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Abstract. With the increasing number of Mobile Location Services (MLS), the 

need for effective k-NN query processing over historical trajectory data has be-

come the vehicle for data analysis, thus improving existing or even proposing 

new services. In this paper, we investigate mechanisms to perform NN search 

on R-tree-like structures storing historical information about moving object tra-

jectories. The proposed branch-and-bound algorithms vary with respect to the 

type of the query object (stationary or moving point) as well as the type of the 

query result (continuous or not). We also propose novel metrics to support our 

search ordering and pruning strategies. Using the implementation of the pro-

posed algorithms on a member of the R-tree family for trajectory data (the TB-

tree), we demonstrate their scalability and efficiency through an extensive ex-

perimental study using synthetic and real datasets. 

1   Introduction 

With the integration of wireless communications and positioning technologies, the 

concept of Moving Object Databases (MOD) has become increasingly important, and 

has posed a great challenge to the database community. In such implicitly formulated 

location-aware environments, moving objects are continuously changing locations; 

nevertheless existing DBMSs are not well equipped to handle continuously changing 

data. Emerging location-dependent services (including nearby information accessing 

and enhanced 911 services) call for new query processing algorithms and techniques 

to deal with both the spatial and temporal domains.  

Unlike traditional databases, MODs have some distinctive characteristics: First of 

all, spatio-temporal queries are continuous in nature. In contrast to snapshot queries, 

which are invoked only once, continuous queries require continuous evaluation as the 

query result becomes invalid after a short period of time. Secondly, we typically have 

to deal with vast volumes of historical data which correspond to a large number of 

mobile and stationary objects. As a consequence, querying functionality embedded in 



an extensible DBMS that supports moving objects has to present robust behavior in 

the above mentioned issues. 

An important class of queries that definitely turns out to be useful for MOD proc-

essing is the so-called k nearest neighbor (k-NN) queries, where one is interested in 

finding the k closest trajectories to a predefined query object Q. To our knowledge, in 

the literature such queries primarily deal with either static ([8], [2], [4]) or continu-

ously moving query points ([11], [13]) over stationary datasets, or queries about the 

future positions of a set of continuously moving points ([1], [12], [5]). Apparently, 

these types of queries do not cover NN search on historical trajectories. 

The challenge accepted in this paper is to describe diverse mechanisms to perform 

k-NN search on R-tree-like structures [6] storing historical information. To illustrate 

the problem, consider an application tracking the positions of rare species of wild 

animals. Such an application is composed of a MOD storing the location dependent 

data, together with a spatial index for searching and answering k-NN queries in an 

efficient manner. Experts in the field would be advantaged if they could pose queries 

about the nearest trajectories of animals to a stationary point (lab, source of food or 

other non-emigrational species) or an animal moving from location P1 to P2 during a 

period of time. By these types of queries an expert may figure out motion habits and 

patterns of wild species or deviations from natural emigration, which could be interre-

lated with environmental and/or ecological changes or destructions. Having in mind 

that users of MODs are usually interested in continuous types of queries, the above 

queries can be extended to their continuous counterparts, where the result is a time-

varying number (the nearest distance depends on time) along with a collection of tra-

jectory ids and the appropriate time intervals for which each moving object is valid. 

To make the previous example more intelligible, Fig. 1 illustrates the trajectories 

of six moving animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1 

and Q2) representing two sources of food. Now, consider the following queries dem-

onstrated in Fig. 1 (Queries 2 and 4 are the continuous counterparts of Queries 1 and 

3, respectively):  
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Fig. 1. Continuous and non-continuous point and trajectory NN queries over moving objects 

trajectories 

• Query 1. “Find which animal was nearest to the stationary food source Q1 during 

the time period [t1, t4]”, resulting to animal O1. 



• Query 2. “Find which animal was nearest to the stationary food source Q2 at any 

time instance of the time period [t1 t4]”, resulting to a list of objects: O2 for the in-

terval [t1,t3); O1 for the interval [t3,t4]. 

• Query 3. “Find which animal was nearest to animal O3 during the time period 

[t2,t6]”, resulting to O2. 

• Query 4. “Find which animal was nearest to animal O6 at any time instance of the 

time period [t2,t6]”, resulting to a list of objects: O5 for the interval [t2,t5); O4 for 

the interval [t5,t6]. 

To the best of our knowledge, this is the first work on continuous k-NN query 

processing over historical trajectories of moving objects. Outlining the major issues 

that will be addressed in this paper, our main contributions are as follows: 

• We propose a set of four query processing algorithms to perform NN search on R-

tree-like structures storing historical information about moving objects. The de-

scription of our branch-and-bound traversal algorithms for different queries de-

pends on the type of the query object as well as on whether the query itself is con-

tinuous or not. The algorithms are generalized to find the k nearest neighbors. 

• We propose novel metrics to support our search ordering and pruning strategies. 

More specifically, the definition of the minimum distance metric MINDIST be-

tween points and rectangles, initially proposed in [8] and extended in [13], is fur-

ther extended in order for our algorithms to calculate the minimum distance be-

tween trajectories and rectangles. 

• We conduct a comprehensive set of experiments over synthetic and real datasets 

demonstrating that the algorithms are highly scalable and efficient in terms of node 

accesses and pruned space. 

The rest of the paper is structured as follows. Related work is discussed in Section 

2, while Section 3 introduces, at an abstract level, the set of k-NN algorithms over 

moving object trajectories, as well as the metrics that support our search ordering and 

pruning strategies. Sections 4 and 5 constitute the core of the paper describing in de-

tail the query processing algorithms to perform NN search over historical trajectory 

information (Section 4) together with their continuous counterparts (Section 5). Sec-

tion 6 presents the results of our experimental study and Section 7 provides the con-

clusions of the paper and some interesting research directions. 

2   Related Work 

In the last decade, NN queries have fueled the spatial and spatiotemporal database 

community with a series of interesting noteworthy research issues.  

The first algorithm for k nearest neighbor search over a moving query point was 

proposed in [11]. The algorithm assumes that sites (landmark points) are static and 

their locations (known in advance) are stored in an R-tree-like structure. A discrete 

time dimension is assumed, thus a periodical sampling technique is applied on the 

trace of the moving query point. The location of the query point that lies between two 

consecutive sampled locations is estimated using linear or polynomial splines.  



Using the TPR-tree (Time Parameterized Tree) structure [9], Benetis et al. [1] pre-

sented efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for 

moving objects. (An RNN query returns all the objects that the query object is the 

nearest neighbor of.) The proposed algorithm was the first to address continuous RNN 

queries, since previous existing RNN algorithms were developed under the assump-

tion that the query point is stationary. The algorithms for both NN and RNN queries in 

[1] refer to future (estimated) locations of the query and data points, which are as-

sumed to be continuously moving on the plane. In the same paper, an algorithm for 

answering CNN queries is also proposed. 

Tao et al. [13] also studied CNN queries and proposed an R-tree based algorithm  

(for moving query points and static data points) that avoids the pitfalls of previous 

ones (false misses and high processing cost). The proposed tree pruning heuristics 

exploit the MINDIST metric presented in [8]. At each leaf entry, the algorithm fo-

cuses on the accurate calculation of the split points (the points of the query segment 

that demonstrate a change of neighborhood). A theoretical analysis of the optimal 

performance for CNN algorithms was presented and cost models for node accesses 

were proposed. Finally, the CNN algorithm was extended for the case of k neighbors 

and trajectory inputs. 

Shahabi et al. [10] presented the first algorithm for processing the k-NN queries 

for moving objects in road networks. Their proposed algorithm, which utilizes the 

network distance between two locations instead of the Euclidean, is based on trans-

forming the road network into a higher dimensional space, in which simpler distance 

functions can be applied. Using this embedding space, efficient techniques are pro-

posed for finding the shortest path between two points in the road network. The above 

procedure, which is utilized in the case of static query points, is slightly modified in 

order to support the case of moving query points. 

Acknowledging the advantages of the above fundamental techniques, in this paper 

we present the first complete treatment of historical NN queries over moving object 

trajectories, handling both stationary and moving query objects. 

3   Problem Statements and Metrics 

We first define the NN queries that are considered in this paper. Subsequently, we 

present the heuristics utilized by our algorithms to implement the metrics needed to 

formulate our ordering and pruning strategy. 

3.1   Problem Statement  

Let D be a database of N moving objects with objects ids {O1, O2, …, ON}. The tra-

jectory Ti of a moving object Oi consists of Mi 3D-line segments {
1i

L , 
2i

L , …, 
iMi

L }. 

Each 3D line segment Lj is of the form ((xj-start, yj-start, tj-start), (xj-end, yj-end, tj-end)), where 

t0 ≤ tj-start < tj-end ≤ now. Obviously, as we treat only historical moving object trajecto-



ries, each partial linear movement is temporally restricted between t0, the beginning of 

the calendar, and now, the current time point. 

We have already stated that NN queries search for the closest trajectories to a 

query object Q. In our case, we distinguish two types of query objects: Qp, a point 

(x,y) that remains stationary during the time period of the query Qper[tstart, tend], and QΤ ,  

a moving object with trajectory T. Furthermore, the MOD is indexed by an R-tree like 

structure such as the 3D R-tree [16], the STR-tree or the TB-tree [7]. Having in mind 

the previous discussion, we define the following two types of NN queries:  

• NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that 

remains stationary during a time period Qper, and returns the closest to Qp point pc 

from which a moving object Oi passed during the time period Qper, as well as the 

implied minimum distance. 

• NN_QT (D, QT, Qper) query is similar to the previous with the difference being 

upon the query object Q which in the current case is a moving object with trajec-

tory T. 

The extensions of the above queries to their continuous counterparts vary in the 

output of the algorithms. In the continuous case, each query returns a time-varying real 

number, as the nearest distance depends on time. We introduce the following two 

types of CNN queries: 

• CNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time 

period Qper returns a list of triplets consisting of the time-varying real value Ri 

along with a moving object Oi (belonging in database D) and the corresponding 

time period [ti-start, ti-end) for which the nearest distance between Qp and Oi stands. 

These time-varying real values Ri are, in any time instance of their lifetime, smaller 

or equal to the distance between any moving object Oj in D and the query point Qp. 

The time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.  

• Similarly, CNN_QT (D, QT, Qper) differs, compared to the previous, upon the query 

object Q which in the current case is a moving object with trajectory T. These 

time-varying real values Ri are, in any time instance of their lifetime, smaller or 

equal to the distance between any moving object Oj and the query trajectory QT. 

The time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper. 

The above four queries are generalized to produce the corresponding k-NN que-

ries. The generalization of the first two queries is straightforward by simply requesting 

the 1-st, 2-nd, …, k-th nearest point – with respect to a query point or a query trajec-

tory – from which a moving object Oi passed during the time period Qper, excluding at 

the same time points belonging to a moving object already marked as the j-th nearest 

(1 ≤ j < k). The continuous queries are generalized to produce k-CNN requesting to 

provide with k lists of {Ri, [ti-start, ti-end), Oi} triplets. Then, for any time during the time 

period Qper, the i-th list (1 ≤ i ≤ k) will contain the i-order NN moving object (with 

respect to the query point or the query trajectory) at this time instance.  

To exemplify the proposed k-NN extensions, let us recall Fig. 1. Searching for the 

2-NN versions of the four queries (Query 1, 2, 3 and 4) presented in Section 1, we will 

have the following results: 

• Query 1 (non-continuous): O1 (1
st
 NN) and O2 (2

nd
 NN) 



• Query 2 (continuous): 1-NN list includes O2 for the interval [t1,t3) and O1 for the 

interval [t3,t4]; 2-NN list includes O1 for the interval [t1,t3) and O2 for the interval 

[t3,t4] 

• Query 3 (non-continuous): O2 (1st NN) and O4 (2nd NN) 

• Query 4 (continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for the 

interval [t5,t6]; 2-NN list includes O4 for the interval [t2,t5) and O5 for the interval 

[t5,t6]. 

3.2   Metrics 

We exploit on the definition of the minimum distance metric (MINDIST) presented in 

[8] between points and rectangles, in order to calculate, on the one hand, the minimum 

distance between line segments and rectangles and, on the other hand, the minimum 

distance between trajectories and rectangles that are needed to implement the above 

discussed algorithms. 

Initially, in [8], Roussopoulos et al. defined the Minimum Distance (MINDIST) 

between a point P in the n-dimensional space and a rectangle R in the same space as 

the square of the Euclidean distance between P and the nearest edge of R, if P is out-

side R (or zero, if P is inside R).  

In the sequel, Tao et al. [13] proposed a method to calculate the MINDIST be-

tween a 2D line segment L and a rectangle M. They initially determine whether L 

intersects M; if so, MINDIST is set to zero. Otherwise, they choose the shortest 

among six distances, namely the four distances between each corner point of M and L 

and the two minimum distances from the start and end point of L to M. Therefore, the 

calculation of MINDIST between a line segment and a rectangle involves an intersec-

tion check, four segment-to-point MINDIST calculations and two point-to-rectangle 

MINDIST calculations.  

In this paper, we propose a more efficient method to calculate MINDIST between 

a line segment L and a rectangle M (Fig. 2). As before, if L intersects M, then 

MINDIST is obviously zero. Otherwise, we decompose the space in four quadrants 

using the two axes passing through the center of M and we determine the quadrants Qs 

and Qe in which the start (L.start) and the end (L.end) point of L lie in, respectively. 

Then, MINDIST is the minimum among:  

• Case 1 (L.start and L.end belong to the same quadrant (Qs= Qe)): (i) MINDIST 

between the corner of M in Qs and L, (ii) MINDIST between L.start and M or (iii) 

MINDIST between L.end and M. 

• Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (i) 

MINDIST between the corner of M in Qs and L, (ii) MINDIST between the corner 

of M in Qe and L, (iii) MINDIST between L.start and M or (iv) MINDIST between 

L.end and M.  

• Case 3 (L.start and L.end belong to non adjacent quadrants Qs and Qe, respec-

tively): two MINDIST between the two corners of M, that do not belong in either 

Qs or Qe, and L. 

This method utilizes a smaller number of (point-to-segment and point-to-rectangle) 

distance calculations compared to the corresponding algorithm in [13]. Finally, we 



extend the above method in order to calculate the MINDIST metric between the pro-

jection of a trajectory T on the plane (usually called route) and a rectangle M. Since a 

route can be viewed as a collection of 2D line segments, the MINDIST between a 

route of a trajectory and a rectangle can be computed as the minimum of all MINDIST 

between the rectangle and each line segment composing the route. The efficiency of 

this calculation can be enhanced by simply not computing twice, with respect to the 

query rectangle, the quadrant and the MINDIST of the end and the start of adjacent 

line segments. 
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Fig. 2. The proposed calculation method of MINDIST between a line segment and a rectangle 

4   NN Algorithms over trajectories 

In this section we describe in details the algorithms answering the four types of NN 

queries presented in Section 3.1 and, then, we generalize them in order to support the 

respective k-NN queries. 

4.1   NN algorithm for stationary query objects (points) 

The NN algorithm for stationary query objects (PointNNSearch algorithm, illus-

trated in Fig. 3, provides the ability to answer NN queries for a static query object Qp, 

during a certain query time period Qper[tstart, tend]. The algorithm uses the same heuris-

tics as in [8] and [2], pruning the search space according to Qper. 

The algorithm accesses the tree structure (which indexes the trajectories of the 

moving objects) in a depth-first way pruning the tree nodes according to Qper rejecting 

those being fully outside it. At leaf level, the algorithm iterates through the leaf entries 

checking whether the lifetime of an entry overlaps Qper (Line 4); if the temporal com-

ponent of the entry is fully inside Qper, the algorithm calculates the actual Euclidean 

distance between Q and the (spatial component of the) entry; otherwise, if the tempo-

ral component of the entry is only partially inside Qper, a linear interpolation is applied 

so as to compute the entry’s portion being inside Qper (Line 5) and calculate the 

Euclidean distance between Q and the portion of that entry. When a candidate nearest 



is selected, the algorithm, backtracking to the upper level, prunes the nodes in the 

active branch list (Line 20) applying the MINDIST heuristic [8] [2]. 

 
 
Algorithm PointNNSearch(node N, 2D point Q, time period Qper, struct 
Nearest) 
 1.  IF N Is Leaf 
// Iterate by computing actual Euclidean distance f rom point Q 
 2.    FOR i = 1 to N.EntriesCount 
 3.      E = N.Entry(i) 
// If entry is (fully or partially) inside the peri od 
 4.      IF Qper Overlaps (E.TS, E.TE) 
// Compute entry’s spatial extent inside the period  
 5.        nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 
// Compute actual distance from Q. Update Nearest i f necessary 
 6.        Dist = Euclidean_Dist_2D(Q, nE) 
 7.        IF Dist < Nearest.Dist 
 8.          Nearest.Entry = nE 
 9.          Nearest.Dist = Dist 
10.        END IF 
11.      END IF 
12.    NEXT 
13.  ELSE 
// Generate branch list with entries overlapping th e query period 
14.    BranchList = GenBranchList(Q, N, Qper) 
// Sort active branch List by MinDist 
15.    SortBranchList(BranchList) 
// Iterate through active branch List  
16.    FOR i = 1 TO BranchList.Count 
17.      E = N.Entry(i) 
// Visit Child Nodes 
18.      NN = E.ChildNode 
19.      PointNNSearch(NN, Q, Qper, Nearest) 
// Apply MinDist heuristic to do pruning  
20.      PruneBranchList(BranchList) 
21.    NEXT 
22.  END IF 
 

Fig. 3. Historical NN search algorithm for stationary query points (PointNNSearch) 

4.2   NN algorithm for moving query objects (trajectories) 

PointNNSearch algorithm can be modified in order to support the second type of NN 

query where the query object is a trajectory of a moving point (TrajectoryNN-
Search algorithm, illustrated in Fig. 5). At the leaf level, the algorithm calculates the 

minimum horizontal Euclidean Distance between each leaf entry and each query tra-

jectory segment using the Min_Horizontal_Dist function (Line 10) which com-

putes the minimum horizontal Euclidean Distance between two 3D line segments. In 

addition, for each segment of trajectory Q and before calculating its distance from the 

current entry we first check whether its temporal extent overlaps the temporal extent 

of the bounding rectangle of node N. 

 



 
Algorithm genTrajectoryBranchList(node N, trajectory Q) 
 1.  FOR i = 1 TO N.EntriesCount 
 2.     E = N.Entry( i) 
// If entry is (fully or partially) inside the traj ectory lifetime 
 3.    IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)  
// Compute trajectory’s spatial extent inside E’s l ifetime 
 4.      nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE)) 
// Compute MinDist between the resulted trajectory and the rectangle 
 5.      Dist=MinDist_Trajectory_Rectangle(nQ, E) 
// Add the rectangle along with its calculated dist ance in the list 
 6.      List.Add(nQ, Dist) 
 7.    END IF 
 8.  NEXT 
 9.  RETURN List 
 

Fig. 4. Generating Branch List of Node N against Trajectory Q 

 
Algorithm TrajectoryNNSearch(node N, trajectory Q, time period Qper, 
struct Nearest) 
 1.  Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 
 2.  IF N Is Leaf 
 3.    FOR j = 1 to Q.Entries  
 4.      QE=Q.Entry(j) 
 5.      IF (QE.Ts, QE.Te) Overlaps (N.TS, N.TE) 
 6.        FOR i = 1 to N.EntriesCount 
 7.          E = N.Entry(i) 
 8.          IF (QE.Ts, QE.Te) Overlaps (E.TS, E.TE) 
 9.            nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 
10.            Dist = Min_Horizontal_Dist(QE, nE) 
11.            IF Dist < Nearest.Dist 
12.              Nearest.Entry = nE 
13.              Nearest.Dist = Dist 
14.            END IF 
15.          END IF 
16.        NEXT 
17.      END IF 
18.    NEXT 
19.  ELSE 
20.    BranchList = GenTrajectoryBranchList(Q, N) 
21.    SortBranchList(BranchList) 
22.    FOR i = 1 TO BranchList.Count 
23.      E = N.Entry(i) 
24.      NN = E.ChildNode 
25.      nQ = Interpolate(Q, Max(Q.TS NN.TS), Min(Q.TE NN.TE)) 
26.      TrajectoryNNSearch(NN, nQ, Nearest) 
27.      PruneBranchList(BranchList) 
28.    NEXT 
29.  END IF 
 

Fig. 5. Historical NN search algorithm for moving query points (TrajectoryNNSearch) 

At the non-leaf levels, the algorithm utilizes GenTrajectoryBranchList 

function (pseudo-code in Fig. 4) instead of GenBranchList. GenTrajectory-
BranchList(node N, Trajectory Q) utilizes the MinDist_Trajectory_ Rec-
tangle metric introduced in Section 3.2 in order to calculate the MINDIST between 



the query trajectory and the rectangle of each entry of the node. Here, we have to point 

out that we do not calculate MinDist_Trajectory_Rectangle against the 

original query trajectory Q, but against the part of Q being inside the temporal extent 

of the bounding rectangle of N, and therefore (if necessary) we have to interpolate to 

produce the new query trajectory nQ. 

4.3   Extending to k-NN algorithms 

In the same fashion as in [8], we generalize the above two algorithms to searching the 

k-nearest neighbors by considering the following: 

• Using a buffer of at most k (current) nearest objects sorted by their actual distance 

from the query object (point or trajectory). 

• Pruning according to the distance of the (currently) furthest object in the buffer. 

• Updating the distance of each moving object inside the buffer when visiting a node 

that contains an entry of the same object closer to the query object. 

5   CNN Algorithms over trajectories 

The continuous counterparts of the previously described algorithms are also of 

branch-and-bound type. 

5.1   CNN algorithm for stationary query objects (points) 

We first discuss the query that searches for the nearest moving objects to a stationary 

query point at any time during a given time period. ContPointNNSearch algo-

rithm used to process this type of query is illustrated in Fig. 6. 

All the continuous algorithms use a MovingDist structure (Fig. 6, Line 6), stor-

ing the parameters of the distance function, along with the entry’s temporal extent and 

the associated minimum and maximum (Dmin and Dmax respectively) of the function 

during its lifetime. We also store the actual entry inside the structure in order to be 

able to return it as the query result. ConstructMovingDistance simply calcu-

lates this structure. 

In Line 8, the Nearests structure is introduced. Nearests is a list of adjacent 

“Moving Distances” temporally covering the period QPer. Roof  is the maximum of 

all moving distances stored inside the Nearests list and is used to quickly reject 

those entries (and prune those branches at the non-leaf level) having their minimum 

distance greater than Roof  (consequently, greater than all moving distances stored 

inside the Nearests list). More details on the maintenance of the Nearests structure 

can be found in [3]. 

When backtracking at non-leaf levels, ContPointNNSearch applies Prun-
eContBranchList, which prunes the branch list using the MINDIST heuristic: 

First, it compares the MINDIST of each entry with Roof, then it calculates the maxi-



mum distance inside the Nearests list during the entry’s lifetime and prunes all entries 

having MINDIST greater than the calculated one. 

 
 
Algorithm ContPointNNSearch(node N, 2D point Q, Period Qper, List 
Nearests, Roof) 
 1.  IF N Is Leaf 
 2.    FOR i = 1 to N.EntriesCount 
 3.      E = N.Entry(i) 
 4.      IF Qper Overlaps (E.TS, E.TE) 
 5.        nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 
 6.        MovingDist = ConstructMovingDistance(nE, Q) 
 7.        IF MovingDist.Dmin < Roof 
 8.          UpdateNearests(Nearests, MovingDist, Roof) 
 9.        END IF 
10.      END IF 
11.    NEXT 
12.  ELSE 
13.    BranchList = GenBranchList(Q, N, Qper) 
14.    SortBranchList(BranchList) 
15.    PruneContBranchList(BranchList, Nearests, Roof) 
16.    FOR i = 1 TO BranchList.Count 
17.      E = N.Entry(i) 
18.      NN = E.ChildNode 
19.      ContPointNNSearch(NN, Q, Qper, Nearests, Roof) 
20.      PruneContBranchList(BranchList, Nearests, Roof) 
21.    NEXT 
22.  END IF 
 

Fig. 6. Historical CNN search algorithm for stationary query points (ContPointNNSearch) 

5.2 CNN algorithm for moving query objects (trajectories) 

The fourth type of NN query is the continuous version of the NN query where the 

query object is the trajectory of a moving point. The algorithm ContTrajec-
toryNNSearch, used to process this type of query is illustrated in Fig. 7. 

ContTrajectoryNNSearch differs from ContPointNNSearch at two 

points only: Firstly, at leaf level, ConstructMovingDistance calculates the 

“Moving distance” between two moving points, instead of one moving and one sta-

tionary in the non-continuous case (Line 10). As in TrajectoryNNSearch, we 

perform a loop through all the 3D line segments of the query trajectory Q and, for 

each segment of Q and before processing the leaf entries, we first check whether the 

lifetime of Q overlaps the temporal extent of the bounding rectangle of N (Line 8). 

Secondly, at the non-leaf level, GenBranchList is replaced by GenTrajec-
toryBranchList introduced in the description of TrajectoryNNSearch 

algorithm (Line 19). 

 

 



 
Algorithm ContTrajectoryNNSearch (node N, Trajectory Q, time period 
Qper, List Nearests, Roof) 
 1.  Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 
 2.  IF N Is Leaf 
 3.    FOR j = 1 to Q.Entries  
 4.      QE=Q.Entry(j) 
 5.      IF (QE.Ts, QE.Te) Overlaps (N.TS, N.TE) 
 6.        FOR i = 1 to N.EntriesCount 
 7.          E = N.Entry(i) 
 8.          IF (QE.Ts, QE.Te) Overlaps (E.TS, E.TE) 
 9.            nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE,E.TE)) 
10.            MovingDist = ConstructMovingDistance(nE, QE) 
11.            IF MovingDist.Dmin < Roof 
12.              UpdateNearests(Nearests, MovingDist, Roof) 
13.            END IF 
14.          END IF 
15.        NEXT 
16.      END IF 
17.    NEXT 
18.  ELSE 
19.    BranchList = GenTrajectoryBranchList(Q, N) 
20.    SortBranchList(BranchList) 
21.    PruneContBranchList(BranchList, Nearests, Roof) 
22.    FOR i = 1 TO BranchList.Count 
23.      E = N.Entry(i) 
24.      NN = E.ChildNode 
25.      nQ = Interpolate(Q, Max(Q.TS, NN.TS), Min(Q.TE, NN.TE)) 
26.      ContTrajectoryNNSearch(NN, nQ, Nearests, Roof) 
27.      PruneContBranchList(BranchList, Nearests, Roof) 
28.    NEXT 
29.  END IF 
 

Fig. 7. Historical CNN search algorithm for moving query points (ContTrajectoryNNSearch 

algorithm) 

5.3   Extending to k-CNN algorithms 

The two continuous algorithms can be also generalized to searching the k- nearest 

neighbors by considering the following: 

• Using a buffer of at most k current Nearests Lists 

• Pruning according to the distance of the furthest Nearests Lists in the buffer – 

therefore Roof is calculated as the maximum distance of the furthest Nearests 

List 

• Processing each entry against the i-th list (with i increasing, from 1 to k) checking 

whether it qualifies to be in a list 

• Testing each moving distance, replaced by a new entry in the i-th list, against the 

(i+1)-th list to find whether it qualifies to be in a list. 



6   Performance Study 

The above illustrated algorithms can be implemented in any R-tree-like structure stor-

ing historical moving object information such as the 3D R-tree [16], the STR-tree [7] 

and the TB-tree [7]. Among them, we have chosen to implement the algorithms using 

the TB-tree due to its proven efficiency regarding historical trajectory information, as 

demonstrated in [7]. In our implementation, we set a page size of 4096 bytes and a 

(variable size) buffer fitting the 10% of the index size, thus leading to a maximum of 

1000 pages. The experiments were performed in a PC running Microsoft Windows XP 

with AMD Athlon 64 3GHz processor, 512 MB RAM and several GB of disk size. 

6.1   Datasets 

While several real spatial datasets are around for experimental purposes, this is not 

true for the moving object domain. Nevertheless, in this paper, we have exploited on 

two real-world datasets: a fleet of trucks and a fleet of school buses illustrated in Fig. 

8(a) and (b), respectively, and consisting of 276 (112203) and 145 (66096) trajecto-

ries (entries in the index), respectively. We have also used synthetic datasets generated 

by the GSTD data generator [14] in order to achieve a scalability in the volumes of the 

datasets. A snapshot of the generated data using GSTD is illustrated in Fig. 8(c). The 

synthetic trajectories generated by GSTD correspond to 20, 50, 100, 250, 500 and 

1000 moving objects with the position of each object sampled approximately 1500 

times. 

  

(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data 

Fig. 8. Snapshots of real and synthetic spatiotemporal data 

Table 1 illustrates summary information about the datasets used. The number of 

pages occupied by the index for each dataset will be used for calculating the pruning 

acheived in the search space. 

Table 1. Summary Dataset Information  

 Real Data GSTD 

 Trucks Buses 20 50 100 250 500 1000 

# trajectories 276 145 20 50 100 250 500 1000 

# entries 112203 66096 30277 75717 151482 378803 757360 1514844 

index size in 

pages (of 4kb) 
835 466 205 507 1010 2521 5040 10073 



6.2   Results on the Search Cost of the non-continuous algorithms 

The performance of the proposed algorithms was measured in terms of node ac-

cesses. Several queries were used in order to evaluate the performance of the proposed 

algorithms over the synthetic and real data. In particular, we have used the following 

query sets: 

• Q1, Q2: PointNNSearch was evaluated with two sets of 500 NN queries in-

creasing the number of moving objects over the GSTD datasets. The queries used 

a random point in the 2D space and a time period of 1% (5%) of the temporal di-

mension for Q1 (Q2). 

• Q3, Q4: TrajectoryNNSearch was evaluated with two sets of 500 NN que-

ries increasing the number of moving objects over the GSTD datasets. The 500 

query objects (trajectories) were produced using GSTD also employing a Gaussian 

initial distribution and a random movement distribution. Then, in Q3 (Q4) we used 

a random 1% (5%) part of each trajectory as the query trajectory.  

• Q5, Q6: two sets of 500 k-NN queries over the real Trucks dataset increasing the 

number of k with fixed time and increasing the size of the time interval (with fixed 

k=1) respectively. For PointNNSearch we used a random point in the 2D space 

with a 5% of time as query period, while for TrajectoryNNSearch we used a 

random part of a random trajectory belonging to Buses dataset, temporally cover-

ing 1% of time. 
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(a) (b) (c) (d) 

Fig. 9. Node Accesses and searched space in queries Q1-Q4 with the number of moving objects 

Fig. 9 illustrates the average number of node accesses per query for the query sets 

Q1-Q4 evaluating PointNNSearch and TrajectoryNNSearch. In particular, 

Fig. 9(a) shows the average number of node accesses per query using the point query 

sets Q1 and Q2, while Fig. 9(b) shows the average number of node accesses per query 

using the trajectory query sets Q3 and Q4. As it is clearly illustrated, the performance 

of the algorithm depends linearly on the dataset cardinality and degrades (more pages 

are accessed) as the cardinality grows. It is worth to point out that comparing query 

sets Q1 and Q2, the algorithm accesses more pages in query set Q1, although the life-

time of Q2 is longer than that of Q1 (5% against 1% of the total time). This observa-

tion can be explained bearing in mind that decreasing the query temporal extent, the 

expected nearest distance increases, resulting in fewer pruned nodes in the backtrack-

ing procedure of the algorithm. As expected, TrajectoryNNSearch tends to be 

much more expensive than PointNNSearch. 



The results in Fig. 9(c) and (d) demonstrate the percentage of the indexed space 

actually used for searching. As illustrated, in all cases, increasing the index size, the 

percentage of the space to be searched decreases, resulting (for over 1000 moving 

objects) in a 0.20% of the whole index space for point NN queries and in a 1.2% - 2% 

for trajectory NN queries. So as to make the results more readable, we have to point 

out that a range search over the index with zero spatial and 1% temporal extent would 

lead to a searching among the 10% of the whole indexed space – showing that the 

pruning performed by our algorithms is much more efficient than a sequential search. 

The conclusion gathered from the previous observations is that the algorithms pre-

sented show high pruning ability, well bounding the space to be searched in order to 

answer NN queries. 

The performance of the two non-continuous NN algorithms increasing the number 

of k is shown in Fig. 10(a) against Buses dataset.  
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(a) (b) 

Fig. 10. Node Accesses in queries (a) Q5 increasing the number of k and (b) Q6 increasing the 

query temporal extent 

Clearly, the number of node accesses needed for the processing of a k-NN query 

increases linearly with k. Fig. 10(b) illustrates the average number of node accesses 

per non-continuous point and trajectory query increasing the temporal extent against 

the real “trucks” dataset. It is clear that the cost of TrajectoryNNSearch tends to 

increase with greater rate than the increase of PointNNSearch. This observation 

can be easily explained since when increasing the temporal interval, the spatial extent 

of the query trajectory also increases leading to a greater spatial space to be searched. 

6.3   Results on the Search Cost of the continuous algorithms 

In coincidence with the experiments conducted for the non-continuous algorithms, the 

continuous NN search algorithms were evaluated with the following query sets: 

• Q7, Q8: ContPointNNSearch was evaluated with two sets of 500 NN queries 

increasing the number of moving objects over the GSTD datasets like what was 

done for query sets Q1 and Q2. 

• Q9, Q10: ContTrajectoryNNSearch was evaluated with two sets of 500 NN 

queries increasing the number of moving objects over the GSTD datasets like what 

was done for query sets Q3 and Q4. 



• Q11, Q12: two sets of 500 k-CNN queries over the real dataset of buses increasing 

the number of k with fixed time and increasing the size of the time interval (with 

fixed k=1) respectively. For ContPointNNSearch we used a random point in 

2D space with a 5% of time as query period, while for ContTrajectoryNN-
Search we used a random part of a random trajectory belonging to the buses 

dataset, temporally covering 1% of time. 

Fig. 11 illustrates similar results as in Fig. 9, regarding the continuous counterpart 

of the NN algorithms, thus, illustrating the average number of node accesses per query 

for the queries sets Q7- Q10. In particular, Fig. 11(a) presents the average number of 

node accesses per query using ContPointNNSearch against query sets Q7 and Q8 

while Fig. 11(b) presents the average number of node accesses per query using 

ContTrajectoryNNSearch against query sets Q9 and Q10.  

 

0

10

20

30

40

50

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q7

Q8

0

50

100

150

200

250

300

0 500 1000
Moving Objects

N
o
d
e
 a

c
c
e
s
s
e
s

Q9

Q10

0

0.5

1

1.5

2

2.5

3

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
c
e

Q7

Q8

0

1

2

3

4

5

6

0 500 1000
Moving Objects

%
 S

e
a
rc

h
e
d
 S

p
a
ce

Q9

Q10

 
(a) (b) (c) (d) 

Fig. 11. Node Accesses and searched space in queries Q7-Q10 increasing the number of mov-

ing objects 

Again, the performance of the algorithms linearly depends on the dataset cardinal-

ity and degrades (more pages are accessed) as the cardinality grows. Fig. 11(c) and (d) 

show the accessed index part as a percentage of the indexed space, illustrating that in 

all cases, increasing the index size the percentage of the space to be searched de-

creases, resulting (for over 1000 moving objects) in a 0.50% of the whole index space 

for point CNN search and in a 2.5% - 3 % for trajectory CNN search. 

A comparison between the non-continuous NN algorithms with their continuous 

counterparts (e.g. Fig. 9 vs. Fig. 11), shows that the continuous algorithms are much 

more expensive than the non-continuous ones, which is expected since the continuous 

algorithms prune the search space by using a list of moving distances instead of a 

single distance.  

The performance of the continuous NN algorithms increasing the number of k is il-

lustrated in Figure 12(a) for the real Buses dataset. The number of node accesses re-

quired for the processing of a k-NN query increases linearly with k. Figure 12(b) illus-

trates the average number of node accesses per continuous point and trajectory query 

increasing the temporal extent for Trucks dataset. Presenting the same behavior as 

with the non-continuous queries, the performance of ContTrajectoryNNSearch 

tends to degrade with greater rate than that of ContPointNNSearch, having the 

same explanation (by increasing the temporal interval, the spatial extent of the query 

trajectory also increases leading to a greater spatial space to be searched). 
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Fig. 12. Node Accesses in queries (a) Q11 increasing the number of k and (b) Q12 increasing 

the query temporal extent 

7   Conclusions and Future Work 

NN queries have been in the core of the spatial and spatiotemporal database research 

during the last decade. The majority of the algorithms processing such queries so far 

mainly deals with either stationary or moving query points over static datasets or fu-

ture (predicted) locations over a set of continuously moving points. In this work, ac-

knowledging the contribution of related work, we presented the first complete treat-

ment of historical NN queries over moving object trajectories stored on R-tree like 

structures. Based on our proposed novel metrics, which support our searching and 

pruning strategies, we presented algorithms answering the NN and CNN queries for 

stationary query points or trajectories and generalized them to search for the k nearest 

neighbors. The algorithms are applicable to R-tree variations for trajectory data, 

among which, we used the TB-tree for our performance study due to its proven effi-

ciency regarding historical trajectory information. Under various synthetic datasets 

(generated by GSTD) and two real trajectory datasets, we illustrated that our algo-

rithms show high pruning ability, well bounding the space to be searched in order to 

answer NN and CNN queries. The pruning power of our algorithms is also verified in 

the case of the k-NN and k-CNN queries (for various values of k). 

As such, future work includes the development of algorithms to support distance 

join queries (“find pairs of objects passed nearest to each other (or within distance d 

from each other) during a certain time interval and/or under a certain space con-

straint”). A second research direction includes the development of selectivity estima-

tion formulae for query optimization purposes investing on the work presented in [15] 

for predictive spatiotemporal queries. 
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