inside the structure in order to be

able to return it as the query result. ConstructMovingDistance simply calcu-

lates this structure.

In Line 8, the Nearests structure is introduced. Nearests is a list of adjacent

“Moving Distances” temporally covering the period QPer. Roof is the maximum of

all moving distances stored inside the Nearests list and is used to quickly reject

those entries (and prune those branches at the non-leaf level) having their minimum

distance greater than Roof (consequently, greater than all moving distances stored

inside the Nearests list). More details on the maintenance of the Nearests structure

can be found in [3].

When backtracking at non-leaf levels, ContPointNNSearch applies Prun-
eContBranchList, which prunes the branch list using the MINDIST heuristic:

First, it compares the MINDIST of each entry with Roof, then it calculates the maxi-

mum distance inside the Nearests list during the entry’s lifetime and prunes all entries

having MINDIST greater than the calculated one.

Algorithm ContPointNNSearch(node N, 2D point Q, Period Qper, List
Nearests, Roof)
 1. IF N Is Leaf
 2. FOR i = 1 to N.EntriesCount
 3. E = N.Entry(i)
 4. IF Qper Overlaps (E.TS, E.TE)
 5. nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE))
 6. MovingDist = ConstructMovingDistance(nE, Q)
 7. IF MovingDist.Dmin < Roof
 8. UpdateNearests(Nearests, MovingDist, Roof)
 9. END IF
10. END IF
11. NEXT
12. ELSE
13. BranchList = GenBranchList(Q, N, Qper)
14. SortBranchList(BranchList)
15. PruneContBranchList(BranchList, Nearests, Roof)
16. FOR i = 1 TO BranchList.Count
17. E = N.Entry(i)
18. NN = E.ChildNode
19. ContPointNNSearch(NN, Q, Qper, Nearests, Roof)
20. PruneContBranchList(BranchList, Nearests, Roof)
21. NEXT
22. END IF

Fig. 6. Historical CNN search algorithm for stationary query points (ContPointNNSearch)

5.2 CNN algorithm for moving query objects (trajectories)

The fourth type of NN query is the continuous version of the NN query where the

query object is the trajectory of a moving point. The algorithm ContTrajec-
toryNNSearch, used to process this type of query is illustrated in Fig. 7.

ContTrajectoryNNSearch differs from ContPointNNSearch at two

points only: Firstly, at leaf level, ConstructMovingDistance calculates the

“Moving distance” between two moving points, instead of one moving and one sta-

tionary in the non-continuous case (Line 10). As in TrajectoryNNSearch, we

perform a loop through all the 3D line segments of the query trajectory Q and, for

each segment of Q and before processing the leaf entries, we first check whether the

lifetime of Q overlaps the temporal extent of the bounding rectangle of N (Line 8).

Secondly, at the non-leaf level, GenBranchList is replaced by GenTrajec-
toryBranchList introduced in the description of TrajectoryNNSearch

algorithm (Line 19).

Algorithm ContTrajectoryNNSearch (node N, Trajectory Q, time period
Qper, List Nearests, Roof)
 1. Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))
 2. IF N Is Leaf
 3. FOR j = 1 to Q.Entries
 4. QE=Q.Entry(j)
 5. IF (QE.Ts, QE.Te) Overlaps (N.TS, N.TE)
 6. FOR i = 1 to N.EntriesCount
 7. E = N.Entry(i)
 8. IF (QE.Ts, QE.Te) Overlaps (E.TS, E.TE)
 9. nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE,E.TE))
10. MovingDist = ConstructMovingDistance(nE, QE)
11. IF MovingDist.Dmin < Roof
12. UpdateNearests(Nearests, MovingDist, Roof)
13. END IF
14. END IF
15. NEXT
16. END IF
17. NEXT
18. ELSE
19. BranchList = GenTrajectoryBranchList(Q, N)
20. SortBranchList(BranchList)
21. PruneContBranchList(BranchList, Nearests, Roof)
22. FOR i = 1 TO BranchList.Count
23. E = N.Entry(i)
24. NN = E.ChildNode
25. nQ = Interpolate(Q, Max(Q.TS, NN.TS), Min(Q.TE, NN.TE))
26. ContTrajectoryNNSearch(NN, nQ, Nearests, Roof)
27. PruneContBranchList(BranchList, Nearests, Roof)
28. NEXT
29. END IF

Fig. 7. Historical CNN search algorithm for moving query points (ContTrajectoryNNSearch

algorithm)

5.3 Extending to k-CNN algorithms

The two continuous algorithms can be also generalized to searching the k- nearest

neighbors by considering the following:

• Using a buffer of at most k current Nearests Lists

• Pruning according to the distance of the furthest Nearests Lists in the buffer –

therefore Roof is calculated as the maximum distance of the furthest Nearests

List

• Processing each entry against the i-th list (with i increasing, from 1 to k) checking

whether it qualifies to be in a list

• Testing each moving distance, replaced by a new entry in the i-th list, against the

(i+1)-th list to find whether it qualifies to be in a list.

6 Performance Study

The above illustrated algorithms can be implemented in any R-tree-like structure stor-

ing historical moving object information such as the 3D R-tree [16], the STR-tree [7]

and the TB-tree [7]. Among them, we have chosen to implement the algorithms using

the TB-tree due to its proven efficiency regarding historical trajectory information, as

demonstrated in [7]. In our implementation, we set a page size of 4096 bytes and a

(variable size) buffer fitting the 10% of the index size, thus leading to a maximum of

1000 pages. The experiments were performed in a PC running Microsoft Windows XP

with AMD Athlon 64 3GHz processor, 512 MB RAM and several GB of disk size.

6.1 Datasets

While several real spatial datasets are around for experimental purposes, this is not

true for the moving object domain. Nevertheless, in this paper, we have exploited on

two real-world datasets: a fleet of trucks and a fleet of school buses illustrated in Fig.

8(a) and (b), respectively, and consisting of 276 (112203) and 145 (66096) trajecto-

ries (entries in the index), respectively. We have also used synthetic datasets generated

by the GSTD data generator [14] in order to achieve a scalability in the volumes of the

datasets. A snapshot of the generated data using GSTD is illustrated in Fig. 8(c). The

synthetic trajectories generated by GSTD correspond to 20, 50, 100, 250, 500 and

1000 moving objects with the position of each object sampled approximately 1500

times.

(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data

Fig. 8. Snapshots of real and synthetic spatiotemporal data

Table 1 illustrates summary information about the datasets used. The number of

pages occupied by the index for each dataset will be used for calculating the pruning

acheived in the search space.

Table 1. Summary Dataset Information

 Real Data GSTD

 Trucks Buses 20 50 100 250 500 1000

trajectories 276 145 20 50 100 250 500 1000

entries 112203 66096 30277 75717 151482 378803 757360 1514844

index size in

pages (of 4kb)
835 466 205 507 1010 2521 5040 10073

6.2 Results on the Search Cost of the non-continuous algorithms

The performance of the proposed algorithms was measured in terms of node ac-

cesses. Several queries were used in order to evaluate the performance of the proposed

algorithms over the synthetic and real data. In particular, we have used the following

query sets:

• Q1, Q2: PointNNSearch was evaluated with two sets of 500 NN queries in-

creasing the number of moving objects over the GSTD datasets. The queries used

a random point in the 2D space and a time period of 1% (5%) of the temporal di-

mension for Q1 (Q2).

• Q3, Q4: TrajectoryNNSearch was evaluated with two sets of 500 NN que-

ries increasing the number of moving objects over the GSTD datasets. The 500

query objects (trajectories) were produced using GSTD also employing a Gaussian

initial distribution and a random movement distribution. Then, in Q3 (Q4) we used

a random 1% (5%) part of each trajectory as the query trajectory.

• Q5, Q6: two sets of 500 k-NN queries over the real Trucks dataset increasing the

number of k with fixed time and increasing the size of the time interval (with fixed

k=1) respectively. For PointNNSearch we used a random point in the 2D space

with a 5% of time as query period, while for TrajectoryNNSearch we used a

random part of a random trajectory belonging to Buses dataset, temporally cover-

ing 1% of time.

0

5

10

15

20

25

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q1

Q2

0

50

100

150

200

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q3

Q4

0

0.5

1

1.5

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q1

Q2

0

0.5

1

1.5

2

2.5

3

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q3

Q4

(a) (b) (c) (d)

Fig. 9. Node Accesses and searched space in queries Q1-Q4 with the number of moving objects

Fig. 9 illustrates the average number of node accesses per query for the query sets

Q1-Q4 evaluating PointNNSearch and TrajectoryNNSearch. In particular,

Fig. 9(a) shows the average number of node accesses per query using the point query

sets Q1 and Q2, while Fig. 9(b) shows the average number of node accesses per query

using the trajectory query sets Q3 and Q4. As it is clearly illustrated, the performance

of the algorithm depends linearly on the dataset cardinality and degrades (more pages

are accessed) as the cardinality grows. It is worth to point out that comparing query

sets Q1 and Q2, the algorithm accesses more pages in query set Q1, although the life-

time of Q2 is longer than that of Q1 (5% against 1% of the total time). This observa-

tion can be explained bearing in mind that decreasing the query temporal extent, the

expected nearest distance increases, resulting in fewer pruned nodes in the backtrack-

ing procedure of the algorithm. As expected, TrajectoryNNSearch tends to be

much more expensive than PointNNSearch.

The results in Fig. 9(c) and (d) demonstrate the percentage of the indexed space

actually used for searching. As illustrated, in all cases, increasing the index size, the

percentage of the space to be searched decreases, resulting (for over 1000 moving

objects) in a 0.20% of the whole index space for point NN queries and in a 1.2% - 2%

for trajectory NN queries. So as to make the results more readable, we have to point

out that a range search over the index with zero spatial and 1% temporal extent would

lead to a searching among the 10% of the whole indexed space – showing that the

pruning performed by our algorithms is much more efficient than a sequential search.

The conclusion gathered from the previous observations is that the algorithms pre-

sented show high pruning ability, well bounding the space to be searched in order to

answer NN queries.

The performance of the two non-continuous NN algorithms increasing the number

of k is shown in Fig. 10(a) against Buses dataset.

0

20

40

60

80

0 5 10
k

N
o
de

 a
c
c
e
s
se

s

Q5-PointNNSearch

Q5-TrajectoryNNSearch

0

20

40

60

80

100

120

140

0 0.05 0.1
T

N
o
d
e
 a

c
c
e
s
s
e
s

Q6-PointNNSearch

Q6-TrajectoryNNSearch

(a) (b)

Fig. 10. Node Accesses in queries (a) Q5 increasing the number of k and (b) Q6 increasing the

query temporal extent

Clearly, the number of node accesses needed for the processing of a k-NN query

increases linearly with k. Fig. 10(b) illustrates the average number of node accesses

per non-continuous point and trajectory query increasing the temporal extent against

the real “trucks” dataset. It is clear that the cost of TrajectoryNNSearch tends to

increase with greater rate than the increase of PointNNSearch. This observation

can be easily explained since when increasing the temporal interval, the spatial extent

of the query trajectory also increases leading to a greater spatial space to be searched.

6.3 Results on the Search Cost of the continuous algorithms

In coincidence with the experiments conducted for the non-continuous algorithms, the

continuous NN search algorithms were evaluated with the following query sets:

• Q7, Q8: ContPointNNSearch was evaluated with two sets of 500 NN queries

increasing the number of moving objects over the GSTD datasets like what was

done for query sets Q1 and Q2.

• Q9, Q10: ContTrajectoryNNSearch was evaluated with two sets of 500 NN

queries increasing the number of moving objects over the GSTD datasets like what

was done for query sets Q3 and Q4.

• Q11, Q12: two sets of 500 k-CNN queries over the real dataset of buses increasing

the number of k with fixed time and increasing the size of the time interval (with

fixed k=1) respectively. For ContPointNNSearch we used a random point in

2D space with a 5% of time as query period, while for ContTrajectoryNN-
Search we used a random part of a random trajectory belonging to the buses

dataset, temporally covering 1% of time.

Fig. 11 illustrates similar results as in Fig. 9, regarding the continuous counterpart

of the NN algorithms, thus, illustrating the average number of node accesses per query

for the queries sets Q7- Q10. In particular, Fig. 11(a) presents the average number of

node accesses per query using ContPointNNSearch against query sets Q7 and Q8

while Fig. 11(b) presents the average number of node accesses per query using

ContTrajectoryNNSearch against query sets Q9 and Q10.

0

10

20

30

40

50

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q7

Q8

0

50

100

150

200

250

300

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q9

Q10

0

0.5

1

1.5

2

2.5

3

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q7

Q8

0

1

2

3

4

5

6

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
ce

Q9

Q10

(a) (b) (c) (d)

Fig. 11. Node Accesses and searched space in queries Q7-Q10 increasing the number of mov-

ing objects

Again, the performance of the algorithms linearly depends on the dataset cardinal-

ity and degrades (more pages are accessed) as the cardinality grows. Fig. 11(c) and (d)

show the accessed index part as a percentage of the indexed space, illustrating that in

all cases, increasing the index size the percentage of the space to be searched de-

creases, resulting (for over 1000 moving objects) in a 0.50% of the whole index space

for point CNN search and in a 2.5% - 3 % for trajectory CNN search.

A comparison between the non-continuous NN algorithms with their continuous

counterparts (e.g. Fig. 9 vs. Fig. 11), shows that the continuous algorithms are much

more expensive than the non-continuous ones, which is expected since the continuous

algorithms prune the search space by using a list of moving distances instead of a

single distance.

The performance of the continuous NN algorithms increasing the number of k is il-

lustrated in Figure 12(a) for the real Buses dataset. The number of node accesses re-

quired for the processing of a k-NN query increases linearly with k. Figure 12(b) illus-

trates the average number of node accesses per continuous point and trajectory query

increasing the temporal extent for Trucks dataset. Presenting the same behavior as

with the non-continuous queries, the performance of ContTrajectoryNNSearch

tends to degrade with greater rate than that of ContPointNNSearch, having the

same explanation (by increasing the temporal interval, the spatial extent of the query

trajectory also increases leading to a greater spatial space to be searched).

0

20

40

60

80

100

0 5 10
k

N
o
d
e
 a

c
c
e
s
s
e
s

Q11-ContPointNNSearch

Q11-ContTrajectoryNNSearch

0

40

80

120

160

200

240

0 0.05 0.1
T

N
o
d
e
 a

c
c
e
s
s
e
s

Q12-ContPointNNSearch

Q12-ContTrajectoryNNSearch

(a) (b)

Fig. 12. Node Accesses in queries (a) Q11 increasing the number of k and (b) Q12 increasing

the query temporal extent

7 Conclusions and Future Work

NN queries have been in the core of the spatial and spatiotemporal database research

during the last decade. The majority of the algorithms processing such queries so far

mainly deals with either stationary or moving query points over static datasets or fu-

ture (predicted) locations over a set of continuously moving points. In this work, ac-

knowledging the contribution of related work, we presented the first complete treat-

ment of historical NN queries over moving object trajectories stored on R-tree like

structures. Based on our proposed novel metrics, which support our searching and

pruning strategies, we presented algorithms answering the NN and CNN queries for

stationary query points or trajectories and generalized them to search for the k nearest

neighbors. The algorithms are applicable to R-tree variations for trajectory data,

among which, we used the TB-tree for our performance study due to its proven effi-

ciency regarding historical trajectory information. Under various synthetic datasets

(generated by GSTD) and two real trajectory datasets, we illustrated that our algo-

rithms show high pruning ability, well bounding the space to be searched in order to

answer NN and CNN queries. The pruning power of our algorithms is also verified in

the case of the k-NN and k-CNN queries (for various values of k).

As such, future work includes the development of algorithms to support distance

join queries (“find pairs of objects passed nearest to each other (or within distance d

from each other) during a certain time interval and/or under a certain space con-

straint”). A second research direction includes the development of selectivity estima-

tion formulae for query optimization purposes investing on the work presented in [15]

for predictive spatiotemporal queries.

Acknowledgements

Research partially supported by the Archimedes and Pythagoras EPEAEK II Pro-

grammes of the Greek Ministry of National Education and Religious Affairs, co-

funded by the European Union. We are also grateful to Emphasis Telematics S.A. for

providing the real Buses and Trucks datasets used for our experimentation purposes.

References

1. Benetis, R., Jensen, C., Karciauskas, G., and Saltenis, S., Nearest Neighbor and Reverse

Nearest Neighbor Queries for Moving Objects. Proceedings of IDEAS, 2002

2. Cheung, K.L., and Fu, A.,W., Enhanced Nearest Neighbour Search on the R-tree. SIGMOD

Record, vol. 27(3), pp. 16-21, September 1998

3. Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y., Nearest Neighbor Search on

Moving Object Trajectories. UNIPI-ISL-TR-2005-02, Technical Report Series, University

of Piraeus, 2005. Available at: http://isl.cs.unipi.gr/db.

4. Hjaltason, G., and Samet, H., Distance Browsing in Spatial Databases, ACM Transactions in

Database Systems, vol. 24(2), pp. 265-318, 1999

5. Iwerks, G.S., Samet, H., and Smith, K., Continuous K-Nearest Neighbor Queries for Con-

tinuously Moving Points with Updates, Proceedings of VLDB, 2003

6. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., and Theodoridis, Y., R-trees:

Theory and Applications, Springer-Verlag, 2005

7. Pfoser D., Jensen C. S., and Theodoridis, Y., Novel Approaches to the Indexing of Moving

Object Trajectories, Proceedings of VLDB, 2000

8. Roussopoulos, N., Kelley, S., and Vincent, F., Nearest Neighbor Queries, Proceedings of

ACM SIGMOD, 1995

9. Saltenis, S., Jensen, C. S., Leutenegger, S. and Lopez, M., Indexing the Positions of Con-

tinuously Moving Objects, Proceedings of ACM SIGMOD, 2000

10. Shahabi, C., Kolahdouzan, M., and Sharifzadeh, M., A Road Network Embedding Tech-

nique for K-Nearest Neighbor Search in Moving Object Databases, GeoInformatica, vol.

7(3), pp. 255-273, 2003

11. Song, Z., and Roussopoulos, N., K-Nearest Neighbor Search for Moving Query Point,

Proceedings of SSTD, 2001

12. Tao, Y., and Papadias, D., Time Parameterized Queries in Spatio-Temporal Databases,

Proceedings of ACM SIGMOD, 2001

13. Tao, Y., Papadias, D., and Shen, Q., Continuous Nearest Neighbor Search, Proceedings of

VLDB, 2002

14. Theodoridis, Y., Silva, J. R. O., and Nascimento, M. A., On the Generation of Spatio-

temporal Datasets, Proceedings of SSD, 1999

15. Tao, Y., Sun, J., and Papadias, D., Analysis of predictive spatio-temporal queries, ACM

Transactions on Database Systems vol. 28(4), pp. 295-336, December 2003

16. Theodoridis, Y., Vazirgiannis, M., and Sellis, T., Spatio-temporal Indexing for Large Mul-

timedia Applications. Proceedings of ICMCS, 1996

