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Abstract—An emerging topic in the field of spatial data management is the handling of location uncertainty of spatial objects, mainly

due to inaccurate measurements. The literature on location uncertainty so far has focused on modifying traditional spatial search

algorithms in order to handle the impact of objects’ location uncertainty on the query results. In this paper, we present the first, to the

best of our knowledge, theoretical analysis that estimates the average number of false hits introduced in the results of rectangular

range queries in the case of data points uniformly distributed in 2D space. Then, we relax the original distribution assumptions showing

how to deal with arbitrarily distributed data points and more realistic location uncertainty distributions. The accuracy of the results of our

analytical approach is demonstrated through an extensive experimental study using various synthetic and real data sets. Our proposal

can be directly employed in spatial database systems in order to provide users with the accuracy of spatial query results based only on

known data set and query parameters.

Index Terms—Spatial databases, GIS.
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1 INTRODUCTION

SPATIAL data management has been extensively re-
searched during the last two decades [20]. A common

assumption adopted in spatial databases is that the position
of spatial objects is precisely known. However, a variety of
sources such as the error of the GPS devices influence the
accuracy of the recorded locations of spatial objects, making
the location data obtained from measuring devices inher-
ently imprecise. Moreover, several recent works [4], [7], [10]
suggest that the location privacy of mobile users should be
protected by adding a controlled degree of noise in each
object’s measured position. All these errors introduce
uncertainty into the answers of traditional queries.

The literature on the management of the location
uncertainty of spatial objects so far has dealt with either
uncertainty representation issues [25], [26], [29] or prob-
abilistic algorithms [6], [8], [16] that process spatial queries
in the presence of uncertainty and estimate the probability
of each spatial object to be included in the query result.
Existing methodologies for handling uncertainty in com-
mercial Spatial Database Management Systems (SDBMSs)
also involve metadata, which are used to provide users with
the accuracy or measurement error in each object’s location.
On the other hand, in this paper, we argue that there are
cases where the user would prefer to know the influence of
the measurement error in the query results, without
actually executing the query. The challenge thus accepted
in this paper is to provide a theoretical framework that estimates
the error introduced due to the uncertainty of objects’ locations in

the results of spatial rectangular range queries. To the best of
our knowledge, this is the first work that tackles this
problem.

The estimation model we propose is applicable on data
sets consisting of location data points. We initially model
the uncertainty in a way similar to the one presented in [26]
for spatiotemporal data. In particular, we represent the
location uncertainty of each point using a disk (Fig. 1),
called uncertainty disk, with the actual location of the point
assumed to follow a uniform distribution within this disk.
The recorded location of the data point and a fixed distance
represent the center and the radius of the disk, respectively;
although this statistical distribution may be assumed when
artificially injecting uncertainty into the data objects [4], [7],
[10], it is too simplistic to be able to capture the different
distributions describing the measurement errors introduced
by various devices. Therefore, in the sequel, we employ
real-world statistical distributions [15], [17] and augmented
histograms so as to support more realistic scenarios of
spatial uncertainty.

A motivating scenario of our work is inspired by the
emerging open agora paradigm [12]. Specifically, our
scenario consists of an open agora of several distributed
subscribe-based data sources containing the same spatial
objects represented at different levels of uncertainty due to
the different measurement methods and, consequently,
different errors. Under this setting, we aim to provide a
client-side query optimizer with a model that predicts the
number of false hits introduced in the results of rectangular
queries over each one of these data sources, given also that
during the negotiation step [12], they publish aggregate-only
data for their potential customers/users. Then, the optimizer
would choose the most accurate among the provided data
sources, i.e., the one with the smallest estimated number of
false hits introduced in the query results, and proceed by
posing the actual query to this particular data source.

The model described in this paper can be directly
employed in existing SDBMS so as to estimate the average
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number of false hits in query results due to location
uncertainty. It could be therefore used in an interactive
graphical query builder/analyzer, providing online an
approximation of the percentage of the false hits due to
location uncertainty along with other estimations such as
selectivity, execution time, etc. Moreover, in a similar
manner, our model can be utilized in order to determine
the maximum permitted (im)precision of the data that will
feed an SDBMS given the required accuracy in the results of
rectangular range queries. Then, users can be guided by the
SDBMS in the employment of the appropriate, more or less
accurate—which also entails a more/less expensive—
sampling method to be used for the data that will be fed
to the system.

On top of these, the most prominent application of our
model is over summary data, which contain aggregate-only
information instead of actual data objects, e.g., the number of
spatial objects inside a given spatial region. For instance, in a
Spatial Data Warehouse (SDW) [14], aggregation may
exhibit partial containment relationships instead of the total
containment relationships normally assumed in conven-
tional data warehouses; that is, a spatial cell may be
contained in city A by 30 percent and in city B by 70 percent.
Given that preaggregated information is only stored at the
lowest level of the data warehouse location dimension
hierarchy, i.e., the cells or base cuboids, a roll-up operation at
the city level would, among others, aggregate over the
number of partially contained cells. This situation is
illustrated in Fig. 2, presenting the bounds between cities
A, B, C, and D, a set of uncertain data points, and a regular
grid standing for representing the cells containing the
preaggregated information.

Consider, for example, a spatial data cube with the
number of data points Ni contained inside each cell as a
measure and also an uncertainty measure such as an
aggregated output of a probabilistic range query, e.g., the
average probability of each data object to be inside the cell Pi.
In this case, each cell would be associated with a tuple
ðNi; PiÞ. Given only this preaggregated information, cur-
rently, there is no way to redistribute the uncertainty of the
objects contained inside each cell to the rolled-up spatial
object, i.e., the city level. On the other hand, our model can
still be directly applied utilizing aggregate information, i.e.,
the number of objects contained inside each cell Ni, and the
radius of the uncertainty disk or standard deviation of the
normal distribution, finally producing an approximation of
the error introduced in the aggregation results. In particular,
given that our model is capable of determining the effect of
the location uncertainty in the Minimum Bounding Rectan-
gle (MBR) of city A, considering it as a range query, it can
approximate the effect in the actual spatial object A,
involving only the cardinality of each cell, the MBR, and
the uncertainty radius.

To the best of our knowledge, a theoretical study on
modeling the error introduced in spatial query results in
terms of false hits due to the location uncertainty of spatial
objects is lacking. Perhaps the most relevant approach to our
work is the analysis in [27], which discusses the effect of
uncertainty in spatial queries in terms of the cardinalities of
the three subsets of a range query result, namely, the MUST,
MAY, and ANS sets; among them, the MAY set is the set of
objects that “may” be located within a range query. Although
this approach sounds very relevant to our proposal since we
also provide a model that can be used in order to calculate the
false hits in query results, the two methods are not directly
comparable because the number of false hits is a subset of the
MAY set, and it is not straightforward to determine the
number of false hits directly from the cardinality of this set.

Outlining the major issues that will be addressed in this
paper, our main contributions are the following:

. We prove two lemmas that estimate the average
number of false positives and false negatives when
executing rectangular range queries over spatial
objects with location uncertainty, in the case of a
uniformly distributed 2D data set. It is proved that
both errors depend on the radius of the data point
uncertainty disk and the perimeter of the query
window, rather than its area.

. In order to relax the location uncertainty uniformity
assumption and to utilize the real-world adapted
bivariate normal distribution [15], [17], we efficiently
approximate it with the uniform difference distribu-
tion. The results are close enough to the ones of the
original analysis.

. We show how to utilize histograms in order to
estimate the average number of false hits when we
relax the uniformity assumption of objects’ distribu-
tion in the data space, as well as to support various
distributions of the uncertainty radius. The same
methodology is also employed in other forms of
summary data, e.g., data warehouses, in order to
describe the effect of uncertainty.

. Finally, we report the results of the comprehensive
set of experiments that we conducted over synthetic
and real data sets demonstrating the correctness and
accuracy of our analysis and also the efficiency of the
proposed solution, employed on top of a commercial
SDBMS, PostgreSQL [19] with PostGIS spatial
extension [18]. It is worth to note that off-the-shelf
spatial histograms, already used in SDBMS for query
selectivity estimation, support our model without
additional requirements.
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Fig. 1. Problem setting.

Fig. 2. Partial containment in SDWs.



The rest of the paper is structured as follows: Section 2
describes our theoretical analysis on the effect of location
uncertainty under uniformity assumptions. In Section 3, we
extend our model to support nonuniform distributions over
the problem parameters. Section 4 evaluates the accuracy of
our model through an extensive experimental study over
synthetic and real data sets. Section 5 discusses related
work, and Section 6 provides the conclusions of the paper
and some interesting research directions.

2 MODELING ERROR DUE TO LOCATION

UNCERTAINTY

Consider a data set P consisting of N recorded points pi,
i ¼ 1; . . . ; N , uniformly distributed in the unit space
S ¼ ½0; 1� � ½0; 1�. Due to location uncertainty, the actual
position pyi of each point, also located in S, is uniformly
distributed inside an uncertainty disk with center pi and
radius d. Let also R be the set of all rectangular range
queries posed over the data set P and Ra�b be the subset of
R containing all rectangular range queries having sides of
lengths 2a and 2b along the x- and y-axes, respectively. Two
types of errors are introduced when executing a range
query Wj 2 R over the data set P :

. EN is the set of false negatives, i.e., points qualifying
the query window but not retrieved; formally,
EN ¼ fpi 2 P : pi 62Wjjpyi 2Wjg.

. EP is the set of false positives, i.e., points retrieved
while not qualifying the query window; formally,
EP ¼ fpi 2 P : pi 2Wjjpyi 62Wjg.

The problem is to make an as accurate as possible

estimation of false negatives and false positives for a random

Wj based only on known data set and query parameters.
From the above problem definition, it is clear that we

initially make four main assumptions:

. AI—uncertainty uniformity assumption. The actual
points pyi are uniformly distributed inside the
uncertainty disk Cðpi; dÞ.

. AII—data uniformity assumption. The recorded points
pi are uniformly distributed in the data space.

. AIII—constant uncertainty radius assumption. The
radius d of the uncertainty disk is constant.

. AIV —uncertainty size assumption. Radius d is always
less than the half of the length of the smallest side of
query window Wj.

Regarding the first three assumptions (AI-AIII), they will

be relaxed in the model extension to be presented in

Section 3. Regarding assumption AIV , we argue that it is a

reasonable property of the involved spatial objects since

typical sizes of query window Wj are usually orders of

magnitude larger than d; for example, points sampled with

GPS devices usually introduce an error of a few meters

(usually, less than 10 m), while query windows in real

applications are expected to be at least hundreds of square

meters. Having described our framework, in the next two

sections, we prove two lemmas that are fundamental for

our model. Table 1 summarizes the notations used in the

rest of the paper.
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2.1 Estimating the Number of False Negatives

In this section, we prove a lemma that undertakes the
calculation of the average number of false negatives.

Lemma 1. The average number ENðRa�bÞ of false negatives in
the results of a rectangular range query Wj 2 Ra�b with half-
sides of lengths a and b over a point data set that follows the
data uniformity and uncertainty uniformity assumptions is
given by the following formula:

ENðRa�bÞ ¼ N �
8d

3�
ðaþ bÞ � d2

2�

� �
; ð1Þ

where d is the radius of the uncertainty disk.

Proof. The average number ENðRa�bÞ of points being false
negatives in the results of a rectangular range query
Wj 2 Ra�b, i.e., pi 62Wjjpyi 2Wj, can be obtained by the
average probability AvgPi;NðRa�bÞ of an arbitrary point pi
to be a false negative regarding an arbitrary query
window Wj 2 Ra�b multiplied by the total number N of
data objects:

ENðRa�bÞ ¼ N �AvgPi;NðRa�bÞ: ð2Þ

Obviously, our target is to determine AvgPi;NðRa�bÞ.
Towards this goal, we formulate the probability that
pi 62Wjjpyi 2Wj. This probability is given by the ratio of
the area Ai;j of the portion of the uncertainty disk Cðpi; dÞ
included inside the query window over the total area of
Cðpi; dÞ. However, Ai;j is zero in cases where Cðpi; dÞ
does not overlap the query boundary.

Fig. 3 illustrates a query window Wj over a subset
of uniformly distributed point data, extended by a
buffer of width d: points with uncertainty disks being
inside the query window, i.e., those labeled as
“Case 1,” cannot incur false negatives because they
will be actually retrieved by the query. The same is
also true for points with uncertainty disks located
outside the buffer zone, illustrated as “Case 2” in
Fig. 3. The single case where pi is not retrieved by
the query while pyi may be found inside Wj is when pi
is located inside the buffer zone that surrounds Wj,
which is illustrated as “Case 3” in Fig. 3.

The above discussion expresses the fact that a point
pi is a candidate to be a false negative if and only if pi is
located outside the query window while its uncertainty disk
Cðpi; dÞ intersects the query boundary. Alternatively, pi
should be located inside the Minkowski region of Wj

with radius d in order to be a candidate to be a false

negative; this region can be determined by extending
Wj with distance d on all directions [22]. Minkowski
regions are directly derived from the concept of
Minkowski sum [2] between the query window Wj and
a disk of radius d, which, in our case, is composed by a
set of line segments and circular arcs, illustrated as the
boundary exterior of Wj in Fig. 3. The probability of a
point pi to be a false negative, regarding a query
window Wj, is

P pi 62Wjjpyi 2Wj

� �
¼

Ai;j

�d2 ; if pi 62Wj and Distðpi;WjÞ�d;
0; otherwise:

�
ð3Þ

The area Ai;j, as illustrated in Fig. 4, is determined by

taking into account the uncertainty size assumption and

distinguishing between three cases, illustrated in

Figs. 4b, 4c, and 4d. In the first two cases, where the

distance between pi and each of the four corners of Wj is

larger than d, Ai;j is the portion of the uncertainty disk

enclosed by 1) the chord c1c2 formed by the query side

and the uncertainty disk and 2) the respective arc. Thus,

it can be computed as the integral of the function of the

chord length D, given as an expression of its distance, ry
or rx (depending on which query side is regarded), from

the disk center.

Let the chord c1c2 be parallel to x-axis (Fig. 4b), it

holds that Dðrx; ryÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � r2

y

q
and

Ai;j ¼ A1yðrx; ryÞ

¼
Z d

ry

Dðrx; ryÞdry

¼ 2

Z d

ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � r2

y

q
dry;

resulting in1

Ai;j ¼ A1yðrx; ryÞ ¼ d2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

ry

� �2

�1

s2
4

3
5� ry ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 � r2
y

q
:

ð4Þ

Equivalently, let the chord c1c2 be parallel to y-axis

(Fig. 4c), the area Ai;j ¼ A1xðrx; ryÞ is calculated by

substituting ry with rx in (4). In the third case, where

the distance between pi and one of the four corners of Wj

is less than d (Fig. 4d), Ai;j can be determined in a similar

way, resulting in

Ai;j ¼A2ðrx; ryÞ

¼ 1

2

"
d2arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ry

R2 � r2
y

s24
3
5� d2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx

R2 � r2
x

r� 	

� ry
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � r2

y

q
� rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � r2

x

q
þ 2rxry

#
:

ð5Þ
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Fig. 3. Points contributing to the number of false negatives.

1. All advanced calculations in this paper were performed using the
Mathematica software [28].



The average probability of a point pi to be a false
negative, with respect to any query window in Ra�b, is
calculated by integrating (3) over all possible query
windows:

AvgPi;NðRa�bÞ ¼
Z

Wj2Ra�b

P pi 62Wjjpyi 2Wj

� �
dW

¼
ZZ
S

P pi 62Wjjpyi 2Wj

� �
dxdy:

ð6Þ

In order to compute the above integral, it is necessary to
determine the main zones inside which the area Ai;j can
be expressed as a single function. To facilitate discussion,
Fig. 5a illustrates the fact that the area determined by
Distðpi;WjÞ � d can be divided into three sets of zones
inside of which a point pi can be found, regarding the
position of the query window: the first drawn with
vertical stripes, the second drawn with horizontal
stripes, and the shaded one, called Z1, Z2, and Z3,
respectively. Z1 regions contain the data points such that
the area resulted by the intersection of their uncertainty
area with Wj forms a complete circular segment;
alternatively, Z1 regions are the locus of the points in
the space such that they are outside Wj, their distance
from Wj is smaller than d, and their distance from the
four corners of Wj is greater than d. Z2 regions are the
locus of the points in the space such that points are
outside Wj, their distance from Wj is smaller than d, and
their x and y coordinates are inside the projection of Wj

along the x- or y-axis, respectively; similarly, Z3 regions
differ only on that the x and y coordinates of their points
are outside the projection of Wj along the x- or y-axis.

Zones Z1;j, Z2;j, and Z3;j associated with query
window Wj are formally given by

Z1;j ¼


p 2 S : p 62Wj ^Distðp;WjÞ
� d ^Distðp;Wj;ciÞ � d; i ¼ 1 . . . 4

�
;

ð7Þ

Z2;j ¼
�
p 2 S : p 62Wj ^Distðp;WjÞ

� d ^Distðp;Wj;ciÞ � d; i ¼ 1 . . . 4

^ px 2 Wx;L
j ;Wx;U

j

h i
_ py 2 Wy;L

j ;Wy;U
j

h i� ��
;

ð8Þ

Z3;j ¼
�
p 2 S : p 62Wj ^Distðp;WjÞ

� d ^Distðp;Wj;ciÞ � d; i ¼ 1 . . . 4

^ px 62 Wx;L
j ;Wx;U

j

h i
^ py 62 Wy;L

j ;Wy;U
j

h i� ��
:

ð9Þ

Regarding zones of type Z1, i.e., those labeled Z1x and
those labeled Z1y in Fig. 5b, area Ai;j can be computed
using (4). When the relative positions of pi and Wj

constrain it to be inside a zone of type Z2, Ai;j can be
computed by subtracting the small area at the upper
right corner of the uncertainty disk (Fig. 5c), which is
given by (5), from the overall uncertainty disk area being
above the lower query side (4). Finally, for points inside
zones of type Z3, as illustrated in Fig. 5d, Ai;j can be
computed using (5). Summarizing, pi may be found
inside

. one out of two zones Z1x (top and bottom in
Fig. 5a), and two zones Z1y (left and right in
Fig. 5a); in these cases, Ai;j is calculated by A1x

and A1y, respectively,
. one out of four zones Z3, one for each query

window corner; in these cases, Ai;j ¼ A2, and
. one out of four zones Z2, for each query window

corner along the x-axis and another four along the
y-axis; in these cases, Ai;j ¼ ðA1x �A2Þ, and
Ai;j ¼ ðA1y �A2Þ, respectively,

Bearing in mind that 1) (6) integrates P ðpi 62Wjjpyi 2
WjÞ ¼ Ai;j=�d

2 over the whole space S and 2) the value of
Ai;j is equal to zero in any other place, except of the
zones Z1, Z2, and Z3 where Ai;j is provided in terms of
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Fig. 4. (a) The unit space (a) and (b), (c), and (d) three details of it.

Fig. 5. Zones where area Ai;j contributing in false negatives is expressed as a single function.



the relative position between pi and Wj, i.e., rx and ry, (6)
can be rewritten as follows:

AvgPi;NðRa�bÞ

¼ 1

�d2

2
RR
Z1x

A1xðrx; ryÞdrydrxþ2
RR
Z1y

A1yðrx; ryÞdrydrx

þ 4
RR
Z3

A2ðrx; ryÞdrydrx

4
RR
Z2

A1xðrx; ryÞ�A2ðrx; ryÞ

 �

drydrx

þ 4
RR
Z2

A1yðrx; ryÞ�A2ðrx; ryÞ

 �

drydrx

0
BBBBBBBBB@

1
CCCCCCCCCA
)

AvgPi;NðRa�bÞ

¼ 1

�d2
2

Z Z
Z1xþ2Z2

A1xðrx; ryÞdrydrxþ2

Z Z
Z1yþ2Z2

A1yðrx; ryÞdrydrx

0
B@

� 4

Z Z
Z3

A2ðrx; ryÞdrydrx

1
CA:

ð10Þ

The two Z1x þ 2Z2 areas involved in the above integrals
may be regarded as the top and down rectangles in
Fig. 5a formed by the Z1x and the two Z2 areas
surrounding it, and their size along the x- and y-axes is
2a and d, respectively. The same also holds regarding the
two Z1y þ 2Z2 areas, also having extents d and 2b along
the x- and y-axes, respectively. According to this
discussion, the above formula can be rewritten as
follows:

AvgPi;NðRa�bÞ

¼ 1

�d2
2

Zd
0

Z2a
0

A1xðrx; ryÞdrxdryþ2

Z2b
0

Zd
0

A1yðrx; ryÞdrxdry

0
@

�4

Zd
0

Zffiffiffiffiffiffiffiffiffiffid2�x2
p

0

A2ðrx; ryÞdrxdry

1
CA:

ð11Þ

Substituting
R d

0 A1yðrx; ryÞdry ¼
R d

0 A1xðrx; ryÞdrx with

2d3=3 and
R d

0

R ffiffiffiffiffiffiffiffiffiffi
d2�x2
p

0 A2ðrx; ryÞdrydr with d4=8 in the

above long expression, we get the following simple

formula:

AvgPi;NðRa�bÞ ¼
8d

3�
ðaþ bÞ � d2

2�
: ð12Þ

Substituting (12) into (2), we have proved Lemma 1. tu

2.2 Estimating the Number of False Positives

In the sequel, we prove a similar lemma regarding the
average number of false positives.

Lemma 2. The average number EP ðRa�bÞ of false positives in the
results of a rectangular range query Wj 2 Ra�b with half-sides
of lengths a and b over a point data set that follows the data
uniformity and uncertainty uniformity assumptions is given
by the following formula:

EP ðRa�bÞ ¼ N �
8d

3�
ðaþ bÞ � d2

2�

� �
; ð13Þ

where d is the radius of the uncertainty disk.

Proof. The average number EP ðRa�bÞ of points being false
positives in the results of a rectangular range query
Wj 2 Ra�b, i.e., pi 2Wjjpyi 62Wj, can be obtained by the
average probability AvgPi;P ðRa�bÞ of an arbitrary point pi
to be a false positive regarding an arbitrary query
window Wj 2 Ra�b multiplied by the total number N of
objects in the data space:

EP ðRa�bÞ ¼ N � AvgPi;P ðRa�bÞ: ð14Þ

Then, following a methodology similar to that followed
in the proof of Lemma 1, it is proven that the probability
that pi 2Wjjpyi 62Wj is

P pi 2Wjjpyi 62Wj

� �
¼

Ai;j

�d2 ; if pi 2Wj and Distðp;WjÞ�d;
0; otherwise;

�
ð15Þ

and the average, with respect to any Wj in Ra�b,
probability of a point pi to be a false positive is

AvgPi;P ðRa�bÞ ¼
Z

Wj2Ra�b

P pi 2Wjjpyi 62Wj

� �
dW

¼
ZZ
S

P pi 2Wjjpyi 62Wj

� �
dxdy:

ð16Þ

The above integral is again computed by determining the
zones inside which the area Ai;j is expressed as a single
function. These zones are found within the region
formed by the original query window Wj and the
Minkowski difference of Wj with a disk of radius d [26].
The Minkowski difference, also called offsetting [3], is a
complementary operation to the Minkowski sum [26]; it
is extensively studied in the field of computer graphics,
while its calculation for convex polygons is a straightfor-
ward application of the known algorithms for computing
the straight skeleton (equivalently, medial axis), requir-
ing linear time [26]. Fig. 6a illustrates the three sets of
zones, contained inside this area, namely, Z1, Z2, and Z3,
which can be defined in a way similar to the ones of the
false negative computation. Formally

Z1;j ¼
n
p 2 S : p 2Wj ^Distðp;WjÞ

� d ^
�
px 2 Wx;L

j þ d;Wx;U
j � d

h i
_ py 2 Wy;L

j þ d;Wy;U
j � d

h i�o
;

ð17Þ

Z2;j ¼


p 2 S : p 2Wj ^ p 62 Z1;j ^Distðp;WjÞ
� d ^Distðp;Wj;ciÞ � d; i ¼ 1 . . . 4

�
;

ð18Þ

Z3;j ¼ p 2 S : p 2Wj ^Distðp;Wj;ciÞ � d; i ¼ 1 . . . 4

 �

:

ð19Þ

Regarding zones Z1x and Z1y, the area Ai;j is computed
using (4) (Fig. 6b). When in zone Z2, Ai;j is determined by
summing up (4) along the x- and y-axes (Fig. 6c). Finally,
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points inside Z3 are also computed by summing up (4)
along the x- and y-axes and subtracting the small area in
the lower right corner of the uncertainty disk (Fig. 6d),
which is given by (5). Summarizing,pi may be found inside

. one out of two zones Z1x (top and bottom in
Fig. 6a); in these cases, Ai;j is calculated by A1x,

. one out of two zones Z1y (left and right in Fig. 6a);
in these cases, Ai;j is calculated by A1y,

. one out of four zones Z3, one for each query
window corner; in these cases, Ai;j ¼ A1x þA1y,
and

. one out of four zones Z2, for each query window
corner; in these cases, Ai;j ¼ A1x þA1y �A2,

and (16) is reformulated as follows:

AvgPi;P ðRa�bÞ

¼ 1

�d2
�

2
RR
Z1y

A1yðrx; ryÞdrydrxþ2
RR
Z1x

A1xðrx; ryÞdrydrx

þ 4
RR
Z2

A1xðrx; ryÞþA1yðrx; ryÞ

 �

drydrx

4
RR
Z3

A1xðrx; ryÞþA1yðrx; ryÞ�A2ðrx; ryÞ

 �

drydrx

0
BBBBB@

1
CCCCCA;

ð20Þ

which, after the necessary calculations, results in

AvgPi;P ðRa�bÞ ¼
8d

3�
ðaþ bÞ � d2

2�
: ð21Þ

Substituting (21) into (14), we have proved Lemma 2. tu

2.3 Discussion

Summarizing, the analytical model for the prediction of the
number of false positives and false negatives when executing
a rectangular range query over uniformly distributed point
data consists of Lemmas 1 and 2 proved in the previous
sections. It turns out that the average number of false
negatives and false positives of an arbitrary query window
with known sizes 2a and 2b along the x- and y-axes,
respectively, is a function of a, b, the uncertainty radius d,
and the cardinality N of the data set. Another result is the
corollary that theoretically, the average number of false
negatives is equal to the average number of false positives:

ENðRa�bÞ ¼ EP ðRa�bÞ: ð22Þ

Such a result at a first thought seems counterintuitive,
since from the geometry of the problem illustrated in
Figs. 5a and 6a and the uniformity assumption, the number
of false negatives is expected to be slightly higher than the

number of false positives. However, it turns out to be
correct when we take into consideration that on the one
hand, the number of points contributing to the number of
false negatives, represented by the shaded area in Fig. 5a, is
greater than the respective one for false positives (Fig. 6a),
and on the other hand, the area Ai:j of the uncertainty disk
of each point contributing to the number of false negatives
(Fig. 5d) is smaller than the respective one for false positives
(Fig. 6d). Our analytical calculation of ENðRa�bÞ and
EP ðRa�bÞ proves that the above two complementary factors
finally result into two equal values for the number of false
positives and false negatives, thus resulting in (22).

Moreover, it notably arises from (1) and (13) that the
average number of false negatives and false positives of a
rectangular range query depends on the query perimeter
ðaþ bÞ, rather than the query area ða � bÞ. A last observation
is that when our model is utilized to determine the
maximum permitted (im)precision of the data that will
feed an SDBMS, (1) and (13) can be solved for the value of
the uncertainty radius d, given the values of the required
accuracy in terms of false hits and the query’s typical extent.
Intuitively, the two parts of the multiplier of N in (1) and
(13), i.e., 8dðaþ bÞ=3� and d2=2�, represent the contribution
in the total number of false hits of the length of the query
perimeter and the four corners of the query window,
respectively. This detail will turn out to be very useful in the
next section when we will relax the data uniformity
assumption with the aim of histograms.

A final issue regarding the model proposed in this
section is the boundary effect, i.e., what happens in the
boundaries of the unit space. Under such rare circum-
stances, it is only the points within distance d from the
space boundary that are affected. The effect is described as
follows:

. The number of false positives is expected to be less
than the one calculated by our analysis, since there
are no points outside the space boundaries which,
after the injection of uncertainty, could be located
inside the query and thus retrieved as false positives.

. The number of false negatives is expected to be
equal with that of our original estimation, since the
number of objects that qualified the query window
but not retrieved is not affected.

In fact, during our experiments, we observed that
when invoking query windows near the space bound-
aries, the accuracy of the estimation for both false
positives and false negatives is only slightly affected,
and the estimation error is very close to the one reported
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regarding the general case; nevertheless, these experi-
ments are not included in our experimental study due to
space constraints.

3 RELAXING THE UNIFORMITY ASSUMPTIONS

In this section, we relax the three assumptions, AI -AIII ,
made in the problem definition in Section 2. This will be
done in a gradually increasing order. We first show how to
support real-world nonuniform uncertainty distributions,
thus relaxing AI (Section 3.1); we then employ spatial
histograms in order to relax AII (Section 3.2) and finally
show how such histograms can be augmented so as to relax
AIII (Section 3.3).

3.1 Relaxing the Uncertainty Uniformity
Assumption

The analysis made in Section 2 was based on the
uncertainty uniformity assumption, meaning that the actual
position of each data point is uniformly distributed inside
an uncertainty disk with the data point in the center and a
known radius. Nevertheless, in this section, we extend our
model towards nonuniform distributions of location un-
certainty. The rationale behind this extension is that if the
actual point pyi is located inside a circular neighborhood
of pi, it is more likely that the probability of a location
being the actual location of pyi decreases as its distance from
pi increases. The argument that the uncertainty in real
spatial data tends to be normally distributed is well
established [5], [16], [17].

Even more, the error associated with GPS-tracked
positions is usually assumed to be normally distributed,
i.e., following the bivariate normal distribution with uncorre-
lated variables x and y, which is the extension of the normal
distribution in 2D space [15]. Therefore, our goal in this
section is to relax the uniformity assumption in location
uncertainty and support the bivariate normal distribution.
The respective probability density function (pdf), when
variables x and y are uncorrelated, is given by the following
expression [17]:

PBNðx; yÞ ¼
1

2��2
e�

x2þy2
2�2 ; ð23Þ

where �2 is the variance, along the x- and y-axes; then, � is
the corresponding standard deviation. However, the com-
putation of the respective formulas as done in Section 2 is a
hard task since it involves the integration of several
exponential functions.

On the other hand, the density function of the bivariate
normal distribution can be efficiently approximated by the
2D uniform difference distribution (2d-UDD), which is the
extension of the uniform difference distribution in 2D space,
i.e., the distribution of the difference between two uni-
formly distributed variables in ½0; d�. The pdf of 2d-UDD
forms a conical surface with base radius d and unit volume
and is given by

P2d�UDDðx; yÞ ¼
3

�d2
� 1� 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� d;

0; otherwise:

�
ð24Þ

Toward the reformulation of our model, we replace the
uncertainty uniformity assumption with the following
uncertainty uniformity difference assumption: the actual posi-
tion of each data point is handled by P2d-UDD described
above. Based on this assumption, we provide the following
lemma.

Lemma 3. The average numbers ENðRa�bÞ and EP ðRa�bÞ of
false negatives and false positives, respectively, in the results of
a rectangular range query Wj 2 Ra�b with half-sides of
lengths a and b over a point data set that follows the data
uniformity and uncertainty uniformity difference assumptions
are given by the formula:

ENðRa�bÞ ¼ EP ðRa�bÞ ¼ N �
2d

�
ðaþ bÞ � 3d2

10�

� �
; ð25Þ

where d is the radius of the uncertainty disk.

Proof. ENðRa�bÞ and EP ðRa�bÞ can be obtained from the
average probabilities AvgPi;NðRa�bÞ and AvgPi;P ðRa�bÞ,
respectively, multiplied by the total number N of objects
in the data space. The probability of a point pi to be a
false negative or false positive, with respect to a query
window Wj, is

P pi 62Wjjpyi 2Wj

� �
¼ Vi;j; if pi 62Wj and Distðpi;WjÞ�d;

0; otherwise;

�
ð26Þ

respectively

P pi2Wjjpyi 62Wj

� �
¼ Vi;j; if pi2Wj and Distðpi;WjÞ�d;

0; otherwise;

�
ð27Þ

where Vi;j is the volume of the 2d-UDD pdf P2d-UDD,
contained fully inside or outside Wj, respectively.

The volume Vi;j of the P2d-UDD being inside (outside,
respectively) the query window is determined following
the same methodology as in the proof of Lemma 1
(Lemma 2, respectively), taking also into account the
uncertainty size assumption. In particular, bearing in
mind that Figs. 4b, 4c, and 4d illustrate also the
projection of P2d-UDD in the xy plane, we can employ
them in our discussion: in the two first cases (Figs. 4b
and 4c) where the distance between pi and each of the
four corners of Wj is more than d, Vi;j is equal to
V1xðrx; ryÞ (or V1yðrx; ryÞ), which is the portion of the
P2d-UDD being above (or right of, respectively) the vertical
plane passing from c1c2. In the third case, where the
distance between pi and one of the four corners of Wj is
less than d (Fig. 4d), Vi;j is equal to V2ðrx; ryÞ, which is the
portion of the P2d-UDD being right of the vertical plane
passing from c1c2 and above the one passing from c2c3.

The average, with respect to any query window inRa�b,
probability of a point pi to be a false negative (false
positive, respectively) is calculated by integrating (26)

((27), respectively) over all query positions as in (6) ((16),

respectively). The corresponding integral is computed in

the same way as the one followed in the proof of Lemma 1

(Lemma 2, respectively) by replacing the values of

A1xðrx; ryÞ, A1yðrx; ryÞ, and A2ðrx; ryÞ with V1xðrx; ryÞ,
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V1yðrx; ryÞ, andV2ðrx; ryÞ into (11) ((20), respectively). Then,

by substituting
R d

0 V1yðrx; ryÞdry ¼
R d

0 V1xðrx; ryÞdrx ¼ d=2�
and

R d
0

R ffiffiffiffiffiffiffiffiffiffi
d2�x2
p

0 V2ðrx; ryÞdrydrx ¼ 3d2=40� and performing

the necessary calculations, we get

AvgPi;NðRa�bÞ ¼
2d

�
ðaþ bÞ � 3d2

10�
ð28Þ

and

AvgPi;NðRa�bÞ ¼
2d

�
ðaþ bÞ � 3d2

10�
: ð29Þ

By multiplying the above formulas with N , we have
proved Lemma 3. tu
Up to this point, given that the distribution of the

actual data point follows the uncertainty uniformity differ-
ence assumption, our model constitutes of (25), which is
much alike the ones in Section 2 under the uncertainty
uniformity assumption. In particular, when (25) is compared
with (1) and (13), the formulas differ only in the weights of the
function variables dðaþ bÞ and d2. Although the model
described above does not directly consider the bivariate
normal distribution, it can be used to efficiently approximate
it. Consider, for example, Fig. 7, which illustrates the
probability function of the bivariate normal distribution with
uncorrelated variables (Fig. 7a), the probability function of
the 2d-UDD (Fig. 7b), and the silhouette of the two
distributions in 1D space (Fig. 7c); the two probability
functions turn out to be close to each other. Hence, we can
utilize least squares and estimate the radius of the cone that
fits best in the Gaussian “bell” of the bivariate normal
distribution.

Formally, we provide the following lemma.

Lemma 4. The 2d-UDD that best approximates the bivariate
normal distribution with uncorrelated variables is taken when
the radius d of the uncertainty disk is

d � 2:36533� �; ð30Þ

where � is the standard deviation of the bivariate normal
distribution along the x- and y-axes.

Proof. The proof can be found in the Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2008.164. tu

Concluding, our model for normally distributed uncer-
tainty constitutes of (25) and (30); the value of d provided by
(30) can be directly used as input in (25) in order to

approximate the normal distribution quite effectively, as it
will be shown later in the experimental study.

3.2 Relaxing the Data Uniformity Assumption

Sections 2 and 3.1 assumed that data points are uniformly
distributed in the data space. In this section, we relax the
data uniformity assumption and apply our approach to
arbitrarily distributed data with the employment of histo-
grams [11], [13]. Histograms have been widely used in query
optimization issues such as spatial selectivity estimation [1],
[24], in order to overcome similar assumptions made when
estimating the number of disk page accesses required to
answer a query. The background idea is that when data are
included in a small space, they may be considered as
uniform even though the distribution of the entire data set
may differ significantly. The goal, therefore, when using
histograms is to break down the space into small regions,
called buckets, which can be assumed to contain uniform
data. Among the schemes proposed, we adopt the concept of
[1], since it can be directly applied in our requirements.

In particular, Acharya et al. [1] present several space
partitioning techniques for the construction of spatial
histograms utilized in selectivity estimation of range
queries. Among them, the MinSkew technique has been
shown to provide the most accurate selectivity estimates
for spatial queries. MinSkew is a binary space partition-
ing (BSP) technique employing the spatial skew definition
provided in [1]. More specifically, the spatial skew of a
bucket is the statistical variance of the spatial densities
of all points grouped within this bucket, and the spatial
skew of the entire set is the weighted sum of spatial
skews of all buckets. The proposed technique uses a
uniform grid of regions and their spatial densities
as input. Then, the histogram construction algorithm
repeatedly partitions the given set of regions such that
the spatial skew is minimized at each step until no
more buckets are available for the histogram. Since it
always partitions an existing region into two, the result
is a BSP. As a result, the constructed histogram H is
the set of n buckets H¼fBi :[ðBiÞ¼S ^ \ðBiÞ ¼ ;g and
Bi ¼ f½xi;L; xi;U �; ½yi;L; yi;U �g. The main advantage of this
technique is that the initial cells grouped together within
the same bucket have small spatial skew, i.e., variance.
It is therefore expected that the cells contained inside
each bucket should enclose approximately the same
number of data points; as a result, it is usually assumed
that the data distribution inside each bucket Bi is
uniform. Actually, this assumption, as demonstrated
both in [1] and in our experiments, is rather reasonable
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even in the presence of totally skewed spatial data such
as the Charminar data set [1].

Regarding our case, we utilize MinSkew histograms in
order to apply our analysis in nonuniform data and
estimate the error introduced in the query results without
actually executing the query. In the sequel, we propose two
alternative approaches for estimating EP ðRa�bÞ and
ENðRa�bÞ. The first approach determines the histogram
buckets that overlap the query and then calculates the local
density N 0 by producing the weighted average of the
overlapped bucket densities Ni. This happens by weighting
the density Ni of each bucket Bi with the corresponding
area Ai that partially covers the query window, normalized
by the total query area:

N 0 ¼ 1

4ab

X
i¼1::n

ðNi �AiÞ: ð31Þ

Hence, EP ðRa�bÞ and ENðRa�bÞ can be estimated by
evaluating (1), (13), or (25) using the local density N 0,
derived by (31), instead of the overall space density N .

As an alternative approach, instead of computing a
global local density N 0 for the total query window, we
consider the different contributions of the query window
sides and query window corners in the total number of false
hits, as discussed in Section 2.3. Therefore, given a spatial
histogram containing n disjoint buckets Bi, the estimation
of the number of false positives and false negatives in the
results of a query window under the uncertainty uniformity
assumption can be determined using the following formula:

EP ðRa�bÞ ¼ ENðRa�bÞ ¼
X
i¼1::n

Ni �
2d

3�
Li �

d2

8�
si

� �� 	
; ð32Þ

where Li is the length of the part of the query perimeter that
overlaps Bi, and si is the number of query window corners
being inside Bi.

Equation (32) formulates the fact that the total number of
false negatives or positives is the summation of the
contributions of the different query components, as dis-
cussed in Section 2.3. More specifically, the 2dLi=3� part of
(32) is derived from the 8dðaþ bÞ=3� of (1) and (13)
multiplied by the length of the query perimeter Li that
overlaps bucket Bi and divided by the total query length
4ðaþ bÞ; in the same manner, the d2si=8� part of (32) is the
transformation of the d2=2� part of (1) and (13) multiplied
by the actual number of query window corners si inside
bucket Bi and divided by their total number, i.e., four.

Consider, for example, Fig. 8a, which illustrates a query
window W overlapping four histogram buckets ðB1 . . .B4Þ.
Since false hits may only be found close to the boundary of
W , the number of false positives or negatives on bucket B1

depends on the length of the query perimeter that overlaps
it, that is, the length of lines jm1c1j þ jc1m2j and the number
of corners s1 ¼ 1. It is also worth to note that using the above
procedure, the query window is not dissected across the
histogram buckets’ boundaries, as such an approach would
increase the total perimeter and consequently decrease the
accuracy of the model. Moreover, in the 2d-UDD uncertainty
distribution case, the formula for estimating the number of
false positives and false negatives is

EP ðRa�bÞ ¼ ENðRa�bÞ ¼
X
i¼1::n

Ni �
d

2�
Li �

3d2

40�
si

� �� 	
: ð33Þ

The above formula is derived by counting the different
contributions of the query sides and corners of (25) in a way
similar with the above. In particular, the dLi=2� part of (33)
is computed by multiplying the 2dðaþ bÞ=� of (25) by the
part of the query perimeter Li that overlaps bucket Bi,
divided by the total query length 4ðaþ bÞ, while the
3d2si=40� part of (33) is obtained by multiplying the
3d2=10� part of (25) by the actual number of query window
corners si inside bucket Bi, divided by their total number,
i.e., four.

The same methodology can be applied to any bucket-
based data storage scheme containing summary informa-
tion, such as data cubes in SDWs. Since a spatial data cube
consists of disjoint spatial buckets, i.e., the base cuboids,
along with summary information, (32) and (33), depending
on the type of uncertainty distribution, can be applied in
OLAP operations and produce an estimation for the total
number of false positives or false negatives. For example,
when aggregating from the cell to the city level as discussed
in the introduction, i.e., performing a roll-up operation, the
MBR of a city can be considered as a query window and be
used to estimate the false hits introduced in the aggregation.
Given, however, that the density between the boundary of
the actual city and its MBR can be much different, the Ni

involved in (32) or (33) should be determined by using the
actual perimeter of the city polygon in place of its MBR, and
the Li lengths should be weighted accordingly using the
MBR and the polygon perimeter. This approach will be
tested in the experimental section, and it will be shown to
produce very good estimations.

3.3 Relaxing the Constant Uncertainty Radius
Assumption

The third extension of our model in order to support real-
world application scenarios is to deal with point data with
different values of the uncertainty radius or standard
deviation for each one. Consider, for example, m sets Pj
containing Nj points each, obtained by using different
positioning technologies such as GPS, Wi-Fi positioning,
etc. Then, the union of all sets P ¼

S
i¼1...mfPjg contains

points having several uncertainty radii depending on each
point’s original data source. A straightforward approach in
order to determine the error EP or EN introduced in the
results of a rectangular range query over P is to calculate

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 8. (a) A query window over of a spatial histogram. (b) A spatial query

window over the augmented space.



the specific errors EP;j or EN;j for each one Pj separately

and then summarize the resulting errors. More formally

EP ðRa�bÞ ¼
X
j¼1::m

EP;jðRa�bÞ and ENðRa�bÞ

¼
X
j¼1::m

EN;jðRa�bÞ:
ð34Þ

Such an approach would reasonably be successful when

dealing with uniformly distributed data. However, when

dealing with real-world usually skewed data, the metho-

dology provided in Section 3.2 should be applied, meaning

that we would have to maintain m different histograms, one

for each different possible value of the uncertainty radius.

Nevertheless, in this paper, we provide a more sophisti-

cated solution to the above challenge. Specifically, we

propose to augment a simple spatial histogram such as

MinSkew [1] with the uncertainty radius considered as the

third dimension. In other words, we propose to use the

MinSkew histogram in the normalized 3D space formed by

the two spatial dimensions and the length of the uncertainty

radius d.
More formally, the proposed MinSkew histogram is

H¼fBi : [ðBiÞ¼S�½0; 1�^ \ðBiÞ¼;g and Bi¼f½xi;L; xi;U �;
½yi;L; yi;U �; ½di;L; di;U �g. It is built by applying a uniform grid

in S � ½0; 1� and counting the number of data points

found inside each cell in the 3D space and then

recursively partitioning the data space, minimizing the

total spatial skew at each step. Following the respective

discussion of the previous section regarding simple

spatial histograms, it is assumed that the data distribution

inside each 3D bucket Bi is uniform. Then, the estimation

of the number of false hits can be easily calculated in the

case of the uncertainty uniformity assumption as follows:

EP ðRa�bÞ ¼ENðRa�bÞ

¼
X
i¼1::n

Ni

di;U � di;L
�
Zdi;U
di;L

2d

3�
Li �

d2

8�
si

� �
dd

� 	2
64

3
75;
ð35Þ

where Li is the length of the query perimeter that overlaps

bucket Bi in the two spatial dimensions, si is the number of

query window corners being inside bucket Bi, and di;L and

di;U are the lower and upper values of the third dimension d

in Bi, respectively. Equation (35) is directly derived when

integrating (32) over all possible values of d in the data

space, bearing also in mind that the actual number of

objects found at each slice of the third dimension is

Ni=ðdi;U � di;LÞ and ðdi;U � di;LÞ is the bucket’s extent along

this dimension. Intuitively, the above formula expresses the

fact that the total error is the summation of the errors

encountered on each histogram bucket the query window

boundary overlaps; moreover, in this case, the spatial query

window W is also augmented in the third dimension,

forming a box entirely covering the third dimension, as

illustrated in Fig. 8b. Finally, (35), after the necessary

calculations, turns into

EP ðRa�bÞ ¼ENðRa�bÞ

¼
X
i¼1::n

Ni �
di;Uþdi;L

3�
Li�

d2
i;Uþd2

i;Lþdi;Ldi;U
24�

si

 !" #
:

ð36Þ

Following a similar approach, the estimation of the number
of false hits in the case of the uncertainty uniformity
difference assumption is calculated as

EP ðRa�bÞ ¼ENðRa�bÞ

¼
X
i¼1::n

Ni �
di;Uþdi;L

4�
Li�

d2
i;Uþd2

i;Lþdi;Ldi;U
40�

si

 !" #
:

ð37Þ

The proposed approach has two basic advantages
regarding the alternative of maintaining different histo-
grams for the m sets of recorded points; the first is that the
space requirements are sufficiently reduced, especially in
the case where the number of different uncertainty radii
increases significantly. However, the most important
advantage of our proposal is revealed bearing in mind that
data belonging to the same class may have different
accuracy; for example, the uncertainty due to GPS depends
on a large number of parameters such as the number of
visible satellites, the frequency interference, and the satellite
signal reflection in large glass surfaces inside urban areas,
resulting in a different uncertainty radius for each indivi-
dual point; the naı̈ve approach could not fulfill such
requirements since we would have to maintain a separate
histogram for each possible value of the uncertainty radius.
On the other hand, our proposal can absorb these
necessities and handle an unrestrained number of different
radii without increasing the memory space requirement of
the constructed histogram, producing at the same time a
very good estimation.

4 EXPERIMENTAL STUDY

In this section, we present several experiments using
synthetic and real spatial data in order to demonstrate the
correctness and accuracy of our analysis in the various
settings examined, as well as the efficiency of the
proposed solutions. Concisely, in the experimental study
that follows, we

. demonstrate the accuracy of the analytical model ((1)
and (13)), as well as its sensitivity with respect to the
involved parameters, i.e., the uncertainty radius or
standard deviation, and the length of the query
perimeter,

. show the quality of the approximation of normally
distributed location uncertainty by 2d-UDD utilizing
the model supported by (25) and (30),

. present the accuracy of the estimation provided
by our analytical models—(32), (33), (36), and
(37)—over real spatial data utilizing histograms and
also demonstrate their advantage to the alternative of
utilizing the histogram as a local density estimator
using (31),

. show how our proposal can be used in the context of
SDWs, and
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. reveal the efficiency of the provided solutions
implemented on top of a commercial SDBMS.

4.1 Experimental Setup

Our experimental study is based on both synthetic and real

point data sets. In particular, we used a synthetic data set

ðRnd0Þ of 100,000 2D points randomly distributed in the

unit data space, as well as two real data sets, namely, the

North East (NE) and the Digital Chart of the World (DCW)

data sets, both obtained from [23].
Then, as suggested in [4], [7], and [10], we added noise in

each data set point in a controlled way. In particular, we

modified the location of each point in all three data sets by

adding noise, either uniformly distributed inside an

uncertainty disk of radius d, producing the respective U-d

data set, or following a bivariate normal distribution with

standard deviation �, producing the respective N-� data set;

for each U-d and N-� data set, we produced five different

data sets, that is, RndU-d-1 to RndU-d-5, NEU-d-1 to NEU-d-5,

and DCWU-d-1 to DCWU-d-5, and also the same five data sets

for each one of the RndN-�, NEN-�, DCWN-� cases. In order

also to test the accuracy of our estimations under the

settings in Section 3.3, we produced the NEN-v0:02 data set

on which we have added noise following the bivariate

normal distribution with � varying between 0 and 0.02.

Unless otherwise indicated, all experimentations involving

spatial queries were performed by running 1,000 randomly

distributed square, i.e., with a ¼ b, queries over all five data

sets of the respective case; elongated query windows

reported similar behavior. We conducted our experiments

on a Windows XP workstation with AMD Athlon 64 3-GHz

processor CPU, 1 Gbyte of main memory, and several

gigabytes of disk space. All evaluated methods were

implemented on both VB.NET and PostgreSQL [19] with

the PostGIS [18] extension.

4.2 Experiments on the Quality

Two statistical measures were used so as to demonstrate the

behavior of our model: the average number of false negatives

and false positives, EN and EP , respectively, and the average

error in the estimation of false negatives and false positives in each

individual query, ESN and ESP , respectively. Formally, these

measures are defined as

EN ¼
1

n

X
i¼1::n

EN;i; EP ¼
1

n

X
i¼1::n

EP;i ð38Þ

and

ESN ¼
1

n

X
i¼1::n

EN;i � ENðRa�bÞ
�� ��; ESP

¼ 1

n

X
i¼1::n

EP;i � EP ðRa�bÞ
�� ��; ð39Þ

where n is the number of executed queries, and EP;i ðEN;iÞ
is the actual number of false positives (false negatives,

respectively) in the ith query. We distinguish between,

e.g., EP and ESP in order to uncover the details of the

behavior of our model, as will be shown in the following

experiments.

4.2.1 Experiments over Synthetic Data Following All

Three Original Assumptions AI , AII , and AIII

In the first series of experiments, we utilize the synthetic
data sets in order to demonstrate the accuracy and the
behavior of our analytical model scaling the two influencing
factors: the radius d of the uncertainty disk and the size
ða; bÞ of the query window. Note that in all figures, the
query size is exposed in terms of its side length 2a ¼ 2b, e.g.,
for query side length 0.30, the size of the query window is
equal to 0:30� 0:30 ¼ 0:09 of the unit space.

In particular, in our first experiment, we scaled the value
of d between 0.05 percent and 2 percent of the space extent
along the x- and y-axes, querying both Rnd0 and the
respective Rndu-d data set, with fixed side length 0.18 (i.e.,
a ¼ b ¼ 0:09, resulting in a query window sized 3.24 percent
of the data space). The results of this experiment are
illustrated in Fig. 9a; as a first result, the number of false
positives and false negatives turn out to be almost equal,
verifying the correctness of the corollary in (22). Moreover,
the estimations EP ðRa�bÞ and ENðRa�bÞ are extremely
accurate with respect to EP andEN , with the error being
always below 3 percent, whereas the error bars in each
graph column, illustrating ESP and ESN , are shown to be
relatively low. Specifically, the average error in individual
queries is below 10 percent in the vast majority of the
experimental settings and is up to 29 percent in a single
extreme case where the uncertainty radius d is set to its
minimum ðd ¼ 0:05 percentÞ.

We have also included in our study the methodology
provided in [27], which estimates the cardinality of the
MAY set. As already stated, the MAY set is actually a
superset containing, among others, the false hits calculated
by our analysis; nevertheless, we evaluate the assumption
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Fig. 9. Average false negatives/positives and their estimations

scaling with (a) d and (b) the query size (synthetic data—uniform

distribution of uncertainty) and with (c) � and (d) the query size

(synthetic data—normal distribution of uncertainty).



that 50 percent of the MAY set are false hits, that is, an object
in the MAY set may be either a true or false hit with the
same probability. However, as illustrated in Fig. 9, in the
MAY set estimation curve, the above assumption does not
result in correct estimations. It is worth to note, however,
that the goal of the analysis presented in [27] is not to
provide the number of false hits the way our analysis does.
Our assumption regarding the portion of the MAY set
encountering false hits, i.e., the 50 percent, is used due to
the lack of any other suggestions on this subject included in
[27]. Moreover, Fig. 9a could also lead to the presumption
that a simple multiplier on the MAY set estimation, i.e.,
lowering the corresponding curve in Fig. 9, could force it to
produce better results. Still, in order to determine this
multiplier, it is the methodology provided in our analysis
that should be followed.

Similar results are exposed in the second experiment,
illustrated in Fig. 9b, where we scale the query size. In
particular, we set the uncertainty radius to 0.5 percent and
scaled the length of the query side between 0.06 and 0.36,
resulting in query sizes covering between 0.36 percent and
12.96 percent of the data space. When comparing the
estimation of the number of false negatives and false
positives and the respective average values EP and EN , the
reported estimation error is below 1 percent, regardless of
the query size. Furthermore, the estimation based on the
MAY set cardinality once again could not yield comparable
results; as such, based on the observation that this
estimation systematically overestimates EP and EN , we
will exclude it from the rest of the experimental study.
Regarding the error bars in each graph column, illustrating
the respective ESP and ESN , they are relatively small in the
majority of the experiments being below 16 percent; the
only case where it reached higher values, i.e., 35 percent,
occurred when both � and the query size were set to their
minimum values.

4.2.2 Experiments over Synthetic Data Relaxing

Assumption AI

In order to evaluate the accuracy of the estimation of the
number of false positives and false negatives EP ðRa�bÞ ¼
ENðRa�bÞ calculated by (25) and (30), we performed a
similar experimentation with the RndN-� data sets where

we scaled � and the query size. The results of these
experiments are illustrated in Figs. 9c and 9d, and it is clear
that the estimation error regarding EP and EN is always
below 5 percent. Moreover, the respective error bars,
illustrating ESP and ESN , are shown to be relatively small,
being usually below 12 percent, while reaching 36 percent
only in the case where both d and the length of the query
side were set to their minimum values.

A more detailed presentation of the average estimation
error in each individual query ESP and ESN is illustrated
in Figs. 10a and 10b, as a percentage of the number of false
positives and false negatives, respectively. Both figures
illustrate that ESP and ESN vary from small values, i.e.,
less than 10 percent for high values of �, to higher ones for
very small values of �. They also depend on the query size,
increasing as the size decreases. In general, it appears that
ESP and ESN are essentially ruled by the standard
deviation � and, at a smaller extent, on the query size.
Furthermore, for small values of � and small query sizes,
while the estimation is still accurate regarding EP and ER

(Figs. 9a and 9b, respectively), ESP and ESN increase
significantly up to 40 percent.

4.2.3 Experiments over Real Data Relaxing

Assumption AII

In order to support real arbitrarily distributed data by
employing histograms, we utilized the NE data set along
with the respective NEN-� data sets. Subsequently, we
created the MinSkew partitioning of each modified data set
using a uniform grid of original grid size set to 0.001 �
0.001, as discussed in [1]. The experiments over the NEU-d
data sets, i.e., with uniform uncertainty distribution,
reported similar behavior and thus are omitted. In
particular, in order to evaluate the accuracy of the analysis
in Section 3.2, i.e., the estimation of EP ðRa�bÞ and ENðRa�bÞ
using (33), we experimented with the NE and NEN-� data
sets, first scaling � with the query size fixed to 0.18 � 0.18
and then scaling the query size with � fixed to 0.5 percent.

Fig. 11 illustrates the actual and estimated values of false
negatives and false positives using the above experimental
settings. Clearly, the estimations are accurate, with the
reported error being always lower than 6 percent. Addi-
tionally, the average estimation error in each individual
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Fig. 10. Average estimation error of (a) false positives ESP and (b) false negatives ESN in each query, scaling with d and the query size (synthetic

data—normal distribution of uncertainty).



query ESP and ESN , which is illustrated in the error bars in
Fig. 11 and, in more detail, in Figs. 12a and 12b,
respectively, is considerably small, being below 12 percent
in the majority of the experimental settings. It is also clear
that as the query size increases, ESP and ESN decrease to
values lower than 11 percent. On the other hand, small
query sizes lead to increased ESP and ESN values, between
12 percent and 24 percent regarding query sizes of 0.06 �
0.06, nevertheless with a smaller error peak than the ones
reported for random data without the usage of histograms,
e.g., the reported 36 percent in Fig. 10 versus 24 percent in
Fig. 12. The above observation can be explained by the fact
that histograms provide a locally more accurate value of the
estimated error than the global formula does over synthetic
data, since they help the model absorb the local density
changes of real arbitrarily distributed spatial data.

The impact of our analysis in real data sets with the
aid of histograms is demonstrated by performing a set of
experiments over the NE and NEN-� data sets, comput-
ing our model by two different approaches: 1) producing
the local density via (31) and then using it in (1) and (13)
and 2) directly utilizing (33). In our experiment, we set
� ¼ 0:5 percent and scaled the side of the query window
from 0.06 to 0.36. The results of this experiment are
illustrated in Fig. 13a, which demonstrates that although
the first approach, labeled as Estimation-Area in Fig. 13,
provides an accurate average estimation, the obtained
values for ESP and ESN are higher than those produced

by the second approach, labeled as Estimation in Fig. 13a.
This confirms that the appropriate use of histograms in
our model is according to the analysis in Section 3.2 by
directly employing (33).

4.2.4 Experiments over Real Data Relaxing

Assumption AIII

In order to demonstrate the high-quality estimations
obtained when using the augmented histogram methodol-
ogy in Section 3.3, we performed an experiment by
employing the NE and NEN-v0:02 data sets; as already
mentioned, NEN-v0:02 contain data with variable known
size of standard deviation �, varying between 0 and 0.02.
We then scaled the side of the query window from 0.06 to
0.36. The respective results, illustrated in Fig. 13b, show
that there is no significant difference between this case
and the one where � was set to a constant value (Fig. 11b)
and the estimations of EP and EN are again very accurate.
Moreover, the obtained values for ESP and ESN , i.e., the
error bars, vary between 7 percent and 14 percent, while
in the case of Fig. 11b, the respective error varied between
6 percent and 13 percent. We can therefore conclude that
the analysis in Section 3.3 regarding variable uncertainty
radii is verified to be at least as accurate as the respective
analysis in Section 3.2, which assumes a constant
uncertainty radius.
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Fig. 11. Average false negatives/positives and their estimations scaling

with (a) � and (b) the query size (real data—bivariate normal distribution

of uncertainty).

Fig. 12. Average estimation error of (a) false positives ESP and (b) false negatives ESN in each query, scaling with � and the query size (real

data—bivariate normal distribution of uncertainty).

Fig. 13. (a) Average false negatives/positives and estimation error in
each individual query using different model approaches (real data—-
normal distribution of uncertainty). (b) Average false negatives/positives
and their estimations scaling with the query size (real data—bivariate
normal distribution of uncertainty).



4.2.5 Experiments over Real Data Warehouses

In order to demonstrate the application of our model in a
data cube operation, we used the DCW and DCWN-0;5 data
sets, where the added Gaussian noise in the location of
each point has � equal to 0.5 percent of the space extent
along the x-axis, since the size of the space is different along
the x- and y-axes. Then, we applied a uniform 60 � 30 grid
along the x- and y-axes, forming 1,800 buckets overlaying
the USA map, and counted the number of objects contained
inside each cell. We subsequently performed a roll-up
operation at the state level, as discussed in Section 1. In
particular, we calculated the estimation of false positives
and false negatives by the MBRs of US states as range
queries, as discussed in Section 3.2. Finally, we used the
original data sets in order to determine the actual number of
false positives and false negatives.

The error between the estimated and the actual number
of false hits obtained as the sum of false negatives and false
positives is illustrated in Fig. 14a. Clearly, the error in the
majority of the US States is below 25 percent, while the
actual weighted average is 16 percent. Regarding the four
outliers, labeled with the name of the state in Fig. 14a, the
high error presented is due to either the tiny size of the
query polygon, i.e., the Delaware case, verifying the result
of a previous experiment that the error increases as the
query size decreases, or the irregular shape of the query
polygon that is not well approximated by its MBR, i.e., the
California, Florida, and Michigan cases, with their shapes
illustrated in Fig. 14b.

4.3 Experiments on the Efficiency

We also experimented with the performance of the
proposed solutions using an implementation of our model
in the PostgreSQL [19] DBMS along with the PostGIS [18]
spatial extension. Since the selected DBMS does not natively
support MinSkew [1] spatial histograms, we have extended

it towards this direction; moreover, we have included in our
implementation the augmented histogram proposed in
Section 3.3. All methods were implemented as functions
of the spatial DBMS in the PL/pgSQL language; the
developed software is ported in a template database.

In the first experiment, we utilized the NEN-0:01-1 and
NEN-v0:02 data sets and counted the time required to
construct the MinSkew and the augmented MinSkew
histograms, respectively; the results are shown in Table 2.
Clearly, the processing time is reasonable given the fact that
this is an offline operation, executed only once; then, the
constructed histogram buckets are permanently stored in a
relational table. Here, it is worth to note that since the
MinSkew construction algorithm initially overlays a regular
grid on top of the data set, being subsequently used instead
of the original data set, the time required for constructing a
MinSkew histogram does not depend on the data set size;
this is also confirmed in the respective experimental study
in [1]. Therefore, the execution times illustrated in Table 2
can be considered as representatives, given also the other
histogram parameters, i.e., the number of buckets and the
number of the overlaid grid cells.

In our second experiment, we employed the NEN-0:01-1

data set and 1,000 randomly distributed rectangular queries
in order to evaluate the average execution time of the
function that implements our model; we also scaled the
query size in a way similar to that in Section 4.2 from 0.06 �
0.06 to 0.36 � 0.36. The respective results showed that
regardless of the query size, the execution time required by
the DBMS to estimate the false hits introduced in a query
was approximately 16 ms, while the time required to
process the actual query was 120 ms. Clearly, our proposal
can be employed as an estimator, since its execution time is
restrained to a few milliseconds, while the actual query
execution typically needs one order of magnitude more
time. Moreover, it is revealed that the expected result that
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Fig. 14. (a) Error between the actual number of false hits and their estimation in the roll-up operation from the cell to state level in the USA map.

(b) A bad approximation of a state by its MBR.

TABLE 2
Histogram Statistics



the overhead introduced by the estimator is independent
from the query size.

4.4 Summary of the Experimental Results

Summarizing the results of our experimental study, the
model proposed in Sections 2 and 3 is shown to provide
high accuracy with an average error on EP and EN never
exceeding 6 percent for either random synthetic or real data.
Regarding the uniform case, the estimation of the number of
false hits is accurate regardless of the value of the query size
and the radius d of the uncertainty disk or � in the case of
data with normally distributed uncertainty. Moreover, it
has been shown that simple modifications in the single
work that is very related to ours [27] could not yield to an
accurate estimation of the average number of false hits. The
experiments over real data demonstrate accuracy even
higher than the one reported for synthetic data, with very
low ESP and ESN errors, indicating the advantage
introduced by the employment of histograms, even in the
case of variable �. Furthermore, it is verified that in the
presence of histograms, it is much more appropriate to use
the model expressed by (32) and (33) than using the local
density estimated by the histogram via traditional opera-
tions, i.e., via (31). The results on the application of our
model in spatial data cubes and spatial OLAP operations
are also very promising. Finally, the implementation of the
proposed solutions in real-world environments has shown
the efficiency of our proposal when employed as an
estimator, since its execution time is typically only a few
milliseconds.

5 RELATED WORK

Wolfson et al. [29] address the imprecision problem of the
location of moving objects by proposing a set of updating
policies of the database that stores the object locations. The
basic idea is that the database is updated whenever the
distance between the actual location of an object and that
stored in the database value exceeds a threshold. In this
way, an uncertainty factor of every object’s location is
introduced, since objects are within distance of 1 km from
the last recorded locations. Adopting the utilization of pdfs,
they describe an algorithm that processes a probabilistic
spatial range query applied in the above database. The
output of this type of query, which returns the set of objects
being within a region R, consists of pairs of the form
ðOi; PiÞ, where Pi is the probability that object Oi intersects
query region R. Cheng et al. [6] adopt the definition of the
probabilistic query introduced in [29] and extend it in the
case of nearest neighbor (NN) queries. Under the setting set
in [29] and the open agora scenario discussed in [12], our
work may be used as a client-side optimizer of rectangular
time-slice queries executed over moving object databases.

Location uncertainty of moving objects is also discussed
by Trajcevski et al. [25], [26], where a trajectory of an object
is modeled as a 3D cylindrical volume around the tracked
trajectory. Furthermore, two categories of operators for
querying trajectories with uncertainty are introduced,
concerning spatiotemporal point and range queries, respec-
tively, and efficient algorithms are presented for their
implementation. Reference [26] also discusses the may

versus must in terms of the meaning of their proposed
operators; as such, they distinguish between the sometime
and always in the temporal domain and the possibly and
definitely operators in the spatial domain, and they provide
a set of spatiotemporal query types under uncertainty. The
work in [26] gave us the intuition to use the uncertainty disk,
since they also model each spatiotemporal trajectory as a
cylindrical volume of constant radius; moreover, the
extension of our model in the spatiotemporal domain can
be justified when employing the way trajectories are
modeled in [26].

Cheng et al. [8] investigated the problem of indexing
uncertain data in order to efficiently answer probabilistic
threshold queries, in which the appearance probability of
each data point in the result of the query exceeds a given
threshold. Two index structures are proposed. The pruning
power of the first index is based on the utilization of
uncertain information augmented to the internal nodes of
the index, while in the second index, data points with
similar degrees of uncertainty are clustered together.
Recently, Tao et al. [21] studied a similar type of query,
the probabilistic range query, which retrieves the objects
that appear in a rectangular area with probabilities of at
least a predefined value. Based on the notion of probabil-
istic constrained rectangle (PCR), they introduced a fully
dynamic index structure on uncertain data. This structure,
called U-tree, maintains “auxiliary information” at all of its
levels for the respective indexed objects that can be used to
validate the presence of an object in the results of a
probabilistic range query, without calculating its computa-
tionally expensive appearance probability. Our work can be
considered as complementary to the work in [21] when
employed in the context of [12]; in particular, our work can
be used as a client-side optimizer, which optimizes the
query in terms of quality of output, while the U-tree
proposed in [21] could be employed at the server-side for
performing the final user request.

Ni et al. [16] propose a probabilistic spatial data model
for the positional accuracy of polygon data. According to
this model, each polygon is partitioned into disjoint
independent chunks. Each chunk is a contiguous series of
vertices with fully correlated locational uncertainties. Based
on the above model, a probabilistic spatial join algorithm is
described, in which the object pairs of the result are
associated with the intersection probability between each
pair. A variation of the R-tree, called probabilistic R-tree, is
introduced for the support of the probabilistic filtering of
the join algorithm, in which each MBR approximation is
augmented with the probability distribution of MBR’s
boundary. The extension of our work to support nonpoint
data sets could also enable it to be made complementary to
the work in [16] under the open agora scenario [12].

Dai et al. [9] have studied the problem of evaluating
spatial queries for existentially uncertain data; in this case,
uncertainty does not refer to the locations of the objects but
to their existence. The authors define two probabilistic query
types: the so-called thresholding and ranking queries in
which the output is controlled by thresholding the results of
low probability to occur or ranking them and selecting the
ones with the highest probability, respectively. In the sequel,
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probabilistic variants of spatial range and NN queries are
presented for objects indexed by a 2D index such as the
R-tree. Finally, in order to improve the efficiency of their
proposed algorithms, they propose an extension of the
R-tree, in which the nonleaf entries are augmented with the
maximum existential probability of the objects indexed
under them. Existentially uncertain data are fundamentally
different from the locationally uncertain data taken into
account in our work; as such, the estimation of the number of
false hits in the context of probabilistic ranking and thresh-
olding queries over existentially uncertain data can be
considered as a future extension of our work.

Perhaps the most relevant to our work is the study by Yu

and Mehrotra [27], where the effect of uncertainty in

probabilistic spatial queries, similar to the work presented

in [16], is discussed. By performing a theoretical analysis,

they provide a novel technique that can be used in order to

set the data precision in the data collection process, so that a

probabilistic guarantee on the uncertainty in answers of

spatial queries can be provided. The first outcome of the

analysis are the cardinalities of the three subsets of a range

query result, namely, the MUST, MAY, and ANS sets:

MUST is the set of objects that “must” be located within the

query range, MAY is the set of objects that “may” be located

within the query range, and ANS is the approximate answer

set of objects whose recorded locations are in the query

region. The second outcome is a method for determining

the largest possible imprecision, i.e., the uncertainty radius of

our analysis, given that the answer to a random COUNT

query should include an uncertainty � � �0, i.e., the

cardinality of the MAY set should be less than a given

value, with a probability P � P0.
Comparing our model with [27], the first remark is that

the numbers EN and EP of false hits that we estimate are
actually a refinement, i.e., a subset, of the MAY set estimated
in [27], and it is not straightforward to remove the
overestimation provided in [27] unless our model is used;
this overestimation was clearly shown in the experimental
results presented in Section 4.2.1. A second remark is that
the model presented in [27] is based on the uniformity
assumption, whereas our study addresses more realistic
requirements.

6 CONCLUSIONS AND FUTURE WORK

In this work, we presented a theoretical model that
estimates the error introduced by each object’s location
uncertainty in the results of rectangular range queries over
spatial point data. We provided a closed formula of the
average number of false positives and false negatives,
under three assumptions: uniform location uncertainty,
uniformly distributed data, and constant radius of uncer-
tainty disk. Then, we relaxed these assumptions towards
more realistic settings, using the bivariate normal distribu-
tion over location uncertainty and MinSkew histograms for
data and radius distributions. The accuracy of our model
was evaluated through extensive experimentation using
various synthetic and real data sets.

The applications of our proposal include query optimi-
zation under the open agora scenario [12], interactive

database querying, imprecision settings, and data ware-
house operations, as extensively discussed. The proposed
model can be directly employed in spatial database systems
in order to provide users with the accuracy of spatial query
results based only on known data set and query features,
while off-the-self histograms already employed in spatial
databases for query optimization purposes can serve our
model without the need for any additional adjustments.

There are numerous interesting research directions
arising from this work, including the application of our
model in data spaces of higher dimensionality and its
extension in order to support nonpoint data sets and
nonrectangular query windows, as well as NN queries.
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APPENDIX: Proof of Lemma 4 

According to the Least Squares Theory, the best approximation of a function f by another function g 

in the same domain D is given by minimizing the integral ( ) ( )( )2

D
f x g x dx−∫∫  of the square of their 

difference along D. Subsequently, in order to prove Lemma 4 we have to determine the value of d that 

minimizes ( ) ( )( )2

2

2 , ,d UDD BN
P x y P x y dxdy− −∫∫ℝ . Towards this goal, it holds that: 
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(40) 

where C(0,d) is the disk with center (0,0) and radius d. Applying Eq.(24) and Eq.(23) into Eq.(40), we 

get: 
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(41) 

At this point, we utilize the Cartesian-to-Polar transformation, which transforms (x, y) to (ρ, θ) 

according to the following formula: 

( ),f x y dxdy =∫∫  ( )cos , sinf d dρ θ ρ θ ρ ρ θ∫∫  (42) 

Applying the above transformation to Eq.(41), we get: 
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This results in 
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(43) 

where Erf[x] is the error function encountered in integrating the normal distribution. In the sequel, we 

calculate the first derivative of Eq.(43) with respect to d: 
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and by substituting d /σ with a variable a ( 0a ≠ ), we result in the following expression: 

( ) ( )( )
2

2

22

2

3

9 6 9 2 Erf
, , 2

a

d UDD BN

a
a ae

P x y P x y dxdy

d ad

π

π

−

−

 
+ −  ∂ −  =

∂
∫∫ℝ  

(45) 

which is zeroed when the numerator becomes zero. Hence, the first derivative of Eq.(43) is zeroed 



 

when 
2
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 (46) 

After numerically evaluating Eq.(46) it turns out that  

2.36533a ≈  (47) 

Recalling that a = d /σ  we have proved Lemma 4. � 


