Available online at www.sciencedirect.com

. DATA &
SCIENCE@DIRECT KNOWLEDGE
Pe ENGINEERING
ELSEVIER Data & Knowledge Engineering 57 (2006) 37-63

www.elsevier.com/locate/datak

Indexed-based density biased sampling for
clustering applications ™

Alexandros Nanopoulos , Yannis Theodoridis ®, Yannis Manolopoulos **

& Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
® Department of Informatics, University of Piraeus, Greece

Received 14 September 2003; received in revised form 10 December 2004; accepted 24 March 2005
Available online 22 April 2005

Abstract

Density biased sampling (DBS) has been proposed to address the limitations of Uniform sampling, by
producing the desired probability distribution in the sample. The ease of producing a random sample
depends on the available mechanism for accessing the elements of the dataset. Existing DBS algorithms per-
form sampling over flat files. In this paper, we develop a new method that exploits spatial indexes and the
local density information they preserve, to provide good quality of sampling result and fast access to ele-
ments of the dataset. With the proposed method accurate density estimations can be produced with respect
to factors like skew, noise or dimensionality. Moreover, significant improvement in sampling time is
attained. The performance of the proposed method is examined analytically and experimentally. The com-
parative results illustrate its superiority over existing methods.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Sampling; Indexes; Density bias; Clustering; Data mining

* A preliminary version of this paper appeared in the proceedings of the CIKM’02 conference.
* Corresponding author. Tel.: +302310 991912; fax: +302310 991913.
E-mail addresses: alex@delab.csd.auth.gr (A. Nanopoulos), ytheod@unipi.gr (Y. Theodoridis), manolopo@
delab.csd.auth.gr (Y. Manolopoulos).

0169-023X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2005.03.003


mailto:alex@delab.csd.auth.gr
mailto:ytheod@unipi.gr
mailto:manolopo@ delab.csd.auth.gr
mailto:manolopo@ delab.csd.auth.gr

38 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63
1. Introduction

The scalability of data analysis tasks to very large databases can be accomplished with data
reduction schemes [3]. In data mining, sampling is a data reduction scheme that has found broad
applications [16,13,28,31,25,17]. For the data mining task of clustering several algorithms capital-
ize on sampling as means of improving their efficiency [11,32,7,19]. They are based mainly on Uni-
form random sampling, with which every point has the same probability of being included in the
sample.

Instead of Uniform sampling, the derivation of the desired probability distribution in the sam-
ple is more valuable for the task of clustering. An important example is the case of datasets with
skewed cluster sizes. In this case, small clusters (i.e., with a small number of points) are possible to
be missed, since points belonging to them may not be included in the sample. Density biased sam-
pling (DBS) has been proposed in [22,15], with which the probability that a point will be included
in the sample depends on the density of its locus. Hence, an adequate number of points from small
clusters is included in the sample, due to the increased local density within the clusters. Although
Uniform sampling can guarantee the inclusion of points from small clusters if very large samples
are obtained, DBS accomplishes the same objective with much smaller samples (as proven in The-
orem 1 of [15]). Consequently, DBS can be significantly more effective and efficient than Uniform
sampling. It is interesting to notice that DBS may be considered as a generalization of Uniform
sampling, since it can be reduced to the latter when the local density information is not taken into
account [22].!

For instance, let two clusters depicted in Fig. 1. The rightmost consists of 50,000 points and the
leftmost of 1000. The density (i.e., the number of points in each cluster with respect to its area) of
the small cluster is about two times higher than that of the larger cluster.? By taking a Uniform
sample of 1%, that is 510 points, the result of the random selection is that only nine points are
included from the small cluster. This number is around the expected one, by considering that each
point from the small cluster has inclusion probability 1000/51,000. When performing DBS (using
the SP algorithm that will be described in the following), 87 points from the small cluster are
included in the sample. The small cluster, therefore, participates with an adequate number of
points in the sample. Thus, while with Uniform sampling the small cluster can be missed (since
the very few points can be overlooked as outliers), DBS prevents this problem.

1.1. Motivation

Existing DBS algorithms [22,15] use flat files, by performing one or more database scans and
developing estimators for the approximation of local density. According to [3], the ease of produc-
ing a random sample depends on the available sampling frame, that is, the mechanism for access-
ing the elements of the dataset. Spatial Database Systems exploit access methods for efficient data
organization. Sampling from spatial indexes has been introduced by Olken and Rotem [21]. How-

! DBS can also be considered as a specialization of stratified sampling, which partitions the data into mutually disjoint
“strata’ and then obtains a uniform random sample from each stratum.

2 Small clusters may have the same density as larger ones, but higher from those parts of the space that do not contain
clusters.



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 39

150

140
130+
120+
110+
100

ia

90 +
80 -
70 +
60 -

50 I I I I I
-20 0 20 40 60 80 100 120 140 160

Fig. 1. An example of two clusters with different number of points.

ever, they focused on Uniform sampling, which does not consider density-bias. Spatial indexes
(like the R-tree [10] and variants) achieve a clustering of objects within their nodes, which pre-
serves the local density information and can provide good density approximations. Moreover,
the index can comprise means for efficiently accessing the examined points. Conclusively, the
exploitation of the existence of spatial indexes can result to an effective and efficient frame for den-
sity biased sampling, in terms of quality of sampling result and execution time for the sampling
procedure.

1.2. Contribution

In this work, we are interested in answering DBS queries with means of spatial indexes. In a way
analogous to other spatial predicates, we focus on developing methods that exploit the properties
of existing indexes to advocate the generation of the sample (for instance, in an analogous way [26]
exploits the proximity that is preserved by existing indexes for the finding of nearest-neighbors).
For comparison purposes, we initially consider extensions of the approach of [21,20], for the case
of DBS. Then, we describe a new algorithm, which is based on a different approach and is able to
present significant improvements in terms of efficiency. The proposed approach is based on the
local density information that the nodes of spatial indexes preserve, and on techniques for produc-
ing the sample according to the requirements of DBS. With this method:

e Correct clustering results are obtained with small sample sizes, which is a significant advantage
for reducing the cost of the clustering procedure.

e The sampling quality is preserved with respect to a variety of factors, like skew, noise and
dimensionality.

e The exploitation of spatial indexes helps to avoid the overhead of existing methods in terms of
sampling time.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3
contains the problem description and formulates the criteria that an algorithm for DBS from spa-
tial indexes should fulfill. In Section 4, for comparison purposes, we examine the adaption of



40 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

Acceptance/Rejection algorithms, which are based on the paradigm of [20,21]. In Section 5, we
present the proposed algorithm, which is based on a novel approach. Also, we formally show that
it maintains the criteria required by DBS. Section 6 describes the analysis of the cost of the devel-
oped algorithms (the adaptations and the novel one), whereas Section 7 contains the experimental
results both on sampling quality and efficiency, which illustrate the superiority of the proposed
method. Finally, Section 8 concludes this work.

2. Related work
2.1. Non-uniform sampling for clusters with skew sizes

Palmer and Faloutsos [22] introduced the problem of non-uniform sampling for clusters with
skew sizes, by over-sampling smaller clusters and under-sampling larger ones. The probability
that a given point x, of a cluster ¢, is included in the sample is P(include point x|x € ¢) = f(n,),
where 7. is the number of points in c¢. If s is the expected sample size and G is the total number
of clusters, then [22]:

S (”c) =

S
G l—e’
e e
ney in

Since clusters are not known apriori, [22] uses an approximative approach, by dividing the space
into equally sized bins. A hash table is allocated, and each table position p corresponds to a group
of points g, which contains all points from those bins that are hashed in p. The number, n,, of the
points in each group g is calculated. Each point is included in the sample according to the pro-
bability given by Eq. (1), using the derived groups instead of the unknown clusters. Since this
probability is inversely proportional to n,, points from small groups have higher probability of
being included (the procedure can be tuned by the value of ¢). In [22] an efficient algorithm is pro-
posed, which calculates the n, counters and collects the sample points in a singe database scan.

Nevertheless, the method of [22] is significantly affected by the existence of noise, since it tends
to over-sample the noisy parts. For this reason, it cannot effectively distinguish between clusters
with small sizes and outliers, and it misses clusters. Therefore, it has the drawback of only par-
tially leading to correct clustering results (as indicated by [15] and also verified by results in
our work).

0<e<]1 (1)

2.2. Density biased sampling from flat files

Kollios et al. [15] consider DBS, where a given point is included in the sample according to the
local density of the dataset. For the determination of the local density [15] uses kernel density esti-
mation methods. More particularly, for a point x, f{x) denotes the density estimation function. If
fix)>1 (f(x) < 1), then the density at x is larger (smaller) than the average density at the entire
space. According to this, a point x is included in the sample with probability:

P(include point x) = % f4(x) (2)



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 41

In Eq. (2), s is the expected sample size, k = > _f“(x) (used for the normalization of probability
values so as to be less or equal to one) and « is the tuning parameter.

Experimental results in [15] show that the above method achieves improved sampling quality
compared to [22] and Uniform sampling. However, the computation of the density estimator pre-
sents a significant time overhead, since it requires several database scans and high CPU cost. Evi-
dently, in case where no updates occur in the data set, density estimation (for each point) can be
computed once and, thereafter, this pre-computed information can be used each time DBS is
applied. However, this approach still requires (during DBS) the examination of each point, which
(as will be shown) leads to high cost due to CPU and I/O overhead.

In contrast, with the proposed approach, only a small fraction of points is examined during
DBS (leading to smaller I/O cost), and the density information is kept on a per-node basis, i.e.,
not for each point (leading to smaller CPU cost). In case of dynamic updates in the data set,
[15] requires a backing sample that will track changes and will identify when the density estimator
should be modified. Although [15] does not address this issue, one can follow the lines of existing
approaches, e.g., [9], in order to avoid the re-computation of density estimator after each update
and to improve the average update times.

2.3. Uniform sampling from tree indexes

Olken and Rotem [21] have introduced the problem of Uniform sampling from spatial indexes.
The ranked-tree algorithms, e.g., the Partial Area R-tree [21] or the pseudo-ranked extension of
[2], are based on the iterative location of the kth entry in the tree, for a random k at each iteration.
These algorithms were proposed for Uniform sampling. For the purposes of DBS they can be uti-
lized, if they use the ranking information to select a leaf at random, and then to select the sample
points in an acceptance/rejection step. However, this may contrast the objective for which the
ranking algorithms were proposed, i.c., to avoid the use of acceptance/rejection altogether. The
algorithms that are based on acceptance/rejection (A/R) [20] were also proposed for Uniform sam-
pling. However, they can be extended to the case of DBS.

For comparison purposes, such extensions are considered herein as base-line algorithms. Never-
theless, since they take into account all tree levels, their execution time is impacted. As will be
described, the proposed algorithm differentiates from the A/R algorithms in the following ways:
(1) first, it proposes the exploitation of spatial indexes for DBS and not for Uniform sampling
(which was the focus of previous work). (2) It avoids the examination of all tree levels (in contrast
to extended iterative and batched A/R algorithms); instead, condensed information is maintained
about the leaf nodes, which helps to avoid traversing the tree in a root-to-leaves manner. (3) The
described optimizations for the proposed algorithm help in avoiding the examination of a large
number of leaves (compared to extended iterative and batched A/R algorithms). (4) The expected
sample size can be guaranteed (in contrast to extended batched A/R algorithms). All these differ-
ences help in significantly reducing the execution time of DBS.

Other related work on Uniform sampling from spatial indexes includes [18,29]. Finally, [8] pro-
poses the selection of representative points from a dataset and the application of clustering only
on them. It describes a focusing technique for the R-tree, which selects the medoid, that is, the
most central object of an MBR, from each leaf node. For DBS purposes, from leaves with higher
local density, more points should be obtained than from others with lower density. In contrast, [§]



42 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

selects one point from each leaf. Moreover, small clusters may be confined within a very small
number of nodes. By using the above focusing technique, only a small number of points will
be selected from small clusters (since one point is selected from each node). This is in contrast
to the objective of DBS, which oversamples small clusters based on the increased local density,
so as to include an adequate number of points from them, reducing the probability of missing
these clusters. Also, the required sample size is a user-defined parameter, and it cannot be
restricted by the characteristics of the tree, as in the case of [§] where it is determined by the
number of leaf nodes.

3. DBS with spatial indexes

In spatial indexes, the update operations provide a clustering of points within their nodes so as
to maximize selectivity during query processing [23,27]. In the sequel we focus on R-tree [10] and
its variants, because they have been broadly used and implemented in commercial and open-
source DBMSs (including Oracle, Informix and PostgreSQL). However, an analogous methodo-
logy can be followed for other index structures as well. For the R-tree, the clustering of points
within nodes is achieved with the split, insertion and deletion operations, which have the objective
to preserve proximity between points and to minimize dead space. This kind of clustering achieved
by the R-tree preserves the local density information within tree nodes, since areas that are in
proximity tend to belong to the same cluster, thus to have similar density.

For instance, Fig. 2a depicts two different locations of the space, which correspond to two clus-
ters with different densities. The left location has higher and the right has lower density. In order
to maximize proximity and minimize dead space, assuming that no fundamental properties (such
as minimum node capacity) are violated, the points from the left location are stored in leaf node
A, whereas the points from the right location are stored in leaf node B (in Fig. 2a nodes are rep-
resented by their minimum bounding rectangles (MBRs)?). Consequently, the local density of
each point is preserved within nodes A and B, since points are enclosed in the same MBR along
with other points from their proximity. In contrast, if the R-tree did not have its clustering pro-
perties, the points would have been stored, for instance, in leaf nodes C and D, depicted in Fig. 2b.
Evidently, in this case no clustering is achieved within nodes and the local density is not preserved.

Of course, the R-tree by itself cannot result in perfect clustering, due to its inherent restrictions
(basically the lower/upper limit in the node size and the splitting of a node that overflows into
always two nodes—see [6] for more details on this issue). Nevertheless, for the purpose of DBS
we are interested in the approximation of local density, which as will be shown in the following,
will be effective enough.

The problem of exploiting the organization of points within the R-tree nodes for purposes of
DBS presents some analogies to the selection of representative points from the leaves of the R-tree
[8]. Although the objectives of these two cases are quite different (see Section 2), the common
motivation is to use the clustering information that is stored in the R-tree in order to advocate
a (generic) clustering algorithm. According to the description in [8], the limitations in the R-tree

3 In general, a cluster of points may occupy more than one MBRs.



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 43

(@) (b)

Fig. 2. An example of storing two clusters with different densities.

(that were also described previously) affect the effectiveness of an approach that will base the clus-
tering of points directly on the R-tree, because clusters are distributed among several leaves which,
moreover, may not be siblings (this affects efficiency, since the examination of a large number of
leaf combinations may be required). Therefore, although one may consider an approach that will
merge/split the leaves so as to cluster the points, such an approach has not been followed so far.
Also, its objectives are different than the ones examined by the problem in this paper, that is, the
exploitation of the R-tree so as to advocate clustering algorithms through DBS.

Let L denote the set of leaf nodes of the R-tree. As described in the following (c.f., first criterion
of Criterion 1), it is desired that points belonging to the same leaf node to have identical proba-
bility of being included in the sample. For this reason we assign the same local density to all points
in a leaf. Let f; denote the fanout of a leaf node j.* Consequently, an approximation of a point’s
local density can be determined by the number f; of points in leaf i, divided by the volume of s
MBR (for the 2-dimensional space, this corresponds to the area of the MBR). This density value is
the same for all points of i and it is denoted as D;. Hence

D, = J:
" Volume(MBR);)’

iclL (3)

The inclusion of points into the sample has to be done according to the density function of Eq.
(3). Palmer and Faloutsos [22] describe four criteria that a point inclusion probability function
should satisfy for DBS, given a partitioning of points into specified groups. Kollios et al. [15] give
one additional criterion, that the proposed method in [15] preserves the relative densities. Since
the grouping of points into clusters is not known apriori, Palmer and Faloutsos [22] consider
the corresponding criteria for the approximate grouping obtained by using the proposed hash
table [22].°> For the case of DBS from an R-tree, we consider the grouping of points into the
set of leaf nodes L. Therefore, we can state Criterion 1, which gives the criteria that a DBS algo-
rithm should satisfy. Notice that in the first part of the second criterion, the notion of density
preserving sampling is according to the definition given [22]. Also, the second part of the second
criterion uses the notion of relative density according to the definition of [15]. The remaining
criteria are based on the description of [22].

4 For simplicity, we assume that the internal and leaf nodes have the same maximum fanout (i.e., capacity).
> Although this is not given explicitly in [22], the corresponding criteria are used to derive the proposed approximate
algorithm in [22], therefore they hold for the given approximate grouping.



44 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

Table 1

Symbol table

Symbol Definition

d; Normalized density of leaf i

fi Fanout of node i

fmax Max fanout (internals and leaves)
N Number of all data points

L Set of all leaf nodes

h R-tree height

a Tuning parameter for DBS

Jave Average value of f; (internals and leaves)
Aave Average value of d;

ﬁ f avg/ max

Po Jolfmax (fo the root fanout)

s Sample size

Criterion 1. Assuming a partitioning of points into specified groups, the probability function for
including points in the sample has to satisfy the following criteria:

1. Within a group, points are selected uniformly.
2a. The sample is density preserving.
2b. The relative densities in the sample are preserved when « > 0 (a is the tuning parameter).
That is, if a region of the dataset has higher density than another, then the same is expected
in the sample.
3. The sample is biased by the group densities.
4. The expected sample size is M.

The first criterion states that points from the same cluster should be handled equivalently. The
second and third ones result from the density-bias requirement. Finally, the fourth states that size
of the random sample should be a user-defined value. Table 1 contains the definition of symbols
used henceforth.

4. A/R algorithms

To perform DBS from an R-tree, one could form a random path from root to a leaf i. The path
can be formed by visiting nodes and selecting, each time, a child-pointer to follow at random. At i,
according to density D, it is decided whether to include in the sample a point from i. This pro-
cedure can be repeated until the required sample size is obtained. However, the inclusion proba-
bility of a point would incorrectly depend not only on D; (as required by Criterion 1), but also on
the path from root to leaf i. Evidently, a point from a leaf, for which the corresponding path con-
sists of nodes with small fanouts, is more probable to be selected than from another with larger
fanouts. Olken and Rotem [20,21] describe A/R algorithms to avoid the above problem in the case
of Uniform sampling. However, these approaches do not consider the density bias. Therefore, for



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 45

comparison purposes, we initially present extensions of A/R algorithms, which address the pro-
blem of DBS from an R-tree. In the following section we describe a new DBS algorithm.

4.1. Iterative algorithm

Iterative A/R sampling algorithms [20] descend the tree through root-to-leaf paths, exercising a
random choice of a child-pointer at each node in the path. The differences in the nodes’ fanouts
are compensated by performing the selection as if each node had the maximum fanout f,,,,,. In the
case of DBS, for each leaf i, its density D; is normalized by dividing it with D,,,, where
Dpnax = max;{Dj|i € L} (in order to normalize the corresponding probability®), and let d; denote
D/ D.x. Fig. 3 describes an A/R DBS algorithm, which is based on the corresponding Early-
Abort Iterative algorithm (EAI) of [20]. EAI uses a tuning parameter, denoted as a. Parameter
a controls the rate of DBS at different cases, and its tuning is described in Section 7.1.

As an example, consider the points illustrated in Fig. 4a, which are organized in three MBRs: 4,
B, and C. The corresponding R-tree is depicted in Fig. 4b, where it is assumed that f;,.x = 4. Let
the area of 4 be equal to 4 units, of B equal to 2 units, and of C equal to 6 units. The correspond-
ing densities are: Dy =1, Dg=1.5, D-=0.3. Therefore, the normalized densities are: d, = 0.6,
dg=1, dc=0.2. Also, let a be equal to 1. For the selection of a point, EAI will start from the
root. Since the root node is not a leaf, a child j is selected at random. Assume that the child 4
is selected. A random number generation is performed for the r variable. Let » become equal
to 0.5. Since f4/fmax = 4/4 =1 > r and the current node is a leaf, another random number gener-
ation is performed for the r variable. Assume that r now becomes equal to 0.3. Since d% = 0.6 > r,
a point is selected at random from leaf 4. Let that point «, is selected. If more than one points are
required for the sample, then another iteration of EAI will have to start.

Since at each iteration a point is included according to a probability, more than M iterations
may be required to obtain a sample of M points. The probability of a single point to be included
in the sample during each iteration is given by the following lemma.

Lemma 1. Let fi,.x be the maximum fanout, fy the root fanout and h the height of the R-tree. For
each iteration of EAI, the probability that a point x is included from a leaf i, is

P(include a point x from i) = f; ' - " go. (4)
Proof. Based on [20], let P; denote the path from root to leaf i, and also let » be the root node. At
each node j € P; (j # r), P; is not aborted with probability fi/fm.x (at step EA2). Therefore, the
complete P; (up to leaf i) is accepted with probability || e jirli /fmax- At each j € P;, the next node
of P; is selected with probability 1/f;, therefore a point in i is reached with probability

1/fo - 1l;cp, 21/ /- Additionally, at leaf i, acceptance is also decided (at step EA4) with probabil-

ity d{. Hence, the overall probability of including a point of / in the sample, during each iteration,
is the product of these partial probabilities, i.e., + - [;cp, (7 Ly gt = f' . fo g O

> fo fi fmax max

® Dmax is maintained by keeping track of the maximum encountered density up to any time point. This maximum
value is used even when the corresponding leaf has been deleted, because still all remaining leaves have density smaller
than this value.



46 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

EA1. Start with j = root and execute EA3.
EA2. Generate a random number r ~ U(0, 1).
If r > f;/ fmas, then execute EAL. /* abort */
EA3. If j is a leaf, then execute EA4.
Else, assign to j a child at random, execute EA2.
EA4. Generate a random number r ~ U(0, 1).
If r < df, then select a point at random.
EA5. If M points have been selected, then terminate.
Else, execute EA1.

Fig. 3. The Early-Abort Iterative DBS algorithm.

A
2,0 A B C
a3z
O
a
aj
1 bs(.,
b, | ap Ay as a4 b1 bz b3 | | Ci C |
[+]
a b Dy=4/4=1 Dp=3/2=15 Dc=2/6=03
C2
B

Ci

(a) (b)
Fig. 4. Example of points organized in three MBRs (a) and of the corresponding R-tree (b).

Therefore, as required, the probability depends only on the density value and not on the fan-
outs of the root-to-leaf paths. Based on Lemma 1, EAI is in accordance with Criterion 1.

Proposition 2. The probability function given by Eq. (4), for including points with the EAI algorithm
at each iteration, satisfies Criterion 1.

Proof. We separately prove each of the four criteria of Criterion 1.

1. The probability of including a point from each i € L, is P(include point x|x in leaf i) =
So - flH1.d? (Eq. (4)). Therefore, the inclusion probability at each iteration is the same
for all points of i. Hence, points are selected with uniform probability from i.

2a. Let that {x,,...,x.} denote the f; points in a leaf i. According to [22], we have to show that,
for each iteration, the expected sum of the weights of the sample points from each leaf i is
proportional to f;, i.e., ‘Jf.’:lw_, - P(x;) = k- f;, where P(x;) = P(include point x|x; in leaf i),
given by Eq. (4). By setting w; = 1/P(x;) (i.e., all points of i are assigned the same weight,
due to case 1), we have Z]f:1 1/P(x;) - P(x;) = f:. Therefore, the required equality holds for
k=1.



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 47

2b. Let i and j be two leaves. Without loss of generality, we assume that Volume(MBR,) = Vol-
ume(MBR)) (see the identical assumption made in proof of Lemma 1 in [15]). If d; > d;, then
we have to show that more points are included in the sample from i than from j. Let that T
iterations of the EAI algorithm are required to obtain the sample. At each iteration the prob-
ability of including a point from i in the sample is given by Eq. (4). Thus, the number of
points that will be selected from 7 is a random number that follows, Binomial distribution
and for its expected value, S;, for T iterations it holds that S, = T - f - £ . d¢. Similar

for leaf j, S; = T fo - fi" - dj. Hence, S; > S; when a > 0. Therefore, in the sample, the
expected density of the region corresponding to i is larger than that of j.

3. Since P(include point x|x in leaf i) o df, for each leaf i the inclusion of points, at every iter-
ation, is biased from its density. It has to be noticed that when « = 0, the probability degen-
erates to uniform and the EAI algorithm to Uniform sampling.

4. The EAI algorithm performs as many iterations, until exactly M points are included in the

sample. [J

4.2. Batch algorithm

The batch A/R sampling algorithms that are described in [20], have the objective of reducing the
rereading of nodes incurred by iterative algorithms. Herein, we describe the batch analog of the
Early-Abort Iterative algorithm, which is denoted as Batch Early-Abort (BEA). BEA performs a
depth-first search of the tree and allocates the incoming sample size to each node (initially, it starts
from the root node with a gross sample size s’). At each node i (besides the root), BEA performs
the A/R criterion (similar to EAI) by generating a binomial random variable x; ~ B(s;, fi/fmax)s
where s; is the sample size allocated to i. The allocation of the sample size to the children nodes
is done by means of a multinomial random vector (more details can be found in [20]). The exten-
sion of BEA to the case of DBS is done in a way analogous to the extension of EAI Thus, if s; is
the sample size initially allocated to leaf j, the net sample size is x;, where x; ~ B(s;, fi/fmax - d7)-

It is easy to show (in a way analogous to EAI) that BEA satisfies the first three criteria of
Criterion 1. For the fourth criterion, however, BEA returns a sample size of random size [20].
If it is much smaller than the expected sample size, then as described in [20], BEA may have to
be repeated until enough points have been included in the sample.

5. Selective pass algorithm

In this section, we present a new method for DBS from an R-tree, called Selective Pass (SP),
which follows a different approach than A/R algorithms. SP aims at improved efficiency while
maintaining the fulfilment of the four criteria of Criterion 1. Initially we give a basic version of
SP and then we describe the optimized form of the algorithm.

Let N be the total number of points in the tree. A/R algorithms consider all the levels of the tree
and use the A/R criterion so as to compensate the differences in the fanouts. In contrast, SP
considers directly the partitioning of the N points into the set L of leaf nodes. It performs an



48 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

Inputs: The tuning parameter a, number of trials ¢
Output: The density-biased sample

SP1. Start from the left-most leaf, i.
SP2. Generate a random number s; ~ B(t, & - d?).
SP3. Select at random s; points from i
(selection with replacement is performed).
SP4. If all leaves have been examined, then terminate.
Else, set ¢ to the next leaf and execute SP2.

Fig. 5. The basic version of the Selective Pass DBS algorithm.

examination of the members of L. For a i € L, SP decides whether to include a point from i into
the sample according to d;, and selects a point at random. However, to avoid the rereading of leaf
nodes, SP assigns to each leaf a number ¢ of trials (¢ is the same for each leaf). The basic version of
the algorithm is depicted in Fig. 5 (a is the parameter that controls the degree of bias, and its tun-
ing is described in Section 7.1).

For the example of the R-tree in Fig. 4b, SP will start from the left-most leaf, A. Let that the
generated value s4 will be equal to 2. Thus, two points will be selected, e.g., a» and a4. Nest, SP
will examine leaf B. Let that the generated value will be sz =1, and that point b, is selected.
Finally, at leaf C, assume that s~ =1 and that point ¢; will be selected.

In SP, the leaf nodes of the R-tree are examined sequentially (where at each leaf, the link to the
next leaf is available’). Step SP2 corresponds to a series of ¢ Bernoulli trials for the inclusion of
points from leaf i into the sample, where the probability of success for each trial is equal to
fi/N -d{. Consequently, the total number s; of successes (i.e., the number of included points from
leaf i) is a random variable that follows binomial distribution. At step SP3, s; out of f; points from
i are selected. Each point is selected with uniform probability 1/f;. Selection with replacement is
performed to maintain the latter probability equal to 1/f;. Otherwise, this probability will be dif-
ferent after each selection (an analogous reasoning have been followed in [20]). Thus, for the
point-selection probability of SP it holds that:

Lemma 3. For each trial of SP, the probability to include a point x from a leaf i, is
P(include a point x from i) = N~' - d*. (5)
Proof. At step SP2, the success probability is f;/N - d{. In case of success, a point x is selected,

at step SP3, with probability 1/f; Hence, P(include point x|x in leaf i) = f;/N -d} - 1/f; =
Nql O

Consequently, it is easy to show, in a way similar to Proposition 2 for the EAI algorithm, that
the probability function of Eq. (5) satisfies the first three criteria of Criterion 1 (by substitution of
the fof 1 factor with the N~Y). For the fourth criterion, we give the following proposition.

7 Since in commercial RDBMS R-tree is implemented on top of B*-trees, this linkage is typically available [24].



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 49

-1
Proposition 4. Ift =M <Z erti /N - dj”) is the number of trials assigned to each leaf node, then

the probability function of Eq. (5) satisfies the fourth criterion of Criterion 1 (i.e., the expected
sample size is equal to M).

Proof. From each leaf j, s; points are included in the sample, where s; ~ B<t, fi/N - d‘;) The
expected number of included points from j is E(s;) =t f;/N - dj. If s is the sample size, then
s =) .5 Hence, E(s) = E(Zjesz) = >, E(s)). By letting E(s) = M and substituting the value
of E(s), we get M =3, <t - f;/N - d;’) Solving for ¢, the required equality follows. [J

It has to be noticed that SP could be simplified by selecting exactly ¢ - f;/N - dj (the expected
value) points from each leaf j. However, this number is non-zero for each j and, even in the cases
it is small (e.g., 1), SP would still have to fetch j. When s; is random, then for a possibly significant
number of leaves this number can be equal to zero (see Fig. 7b), and thus SP can entirely avoid to
fetch these leaves.

To verify the aforementioned argument, we use synthetic data sets (which are detailed in Sec-
tion 7) and measured the percentage difference (denoted as sample size error) between the re-
quested (M) and resulting sample size (we took the absolute values between the differences in
sizes, because the resulting sample size can be larger or smaller than the requested one). The
results are illustrated in Table 2 with respect to requested sample size (given in percentage of
the data set size).

5.1. Optimized SP

Additionally to the basic version, an optimization can be developed for SP. It maintains
for each leaf i, its address, the d; and f; values. Let this information about leaf nodes be denoted

Inputs: The tuning parameter a, number of trials ¢, I,
Output: The density-biased sample

SP1. Start from the first entry of I, pointing at leaf 7.

SP2. Generate a random number s; ~ B(t, & - d2).

SP3. If s; > 0, then fetch .
Select at random s; points from .

SP4. If all elements of I, have been examined, then terminate.
Else, get the next entry of I, and execute SP2.

Fig. 6. The optimized version of the Selective Pass DBS algorithm.

Table 2
Sample size error w.r.t. M value (%)

Sample size error (%)

1 2 3 4 5
1.41 1.85 0.89 1.66 0.85




50 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

as I;. Then, a leaf i has to be fetched from secondary storage only when s; > 0, at step SP2 of
the basic version. Thus, the reading of nodes that will not contribute to the sample is avoided
and a reduction in the I/O overhead is attained. The optimized version of SP is depicted in
Fig. 6.

For fair comparison with the other algorithms, the entries of /; are read from disk during the
execution of DBS (each time, only the current page of I; entries have to remain in main memory).
The space overhead of I; is due to 3 - |L| numbers that have to be stored, thus it is equal to O(|L|/
B) (B is the page size). This single scan over the entries of I; presents a very small I/O overhead,
which does not impact the performance of SP, considering the gainings due to the avoidance of
reading several leaf nodes (as it is shown in Section 6). It can be easily shown that for, e.g., five
dimensional data, I; occupies only 15% of the space required by the upper levels of the index (i.e.,
excluding the leaves).

Evidently, for static data the entries of I; can be obtained during the index creation. For dy-
namic data, the entries of /; can be easily accommodated in main memory, considering the large
memory sizes today. It is straightforward to maintain the entries of /; during index updates. After
an update in a leaf i (insertion/deletion of points), the calculation of the new values of f; and d; is
performed locally, without affecting the corresponding values for the remaining leaves. In ordin-
ary R-tree implementations, f; is maintained in i. The calculation of d; requires f; and MBR;, which
are also available during the update operation at i. Therefore, SP can efficiently handle dynamic
updates.

6. Analytical comparison

To analytical compare the cost of the described R-tree based DBS algorithms (EAI, BEA and
SP), we consider the cost measure to be the number of referenced R-tree nodes. In the sequel,
Cear Cgea and Csp denote the corresponding costs. Let f denote the f,yo/fmax and s the required
sample size. To derive less complicated results (i.e., more compact formulae), we are based on the
aforementioned average statistics. For the same reason, similarly to [20], we do not take into ac-
count the caching of nodes besides the root.

For EAI, based on [20] it can be shown that

h—l_l

p _ _
CEAI = ﬁ N avgJrl davg (6>

BEA commences the depth-first search with a gross sample size s’. Following the approach of
[20], it can be easily shown (by considering the probability of success at each trial of BEA) that s’
should be set to s - """ - dy,,- Therefore, by considering for each level separately the Cardenas’
function Y(k,m) [20], it holds that

CBEA—1+Z < B fof, avg) (7)

where Y(k,m)=m(1 — (1 — (1/m))").



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 51

100

' e "EAl e s ]
10000 BEA ---o--- » 901 BEA-—+ o s
SP —e— 3
z 80 e
3 )
= o
T Sy @ 60,/
» e 3
g 1000 |- & o
o
< 40
g
g 30
20
0 y : . ol
025 05 1 15 2 02 04 06 08 1 12 14 16 18 2
(@ sample size (perc) (b) sample size (perc)

Fig. 7. Analytical comparison of R-tree based DBS algorithms.

For SP (optimized version), the expected number of non-referenced leaves is equal to
Y ierl —%-d?)’. By considering the average fanout and density, and by taking into account
the reading of I, we get

cor =01 - (1-222ar, Y] + ot )

The estimation accuracy of the developed cost measures has been examined and found to be
around 3% for Csp and Cgay, and around 12% for Cgga. Therefore, using these cost measures,
we focus on the impact of sample size. We used the North East data set and the experimental set-
ting described in Section 7.1. Fig. 7a illustrates the results.

As expected, the cost of EAI is linear in the sample size. Due to its high rejection rate [2], EAl is
clearly outperformed by the other two algorithms. SP performs better than BEA (by a factor of
two, for smaller sample sizes), since it avoids the examination of upper-levels. Focusing on SP and
BEA (EAI is omitted due to its large cost), we also present the cost as a percentage of the accessed
leaves (w.r.t. the total number of leaves). The results are given in Fig. 7b. As shown, SP requires
the access to a small percentage of leaves, compared to BEA. The experimental results in the fol-
lowing section will verify the aforementioned conclusions.

7. Performance evaluation

To evaluate the performance of the proposed method, we conducted a series of experiments using
synthetic and real datasets. For comparison, we examine the algorithms of [15] and [22], which are
referred as Biased Sampling (BS) and Grid Biased Sampling (GBS) respectively (according to the
notation in [15]). We also examine Uniform sampling (US), following the algorithm of [30].

We consider both effectiveness and efficiency. Effectiveness is examined by measuring the qual-
ity of sampling with respect to clustering result, along the lines of [15,22]. We examine the impact
of skew in cluster sizes, noise and dimensionality on sampling quality. Efficiency is examined by
measuring the execution time with respect to sample size and scalability to the database size. (BEA
produces similar results to EAI, since they have the same inclusion probability function; thus for
brevity, we omit the results for BEA on sampling quality and we only report on its efficiency.)



52 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63
7.1. Experimental configuration

We implemented SP, EAI and BEA algorithms in C. The code for BS was provided by the
authors of [15] and the code for GBS is available.® All experiments were conducted on a Pentium
III server at 800 MHz.

The quality of a sample is measured with respect to the number of correctly found clusters. Evi-
dently, the clustering result depends both on the selected clustering algorithm and the parameter
setting that most of such algorithms use. Herein, we use the CURE clustering algorithm [11]. The
reason is that we want to perform a fair comparison with the results in [15], which are also based
on CURE (the parameters had the default setting described in [11], i.e., 10 representative points
and 0.3 shrinking factor). However, since the clustering result depends on the used clustering algo-
rithm, we also examine the case of the C?P algorithm [19]. The characteristics of this algorithm are
that it is also based on sample data and it uses spatial indexes for the clustering procedure. Hence-
forth, for convenience, we denote that the x sampling method finds a specified clustering result, by
meaning that the clustering result is found using the clustering algorithm on the sample produced
by the x sampling method.

We examine real datasets and, in order to better control the data characteristics, we also used
synthetic data. We generated synthetic d-dimensional datasets having k clusters and N points. For
each cluster, its center point and radius is specified, and the points belonging to it are generated by
following independent normal distributions. We add a specified percentage of noise points (with
respect to the number of points belonging to clusters), that follow uniform distribution all over
the space of the dataset. For this type of datasets, since we know the cluster centers, the number,
NC, of correctly found clusters is calculated by comparing the distances of the centers derived
from the clustering algorithm with the actual ones and using a threshold for determining correct-
ness (default value: 0.01). Due to space constraints, more details can be found in [22].

As described, all presented algorithms have a tuning parameter to determine the degree of bias
in sampling. We tune the a parameter of BS according to the indications in [15]. For datasets con-
taining noise, ¢ was set to 1; in contrast, when no noise exists, a can be set to —0.5 so as to identify
very small clusters. Also, experimental results in [15] indicate that in the case of clusters with var-
ious densities where, additionally, the dataset contains noise, « is set to —0.25 (i.e., the half of —0.5
that is used in case of no noise), so as to produce improved results. For SP, EAI and BEA we
adopt the same setting as in [15] for the a parameter. For GBS we set e to 0.5 (the corresponding
tuning parameter—see Eq. (1)), which corresponds to the IRBS method [22], because experimen-
tal results in [22] show that it gives the best performance.

Finally, the default number of kernels for BS was set to 1000 [15]. The default available memory
size for the hash table of GBS [22] and for the buffer space used by EAI and BEA was set to the 20%
of the dataset size.” We used the R*-tree [4] variant and the default page size was set to 4K. There-

8 At http://www.cs.cmu.edu/People/crpalmer/dbs-current.tar.gz.

? For the case of pre-computed density information, SP is not affected by the buffer size, since ; is read from disk and
in each run of the algorithms we flush the buffers (so as to isolate their results). The same applies for BS. Therefore, we
used a relatively large buffer size to favor EAI and BEA in terms of efficiency (they may visit the same nodes more than
once) and GBS in terms of effectiveness (a larger hash table allows for better estimation). For the case of not pre-
computed density information, we separately examine the impact of buffering in Section 7.3.


http://www.cs.cmu.edu/People/crpalmer/dbs-current.tar.gz

A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 53

fore, the maximum fanout (called henceforth fanout) is a function of dimensionality (i.e., it is not
constant). Each measurement (both on sampling quality and efficiency) is the average of 5 runs.

7.2. Results on sampling quality

7.2.1. The NE dataset
We tested the examined algorithms using real datasets. We report results on the North East
dataset (Fig. 8a), that was used in [15]. It contains 130,000 postal addresses (as two dimensional

0.8
0.6
%
04 dl
02} #*
X
. . . 1 %02 o0z o8 08 1
(a) (b)
1 , 1
0.8 0.8
0.6 0.6
0.4 . 0.4 .
B 1] .
o P f‘ﬁi
| ]
02 %& 0.2 A
x xX x
0 . 0
0 02 04 06 08 1 0 02 04 06 08 1
(c) (d)
1 , 1
0.8 0.8
™ o o
0.6 L 06} & o
potd nfe
oo o ' o oo
0.4 * 0.4 :
x K Xx vl
Xx '
02f * %, 0.2 '
| |
0 ' 0
0 02 04 06 08 1 0 02 04 06 08 1
(e) )

Fig. 8. (a) The North East dataset. (b)—(f) Results (through representative points EAI, SP, BS, GBS, US, repectively).



54 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

points), which represent three metropolitan areas: New York, Philadelphia and Boston. Also,
there is a lot of noise in the form of uniformly distributed rural areas and smaller population cen-
ters. We used a sample of 1000 points and the CURE clustering algorithm (analogous results were
obtained for C*P, which are omitted for brevity). Fig. 8b—f illustrate the clustering results, through
the representative points of each found cluster, for EAI, SP, BS, GBS and US respectively.

With SP, EAI and BS the correct clustering result is produced (the three clusters are detected).
However, this does not hold for GBS and US. Noise and outliers impact the quality of both GBS
(because it favors them) and US (because it does not discriminate between noise and cluster
points). These results are in accordance with the ones in [15] for this dataset.

7.2.2. Clusters with skew sizes

We measured NC (the number of correctly found clusters) for the case of datasets which con-
tain clusters with skewed sizes. Since clusters with very small sizes are likely to be missed by Uni-
form sampling, with these experiments we tested the effectiveness of DBS methods. We used
3-dimensional synthetic datasets, which contained 9 clusters (we also examined cases with larger
number of clusters, which produced qualitatively similar results that are omitted for brevity). We
present a case which is analogous to the One Big dataset of [22]. One cluster contained 50,000
points and the remaining ones had 500 points (100 times less). However, differently from the case
in [22], 10% noise was added. Also, the number of kernels for BS was set to 3000 (since the default
value of 1000 produced worst results). We used both the CURE and the C?P clustering algo-
rithms. The results with respect to the sample size (given as percentage of dataset size) are depicted
in Table 3a (for CURE) and in Table 3b (for C*P).

Regarding the results for CURE, BS managed to find the correct clusters earlier than US (for
sample size 2%) and it found more correct clusters in the cases where both did not correctly found
all clusters, 1.e., when NC < 9. US on the other hand found the correct clusters for the 4% sample
size. These are in accordance with the conclusions in [15], i.e., BS outperforms US, by finding the
correct clusters with a smaller sample size. GBS did not produce correct results, because it is im-

Table 3
NC w.r.t. sample size for the case of clusters with various sizes
Algorithm Sample size (%)

1 1.5 2 3 4
(a) Results for CURE
SP 9 9 9 9 9
EAI 9 9 9 9 9
BS 6 8 9 9 9
GBS 2 3 6 7 7
UsS 4 5 7 8 9
(b) Results for C°P
SP 8 9 9 9 9
EAI 8 9 9 9 9
BS 6 8 9 9 9
GBS 2 3 7 7 7
UsS 3 5 8 8 9




A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 55

pacted by the skew in cluster sizes and the presence of noise in the dataset. Thus, it could not effec-
tively distinguish between noise and cluster points. SP and EAI perform better than the other
methods, even at lower sample sizes, since they are not affected by skew in cluster sizes. Analogous
results are produced for C*P. However, for very low sample size (1%), SP and EAI miss one clus-
ter. The reason is that the focus in the design of C*P was given on scalability to large input sizes.
Therefore, the first phase of this algorithm was affected by the small sample size combined with
the skew in the cluster sizes. Nevertheless, SP and EAI still perform better than the other methods.

7.2.3. Noise and dimensionality

In this section we examine the impact of noise and dimensionality. Since CURE and C?P pro-
duced qualitative similar results and due to space constraints, we focus on the former.

Starting from the examination of noise, we used analogous datasets to the ones of the previous
experiment. We set the sample size to 2% of the dataset size and we varied the amount of added
noise. The results are depicted in Table 4a, with respect to the amount of noise (given as a per-
centage). As expected, the effect of noise is significantly noticeable in the cases of US and GBS.
They achieve correct results only when no noise exists (for GBS), or for very small percentage
(10% for US). As the percentage of noise increases, points from clusters are becoming less prob-
able of being selected by US. On the other hand, as noise percentage increases, noisy points are
becoming more probable to be selected by GBS, since it favors less dense groupings of points that
noise tends to form.

SP and EAI clearly present the best performance. They correctly find all clusters in cases with
low and medium noise (0-60%), whereas at very high noise percentage (80%) they start missing
clusters. BS, is affected at a less high value, by start missing clusters at 60%. BS uses approxima-
tion with a kernel function, which is based on a uniform sample of § points [15] and distributes the
weights around each point from the uniform sample. As the noise percentage increases, the larger
becomes the probability that noisy points to be included in the uniform sample used by the kernel

Table 4
NC w.r.t. (a) noise percentage, (b) dimensionality
Algorithm Noise percentage

0 10 20 30 40 60 80
SP 9 9 9 9 9 9 8
EAI 9 9 9 9 9 9 8
BS 9 9 9 9 9 8 7
GBS 9 8 8 7 5 3 3
UsS 9 9 7 5 4 4 3

Dimensionality

8 10 12 15
SP 9 9 9 9 8
EAI 9 9 9 9 8
BS 9 9 8 8 8
GBS 7 6 5 5 5
UsS 7 6 5 4 4




56 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

function (a case analogous to US). Noisy points in the uniform sample are included at the expense
of not including points from clusters, thus preventing the weight increase around the locus of the
latter points. For SP and EAI, the approximation is not based on a uniform sample. Noisy points
affect only the approximation at the leaf at which they are included (i.c., local effect). Therefore,
for medium noise percentage (e.g., 40-60%), SP and EAI maintain the quality of sample. The rea-
son is that, for low and medium noise percentages, in those leaves that contain noise the larger
fraction of points still belongs to clusters (i.e., not noisy points), whereas there exist a non-negli-
gible number of leaves that do not contain noise. However, for very high noise percentage (80%),
where most of the leaves contain many noisy points, both methods are affected.'”

Next, we considered the impact of dimensionality.'' Noise was set to 25% and the sample size
was 2%. The results are depicted in Table 4b. Clearly, GBS and US do not produce correct clus-
tering results. GBS is mainly affected by the existence of noise. Although one can expect Uniform
sampling to be effective for high dimensional data that follow uniform distribution (based on
examples from statistic literature), in the examined case it is impacted by the skew in the cluster
sizes and the existence of noise (since, as described in the previous experiments, US cannot effec-
tively distinguish between noise and points in small clusters).

In contrast, SP finds the correct results in all cases with dimensionality equal or less than 12.
For higher number of dimensions (e.g., 15) it starts missing clusters. The same applies for EAL
We note here that higher dimensionality results into a skew in the densities of the R-tree leaf
nodes, where very few nodes have very large density. For this reason we use for normalization
the 95% density value instead of the maximum value, to address the above situation. BS also finds
the correct clusters for lower dimensions, but it is impacted at a less high dimensionality (at 10).
Evidently, due to the high dimensionality, the skew in cluster sizes and the noise, BS will require
larger sample sizes in order to obtain the correct clustering in these cases; thus burdening the cost
of the clustering procedure.

7.3. Results on efficiency

This section reports the experimental results on efficiency. The previous results on quality indi-
cate that US and GBS produce samples that only partially (in limited cases) lead to correct clus-
tering results. For this reason, following the approach of [15], we do not report results on their
execution times.

The proposed approach mainly focuses on the exploitation of indexed datasets (i.e., for which a
spatial index exists). This is analogous to the approach of [20] for Uniform sampling from datasets
for which a B*-tree index is already build.'? Also, many previous approaches in processing spatial
data exploit the proximity information that is already stored in the builded R-tree (for instance
[26]). For non-indexed datasets, one can expect that the bulk-loading of the spatial index will

19 To reduce the effect of noise, we can consider heuristics that, e.g., will determine the density of a leaf by the core of
most central points (closest to the center of node). We address the examination of such heuristics as future work.

' 1t has to be noticed that, by using CURE or C?P, we focus on full-dimensional clustering. For the particularities of
very high dimensional spaces, specialized algorithms have been proposed [12].

12 Otherwise, single-pass algorithms [30] may be the preferred option for Uniform sampling, since the building of the
B*-tree will require at least one database pass in addition to the time for the sampling itself.



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 57

dominate the total cost. It has to be noticed that the selection of a bulk-loading algorithm and its
implementation details are orthogonal to the problem examined in our work. For the above rea-
sons, our main results refer to the case of interest, i.e., of a builded index, thus they do not include
the index creation time. Nevertheless, we also examine the viability of the proposed method for
datasets for which an index does not exist. Finally, we note that in all experiments we include
in our measurements the time to write the sample on disk.

7.3.1. R-tree based algorithms

First, we compare the developed R-tree based DBS algorithms. To give a clear comparison of
the sampling time alone, we assume the existence of the index for all three methods. Fig. 9a illus-
trates the results with respect to the sample size (given as percentage) for 3-dimensional datasets
with 100K points. Clearly, EAI presents the worst performance. SP outperforms BEA in all cases,
where for larger sample sizes the performance difference is by a factor of two. These results are in
accordance with the analytical comparison that is presented in Section 6, in terms of relative per-
formance between the algorithms. Based on the above, to present a more clear comparison be-
tween SP and BEA, in the following we omit further results on EAIL

We now move on to examine the scalability to the dataset size. Fig. 9b presents the results with
respect to the number of points in the dataset (the sample size was 2%). Both algorithms scale lin-
early, however SP performs significantly better than BEA.

1
o
Q
@
o 01
£

0.01 + + + + + 0 + - - 5 - 5 -

0 0.5 1 1.5 2 2.5 3 100 150 200 250 300 350 400 450 500

(a) sample size (perc) (b) number of points (x1000)

3.5

time (sec)
- N
[¢] N [¢;] w

-

o

(

(c) dimensionality

Fig. 9. Comparison of R-tree based DBS algorithms.



58 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

Next, we examine the impact of dimensionality. We used synthetical data sets that contained
100K points. We varied the dimensionality and the other parameters had the same values as those
in previous experiments (notice that the page size is constant, thus the node capacity reduces with
increasing dimensionality). Fig. 9c depicts the results. For lower dimensions, the performance
difference between SP and BEA is similar to the results presented in the previous experiments.
Nevertheless, the impact of larger dimensionality is more noticeable for BEA, that is clearly out-
performed by SP.

7.3.2. Comparison with BS

We now present the comparison of SP (the best R-tree based DBS algorithm) with BS. We
focus on two separate cases: (1) when density information is not pre-computed, and (2) when den-
sity information is pre-computed. Regarding BS, case 1 corresponds to the computation of density
estimator and its application during DBS, whereas case 2 corresponds only to the application of
the pre-computed density estimator during DBS. Similar for SP, case 1 corresponds to the build-
ing of the R-tree and the application of the computed density estimation during DBS, whereas
case 2 corresponds to the application of DBS over an existing R-tree.

Based on the above, we first compare SP with BS for case 1. We used the bulk-loading algo-
rithm of [14] and 2-dimensional synthetic data sets that were analogous to those described in
the previous experiments. For the measurement of the total execution time we included the index
creation time for SP (the sorting phase of the bulk-loading algorithm is included) and the compu-
tation of the density estimator for BS. The cost for the sorting phase of [14] and the cost for the
data set scans for BS (more than one in this case) depend on the amount of buffer memory. For
this reason we examined two buffer sizes, i.e., 5% and 20% of the data set size. The results with
respect to the data set size are depicted in Fig. 10a for buffer size equal to 5% and in Fig. 10b
for buffer size equal to 20%. As shown, SP outperforms BS in both cases (it has to be noticed that
for BS, the CPU cost is also a significant factor in this case, due to the computation of density
information for each point). As expected, comparing the results between the two figures, the in-
crease in buffer size results to a relative reduction in the execution times for both algorithms.
Moreover, the execution time of SP depends solely on the time required for the index creation.

200 ; , 180

180 - —
. 160 BS o
160} BS o o 140 o
140 L 120 -
g 120 o 3 -
3 10 8 100 g
(9] e Q
80
£ sop £ |-
60 60
40 40
20 / 20 /
0 . . 0 X .
300 500 700 900 300 500 700 900
(a) number of points (x1000) (b) number of points (x1000)

Fig. 10. Comparison of SP and BS for the case where information of density is not pre-computed: (a) buffer size 5%
and, (b) buffer size 20%.



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 59

0.8 T 0.7
S sp
I BS -] —
0.7 0.6 BS s
0.6f a7
= 05} g 5 0.5
@ = @
a : s
o 04r ) o 04
£ 03 £
= o3l . =
03} .~
0.2
L L L 01 L
100 200 300 400 500 5 10 15
(a) number of points (x1000) (b) dimensionality

Fig. 11. Comparison of SP and BS for the case where density information is pre-computed.

Evidently, the use of a better bulk-loading method can further improve the results for SP. Nev-
ertheless, the results in Fig. 10 indicate that SP is a viable solution, even in this case.

We now move on to case 2. For BS this means that the density estimation is stored (i.e., pre-
computed) with each point, so as to avoid its recalculation during DBS. Equivalently (for fair
comparison), SP uses an existing R-tree. Fig. 11a illustrates the results with respect to the dataset
size. As shown, BS is clearly outperformed by SP in all cases. The reason is that BS has to examine
all points (one scan over the entire dataset) in order to decide their inclusion in the sample. In
addition it has to read the pre-stored estimations (one for each point in the dataset) to compute
parameter k (which cannot be pre-computed because it depends on « that is a user-defined para-
meter—see Eq. (2)). In contrast, SP performs a selective pass, which avoids the reading of leaves
that will not contribute to the sample. Moreover, the density information for SP (see Eq. (8)) is
maintained in I; only for leaves instead of each single point (i.e., |L| < N); thus it requires much
less CPU cost for this purpose.

Finally (for case 2), we tested the impact of dimensionality on SP and BS. Fig. 11b depicts the
execution times with respect to the number of dimensions (the sample size was 2%). As previously,
SP clearly presents the best performance in all cases. The reason is that, as dimensionality in-
creases, the scanning of each point by BS incurs higher cost.

7.4. Discussion

In this section, we summarize the presented experimental results and give descriptions for their
better understanding. The results for the real data set (North East) illustrate that SP and BS lead
to correct clustering of this data set, in contrast to GBS and US. This is also indicated by most of
the cases for the synthetic data sets. Therefore, it can be concluded that SP and BS present an
analogous effectiveness in terms of producing correct clustering results, and significantly outper-
form GBS and US. The slight improvement that SP presents over BS in some cases, is explained
by the characteristics of the examined data sets. In particular: (a) The data sets have very high
skew in cluster sizes (e.g., the One Big dataset [22]), a case that was not examined in [15], which
for the examined values of parameters yield to correct clustering at smaller sample size. (b)
Although the R-tree has not, per se, the objective of preserving densities, for data sets containing



60 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

clusters (as the ones examined in this paper) this is attained at a good degree, because the cluster
points are concentrated and can be well organized within the R-tree nodes. Therefore, due to the
above cases, it can be stated that the objective of SP is to lead to results with quality analogous to
those of kernel-density estimation methods (like the one in [15]) and to exploit, when possible, the
characteristics of the data that suit well with the ones of the R-tree structure.

It has to be noticed that, for purposes of selectivity estimation in spatial databases, Acharya
et al. [1] describe several histogram-based methods. They indicate that equi-area histograms lead
to improved selectivity estimation compared to R-tree-based ones. However, the objectives of
DBS (for clustering applications) are different than those of selectivity estimation, because DBS
is only interested in detecting areas with high local density so as to focus the sampling on them
and not to accurately estimate the number of points in the result of queries. More significantly,
although GBS uses an analogous method to equi-area histograms (by using equi-area bins), the
use of Eq. (1) may bias the sampling towards the areas that contain noise (the same conclusion
is also indicated in [15]). Therefore, for data sets with very low noise (see Table 4a), GBS is effec-
tive, since Eq. (1) favors the small clusters only. In contrast, medium and high noise affect GBS
significantly. Nevertheless, we address as an interesting topic of future work the development of
DBS algorithms that will exploit histogram-based methods (e.g., MinSkew [1]).

Regarding the dimensionality of the data, previous research has indicated that the performance
of R-tree-like indexes is affected by high dimensionality [5]. In the cases examined herein (Table
4b), SP performed well for low and medium dimensions (less than 8), whereas it produced correct
clustering results for some more dimensions (10-12). The reason for the latter case is that the
increase in dimensionality is compensated by the fact that data are well clustered and can be
organized in a good way within the R-tree nodes (this cannot be well achieved for not clustered
data of such dimensionality). However, for more high dimensions (e.g., 15), the performance of
SP is affected. Therefore, for high dimensionality, the proposed methodology should be examined
with other tree structures (e.g., the X-tree [5], which has some similarities with R-tree structures).
We address this issue as interesting future work.

Focusing on the results on efficiency, we must notice that R-tree-based methods (SP, BEA,
EAI) use random access to leaves, whereas the others (BS, GBS, US) use scanning of sequential
files. As described (see also Fig. 7b), SP avoids the access to a large number of leaves (for 1% sam-
ple size it accesses less than 50% of leaves). Therefore, one may consider that there is a kind of
trade-off between the retrieval of a number of leaves and the sequential scanning of a file, depend-
ing on how scattered are the disk pages of the index or of the sequential file. Nevertheless, the
placement and management of disk pages of the the R-tree leaves or of the sequential file, depend
on the file-system that is used and on other related factors (e.g., amount of disk fragmentation, if
the index is bulk-loaded, internal fragmentation within pages). Therefore, a generalized conclu-
sion cannot be easily obtained. For this reason, we measured the total execution time when com-
paring the different methods. Another reason for the latter choice is that, besides I/0, CPU time is
also a significant factor. Based on our observation through the experiments, BS in particular
requires high CPU time, due to the examination of each point. In contrast, as described, SP exam-
ines the density estimation on a node basis, leading to smaller CPU time.

In summary, the main objective of the experimental results was to show that the proposed ap-
proach can attain samples of good quality with low execution times. The focus in the development
of SP was on how to perform DBS from spatial indexes. Therefore, the examination of existing



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 61

DBS methods (like BS or GBS) was done for purposes of comparison and the target was not to
replace such methods, since (as shown) they can be used with efficacy in several cases.'* Moreover,
it should not be interpreted from the experimental results that Uniform sampling is worthless;
only that its use may impact the effectiveness in case of clusters with skew sizes, which is the target
of DBS.

8. Conclusions

We considered the problem of density biased sampling (DBS) from spatial indexes. Instead of
performing DBS over flat files, we exploit the clustering properties of spatial indexes to provide
density biased samples of good quality and with low execution time for the sampling procedure.

We described SP, a novel DBS algorithm. SP, differently from adaptations that were derived
based on the paradigm of uniform sampling from indexes, considers directly the partitioning of
data into the nodes of the spatial index. Therefore, it does not present the overhead of having
to compensate the differences in the fanouts of the upper-level nodes. An optimized version of
SP can further improve the performance, by avoiding the reading of nodes that will not contribute
to the final sample.

We formally showed that SP produces samples that guarantee the criteria required by DBS. We
also derived formulae for the cost of SP (and of the adapted algorithms) and performed an ana-
lytical performance comparison, which illustrates the superiority of the proposed algorithm. By
using synthetic and real data, we also performed an experimental comparison with prior algo-
rithms (BS, GBS, and US). Our experiments, which considered a variety of factors, illustrated that
SP can produce samples of good quality and has low execution times.

Conclusively, with the proposed approach, spatial indexes comprise an effective and efficient
sampling frame [3] for DBS. Finally, we argue that the proposed approach is easily extendible
to the task of outlier detection using samples [15], since in this case sampling with probability
inversely proportional to density is required. We address this issue as future work.

References

[1] S. Acharya, V. Poosala, S. Ramaswamy, Selectivity estimation in spatial databases, in: Proceedings of the ACM
Conference on Management of Data (SIGMOD’99), 1999, pp. 13-24.

[2] G. Antoshenkov, Random sampling from pseudo-ranked B* trees, in: Proceedings of the Conference on Very
Large Databases (VLDB’92), 1992, pp. 375-382.

[3] D. Barbara, C. Faloutsos, J. Hellerstein, Y. Ioannidis, H.V. Jagadish, T. Johnson, R. Ng, V. Poosala, K. Ross,
K.C. Sevcik, The New Jersey data reduction report, IEEE Data Eng. Bull. 20 (4) (1997) 3-45.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an efficient and robust access method for points
and rectangles, in: Proceedings of the ACM Conference on Management of Data (SIGMOD’90), 1990, pp. 322—
331.

'3 Analogously, [20] was not proposed to substitute reservoir sampling methods [30], but to provide a method for
sampling when data are indexed instead of being stored in a sequential file.



62 A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63

[5] S. Berchtold, D. Keim, H.-P. Kriegel, The X-tree: an index structure for high-dimensional data, in: Proceedings of
the Conference on Very Large Databases (VLDB96), 1996, pp. 28-39.
[6] S. Brakatsoulas, D. Pfoser, Y. Theodoridis, Revisiting R-tree construction principles, in: Proceedings of the
Conference on Advances in Databases and Information Systems (ADBIS’02), 2002.
[7] M. Breunig, H.-P. Kriegel, P. Kroger, J. Sander, Data bubbles: quality preserving performance boosting
for hierarchical clustering, in: Proceedings of the ACM Conference on Management of Data (SIGMOD’01), 2001,
pp- 79-90.
[8] M. Ester, H.-P. Kriegel, X. Xu, Knowledge discovery in large spatial databases: focusing techniques for efficient
class identification, in: Proceedings of the Symposium on Large Spatial Databases (SSD’95), 1995, pp. 67-82.
[9] P. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate histograms, in: Proceedings of
the Conference on Very Large Databases (VLDB97), 1997, pp. 466-475.
[10] A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the ACM Conference on
Management of Data (SIGMOD’84), 1984, pp. 47-57.
[11] S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large databases, in: Proceedings of
ACM Conference on Management of Data (SIGMOD’98), 1998, pp. 73-84.
[12] A. Hinneburg, D. Keim, Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional
clustering, in: Proceedings of the Conference on Very Large Databases (VLDB’99), 1999, pp. 506-517.
[13] G. John, P. Langley, Static versus dynamic sampling for data mining, in: Proceedings of the Conference on
Knowledge Discovery and Data Mining (KDD’96), 1996, pp. 367-370.
[14] I. Kamel, C. Faloutsos, On packing R-trees, in: Proceedings of International Conference on Information and
Knowledge Management (CIKM’93), 1993, 490-499.
[15] G. Kollios, D. Gunopoulos, N. Koudas, S. Berchtold, Efficient biased sampling for approximate clustering and
outlier detection in large datasets, IEEE Trans. Knowledge Data Eng. (TKDE) (to appear).
[16] J. Kivinen, H. Mannila, The power of sampling in knowledge discovery, in: Proceedings of ACM Symposium on
Principles of Database Systems (PODS’94), 1994, pp. 77-85.
[17] S. Lee, D. Cheung, B. Kao, Is sampling useful in data mining? A case in the maintenance of discovered association
rules, Data Mining and Knowledge Discovery 2 (3) (1998) 233-262.
[18] C. Lang A. Singh modeling high-dimensional index structures using sampling, in: Proceedings of ACM Conference
on Management of Data (SIGMOD’01), 2001, pp. 389-400.
[19] A. Nanopoulos, Y. Theodoridis, Y. Manolopoulos, C?P: clustering based on closest pairs, in: Proceedings of the
Conference on Very Large Databases (VLDB’01), 2001, 331-340.
[20] F. Olken, D. Rotem, Random sampling from B*-trees, in: Proceedings of the Conference on Very Large Databases
(VLDB’89), 1989, pp. 269-277.
[21] F. Olken, D. Rotem, Sampling from spatial databases, in: Proceedings of IEEE Conference on Data Engineering
(ICDE’93), 1993, pp. 199-208.
[22] C. Palmer, C. Faloutsos, Density biased sampling: an improved method for data mining and clustering, in:
Proceedings of ACM Conference on Management of Data (SIGMOD’00), 2000, pp. 82-92.
[23] B.-U. Pagel, H.-W. Six, H. Toben, P. Widmayer, Towards an analysis of range query performance in spatial data
structures, in: Proceedings of ACM Symposium on Principles of Database Systems (PODS’93), 1993, pp. 214-221.
[24] S. Ravada, J. Sharma, Oracle8i spatial: experiences with extensible databases, in: Proceedings of International on
Large Spatial Databases (SSD’99), 1999, pp. 355-359.
[25] T. Reinartz, Similarity-driven sampling for data mining, in: Proceedings of Symposium on Principles of Data
Mining and Knowledge Discovery (PKDD’98), 1998, pp. 423-431.
[26] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor queries, in: Proceedings of ACM Conference on
Management of Data (SIGMOD?95), 1995, 71-79.
[27] Y. Theodoridis, T. Sellis, A model for the prediction of R-tree performance, in: Proceedings of ACM Symposium
on Principles of Database Systems (PODS’96), 1996, pp. 161-171.
[28] H. Toivonen, Sampling large databases for association rules, in: Proceedings of the Conference on Very Large
Databases (VLDB’96), 1996, pp. 134-145.
[29] M. Vassilakopoulos, Y. Manolopoulos, On sampling regional data, Data Knowledge Eng. (DKE) 22 (3) (1997)
309-318.



A. Nanopoulos et al. | Data & Knowledge Engineering 57 (2006) 37-63 63

[30] J.S. Vitter, Random sampling with a reservoir, ACM Trans. Math. Software 11 (1) (1985) 37-57.

[31] M. Zaki, S. Parthasarathy, W. Li, M. Ogihara, Evaluation of sampling for data mining of association rules, in:
Proceedings of Workshop on Research Issues in Data Engineering (RIDE’97), 1997.

[32] S. Zhou, A. Zhou, J. Cao, J. Wen, Y. Fan ,Y. Hu, Combining sampling technique with DBSCAN algorithm for
clustering large spatial databases, in: Proceedings of the Conference on Knowledge Discovery and Data Mining
(PAKDD’00), 2000, pp. 169-172.

Alexandros Nanopoulos was born in 1974. He graduated from the Department of Informatics,
Aristotle University of Thessaloniki, Greece, on November 1996, and obtained a Ph.D. from the
same institute, on February 2003. The subject of his dissertation was: “Techniques for Non
Relational Data Mining”’. He is co-author of more than 20 articles in international journals and
conferences, also co-author of the monograph “Advanced Signature Techniques for Multimedia
and Web Applications™. His research interests include spatial and web mining, integration of data
mining with DBMSs, and spatial database indexing.

Yannis Theodoridis was born in 1967, received his Diploma (1990) and Ph.D. (1996) in Electrical
and Computer Engineering, both from the National Technical University of Athens, Greece.
Since January 2002, he is Assistant Professor at the Department of Informatics, University of
Piraeus, and has also a joint research position at the Computer Technology Institute (CTI). His
research interests include spatial and spatiotemporal databases, location-based data management,
data mining and geographical information systems. He is co-author of the book “Advanced
Database Indexing” (1999, Kluwer Academic Publishers) and has published over 30 articles in
scientific journals such as Algorithmica, ACM Multimedia, IEEE Transactions in Knowledge and
Data Engineering, and in conferences such as ACM SIGMOD, PODS, ICDE, VLDB. His work
has over 250 citations in scientific journals and conference proceedings. He has served in the
program committee for several conferences (SIGMOD, ICDE, SSTD, etc.) and in the editorial board of International
Journal of Data Warehousing and Mining (IJDWM). He was general chair for the 8th International Symposium on
Spatial and Temporal Databases (SSTD’03). He is member of ACM and IEEE.

Yannis Manolopoulos was born in Thessaloniki, Greece in 1957. He received a B.Eng. (1981) in
Electrical Engineering and a Ph.D. (1986) in Computer Engineering, both from the Aristotle
Univ. of Thessaloniki. Currently, he is Professor at the Department of Informatics of the latter
university. He has been with the Department of Computer Science of the University of Toronto,
the Department of Computer Science of the University of Maryland at College Park and the
University of Cyprus. He has published over 130 papers in refereed scientific journals and con-
ference proceedings. He is co-author of a book on “Advanced Database Indexing” and
“Advanced Signature Indexing for Multimedia and Web Applications” by Kluwer. He served/
serves as PC Co-chair of the 8th National Computer Conference (2001), the 6th ADBIS Con-
ference (2002) the 5th WDAS Workshop (2003), the 8th SSTD Symposium (2003) and the 1st
Balkan Conference in Informatics (2003), the 16th SSDBM Conference (2004). Also, currently he is Vice-chairman of
the Greek Computer Society. His research interests include databases, data mining, information retrieval, and per-
formance evaluation of storage subsystems. Further information can be found at http://delab.csd.auth.gr.



http://delab.csd.auth.gr

	Indexed-based density biased sampling for clustering applications hairsp ^\star  z.star A preliminary version of this paper appeared in the proceedings of the CIKM " 02 conference.
	Introduction
	Motivation
	Contribution

	Related work
	Non-uniform sampling for clusters with skew sizes
	Density biased sampling from flat files
	Uniform sampling from tree indexes

	DBS with spatial indexes
	A/R algorithms
	Iterative algorithm
	Batch algorithm

	Selective pass algorithm
	Optimized SP

	Analytical comparison
	Performance evaluation
	Experimental configuration
	Results on sampling quality
	The NE dataset
	Clusters with skew sizes
	Noise and dimensionality

	Results on efficiency
	R-tree based algorithms
	Comparison with BS

	Discussion

	Conclusions
	References


