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Abstract: This paper addresses the problem of finding the K closest pairs between two spatial da-
tasets (the so called, K Closest Pairs Query, K-CPQ), where each dataset is stored in an R-tree. 
There are two different techniques for solving this kind of distance-based query. The first tech-
nique is the incremental approach, which returns the output elements one-by-one in ascending or-
der of distance. The second one is the non-incremental alternative, which returns the K elements 
of the result all together at the end of the algorithm. In this paper, based on distance functions be-
tween two MBRs in the multidimensional Euclidean space, we propose a pruning heuristic and 
two updating strategies for minimizing the pruning distance, and use them in the design of three 
non-incremental branch-and-bound algorithms for K-CPQ between spatial objects stored in two R-
trees. Two of those approaches are recursive following a Depth-First searching strategy and one is 
iterative obeying a Best-First traversal policy. The plane-sweep method and the search ordering 
are used as optimization techniques for improving the naive approaches. Besides, a number of in-
teresting extensions of the K-CPQ (K-Self-CPQ, Semi-CPQ, K-FPQ (the K Farthest Pairs Query), 
etc.) are discussed. An extensive performance study is also presented. This study is based on ex-
periments performed with real datasets. A wide range of values for the basic parameters affecting 
the performance of the algorithms is examined in order to designate the most efficient algorithm 
for each setting of parameter values. Finally, an experimental study of the behavior of the pro-
posed K-CPQ branch-and-bound algorithms in terms of scalability of the dataset size and the K 
value is also included. 

Keywords: Spatial databases, Branch-and-bound algorithms, Query processing, R-tree, Distance 
join, I/O and response time performance 

 



 

1 Introduction 

The term “Spatial Database” refers to a database that stores data for phenomena on, above or below 

the earth's surface [LaT92], or in general, various kinds of multidimensional entities of modern life 

(e.g. the layout of a VLSI design). In other words, a Spatial Database is a database system with the 

ability to handle geometric, geographic, or spatial data (i.e. data related to space).  In a computer sys-

tem, these data are represented by points, line segments, regions, polygons, volumes and other kinds of 

2-d/3-d geometric entities and are usually referred to as spatial objects (from now on, simply objects). 

For example, a spatial database may contain polygons that represent building footprints from a satel-

lite image, or points that represent the positions of cities, or line segments that represent roads. Spatial 

databases include specialized systems like Geographical databases, CAD databases, Multimedia data-

bases, Image databases, etc. Recently, the role of spatial databases is continuously increasing in many 

modern applications; e.g. mapping, urban planning, transportation planning, resource management, 

geomarketing, archeology and environmental modeling are just some of these applications. 

The key characteristic that makes a spatial database a powerful tool is its ability to manipulate spa-

tial data, rather than simply to store and represent them. The basic form of such a database is answer-

ing queries related to the spatial properties of data. Some typical spatial queries are the following. 

• A “Point Location Query” seeks for the objects that fall on a given point (e.g. the country where a 

specific city belongs). 

• A “Range Query” seeks for the objects that are contained within a given region, usually expressed 

as a rectangle or a sphere (e.g. the pathways that cross a forest). 

• A “Join Query” may take many forms. It involves two or more spatial datasets and discovers pairs 

(or tuples, in case of more than two datasets) of objects that satisfy a given spatial predicate 

[BKS93, HJR97, KoS97, LoR96, PaD96] (e.g. the pairs of boats and stormy areas, for boats sailing 

across a storm). The distance join [HjS98] was recently introduced to compute a subset of the Car-

tesian product of two datasets, specifying an order on the result based on distance (e.g. the pairs of 

hotels and archeological sites, ordered by driving distance up to 50 km between them). 

• Finally, very common is the “Nearest Neighbor Query” that seeks for the objects residing more 

closely to a given object. In its simplest form, it discovers one such object (the Nearest Neighbor) 

[RKV95, HjS99]. Its generalization discovers K such objects (K Nearest Neighbors), for a given K 

(e.g. the K ambulances closer to a spot where an accident with K injured persons occurred). 

Branch-and-bound [Iba87] has been the most successful technique for designing algorithms that 

answer queries on tree structures. Lower and upper bounding functions are the basis of the computa-

tional efficiency of branch-and-bound algorithms. Moreover, the computational behavior of this kind 
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of algorithms is highly dependent on the searching strategy chosen, for instance Best-First and Depth-

First, which are used in most situations. Numerous branch-and-bound algorithms for queries (exact 

query, range query, nearest neighbor query and spatial join) using spatial access methods have been 

studied in the literature. Here, we show how these bounding functions and searching strategies per-

form when they are included in branch-and-bound algorithms for a special distance-based query, the K 

closest pairs query. 

The distance between two objects is measured using some metric function over the underlying data 

space. The most common metric function is the Euclidean distance. We can use the Euclidean distance 

for expressing the concepts of “neighborhood” and “closeness”. The concept of “neighborhood” is 

related to the discovery of all objects that are “near” to a given query object. The concept of “close-

ness” is related to the discovery of all pairs of objects that are “close” to each other. In this paper, we 

examine a query, called “K Closest Pairs Query” (K-CPQ), that discovers the K pairs (K ≥ 1) of ob-

jects formed from two datasets that have the K smallest distances between them. The K-CPQ is a 

combination of join and nearest neighbor queries. Like a join query, all pairs of objects are candidates 

for the result. Like a nearest neighbor query, proximity metrics form the basis for pruning heuristics 

and the final ordering. 

K-CPQs are very useful in many applications that use spatial data for decision making and other 

demanding data handling operations. For example, the first dataset may represent the cultural land-

marks of the United States, while the second set may contain the most populated places of North 

America (see Figure 5.1 in Section 5). A K-CPQ will discover the K closest pairs of cities and cultural 

landmarks providing an order to the authorities for the efficient scheduling of tourist facilities creation, 

etc. The K value could be dependent on the budget of the authorities allocated for this purpose. 

The fundamental assumption is that the two datasets are indexed by structures of the R-tree family 

[Gut84]. The R-tree and its variants (R+-tree [SRF87], R*-tree [BKS90], etc.) are considered as excel-

lent choices for indexing various kinds of spatial data (points, line segments, rectangles, polygons, 

etc.) and have already been adopted in commercial systems (e.g. Informix [Bro01], Oracle [Ora01]). 

In this paper, based on distance functions between MBRs (Minimum Bounding Rectangles) in the 

multidimensional Euclidean space, we present a pruning heuristic and two updating strategies for 

minimizing the pruning distance (i.e. the distance of the K-th closest pair found during the processing 

of the algorithm) and use them in the design of three different non-incremental branch-and-bound 

algorithms for solving the K-CPQ. Two of them are recursive algorithms following a Depth-First 

searching strategy; the third one is iterative following a Best-First traversal policy. The plane-sweep 

method and the search ordering are used as optimization techniques for improving the naive ap-

proaches. Moreover, an extensive performance study, based on experiments performed with real data-

sets, is presented. A wide range of values for the basic parameters affecting the performance of the 
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algorithms is examined. The outcome of the above studies is the determination of the algorithm out-

performing all the others for each set of parameter values. 

In addition, experimental results for three special cases of the query under consideration are exam-

ined: (1) the K Self Closest Pair Query (K-Self-CPQ), where both datasets refer to the same entity; (2) 

the Semi Closest Pair Query (Semi-CPQ), where for each object of the first dataset, the closest object 

of the second dataset is computed; and (3) the K Farthest Pairs Query (K-FPQ), finding the K farthest 

pairs of objects from two datasets. Besides, the scalability of the proposed algorithms is studied. That 

is, the increase of the I/O cost and response time of each algorithm is analyzed in terms of the dataset 

size and the number K of closest pairs. 

The organization of this paper is as follows: Section 2 discusses the incremental and non-

incremental algorithmic approaches for the CPQ, as well as the motivation of this research. In Section 

3, the K-CPQ, a review of R-trees and some useful functions on pairs of MBRs are presented. In Sec-

tion 4, a pruning heuristic, two updating strategies and three new non-incremental branch-and-bound 

algorithms for K-CPQ are introduced. Section 5 exhibits a detailed performance study of all algo-

rithms for K-CPQs, including the effect of buffering, K-Self-CPQ, Semi-CPQ, K-FPQ and a scalabil-

ity study. In Section 6, conclusions on the contribution of this paper and related future research plans 

are presented. 

2 Related Work and Motivation 

There are two approaches for solving distance-based queries. The first one is the incremental alterna-

tive [HjS95, HjS99, HjS98, SML00], which satisfies the query by reporting the desired elements of the 

result in ascending order of distance in a pipelined fashion (one-by-one), i.e. the user can have part of 

the final result before the end of the algorithm execution. In other words, when the incremental algo-

rithms have obtained K elements of the result, then it is not necessary to restart the algorithm to find 

the (K+1)-th element but just to perform an additional step. The kernel of the incremental algorithms 

is a priority queue built on a distance function associated to the specific kind of the distance-based 

query. The strong point of this approach is that, when K is unknown in advance, the user stops when 

he/she is satisfied by the result. On the other hand, when the number of elements in the result grows, 

the amount of the required resources to perform the query increases too. Thus, incremental algorithms 

are competitive when a small quantity of elements of the result is needed. 

The second approach is the non-incremental one [RKV95, CMT00], which assumes that K is 

known in advance and reports the K elements of the result all together at the end of the algorithm, i.e. 

the user can not have any result until the algorithm ends. The main issue of the non-incremental vari-

ant is to separate the treatment of the terminal candidates (the elements of the final result) from the rest 

of the candidates. Since the algorithm is not incremental, when one wants to obtain M results just after 

the execution of the algorithm for K (M > K), he/she must restart the algorithm with M as input with-
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out reusing the previous result to obtain the remaining M-K elements. However, the advantage of the 

non-incremental approach is that the pruning process during the algorithm execution is more effective 

even when K is large enough, as it will be shown later in the experimental section. 

Numerous algorithms exist for answering distance-based queries. Most of these algorithms focus in 

the nearest neighbors query (NNQ) on multidimensional access methods. The importance of NNQ is 

motivated by the great number of application fields such as GIS, CAD, pattern recognition, document 

retrieval, etc. For example, algorithms exist for k-d-trees [FBF77], quadtree-related structures [HjS95], 

R-trees [RKV95, HjS99], etc. In addition, similar algorithms can be applied to other recent multidi-

mensional access methods for decreasing the I/O activity and the CPU cost. 

To the authors’ knowledge, [HjS98, SML00, CMT00] are the most relevant references for closest 

pairs queries (CPQ) in spatial databases using R-trees. In [HjS98], an incremental algorithm based on 

priority queues is presented for solving the distance join query and its extension for semi-distance join 

query. The techniques proposed in [HjS98] are enhanced in [SML00] for the K-distance join and in-

cremental distance join by using adaptive multi-stage and plane-sweep techniques [PrS85], as well as 

other improvements based on sweeping axis and sweeping direction. In [CMT00], non-incremental 

recursive and iterative branch-and-bound algorithms are presented for solving the K-CPQ on points. 

The first two efforts described in the previous paragraph follow the incremental approach, optimiz-

ing the required resources and the processing strategy. The motivation for this paper (our main objec-

tive), is to extend and enhance the work presented in [CMT00] with respect to the design of branch-

and-bound algorithms (recursive and iterative) in a non-incremental way for answering K-CPQs be-

tween two datasets stored in an R-tree [Gut84]. To carry out this extension and enhancement, we study 

the distance functions and the branch-and-bound algorithms used to answer the K-CPQ. We propose a 

pruning heuristic and two updating strategies that comprise the kernel in the design of branch-and-

bound algorithms for solving this kind of query. Besides, we apply techniques for improving the per-

formance with respect to the I/O activity (buffering) and response time (plane-sweep). Moreover, we 

study extensions of our non-incremental algorithms for operations related to the K-CPQ, as K-Self-

CPQ, Semi-CPQ, K-FPQ, etc. Finally, in our experiments we employ very large real datasets of dif-

ferent nature (line segments and points) to study the performance of the algorithms. 

3 The K-Closest-Pair Query using R-trees 

In this section, K-CPQ is defined and a brief description of R-trees is also presented, pointing out the 

main characteristics of the R*-tree. Moreover, some useful functions on pairs of MBRs, which will be 

used in branch-and-bound algorithms for answering the K-CPQ are introduced. 
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3.1 Definition of the Query 

We assume a finite point dataset P in the d-dimensional data space ℜd and a metric distance function 

dist for a pair of points, i.e. dist: P×P → ℜ+. ∀p, q ,r ∈ P, the function dist satisfies the four following 

conditions: (1) dist(p, q) ≥ 0, “non-negativity”. (2) dist(p, q) = 0 ⇔ p = q, “identity”. (3) dist(p, q) = 

dist(q, p), “symmetry”. (4) dist(p, q) ≤ dist(p, r) + dist(r, q), “∆-inequality”. 

The more general expression for dist between two points, p = (p1, p2, … , pd) and q = (q1, q2, … , 

qd) in the d-dimensional data space is called Lt-distance (Lt), Lt-metric or Minkowski distance. Its 

definition (included in this paper for clarity) is as follows: 

∞<≤







−= ∑

=

t1qpqpL
td

i

t
iit    ,),(

/1
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≤≤∞ tqpqpL iidi
   ,max),(

1
 

For t = 2 we derive the Euclidean distance and for t = 1 the Manhattan distance. These are the most 

known Lt-metrics. Often, the Euclidean distance is used as the distance function but, depending on the 

application, other distance functions may be more appropriate. 

A property of the Lt-distance function (dimension distance property) is that the value of this func-

tion for a given dimension (1 ≤ i ≤ d) is always smaller than or equal to the total computation of the Lt-

distance for all d dimensions. 

Dimension distance property: 

 ( ) ∞≤≤≤≤≤−= t1  and  di1  qpLqpiqpL tiit     , ,),,(  (1) 

The d-dimensional Euclidean space, E(d), is the pair (ℜd, L2). In other words, it is the d-dimensional 

data space ℜd, equipped with the Euclidean distance (in the sequel, we will use dist instead of L2). In 

the following, we formally define the K-CPQ. 

Definition. Let two point sets, P = {p1, p2, ... , pNP} and Q = {q1, q2, ... , qNQ} in E(d), be stored in a 

spatial database. Then, the result of the K closest pairs query K-CPQ(P, Q, K) is a set of ordered se-

quences of K (1 ≤ K ≤ |P|·|Q|) different pairs of points of P×Q, with the K smallest distances between 

all possible pairs of points that can be formed by choosing one point of P and one point of Q: 

K-CPQ(P, Q, K) = {((p1, q1), (p2, q2), ... , (pK, qK)), p1, p2, ... , pK ∈ P, q1, q2, ..., qK ∈ Q: 

(pi, qi) ≠ (pj, qj), i ≠ j, 1 ≤ i, j ≤ K and ∀(pi, qj) ∈ P×Q – {(p1, q1), (p2, q2), ... , (pK, qK)}, 

dist(pi, qj) ≥ dist(pK, qK) ≥ dist(pK-1, qK-1) ≥ … ≥ dist(p2, q2) ≥ dist(p1, q1)} 

Note that, due to ties of distances, the result of the K-CPQ may not be a unique ordered sequence 

for a specific pair of point sets P and Q. The aim of the proposed algorithms is to find one of the pos-

sible instances, although it would be straightforward to obtain all of them. 

The extension of K-CPQ definition in terms of points to other spatial data types (line segment, re-

gion, rectangles, etc.) is straightforward. An object “obj” in a spatial database is usually defined by 
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several non-spatial attributes and one attribute of some spatial data type. This spatial attribute de-

scribes the object’s spatial extent “obj.G”, i.e. the location, shape, orientation and size of the object. In 

the spatial database literature, the terms: geometric description, shape description and spatial extension 

are often used instead of spatial extent. The single modification on the K-CPQ definition is the re-

placement of points p and q with objects p and q with spatial extent p.G and q.G, respectively, in E(d) 

and the replacement of the distance between two points (dist) with the distance between two objects, 

provided that a distance function can be defined between the type of the objects. 

As stated earlier, the two datasets are stored in R-trees. This means that the specific data organiza-

tion by R-trees should be taken into account in the design of efficient algorithms. In the next subsec-

tion, we briefly review the R-tree family. 

3.2 R-trees 

R-trees [Gut84] are hierarchical, height balanced multidimensional data structures, designed for using 

in secondary storage, and it is a generalization of B-trees [Com79] for multidimensional data spaces. 

They are used for the dynamic organization of a set of d-dimensional objects represented by their 

d-dimensional MBRs. These MBRs are characterized by “min” and “max” points of hyper-rectangles 

with faces parallel to the coordinate axes. Using the MBR instead of the exact geometrical representa-

tion of the object, its representational complexity is reduced to two points, where the most important 

object features (position and extension) are maintained. Consequently, the MBR is an approximation 

widely employed. 

Each R-tree node corresponds to the MBR that contains its children. The tree leaves contain point-

ers to the database objects instead of pointers to child nodes. The nodes are implemented as disk 

pages. It must be noted that the rectangles that surround different nodes may overlap. Besides, a rec-

tangle can be included (in the geometrical sense) in many nodes, but can be associated to only one of 

them. This means that a search may demand visiting many nodes, before confirming the existence or 

not of a given MBR.  

The rules obeyed by the R-tree are as follows: leaves reside on the same level; each leaf contains 

entries of the form (MBR, Oid), such that MBR is the minimum bounding rectangle that encloses the 

object determined by the identifier Oid; internal nodes contain entries of the form (MBR, Addr), 

where Addr is the address of the child node and MBR is the minimum bounding rectangle that en-

closes MBRs of all entries in that child node; nodes (except possibly for the root) of an R-tree of class 

(m, M) contain between m and M entries, where m ≤ M/2 (M and m are also called maximum and 

minimum branching factor or fan-out); the root contains at least two entries, if it is not a leaf. Figure 

3.1 depicts some rectangles on the left and the corresponding R-tree on the right. Dotted lines denote 

the bounding rectangles of the subtrees that are rooted in inner nodes. 
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Figure 3.1. An example of an R-tree. 

Like other tree access methods, an R-tree partitions the multidimensional space by grouping objects 

in a hierarchical manner. A subspace occupied by an R-tree node is always contained in the subspace 

of its parent node, i.e. the MBR enclosure property. According to this property, an MBR of an R-tree 

node (at any level, except at the leaf level) always encloses the MBRs of its descendent R-tree nodes. 

Spatial join algorithms as well as distance-based query algorithms commonly use this characteristic of 

spatial containment between MBRs of R-tree nodes. 

Another important property of the R-trees is the MBR face property [RKV95]. This property means 

that every face of any MBR of an R-tree node (at any level) touches at least one point of some object 

in the spatial database. This characteristic of the MBR faces stored in R-tree nodes is used by distance-

based query algorithms. 

Many variations of R-trees have appeared in the literature (an exhaustive survey can be found in 

[GaG98]). One of the most popular and efficient variations is the R*-tree [BKS90]. The R*-tree added 

two major enhancements to the R-tree, in case that a node overflows. First, rather than just considering 

the area, the node-splitting algorithm in the R*-tree also minimized the perimeter and overlap en-

largement of the minimum bounding rectangles. It tends to reduce the number of subtrees to follow for 

search operations. Second, the R*-tree introduced the notion of forced reinsertion to make the tree 

shape less dependent to the insertion order. When a node overflows, it is not split immediately, but a 

portion of entries of the node is reinserted from the tree root. The forced reinsertion provides two im-

portant improvements: (i) it may reduce the number of splits and, (ii) it is a dynamic technique for tree 

reorganization. With these two enhancements, the R*-tree generally outperforms R-tree. It is com-

monly accepted that the R*-tree is one of the most efficient R-tree variants. Thus, we choose R*-trees 

to perform our experimental study. 

3.3 Functions on Pairs of MBRs 

Since the different algorithms for K-CPQ act on pairs of R-trees (RP and RQ), some important func-

tions on pairs of MBRs will be defined. Let NP and NQ be two internal nodes of RP and RQ, with MP 

and MQ the respective MBRs of NP and NQ. These MBRs contain all the points residing in the respec-

7 



tive subtrees. In order for these MBRs to be the minimum ones, at least one point has to be located at 

each edge of their rectangles. The following functions of MBRs work for any number of dimensions, 

although in the examples are restricted to 2 dimensions. Let r1, r2, r3 and r4 be the four edges of MP, 

whereas s1, s2, s3 and s4 are the four edges of MQ. By MinDist(ri, si) we denote the minimum distance 

between two points falling on ri and si. Accordingly, by MaxDist(ri, si) we denote the maximum dis-

tance between two points falling on ri and si. In the sequel, we extend definitions of metrics between a 

point and an MBR that appear in [RKV95] and define a set of useful functions of two MBRs. In case 

MP and MQ are disjoint we can define a function that expresses the minimum possible distance of two 

points contained in different MBRs: 

 { }),(min),(
, jijiQP srMinDistMMMINMINDIST =  (2) 

If the two nodes’ MBRs intersect, MINMINDIST(MP, MQ) equals 0. In any case (either intersecting 

or disjoint MBRs) we can define the functions: 

 { }),(min),(
, jijiQP srMaxDistMMMINMAXDIST =  (3) 

 { }),(max),(
, jijiQP srMaxDistMMMAXMAXDIST =  (4) 

MAXMAXDIST expresses the maximum possible distance of any two points contained in different 

MBRs. MINMAXDIST expresses an upper bound for the distance of at least one pair of points. More 

specifically, there exists at least one pair of points (contained in different MBRs) with distance smaller 

than or equal to MINMAXDIST. In Figure 3.2, two MBRs and their MINMINDIST, MINMAXDIST and 

MAXMAXDIST distances are depicted. 

 

MP 

MQ 

MINMINDIST 

MINMAXDIST 

MAXMAXDIST 

 

Figure 3.2: Two MBRs and their MINMINDIST, MINMAXDIST and MAXMAXDIST in E(2). 

Let R(s, t) represent an MBR in E(d), where s = (s1, s2, ... , sd) and t = (t1, t2, ... , td), such that si ≤ ti, 

for 1 ≤ i ≤ d, are the endpoints of one of its major diagonals. We present algorithmic definitions of the 

above functions in E(d). Using these definitions, it is easy to devise efficient algorithms for calculating 

the functions. 

Definition. Given two MBRs R1(s, t) and R2(p, q) in E(d), MINMINDIST(R1(s, t), R2(p, q)) is defined 

as: 
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It is interesting that Equation 5 also holds between points or between an MBR and a point: 

• If ti = si for R1(s, t) and qi = pi for R2(p, q), R1 and R2 degenerate into two points s = (s1, s2, ... , sd) 

and p = (p1, p2, ... , pd); then: 
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• If qi = pi for R2(p, q), R2 degenerates into a point p = (p1, p2, ... , pd); then [RKV95]: 

( ) ∑
=

==
d

i
iypRMINDISTRRMINMINDIST

1

2
121 ),(, , where  








>−
>−

=
otherwise

psifps
tpiftp

y iiii

iiii

i

            ,0
      ,
      ,

Thus, MINMINDIST of two MBRs is a generalization of the distance between points and MBRs. 

This property allows us to apply MINMINDIST to pairs of any kind of elements (i.e. MBRs or points) 

stored in R-trees during the computation of branch-and-bound algorithms for K-CPQ. 

Another property of the MINMINDIST  function is based on the dimension distance property, and it 

can be stated as follows (easily proven by combining the definition of MINMINDIST between two 

MBRs (Equation 5) and the dimension distance property (Equation 1)). 

Dimension MINMINDIST property: 

Given two MBRs R1(s, t) and R2(p, q) in E(d), the value of MINMINDIST(R1, R2) for a given dimension 

1 ≤ i ≤ d is always smaller than or equal to MINMINDIST(R1, R2). 

di1RRMINMINDISTi,R,RMINMINDIST 21 ≤≤∀≤   ),,()( 21  

such that , where  iyiRRMINMINDIST =),,( 21







>−
>−

=
otherwise

qsifqs
tpiftp

y iiii

iiii

i

            ,0
      ,
      ,

The main usefulness of MINMINDIST for a given dimension is that it is computationally cheaper 

than MINMINDIST and thus we may obtain a performance gain in some situations (e.g. plane-sweep 

technique [PrS85]) for a given dimension. 

A third important property of the MBRs stored in two different R-trees related to the MINMINDIST 

function is called MBRs MINMINDIST property. This property can be stated as follows (again, it is 

easily proven by combining the definition of MINMINDIST between two MBRs (Equation 5) and the 

MBR enclosure property). 
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MBRs MINMINDIST property: 

Consider two R-tree internal nodes NP and NQ (with MBRs MP0 and MQ0) of two R-trees RP and RQ, 

respectively. These two internal nodes are enclosing two sets of MBRs {MP1, MP2, …, MPA} and 

{MQ1, MQ2, …, MQB}. Then (the proofs are simple and left as an exercise to the interested reader) 

MINMINDIST(MPi, MQj) ≥ MINMINDIST(MP0, MQ0): ∀ 1 ≤ i ≤ A and ∀ 1 ≤ j ≤ B 

MINMINDIST(MP0, MQj) ≥ MINMINDIST(MP0, MQ0): ∀ 1 ≤ j ≤ B 

MINMINDIST(MPi, MQ0) ≥ MINMINDIST(MP0, MQ0): ∀ 1 ≤ i ≤ A 

In other words, the minimum distance between two MBRs of two internal nodes NP and NQ (with 

MBRs MP0 and MQ0) is always smaller than or equal to the minimum distance between one of the 

MBRs enclosed by MP0 and one of the MBRs enclosed by MQ0 (i.e. MINMINDIST is monotonically 

non-decreasing with the R-tree heights). This property allows us to limit the search space when we 

apply a branch-and-bound algorithm for K-CPQ. Figure 3.3 illustrates this property for A = B = 3. 

 

MP0 

MQ0 

MINMINDIST(MP2, MQ2) 

MP1 

MP3 MP2 

MQ3 

MQ1 

MQ2 

MINMINDIST(MP0, MQ0) 

 

Figure 3.3: MBRs MINMINDIST property in E(2). 

Definition. Given two MBRs R1(s, t) and R2(p, q) in E(d), MAXMAXDIST(R1(s, t), R2(p, q)) is defined 

as: 
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Definition. Given two MBRs R1(s, t) and R2(p, q) in E(d), MINMAXDIST(R1(s, t), R2(p, q)) is defined 

as: 
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where F(R(z, x), i, xi) denotes the face of the MBR R(z, x) containing all points with value xi at coor-

dinate i. In other words, it denotes the face that is orthogonal to dimension i at value xi (note that, for 

an MBR R(z, x), there are two faces orthogonal to dimension i, one at value xi and another at value zi). 

The function MAXDIST calculates the maximum distance between two such faces from different 
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MBRs. For this calculation, it suffices to compare the distances between each endpoint of one face to 

each endpoint of the other face. Each face of dimension d has 2d-1 endpoints. For example, the set of 

endpoints of F(R(z, x), i, xi) consists of all the points with value xi at coordinate i and with value either 

xl, or zl at each coordinate l ≠ i. 

Note that the definitions of MINMINDIST and MAXMAXDIST lead to algorithms of O(d) time, 

whereas the definition of MINMAXDIST results in an exponential algorithm, due to the computation of 

the distances (MAXDIST) between each endpoint of one face (2d-1) and each endpoint of the other 

face (2d-1) and the calculation of the minimum distance from 2d faces in one MBR against the other 2d 

faces in the other MBR. For small d values (e.g. d < 4) the cost of using definition of MINMAXDIST is 

not prohibitive. For larger d values, an alternative definition could be used which gives an upper 

bound for the value produced by definition of MINMAXDIST. This definition is presented in the fol-

lowing and leads to an O(d) algorithm. For each dimension j (where 1 ≤ j ≤ d), it computes the mini-

mum of the MAXDIST values of all the pairs of faces orthogonal to dimension j (the two faces of each 

pair belong in different MBRs). The final result is the minimum of all these j values (a minimum of 

sub-minima). In general, the computed value is larger than or equal to (an upper bound of) the mini-

mum of the MAXDIST values of every possible pair of faces. 

Definition. Given two MBRs R1(s, t) and R2(p, q) in E(d), an upper bound of MINMAXDIST(R1(s, t), 

R2(p, q)) is: 

 ( ) ( )( )
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where { }  , , , min jjjjjjjjj qtptqspsx −−−−=  and { }   ,  max iiiii ptqsy −−=  

Definition. Given two objects o1 and o2 in E(d), the minimum distance between them, denoted by ||(o1, 

o2)||, is: 

 {






=

∈∈∈∈
),(minmin),( 21,)(),(21

22112211

ppdistoo
fpfpoFfoFf

}  (9) 

where F(o1) and F(o2) denote the set of faces of the object o1 and o2 in E(d), respectively. Moreover, f1 

and f2 are instances of the sets of faces F(o1) and F(o2). Here, dist is the Euclidean distance between 

two points p1 and p2 defined in E(d). 

Lemma 1. Consider two MBRs MP0(s, t) and MQ0(p, q) in E(d), enclosing two set of objects O1 = {o1i: 

1 ≤ i ≤ N1} and O2 = {o2j: 1 ≤ j ≤ N2}, respectively. The following holds: 

 ),(),(  ,),( 21002121 jiQPji ooMMMINMINDISTOOoo ≤×∈∀  (10) 

Proof: From the definition of MINMINDIST between two MBRs and the MBR face property.  
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Lemma 2. Consider two MBRs MP0(s, t) and MQ0(p, q) in E(d), enclosing two set of objects O1 = {o1i: 

1 ≤ i ≤ N1} and O2 = {o2j: 1 ≤ j ≤ N2}, respectively. The following is true: 

 ),(),(  ,),( 00212121 QPjiji MMMAXMAXDISTooOOoo ≤×∈∀  (11) 

Proof: From the definition of MAXMAXDIST between two MBRs and the MBR face property.  

Lemma 3. Consider two MBRs MP0(s, t) and MQ0(p, q) in E(d), enclosing two set of objects O1 = {o1i: 

1 ≤ i ≤ N1} and O2 = {o2j: 1 ≤ j ≤ N2}, respectively. The following holds: 

 ),(),(  ,),( 00212121 QPjiji MMMINMAXDISTooOOoo ≤×∈∃  (12) 

Proof: From the definition of MINMAXDIST between two MBRs and the MBR face property.  

From the previous properties and lemmas, we can deduce that MINMINDIST(R1, R2) and MAX-

MAXDIST(R1, R2) serve respectively as lower and upper bounding functions of the Euclidean distance 

from the K closest pairs of objects within the MBRs R1 and R2. In the same sense, MINMAXDIST(R1, 

R2) serves as an upper bounding function of the Euclidean distance from the closest pair of objects  

(K = 1) enclosed by the MBRs R1 and R2. 

Usually, the distance functions are all based on a distance metric for points, dist(p1, p2), such as the 

Euclidean metric. As in [HjS98, HjS99], as long as the distance functions are “consistent”, the algo-

rithms based on them will work correctly. Informally, by consistent, it is meant that no pair can have a 

smaller distance than a pair that we access during the processing of an algorithm over tree access 

methods [HjS98]. In the case of R-trees, this means that if o1 and o2 are objects indexed by the R-trees 

RP and RQ, respectively, and R1 and R2 are the MBRs at leaf level that contain o1 and o2, respectively, 

then we must have MINMINDIST(R1, R2) ≤ ||(o1, o2)||. This constraint is clearly ensured by Lemma 1 

(lower-bounding property), the MBR MINMINDIST property, and the Euclidean distance properties: 

non-negativity and triangle inequality. Therefore, since our MINMINDIST function applied to R-tree 

elements is consistent, we can design algorithms based primarily on this distance function that will 

work correctly. 

4 Algorithms for K-Closest Pairs Queries 

In the following, based on functions between two MBRs, we present a pruning heuristic and two up-

dating strategies for minimizing the pruning distance during the processing of branch-and-bound algo-

rithms for K-CPQ. After that, three non-incremental branch-and-bound algorithmic approaches (two 

recursive following a Depth-First searching strategy and one iterative following a Best-First traversal 

policy) for K-CPQ between objects stored in two R-trees are presented. The unfamiliar reader is ad-

vised to study the algorithms presented in [CMT00], as a first reading. The plane-sweep method and 

the search ordering are used as optimization techniques for improving the naive approaches. Since the 

R-tree height depends on the number of inserted objects (as well as in the insertion order and the page 
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size), the two R-trees may have the same or different heights, and we study two alternatives to treat 

this case. Finally, some extensions of the K-CPQ algorithms are shown. 

4.1 Pruning Heuristic and Updating Strategies 

Based on the previous bounding functions and lemmas, we propose a pruning heuristic to discard pairs 

of MBRs, which will not contain the K closest pairs during the execution of the algorithm for report-

ing the result of K-CPQ. Besides, we present two updating strategies for minimizing the pruning dis-

tance z (distance of the K-th closest pair found so far), which are used in the pruning process. 

First of all, we establish a data structure that stores the K closest pairs. This data structure will help 

updating z, which is the distance of the K-th closest pair discovered so far. This structure is organized 

as a maximum binary heap (called K-heap) and will hold pairs of objects according to their distance. 

The pair of objects with the largest distance resides in the K-heap root. In the implementation of the 

branch-and-bound algorithms for K-CPQ we must consider the following cases: 

• Initially the K-heap is empty (z is initialized to ∞). 

• The pairs of objects discovered at the leaf level are inserted in the K-heap until it gets full (z keeps 

the value of ∞). 

• Then, if the distance of a new pair of objects discovered at the leaf level is smaller than the distance 

of the pair residing in the K-heap root, then the latter pair is extracted, this new pair is inserted in 

the K-heap and the root is updated with the pair with the largest distance (z is equal to the distance 

of the pair of objects residing in the K-heap root). 

4.1.1 Pruning Heuristic 

In Figure 4.1 two R-tree nodes (dotted rectangles) containing two MBRs (thick-line rectangles) and 

the MINMINDIST (thin lines) and MINMAXDIST (dashed lines) distances between each pair of MBRs 

are depicted. It is obvious that MINMINDIST(MP2, MQ2) is the largest one, MINMINDIST(MP1, MQ2) 

and MINMINDIST(MP2, MQ1) follow, and MINMINDIST(MP1, MQ1) is the smallest one. If, for example 

MINMINDIST(MP1, MQ2) > z > MINMINDIST(MP2, MQ1), the paths corresponding to (MP2, MQ2) and 

(MP1, MQ2) will be pruned. 

 
MP1 MQ2 

MP2 

MQ1 

 

Figure 4.1: Two R-tree nodes and MINMINDIST(MPi, MQj), MINMAXDIST(MPi, MQj). 
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Given two MBRs MPi and MQj in E(d), stored in nodes of two R-trees RP and RQ, respectively. If 

MINMINDIST(MPi, MQj) > z, then the pair (MPi, MQj) will be discarded. z can be obtained from the 

distance of the K-th closest pair among all pairs that have been found so far. Moreover, the z value can 

be optionally updated using the upper bounding functions MAXMAXDIST(R1, R2) and MIN-

MAXDIST(R1, R2) for any K and K = 1, respectively. However, if we apply these functions, the num-

ber of disk accesses will not be reduced and the computational cost can be increased, as was proved 

for K-NNQ in [ChF98]. Thereby, we can optionally use the following strategies based on upper 

bounding functions for updating z (trying to minimize its value, if possible). 

4.1.2 Updating Strategy 1 (based on MINMAXDIST) 

This first updating strategy uses Lemma 3 only for the case of K = 1. That is, given two R-tree nodes 

NP and NQ stored in internal nodes of the R-trees RP and RQ, and enclosing two sets of MBRs {MPi: 1 

≤ i ≤ |NP|} and {MQj: 1 ≤ j ≤ |NQ|}, respectively. Then, z can be updated if, and only if z’ has a smaller 

value, where z’ is defined as follows: 

 { }QPQjPi NjandNiMMMINMAXDISTz ≤≤≤≤= 1    1:),(min'  (13) 

In Figure 4.1, the minimum MINMAXDIST (z’) is the one of the pair (MP1, MQ1). Suppose that z’ is 

smaller than z, thus z is updated with MINMAXDIST(MP1, MQ1). If after this updating strategy we ap-

ply the pruning heuristic, then the paths corresponding to (MP2, MQ2) and (MP1, MQ2) will be pruned, 

because MINMINDIST(MP2, MQ2) > MINMINDIST(MP1, MQ2) > z. 

4.1.3 Updating Strategy 2 (based on MAXMAXDIST) 

A second updating strategy uses Lemma 2 for any K. That is, consider two internal R-tree nodes NP 

and NQ of the R-trees RP and RQ. NP and NQ enclose two sets of MBRs {MPi: 1 ≤ i ≤ |NP|} and {MQj: 1 

≤ j ≤ |NQ|}, respectively. Then, z can be updated if, and only if z’ has a smaller value, where z’ can be 

obtained by the following procedure: 

• MxMxDList is a set of all possible pairs of MBRs (MPi, MQj) that can be formed from the two in-

ternal nodes NP and NQ. MAXMAXDIST(MPi, MQj) is calculated for each pair of MBRs. 

• MxMxDList is sorted in ascending order according to the MAXMAXDIST values (creating a se-

quence of pairs of MBRs with its respective MAXMAXDIST value). 

• We know from the properties of the R-tree index structure that the minimum number of spatial 

objects stored on the leaf nodes that can be enclosed by two MBRs (MPi, MQj) stored in internal 

nodes is X(MPi, MQj), where mP and mQ are the minimum fan-outs of RP and RQ, respectively. 
QjPi Moflevel

Q
Moflevel

PQjPi mmMMX     ),( ×=  

• Using X(MPi, MQj), we can find the x-th element of the sorted list MxMxDList, until the following 

condition is satisfied, where Total = |NP|·|NQ|. 
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• Then, we can obtain z’ = MxMxDList[x].MAXMAXDIST if (x < Total) is satisfied, otherwise (x = 

Total) z’ = ∞. After that, we will update z with the z’ value, if z’ < z holds. 

The previous procedure for updating z based on MAXMAXDIST must be applied locally to two in-

ternal nodes in recursive branch-and-bound algorithms following a Depth-First searching strategy. 

In Figure 4.2 we have the same two R-tree nodes as in Figure 4.1, where the MAXMAXDIST dis-

tances between each pair of MBRs are depicted. Also, the sorted list MxMxDList with the value of 

MAXMAXDIST between all possible pairs is illustrated. For example, we suppose the level of MPi = 

level of MQj = 1 (the level just above the leaf level), mP = mQ = 3, K = 10, and z = 15.35 (at the current 

moment during the execution of the algorithm). The updating strategy works as follows: x = 0 [en-

closedPairs = 9 < 10]; x = 1 [enclosedPairs = 18 ≥ 10]; z’ = MxMxDList[1].MAXMAXDIST = 

MAXMAXDIST(MP1, MQ2) = 9.70, and z = 9.70 because z < z’ (9.70 < 15.35). After this updating strat-

egy we will apply the pruning heuristic with the new z value. 

 
MP1 MQ2 

MP2 MQ1 

MP1 
MQ1 
8.10 

MP1 
MQ2 
9.70 

MP2 
MQ1 
10.1 

MP2 
MQ2 
12.8 

MxMxDList 

0 1 2 3  

Figure 4.2: Two R-tree nodes and the updating strategy using MAXMAXDIST(MPi, MQj). 

For the iterative branch-and-bound algorithm following a Best-First searching strategy, the global 

set of pairs of MBRs that take part in the above procedure for computing z’ is the current set of pairs 

(set of all possible pairs of MBRs (MPi, MQj) that can be formed from the current two internal nodes 

NP and NQ) plus the pairs of MBRs already inserted in the main minimum binary heap. In this case, we 

will have a maximum binary heap, MxMxDHeap, with MAXMAXDIST as a key that stores globally all 

pairs of MBRs for which (Σ(X(MP, MQ)i)) is smaller than or equal to K, and a hash table associated to 

this data structure to support locating a particular pair, as in [HjS98]. The procedure to update 

MxMxDHeap and z is very similar to the previous one for MxMxDList: 

• When a candidate pair of MBRs (MP, MQ) is inserted in the main minimum binary heap, it is also 

inserted in MxMxDHeap. If this insertion causes the sum (Σ(X(MP, MQ)i)) of the minimum number 

of objects stored in the leaves that can be generated by all pairs of MBRs stored in MxMxDHeap 
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be larger than K, then we remove pairs of MBRs from MxMxDHeap until this sum is smaller than 

or equal to K, setting z’ to the MAXMAXDIST value of the last removed pair. 

• When a candidate pair of MBRs (MP, MQ) is removed from the main minimum binary heap, it must 

also be removed from MxMxDHeap, if it is present. 

• Then, we can update z with the z’ value, if z’ < z holds. 

After presenting these two updating strategies for minimizing the pruning distance (z), we must 

emphasize that their use is optional (controlled by a parameter passed to the algorithms), since their 

computational cost is greater than the performance gain. 

4.2 The Sorted Distances Recursive Algorithm 

This first branch-and-bound algorithm follows a Depth-First searching strategy and makes use of re-

cursion and the previous pruning heuristic and updating strategies. In addition, we employ the property 

that pairs of MBRs that have smaller MINMINDIST are more likely to contain the K closest pairs and 

to lead to a smaller z value. A heuristic that aims at improving this branch-and-bound algorithm when 

two internal nodes are accessed, is to sort the pairs of MBRs according to ascending order of MIN-

MINDIST and to obey this order in propagating downwards recursively. This order of processing is 

expected to improve pruning of paths. Such an algorithm (SDR) for two R-trees with the same height 

appears in Figure 4.3. 

We point out that at the R-tree leaf level an object (point or MBR) or MBR of another type of ob-

jects can be stored, together with a pointer to its exact geometry kept outside of the R-tree, e.g. in a 

sequential file. In the first case, we will calculate MINMINDIST, since this function returns the dis-

tance between two points if the two MBRs have degenerated to two points as shown in the MINMIN-

DIST property. In the second case, we must read the exact geometry of the pair of objects (O1, O2) and 

calculate its distance ObjectDistance(O1, O2), using techniques presented in [ChW84, GJK88]. 

In the example of Figure 4.1, the order of paths that will be followed is: (MP1, MQ1), i.e. the one 

with the smallest MINMINDIST and then (MP2, MQ1). In such a case, there may be ties between the 

MINMINDIST values. This is likely to happen especially when the two datasets overlap. In that case, 

MINMINDIST will usually be 0. It is possible to get a further improvement by choosing the next pair 

in case of a tie using some heuristic (not following the order produced by the sorting method). In 

[CMT00] various such heuristics have been proposed and experimentally studied. Now, we will ignore 

this special treatment, since it does not significantly affect the behavior of the branch-and-bound algo-

rithm with respect to the I/O activity, and it needs computational time to be carried out. 
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4.3 The Plane-Sweep Recursive Algorithm 

Another improvement for a branch-and-bound algorithm making use of recursion (Depth-First tra-

versal) is to exploit the R-tree structure utilizing the plane-sweep technique, which is a common tech-

nique for computing intersections [PrS85]. The basic idea is to move a line, the so-called sweep-line, 

perpendicular to one of the dimensions, e.g. X dimension, from left to right. We apply this technique 

for restricting all possible combinations of pairs of MBRs from two R-tree nodes NP = {MPi:  

1 ≤ I ≤ |NP|} and NQ = {MQj: 1 ≤ j ≤ |NQ|} from RP and RQ, respectively. If we do not use this tech-

nique, then we must create a set with all possible combinations of pairs of MBRs from two R-tree 

nodes (|NP|·|NQ|) and process it as in the previous recursive algorithm. 

SDR1 Start from the two R-trees roots and set z to ∞. 

SDR2 If you access two internal nodes, optionally try to minimize z using one 
of the two updating strategies (based on MINMAXDIST for K = 1 or MAX-

MAXDIST for any K). Calculate MINMINDIST for each possible pair of MBRs 

and sort these pairs in ascending order of MINMINDIST. Following this or-

der, propagate downwards recursively only for the pairs of entries having 

MINMINDIST ≤ z. 

SDR3 If you access two leaves, then calculate the distance of each possible 
pair of objects. If this distance is smaller than or equal to z (the dis-

tance of the K-th closest pair discovered so far), then remove the pair 

located in the K-heap root and insert the new pair in K-heap, updating z. 

Figure 4.3: The SDR Algorithm 

 

In general, the technique consists of sorting the entries of the two current R-tree nodes, based on 

the coordinates of one of the corners of the MBRs (e.g. lower left corner) in increasing or decreasing 

order. First, the dimension for the sweep-line (e.g. Sweeping_Dimension = 0 or X-axis) is established 

based on sweeping axis criteria [SML00]. After that, two pointers are maintained initially pointing to 

the first entry of each sorted R-tree node. Let Pivot be the entry of the smallest value of the MBR with 

lower left corner pointed by one of these two pointers, e.g. MP1, then Pivot is initialized to the entry 

associated to the MBR MP1. The MBR of the pivot must be paired up with the MBRs of the entries 

stored in the other R-tree node {MQj: 1 ≤ j ≤ |NQ|} from left to right that satisfies the MINMIN-

DIST(Pivot.MBR, MQj, Sweeping_Dimension) ≤ z, obtaining a set of entries for candidate pairs where 

the element Pivot.MBR is fixed. This partial set with respect to the MBR of the pivot entry will be 

added to a global set of candidate pairs of entries, called ENTRIES (empty at the beginning). After all 

possible pairs of entries that contain Pivot.MBR have been found, the pointer of the pivot node is 

increases to the next entry, Pivot is updated with the entry of the next smallest value of a lower left 

corner of MBRs pointed by one of the two pointers, and the process is repeated. 
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PSR1 Start from the two R-tree roots and set z to ∞. 

PSR2 If you access two internal nodes, optionally try to minimize z using one 
of the two updating strategies (based on MINMAXDIST for K = 1 or MAX-

MAXDIST for any K). Apply the plane-sweep technique to obtain the set of 

pairs of candidate entries, ENTRIES. Propagate downwards recursively only 

for those pairs of entries from ENTRIES having MINMINDIST ≤ z. 

PSR3 If you access two leaves, apply the plane-sweep technique to obtain the 
set of candidate pairs of entries (ENTRIES). Then calculate the distance 

of each pair of objects stored in ENTRIES. If this distance is smaller 

than or equal to z, then remove the pair located in the K-heap root and 

insert the new pair in K-heap, updating z. 

Figure 4.4: The PSR Algorithm. 

 

Notice that we apply MINMINDIST(MPi, MQj, Sweeping_Dimension) because in the plane-sweep 

technique, the sweep is only over one dimension (the best dimension according to the criteria sug-

gested in [SML00]). Moreover, the search is only restricted to the closest MBRs with respect to the 

MBR of the pivot entry according to the current z value. No duplicated pairs are obtained, since the 

MBRs are always checked over sorted R-tree nodes. Also, the application of this technique can be 

viewed as a sliding window on the sweeping dimension with a width equal to the z value starting in the 

MBR of the pivot, where we only choose all possible pairs of MBRs that can be formed using the 

MBR of the pivot and the other MBRs from the remainder entries of the other R-tree node that fall 

into the current sliding window. We must point out that this sliding window has a length equal to z 

value plus the length of the MBR of the pivot on the sweeping dimension. 

The PSR algorithm applies the plane-sweep technique for obtaining a reduced set of candidate pairs 

of entries from two R-tree nodes (ENTRIES) and it can be improved by sorting its pairs of MBRs 

according to ascending order of MINMINDIST or organizing ENTRIES as a minimum binary heap 

with MINMINDIST as a key. Then, it iterates in the set ENTRIES and propagates downwards only for 

the pairs of entries with MINMINDIST smaller than or equal to the z value. The PSR algorithm for two 

R-trees with the same height appears in Figure 4.4. 
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In the example of Figure 4.1, suppose that we do not apply the updating strategies for reducing z 

and z = 2. Then we apply the plane-sweep technique taking the sweeping dimension the X-axis. The 

set of pairs of MBRs produced is ENTRIES = {(MP1, MQ1)}. We calculate MINMINDIST(MP1, MQ1), 

which is smaller than z. Thus, we propagate only for (MP1 ,MQ1). 

PSI1 Start from the two R-tree roots, set z to ∞ and initialize Main-heap. 

PSI2 If you access two internal nodes, optionally try to minimize z using one 
of the two updating strategies (based on MINMAXDIST for K = 1 or MAX-

MAXDIST for any K). Apply the plane-sweep technique to obtain the set of 

candidate pairs of entries, ENTRIES. Insert into Main-heap only those 

pairs of addresses of entries stored in the current two internal R-tree 

nodes (and the MINMINDIST value of their MBRs), which have a MINMINDIST 

value smaller than or equal to z. 

PSI3 If you access two leaves, apply the plane-sweep technique to obtain the 
set of candidate pairs of entries (ENTRIES). Then calculate the distance 

of each pair of objects stored in ENTRIES. If this distance is smaller 

than or equal to the z value, then remove the pair located in the K-heap 

root and insert the new pair in K-heap, updating z. 

PSI4 If Main-heap is empty then stop. 
PSI5 Get the pair from the Main-heap root. If this item has MINMINDIST > z then 

stop. Otherwise, repeat the algorithm from PSI2 for the pair of R-tree 
nodes pointed by the addresses of this Main-heap item. 

Figure 4.5: The PSI Algorithm. 

 

4.4 The Plane-Sweep Iterative Algorithm 

Unlike the previous ones, this branch-and-bound algorithm is iterative. In order to overcome recursion 

and to keep track of propagation downwards while accessing the two R-trees, a minimum binary heap, 

called Main-heap, is used. Main-heap holds only pairs of addresses pointing two R-tree nodes that will 

be processed during the execution of the algorithm and the MINMINDIST value of the pair of MBRs 

that encloses these two R-tree nodes. That is, the item structure for Main-heap is <MINMINDIST, 

NodeAddressRP, NodeAddressRQ>, and it allows us to store this data structure entirely in main mem-

ory even for a large K value or large datasets. The pair with the smallest MINMINDIST value resides 

on top of Main-heap (in the root of the minimum binary heap). This pair is the next candidate for 

processing. Also, we can apply the plane-sweep technique in this branch-and-bound iterative algo-

rithm in the same way as in the recursive one. Such and algorithm (PSI) for two R-trees with the same 

height appears in Figure 4.5. 
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Note that ties between MINMINDIST values may also appear as in the sorted recursive algorithm. 

That is, two or more pairs may have the same MINMINDIST value. If this value is the minimum one, 

then more than one such pairs would appear close to the Main-heap root. As in the sorted recursive 

algorithm, we will ignore this special treatment, since it does not significantly affect the behavior of 

the branch-and-bound algorithm with respect to the I/O activity and it consumes computational time. 

In the example of Figure 4.1, suppose that we consider the same situation (internal nodes). The set 

of pairs of MBRs produced by the application of plane-sweep technique is ENTRIES = {(MP1, MQ1)}. 

We calculate MINMINDIST(MP1, MQ1), which is smaller than z. Thus, we insert in Main-heap only the 

entry <MINMINDIST(MP1 ,MQ1), entryOfMP1.address, entryOfMQ1.address >. 

4.5 Treatment of Different Heights 

When the two R-trees storing have different heights, the algorithms are slightly more complicated. In 

the recursive branch-and-bound algorithm, there are two approaches for treating different heights: 

• The first approach is called “fix-at-root”. The idea is, when the algorithm is called with a pair of 

internal nodes at different levels, stop propagating downwards in the R-tree of the smaller level 

node, while propagation in the other R-tree continues until both nodes are located at the same level. 

Then, propagation continues in both subtrees as usual. 

• The second approach is called “fix-at-leaves” and works in the opposite way. Recursion propagates 

downwards as usual. When the algorithm is called with a leaf on the one hand and an internal node 

on the other hand, downwards propagation stops in the R-tree of the leaf, while propagation in the 

other R-tree continues as usual. 

The iterative algorithm can also be modified to deal with different heights by the “fix-at-leaves”, or 

the “fix-at-root” strategy. The only difference is that the recursive call is replaced by an insertion in 

the Main-heap. 

The necessary modifications for applying these techniques of treating R-trees with different heights 

in recursive and iterative algorithms are presented in [CMT00], along with experimental results on the 

performance behavior of each approach. 

4.6 Extending the K-CPQ Algorithms 

Numerous operations can be extended from the branch-and-bound algorithms for K-CPQ. The K-Self-

CPQ, Semi-CPQ, the K Farthest Pairs Query, and obtaining K or all closest pairs of objects with the 

distances within a range [Dist_Min, Dist_Max] (0 ≤ Dist_Min ≤ Dist_Max) are the more representa-

tive ones. Next, we will present these operations and the modifications in our branch-and-bound algo-

rithms in order to carry them out. 
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4.6.1 K-Self-CPQ 

A special case of K-CPQ is the called “K-Self-CPQ” where both datasets actually refer to the same 

entity. That is, the input dataset is joined with itself. Taking into account the K-CPQ definition, the 

result set of the K-Self-CPQ is given by the following expression: 

K-Self-CPQ(P, K) = {K-CPQ(P, Q, K): Q ≡ P} 

As an example from operational research, we may need to find the K pairs of facilities (hospitals, 

schools, etc.) that are closer than others in order to make a reallocation. In the terminology of Section 

3, P and Q are identical datasets, and hence their entries are indexed in a single R-tree. The algorithms 

proposed in this paper are able to support this special case with only two slight modifications that cor-

respond to necessary conditions on candidate results (pi, pj): 

• (pi, pj) can be included in the result set if, and only if i ≠ j and 

• (pi, pj) can be included in the result set if, and only if (pj, pi) is not already in the K-heap. 

To improve the performance of the branch-and-bound algorithm for this query with respect to the 

candidate pairs in the result, we have included a hash table associated to the K-heap for testing 

whether the same or the symmetric of a given pair is already stored in K-heap or not. 

4.6.2 Semi-CPQ 

Another special case of closest pairs query is called “Semi-CPQ” (“distance semi-join” in [HjS98]). In 

Semi-CPQ for each object of the first dataset, the closest object of the second dataset is computed. The 

result set of Semi-CPQ is a sequence of pairs of objects given by the following definition: 

Definition. Let two point sets, P = {p1, p2, ... , pNP} and Q = {q1, q2, ... , qNQ} in E(d). Then, the result of 

the semi closest pairs query, Semi-CPQ(P, Q), is a set of ordered sequences of |P| different pairs of 

points of P×Q, where each object in P forms a pair with its closest object (or one of its closest objects, 

if there is not only one such object) in Q: 

Semi-CPQ(P, Q) = {((p1, q1), (p2, q2), ... , (p|P|, q|P|)), p1, p2, ... , p|P| ∈ P, q1, q2, ..., q|P| ∈ Q: 

pi ≠ pj, i ≠ j, 1 ≤ i, j ≤ |P| and dist(p|P|, q|P|) ≥ dist(p|P|-1, q|P|-1) ≥ … ≥ dist(p1, q1) and 

∀(pi, qj) ∈ P×Q – {(p1, q1), (p2, q2), ... , (p|P|, q|P|)}, dist(pi, qj) ≥ dist(pi, qi), 1 ≤ i ≤ |P|} 

Note that, due to ties of distances, the result of the Semi-CPQ may not be a unique ordered se-

quence for a specific pair of point sets P and Q. Our aim is to find one of the possible instances, al-

though it would be straightforward to obtain all of them. The Semi-CPQ works by reporting a se-

quence of pairs of objects (pi, qi) in order of distance. Note that once we have determined the closest 

object qi to a particular pi, that pi does not participate in other pairs. Unlike most join operations, the 

Semi-CPQ is not commutative, i.e. Semi-CPQ(P, Q) ≠ Semi-CPQ(Q, P). 
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To implement this operation, we have transformed the recursive and iterative branch-and-bound al-

gorithms for answering Semi-CPQ. These versions are similar to those proposed in [HjS98]. In the 

first version, called “GlobalObjects”, we maintain a global list of objects belonging to leaves of the 

first R-tree. Each object is accompanied by the minimum distance to all the objects of the second R-

tree visited so far. In the second version, called “GlobalAll”, we maintain an analogous global list of 

objects. Moreover, we keep another global list of MBRs of the first R-tree, where each MBR is ac-

companied by the minimum MINMAXDIST value to all the MBRs of the second R-tree visited so far. 

The Self-Semi-CPQ is an operation derived from Self-CPQ and Semi-CPQ, which, for one dataset, 

finds for each object its nearest neighbor. This operation is a Semi-CPQ where the input dataset is 

combined with itself: Self-Semi-CPQ(P) = {Semi-CPQ(P, Q): Q ≡ P } 

The implementation of this operation is just a combination of the transformations of the Semi-CPQ 

with the constraint of Self-CPQ. 

4.6.3 K-Farthest Pairs Query 

In the same sense that we have defined the K-CPQ, it can be easily extended to find the K farthest 

pairs of objects from two datasets. The result set of the K-Farthest Pairs Query (K-FPQ) is given by 

the following definition. 

Definition. Let two subsets of E(d), P = {p1, p2, ... , pNP} and Q = {q1, q2, ... , qNQ}. The result of the K 

farthest pairs query K-FPQ(P, Q, K) is a set of ordered sequences of K (1 ≤ K ≤ |P|·|Q|) different pairs 

of objects of P×Q, with the K largest distances between all possible pairs of objects that can be formed 

by choosing one object of P and one object of Q: 

K-FPQ(P, Q, K) = {((p1, q1), (p2, q2), ... , (pK, qK)), p1, p2, ... , pK ∈ P ,q1, q2, ..., qK ∈ Q: 

(pi, qi) ≠ (pj, qj), i ≠ j, 1 ≤ i, j ≤ K and ∀(pi, qj) ∈ P×Q – {(p1, q1), (p2, q2), ... , (pK, qK)}, 

dist(pi, qj) ≤ dist(pK, qK) ≤ dist(pK-1, qK-1) ≤ … ≤ dist(p2, q2) ≤ dist(p1, q1)} 

In this case and in order to design a branch-and-bound recursive algorithm for solving K-FPQ by 

extending the K-CPQ algorithms, we take into consideration the following constraints: 

(1) K-heap is organized as a minimum binary heap with MAXMAXDIST as a key. In this case, z is the 

distance value of the K-th farthest pair discovered so far and stored in K-heap (z = 0). 

(2) If two internal nodes are accessed, MAXMAXDIST for each possible pair of MBRs is calculated and 

these pairs are sorted in decreasing order of MAXMAXDIST. Following this order, we propagate 

downwards recursively only for those pairs of entries that have MAXMAXDIST ≥ z. 

(3) If two leaves are accessed, then the distance of each possible pair of objects is calculated. If this 

distance is larger than or equal to z, then the pair located in the K-heap root is removed and the new 

pair is inserted in K-heap, updating z. 
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Along the same lines, we extend the iterative branch-and-bound algorithm for K-CPQ to obtain one 

for K-FPQ. In this case, we only consider the following conditions: 

(1) Main-heap is organized as a maximum binary heap and K-heap is organized as a minimum binary 

heap, with MAXMAXDIST as a key in both cases. Moreover, z is the distance of the K-th farthest 

pair discovered so far and stored in K-heap (z = 0). 

(2) If two internal nodes are accessed, MAXMAXDIST for each possible pair of MBRs is calculated and 

the pairs of addresses of R-tree nodes (together with MAXMAXDIST), the MBRs of which have a 

MAXMAXDIST value larger than or equal to z, are inserted into Main heap. 

(3) If two leaves are accessed, then the distance of each possible pair of objects is calculated. If this 

distance is larger than or equal to z, then the pair located in the K-heap root is removed and the new 

pair is inserted in K-heap, updating z. 

4.6.4 Obtaining K- or All-Closest Pairs of objects with their distances within a range 

The proposed algorithms can be also extended for obtaining the K closest pairs of objects with dis-

tances within a range, [Dist_Min, Dist_Max] (0 ≤ Dist_Min ≤ Dist_Max). This user-defined range 

determines the minimum and maximum desired distance for the query result. The necessary modifica-

tions of the branch-and-bound algorithms are the following: 

(1) If two internal nodes are accessed, do not update z (by updating strategies based on MINMAXDIST 

or MAXMAXDIST). Calculate MINMINDIST for each possible pair of MBRs and recursively 

propagate downwards only for those pairs of MBRs with MINMINDIST ≤ Dist_Max. 

(2) If two leaves are accessed, calculate the distance of each possible pair of objects. If this distance is 

in the range [Dist_Min, Dist_Max], insert the new pair in the K-heap and do not update z. If K-

heap becomes full, remove the K-th closest pair (in the K-heap root) and insert the new one, updat-

ing the K-heap structure. 

On the other hand, one may wish to obtain all possible pairs of objects with the distances within the 

interval [Dist_Min, Dist_Max]. In this case, neither K nor the K-heap size are known a priori and 

Dist_Max is the bound distance for the pruning heuristic. Apparently, when Dist_Max = ∞, our 

branch-and-bound algorithms degenerate in backtracking ones (obtaining all possible feasible solu-

tions of a given problem), as when K ≥ |P|·|Q|, |P| and |Q| being the numbers of the objects stored in the 

R-trees RP and RQ, respectively. The modifications in the algorithms for this variant are the same to 

the previous ones, with only one difference: the management of the K-heap. In the worst case, the 

K-heap can grow as large as the product of all objects belonging to the two R-trees. That is, the size of 

K-heap can reach |P|·|Q| elements. Thus, it is not always feasible to store the K-heap in main memory, 

and we must use a hybrid memory / disk scheme and techniques based on range partitioning, as in 

[HjS98, SML00]. 
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5 Experimental Results 

This section provides the results of an extensive experimentation study aiming at measuring and 

evaluating the efficiency of the three K-CPQ algorithms proposed in Section 4, namely the Sorted 

Distances Recursive (SDR), the Plane-Sweep Recursive (PSR) and the Plane-Sweep Iterative (PSI) 

algorithms. In our experiments we used the R*-tree [BKS90] as the underlying disk-resident access 

method. In order to evaluate our branch-and-bound algorithms for K-CPQ we have taken into account 

several performance metrics. The effect of buffering and results over disjoint datasets are also studied, 

since these two parameters have an important influence on this kind of distance-based query. More-

over, we have adapted our K-CPQ algorithms to execute its more representative extensions: K-Self-

CPQ, Semi-CPQ and K-FPQ. Finally, in this experimental section we have included studies on the 

scalability of the algorithms with varying the dataset sizes and K. 

5.1 Experimental Settings 

All experiments were run on an Intel/Linux workstation with 128 Mbytes RAM and several Gbytes of 

secondary storage. The programs were created using the GNU C++ compiler with maximum optimiza-

tion (-O3). The page size was set to 4 Kbytes, resulting to an R*-tree node capacity M = 204; mini-

mum capacity was set to m = M*0.4 = 81 since this m value yields the best performance according 

to [BKS90]. Moreover, the binary heaps (Main-heap and MxMxDHeap optionally) for the iterative 

algorithm were stored completely in main memory as well as the K-heap for the result. 

In order to evaluate K-CPQ algorithms, we have used real datasets from [DCW97], performing 

new experiments and using different datasets with respect to [CMT00]. The particular datasets repre-

sented populated places (points), rail-roads (line segments), roads (line segments) and cultural land-

marks (points) from the United States of America, Canada and Mexico with different cardinalities as 

shown in Table 5.1. Just as an indication, four of them are illustrated in Figure 5.1. 

We have measured the performance of our K-CPQ algorithms based on the following five perform-

ance metrics to compare the algorithms in different aspects such as CPU cost and I/O activity. 

(1) Number of disk accesses. It is the most representative parameter to measure the I/O activity, using 

or not additional buffers. The number of R*-tree nodes fetched from disk is reported as the number 

of disk accesses, and it may not exactly correspond to actual disk I/O, since R*-tree nodes can be 

found in the system buffers. 

(2) Response time. Total query response times were measured for overall performance of the K-CPQ 

algorithms. The execution time is reported in seconds and represents the overall CPU time con-

sumed, as well as the total I/O performed by the algorithms for this kind of distance join operation. 

(3) Number of distance computations. The cost of computing distances between pairs of MBRs (MIN-

MINDIST) and objects (line-line, line-point and point-point) constitutes a significant portion of the 
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 Cultural Landmarks Populated Places Rail-Roads Roads 
Canada 2,099 4,994 35,074 121,416 
Mexico 1,087 4,293 10,060 92,392 

USA 6,017 15,206 146,503 355,312 
North America 9,203 24,493 191,637 569,120 

Table 5.1. Cardinalities of the real datasets. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.1: Four real-world datasets from [DCW97]: (a) roads of USA, (b) rail-roads of North America,  

(c) cultural landmarks of USA and (d) populated places of North America. 

 
computational cost for this kind query. Thus, the total number of distance computations required by 

a K-CPQ algorithm provides a direct indication of its computational performance. 

(4) Number of subproblems created by decomposition (simply referred to as number of subproblems). 

It is another important performance metric related to the query cost. It represents the number of 

pairs of MBRs created by decomposition before the algorithm termination and provides the number 

of partial subproblems considered during the algorithm execution. Thus, by minimizing this pa-

rameter we obtain the algorithm with the lowest computational cost. 

(5) Number of insertions in the Main-heap for the iterative algorithm (PSI). The task of managing the 

main binary heap (Main-heap) is largely CPU intensive as its size increases. Thus, the total number 

of insertions to the main binary required by the K-CPQ iterative algorithm provides a reasonable 

indication of its activity, since insertions are much more frequent than deletions. 

5.2 Performance Comparison of K-Closest Pairs Query Algorithms 

We proceed with the evaluation of the three algorithms for K-CPQ (SDR, PSR and PSI) as a function 

of K that varies from 1 to 100000, assuming zero buffer and obviously for the same workspaces. Fig-
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ure 5.2.a illustrates the number of disk accesses for K-CPQ over the (USrr, USrd) configuration, 

where USrr and USrd are the rail-roads and roads of USA, respectively. On the other hand, Figure 

5.2.b shows the same metric for the (NArr, NApp) configuration, where NArr and NApp are the rail-

roads and populated places of North America, respectively. For this last configuration and in the se-

quel, when the R*-trees have different heights we will use the fix-at-leaves technique. 

Figure 5.2 shows that the number of R*-tree nodes fetched from disk (I/O activity) of each algo-

rithm gets higher as K increases, and PSI is better than the recursive alternatives in both configurations 

with similar I/O trends. Moreover, the deterioration is not smooth; after a threshold the cost increases 

slightly for large K values (this threshold was usually around K = 1000). This demonstrates that the 

iterative algorithm was more effective than the recursive ones in the pruning process in the absence of 

buffers, since it follows a Best-First searching strategy optimized with the plane-sweep technique. 
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Figure 5.2: Comparison of the K-CPQ algorithms in terms of the number disk accesses without buffering and 

varying K for (a) (Usrr, USrd) and (b) (NArr, NApp) configurations. 

For the (USrr, USrd) configuration, Table 5.2 compares the remaining performance parameters, i.e. 

total response time (bold), number of distance computations (italic), number of subproblems (regular) 

and the amount of Main-heap insertions (in parentheses) needed by each algorithm. For all K values, 

the plane-sweep technique needed a significantly reduced number of distance computations; this im-

plies that the required response time was also considerably smaller than SDR (it does not use this op-

timization technique). This demonstrates that the plane-sweep method was very effective for this kind 

of distance-based query, since the number of possible pairs from the combination of two R*-tree nodes 

is also reduced considerably, as well as the number of insertion in the Main-heap. For instance, for 

small K values (K ≤ 1000) PSR was slightly faster, and for large K values (K ≥ 10000) the best was 

PSI. The explanation of this behavior is due to the fact that the recursive alternative traverses the R*-

trees using a Depth-First searching strategy and it can deviate to the branches where no optimal solu-

tions are located. Moreover, PSI is the algorithm with the minimum number of subproblems, since it 

follows a Best-First traversal. On the other hand, SDR was the worst alternative, because it combines 

all possible entries from two R*-tree nodes (depending on the fan-out (m, M) of the R*-trees, we have 
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a list from 6561 to 41616 number of pairs), calculates its minimum distances, sorts them when they 

are internal; all these tasks consume significant CPU time. 

 K=1 K=10 K=100 K=1000 K=10000 K=100000 
SDR 613.86 

140307590 
6692 

614.23 
140307590 

6692 

614.31 
140307590 

6692 

614.36 
140307590 

6692 

616.52 
140618716 

6706 

644.80 
145538868 

6947 
PSR 20.02 

3164690 
6698 

20.05 
3167352 

6698 

20.10 
3180129 

6699 

20.49 
3271461 

6704 

25.55 
4002726 

6763 

69.32 
9513814 

7135 
PSI 20.28 

3334834 
6692 

(187022) 

20.30 
3336670 

6692 
(187022) 

20.35 
3341956 

6692 
(187022) 

20.59 
3391305 

6692 
(187030) 

23.80 
3905617 

6692 
(187133) 

48.65 
7454867 

6770 
(187743) 

Table 5.2: Comparison of the K-CPQ algorithms without buffering and varying K for the (USrr, USrd). 

5.3 Results on Disjoint Datasets 

In [CMT00] the effect of overlap between the datasets for K-CPQ was studied. In the absence of buff-

ers, the conclusion was that: the greater percentage of overlapping, the better performance of the it-

erative algorithm with respect to the recursive ones. In order to verify this behavior, we performed 

experiments with datasets corresponding to disjoint workspaces. Figure 5.3.a illustrates the number of 

disk accesses for K-CPQ over the (MXrd, USrr) configuration, where MXrd are the roads of Mexico. 

On the other hand, Figure 5.3.b shows the same metric for the (CDrr, USpp) configuration, where 

CDrr are the rail-roads of Canada. 
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Figure 5.3: Comparison of the K-CPQ algorithms in terms of the number of disk accesses without buffering and 

varying K for disjoint workspaces (a) (MXrd, USrr) and (b) (CDrr, USpp) configurations. 

Figure 5.3 shows, like Figure 5.2, that the PSI performance is comparable to PSR (K must be really 

large to observe a slight outperformance of PSI with respect to PSR) without buffers for disjoint or 

overlapped workspaces, although the cost is notably smaller for disjoint datasets. Evidently, the algo-

rithms are cheaper for disjoint workspaces than for overlapping ones, since the MINMINDIST values 

are large enough for disjoint datasets and the pruning is much more effective. 
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For the (MXrd, USrr) configuration, Table 5.3 compares the other performance metrics. For all K 

values and for all performance metrics, PSI outperforms SDR and PSR, proving that the iterative algo-

rithms work better than the recursive ones in absence of buffers. For instance, if we consider the total 

response time consumed by the algorithms as the metric under consideration, PSI is on the average 

90% and 80% faster than SDR and PSR, respectively. 

 K=1 K=10 K=100 K=1000 K=10000 K=100000 
SDR 21.72 

4994760 
316 

21.74 
4994760 

316 

22.05 
5063198 

320 

22.32 
5121658 

322 

25.01 
5684082 

352 

34.46 
7312475 

440 
PSR 3.65 

703426 
373 

3.71 
712269 

373 

4.15 
782245 

379 

5.67 
968723 

389 

18.14 
2754905 

495 

77.76 
8890146 

848 
PSI 0.50 

115127 
316 

(71116) 

0.56 
126827 

316 
(71116) 

0.76 
160575 

319 
(71116) 

1.37 
259818 

322 
(71116) 

3.42 
571547 

349 
(71123) 

12.70 
1658221 

426 
(71139) 

Table 5.3: Comparison of the K-CPQ algorithms without buffering and varying K for the (MXrd, USrr). 

5.4 The Effect of Buffering 

DBMS performance is sensitive to the size of buffers in main memory. There exist two basic research 

directions that aim at reducing the disk activity and enhancing the system throughput during query 

processing using buffers. The first one focuses on the availability of buffer pages at runtime by adapt-

ing memory management techniques for buffer managers used in operating systems to database sys-

tems [EfH84]. The second one focuses on query access patterns, where the query optimizer dictates 

the query execution plan to the buffer manager, so that the latter can allocate and manage its buffers 

accordingly [ChD85, COL92]. 

To speed up query processing, DBMSs use indices that may partially reside in main memory buff-

ers. The buffering effect should be studied, since even a small number of buffer pages can drastically 

improve the overall performance. In DBMSs, the buffer manager is responsible for operations in the 

buffer pool, including buffer space assignment to queries, replacement decisions and buffer reads and 

writes in the event of page faults. When buffer space is available, the manager decides about the num-

ber of pages that are allocated to an activated query. This decision may depend on the availability of 

pages at runtime (page replacement algorithms), or the access pattern of queries (nature of the query). 

Following the former criterion, in [CVM01] several buffer pool structures, page replacement policies 

and buffering schemes for K-CPQ algorithms were analyzed, aiming at reducing the number of disk 

accesses. For the experiments of this section, we will adopt the best configuration for this kind of dis-

tance-based query that was proposed in [CVM01]: LRU with a single buffer pool structure, using a 

global buffering scheme. 
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For the experiments of this subsection, we are going to consider the workspace configuration 

(USrr, USrd) with different buffer sizes, B, varying from 0 to 1024 pages. This means that we have in 

memory a variable percentage of R*-tree nodes, depending on the number of buffer pages. Besides, 

the buffer does not use any global optimization criterion, i.e. the buffer pages are handled as the algo-

rithms are required, depending on which R*-tree are located. 

Figure 5.4.a shows that PSI presents an average excess of I/O activity around 14% and 18% for K 

= 1000 with respect to SDR and PSR, respectively, as can be noticed by the gap between the lines. 

Moreover, the influence of buffer is slightly greater for PSR than for SDR, due to the use of the plane-

sweep technique. This behavior is due to the fact that recursion favors the most recently used pages 

(LRU) in the backtracking phase and this effect is preserved in case of large buffers. On the other 

hand, Figure 5.4.b illustrates that the gap for K-CPQ algorithms remains when the K value is incre-

mented and B = 512 pages. For instance, the average I/O saving between PSR and SDR with increas-

ing K (1 … 100000) is 3%, and PSR with respect to PSI is 16%. Again, this effect is due to the com-

bination of recursion and LRU page replacement policy. 
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Figure 5.4: Comparison of the K-CPQ algorithms in terms of the number of disk accesses using the (USrr, USrd) 

configuration: (a) varying the buffer size and K = 1000, (b) varying K and B = 512 pages. 

Figure 5.5 illustrates the performance of the best K-CPQ recursive (PSR) and the iterative (PSI) al-

gorithms as a function of buffer size (B ≥ 0). For PSR, when B ≥ 64, the savings in terms of the num-

ber of disk accesses are large and almost the same for all K values. However, the savings are consid-

erably less when B ≤ 32, whereas for K = 100000 and B = 0 we can notice a characteristic peak. For 

PSI, the savings trend is similar to the PSR, but for high K values these savings become less than PSR. 

For instance, if we have available adequate buffer space, PSR is the best alternative for the number of 

disk accesses, since it provides an average I/O savings of 18% with respect to the PSI for K-CPQ us-

ing our buffering configuration. 

From the results shown in Figure 5.5, we have obtained the percentage of I/O savings (induced by 

the use of buffer size B > 0 in contrast to using no buffer) of PSR and PSI. For PSR, the percentage of 

saving grows as the buffer size increases, for all K values. The trend of the behavior of PSI is almost 

the same to PSR, although the increase is 8% less in average with respect to the recursive algorithm. 
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Figure 5.5: The number of disk accesses for (a) PSR and (b) PSI, as a function of the LRU buffer size (B) and the 

cardinality of the result (K). 

From the results and conclusions of this subsection, we can notice that the influence of our buffer 

scheme according to [CVM01] is more important for the recursive K-CPQ algorithms (mainly for 

PSR) than for the iterative one (PSI), primarily due to the fact that the use of recursion in a Depth-First 

traversal and the plane-sweep technique is affected by our buffering scheme more than the case of a 

Best-First searching strategy implemented through a minimum binary heap. 

5.5 K-Self-CPQ, Semi-CPQ and K-FPQ 

The three more important extensions of our K-CPQ algorithms are the so-called K-Self-CPQ, Semi-

CPQ and K-FPQ. First of all, we proceed with the evaluation of the three K-CPQ algorithms adapted 

to the K-Self-CPQ constrains. For the (NApp, NApp) configuration, Table 5.4 compares all our per-

formance metrics (disk accesses are in brackets) for each adapted algorithm for K-Self-CPQ and B = 

256 pages. For the number of disk accesses, these increasing trends are due to the fact that we must 

discard two kinds of candidate pairs (equal to and symmetric). The behavior of PSR, where for all K 

values we obtain the same number of disk accesses, is interesting. Respect to the total response time, 

for small K values (K ≤ 100) PSR was the best alternative, but PSI is the fastest for large K values (K 

≥ 1000). Moreover, PSI was the algorithm with the minimum number of subproblems for all K values, 

and SDR was the worst algorithm for all metrics showed in this table. These results confirm our con-

jecture that the plane-sweep technique adapted to this kind of distance-based query reduces the num-

ber of distance computations, and this results in the reduction in response time. Besides, the Best-First 

traversal minimizes the number of subproblems and this effect can be shown for large K values. 

Next, we report the results of our tests on the extension of the non-incremental algorithms for 

Semi-CPQ. We have implemented the recursive version of “GlobalObjects” (GOR), “GlobalAll” for 

recursive (GAR and GASR <sorting the pairs based on MINMINDIST>) and iterative (GAI) schema. 

We have not applied the plane-sweep technique, since in this case the z value is not global to the query 
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result and each object of the first dataset must maintain its own lower bound. This query can also be 

implemented using a nearest neighbor algorithm. For each object in the first R*-tree, we perform a 

nearest neighbor query in the second R*-tree, and sort the result once all neighbors have been calcu-

lated. We have called this procedure T+NNQ, since it consists of three steps: (1) traverse recursively 

the first R*-tree, accessing the object in order of appearance within each leaf; (2) for each object, per-

form a nearest neighbor query into the second R*-tree and (3) sort the results (array of object with its 

distances) in ascending order of distances. 

 K=1 K=10 K=100 K=1000 K=10000 K=100000 
SDR {354} 

8.68 
4216209 

200 

{358} 
9.68 

4372699 
208 

{458} 
21.95 

9367711 
438 

{608} 
36.13 

14628021 
686 

{771} 
52.91 

19855965 
968 

{825} 
81.61 

22284261 
1102 

PSR {350} 
0.19 

35695 
216 

{350} 
0.26 

56015 
286 

{350} 
0.64 

154154 
518 

{350} 
1.86 

493696 
808 

{350} 
8.61 

1680911 
1052 

{350} 
107.72 

6233038 
1293 

PSI {354} 
0.23 

57189 
200 

(30276) 

{358} 
0.28 

77927 
208 

(30276) 

{464} 
0.67 

175741 
438 

(30276) 

{614} 
1.70 

437107 
686 

(30276) 

{778} 
6.89 

1209604 
968 

(30276) 

{841} 
37.14 

3505811 
1102 

(30276) 

Table 5.4: Comparison of the K-Self-CPQ algorithms for the (NApp, NApp) configuration, with varying K and 

B = 256 pages. 

From these experiments, we have considered the (NApp, NArd) configuration without buffer. Ob-

viously, we have reported 24,493 pairs in the result (cardinality of NApp). Table 5.5 compares the four 

performance metrics for this query. Our extensions obtain the best behavior with respect to the number 

of disk accesses, mainly “GlobalAll” iterative (GAI). However, for the other metrics, T+NNQ is better 

than our extensions, since it needs less distance computations. Also, we must highlight that T+NNQ 

needs a main memory array of objects with their distances for all objects indexed in the first R*-tree, 

whereas our “GlobalObjects” extension needs the same amount of main memory and “GlobalAll” 

needs memory for objects and MBRs from internal nodes. From these results, we can conclude that 

our extensions are adequate for Semi-CPQ with respect to the number of disk accesses without buff-

ers, but they consume significant space and time resources to report the result. 

 T+NNQ GOR GAR GASR GAI 
Disk Accesses 94209 69894 45296 38962 38868 

Response Time 29.52 1180.95 703.35 681.82 589.04 
Distance Comp. 17007578 674087280 437822358 376471488 363864610 
Sub. Decomp.  34771 22472 19305 19258 

Table 5.5. Comparison of the Semi-CPQ algorithms for the (NApp, NArd) configuration without buffering. 
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Another extension of K-CPQ is to find the K farthest pairs of objects from two datasets (K-FPQ). 

For this purpose, we have implemented recursive and iterative extensions of our algorithms (without 

using the plane-sweep technique) for K-CPQ. The algorithms have been called: Non-Sorted Distances 

Recursive (NSDR), Sorted Distances Recursive (SDR) and Non-Sorted Distances Iterative (NSDI). 

Table 5.6 shows all our performance metrics (disk accesses are in brackets) for K-FPQ using the 

(USrr, USrd) configuration with a global LRU buffer of 256 pages. From these measurements, we can 

observe the reduced number of disk accesses needed for this query, even for large K values. The ex-

planation is that MAXMAXDIST is the function for pruning in the extended branch-and-bound algo-

rithms instead of MINMINDIST, and MAXMAXDIST is very effective in this case. In addition, SDR 

and NSDI have the best behavior, and they are notably better that NSDR. For the other performance 

measurements, SDR and NSDI are considerably better than NSDR. In particular, NSDI consumes 

slightly less time to report the result, although the number of distance computations is greater. This 

behavior is due to the sorting of MAXMAXDIST of all possible pairs of MBRs from two internal nodes 

that SDR needs to execute the query. Moreover, we have executed the algorithms for the (NArd, 

NApp) configuration (lines, points) over R*-trees with different heights and we have obtained similar 

results and conclusions with respect to the (USrr, USrd) configuration. 

 K=1 K=10 K=100 K=1000 K=10000 K=100000 
NSDR {124} 

13.32 
2913526 

140 

{127} 
13.66 

2977628 
144 

{143} 
16.13 

3454505 
169 

{196} 
24.68 

5008063 
252 

{290} 
48.18 

8393499 
426 

{520} 
173.64 

20184013 
1016 

SDR {7} 
0.14 

43030 
3 

{7} 
0.15 

43030 
3 

{7} 
0.15 

43030 
3 

{7} 
0.17 

43030 
3 

{12} 
0.57 

124228 
8 

{24} 
1.85 

343390 
20 

NSDI {7} 
0.11 

72488 
3 

(29458) 

{7} 
0.11 

72488 
3 

(29458) 

{7} 
0.11 

72488 
3 

(29458) 

{7} 
0.13 

72488 
3 

(29458) 

{12} 
0.59 

153686 
8 

(29458) 

{24} 
1.92 

372848 
20 

(29458) 

Table 5.6: Comparison of the K-FPQ algorithms, with varying K and B = 256 pages for the (USrr, USrd) con-

figuration. 

5.6 Scalability of the Algorithms, Varying the Dataset Sizes and K 

As already pointed out, we are going to study the scalability of the K-CPQ algorithms with respect to 

the dataset sizes and K. First of all, we will study the effect of varying the dataset sizes, fixing the K 

value, for the datasets with rail-roads (line segment) and roads (line segment) from California (CA), 

West USA (WU), United States of America (US), USA + Mexico (UX) and North America (NA) as 

shown in Table 5.7. 
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 Rail-Roads Roads 
California 11,381 21,831 
West USA 81,043 244,385 

USA 146,503 355,312 
USA + Mexico 156,563 447,704 
North America 191,637 569,120 

Table 5.7: Cardinalities of the real datasets for studying the algorithm scalability. 

Figure 5.6 shows that the performance (i.e. number of disk accesses) increases almost linearly with 

the increase of the cardinalities of the real datasets, even for large K values. The trends for two dia-

grams are very similar, since the savings in disk accesses using a global LRU buffer is very high. 

Moreover, in the presence of buffer, again, the PSR is the best alternative and PSI provides the largest 

number of disk accesses. 
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Figure 5.6: Comparison of the K-CPQ algorithms in terms of the number of disk accesses for B = 256 pages, 

using different configurations of the datasets in increasing size for (a) K = 1000 and (b) K = 100000. 

For the previous five configurations, Table 5.8 compares the other performance metrics for K = 

100000 and B = 256. Clearly, PSI is the best algorithm for total response time, distance computations 

and subproblems. Also, we have executed experiments for the other K values, and the results were 

analogous to the ones of subsection 5.2 in all configurations: PSR won when K ≤ 1000 and PSI when 

K ≥ 10000. Besides, the increase of the performance was almost linear with the increase of the cardi-

nalities of the real datasets for a given K, following the same trend to the disk accesses. 

Another way to measure the scalability of our K-CPQ algorithms is to take into account their be-

havior with increasing K values using large real datasets. Figure 5.7.a shows that the number of disk 

accesses increases in a sub-linear way with the increase of the cardinalities of the result for the recur-

sive alternative, using the (NArr, NArd) configuration and B = 256 pages. Namely, with increasing K 

values (1..1000000), the performance of PSR is not significantly affected; there is only a 6% extra 

cost, whereas for PSI this extra cost is about 16%. Moreover, SDR for K = 1000000 is slightly better 

than PSR, only 2%. Figure 5.7.b illustrates the response time for the fastest K-CPQ algorithms (PSR 
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and PSI) for the increase of cardinality of the result. For instance, they have very similar results for K 

≤ 10000, but for K = 100000 and K = 10000000 PSI is 20% and 48% faster than PSR, respectively. 

 CArr/Card WUrr/Wurd USrr/USrd UXrr/UXrd NArr/NArd 
SDR 37.25 

7933307 
388 

382.21 
86584811 

4132 

639.94 
145538868 

6947 

726.38 
165453915 

7963 

891.82 
202997777 

9924 
PSR 19.66 

2583242 
503 

55.58 
7410232 

4289 

68.56 
9513814 

7135 

71.65 
10021597 

8083 

75.39 
10539267 

10149 
PSI 13.67 

1838280 
388 

(12720) 

37.47 
5455709 

3964 
(139850) 

48.58 
7454867 

6770 
(187743) 

50.56 
7787764 

7697 
(122471) 

59.97 
9045976 

9699 
(191207) 

Table 5.8: Comparison of the K-CPQ algorithms for K = 100000 and B = 256 pages, using different configura-

tions of the real datasets in increasing size. 
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Figure 5.7: Comparison of the K-CPQ algorithms in terms of the (a) number of disk accesses and (b) total re-

sponse time, with varying K (1..1000000), B = 256 pages and (NArr, NArd) configuration. 

Table 5.9 presents the other performance metrics for the (NArr, NArd) configuration and B = 256, 

varying K from 1 to 1000000. From these results we can conclude that PSR was the best when K ≤ 

1000 and PSI when K ≥ 10000, with respect to the time response and the number of distance computa-

tions. Besides, PSI is the algorithm with the smallest number of subproblems for all K values, whereas 

it needs only a 48% extra of insertions in the Main-heap to carry out the query from K = 1 to K = 

1000000. On the other hand, SDR is the worst, since it does not use the plane-sweep technique for 

reducing the number of distance computations and avoiding intermediate sorting processes. 
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 K=1 K=10 K=100 K=1000 K=10000 K=100000 K=1000000 
SDR 855.24 

196679155 
9601 

855.58 
196679155 

9601 

855.75 
196679155 

9601 

856.41 
196679155 

9601 

858.26 
197186117 

9626 

892.39 
202997777 

9924 

1116.02 
236040339 

11612 
PSR 26.88 

4305737 
9607 

26.89 
4307645 

9608 

26.97 
4318106 

9610 

27.41 
4386909 

9618 

31.46 
4979372 

9668 

75.31 
10539267 

10149 

421.45 
44331311 

12700 
PSI 27.32 

4439791 
9601 

(156659) 

27.34 
4441921 

9601 
(156671) 

27.39 
4452615 

9601 
(156739) 

27.68 
4501059 

9601 
(156970) 

30.77 
4956503 

9601 
(157822) 

60.05 
9045976 

9699 
(191207) 

225.13 
28188435 

10416 
(298557) 

Table 5.9. Comparison of the K-CPQ algorithms with varying K (1..1000000), B = 256 pages and (NArr, NArd) 

configuration. 

6 Conclusions and Open Problems 

Efficient processing of K-CPQs is of great importance in spatial databases due to the wide area of 

applications that may address such queries. Although popular in computational geometry literature 

[PrS85], the closest pair problem has not gained special attention is spatial database research. Certain 

other problems of computational geometry, including the “all nearest neighbor” problem (that is re-

lated to the closest pair problem), have been solved for external memory systems [GTV93]. To the 

best of the authors’ knowledge, [HjS98, CMT00, SML00] are the only references to this type of que-

ries. In this paper, based on the properties of distance functions between two MBRs in the multidimen-

sional Euclidean space, we propose a pruning heuristic and two updating strategies for minimizing the 

pruning distance to apply them in the design of three non-incremental branch-and-bound algorithms 

for K-CPQ between objects indexed in two R-trees, extending and enhancing the work presented in 

[CMT00]. Two of the algorithms are recursive, following a Depth-First searching strategy and one is 

iterative, obeying a Best-First traversal policy. The plane-sweep method and the search ordering (this 

heuristic is based on the ordering of MINMINDIST) are used as optimization techniques for improving 

the naive approaches. Furthermore, some interesting extensions of the K-CPQ are presented: K-Self-

CPQ, Semi-CPQ, Self-Semi-CPQ, K-FPQ and a method to obtain the K or all closest pairs of objects 

with the distances within a range [Dist_Min, Dist_Max]. 

In the experimental section, we have used an R-tree variant (R*-tree) in which the objects are 

stored directly in the tree leaves. Moreover, an extensive experimentation was also included, which 

resulted to several conclusions about the efficiency of each algorithm (disk accesses, response time, 

distance computations and subproblems) with respect to K, the size of the underlying buffer, the dis-

jointedness of the workspaces and the algorithmic scalability. The more important conclusions for the 

K-CPQ algorithms over overlapped or disjoint workspaces are listed as follows: 
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• The Sorted Distances Recursive (SDR) algorithm has a good performance with respect to the num-

ber of disk accesses when we include a global LRU buffer for all configurations. But, it consumes 

much time for reporting the results, since it must combine all possible entries from two internal R-

tree nodes in a temporary list of pairs of MBRs, compute its MINMINDIST for each pair, and sort 

this list of pairs in ascending order of MINMINDIST. 

• The Plane-Sweep Recursive (PSR) algorithm is the best alternative with regards to the I/O activity 

when buffer space is available, since the combination of recursion in a Depth-First traversal and 

LRU page replacement policy favors this performance metric. Moreover, this algorithm is the fast-

est for small and medium K values, since it reduces the distance computations using the plane-

sweep technique. 

• The Plane-Sweep Iterative (PSI) algorithm is the best alternative for the number of disk accesses 

without buffer, but when we have a global LRU buffer this behavior is inverted, since the Best-

First traversal implemented through a minimum binary heap is less affected in contrast to the com-

bination of recursion in a Depth-First searching strategy with an LRU replacement policy. More-

over, this algorithm is the fastest for large K values, since it obtains the minimum number of dis-

tance computations and subproblems (Best-First traversal and plane-sweep technique) in this case. 

Also, it is interesting to observe the small number of insertions in the Main-heap even for very 

large K values, because our pruning heuristic based on MINMINDIST is very effective in non-

incremental branch-and-bound algorithms for K-CPQ. 

• K does not radically affect the relative performance with respect to the number of disk accesses, 

since the increase of this function grows sublinearly with the increase of K. 

• The number of disk accesses grows almost linearly with the increase of the dataset cardinalities; 

this trend is noticed for the other performance metrics, too. 

• In general, the PSI and PSR response times are significantly lower than SDR’ one (one order of 

magnitude for large datasets), while disk accesses keep comparable. Therefore, PSI is preferable 

when enough main memory resources are available to store the Main-heap (PSI outperforms the 

two other recursive algorithms, except for disk accesses), otherwise PSR is the best alternative. 

We have also implemented and presented experimental results for three special cases of closest 

pairs queries: K-Self-CPQ, where both datasets actually refer to the same entity, Semi-CPQ, where for 

each element of the first dataset, the closest object of the second dataset is computed, and K-FPQ, 

where the K farthest pairs of objects from to datasets are found. Again, the iterative variants have the 

best overall performance, although the recursive ones are I/O competitive in the presence of buffers. 

Future work on CPQs may include: (1) The study of multi-way K-CPQs where tuples of objects are 

expected to be the answers, extending related work on multi-way spatial joins [PMT99]. (2) The ana-

lytical study of K-CPQs, extending related work on spatial joins [TSS98] and nearest neighbor queries 

[PaM97]. (3) The extension of our K-CPQ algorithms using multidimensional data for exact result or 
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approximate K-closest pairs query (the degree of inexactness can be specified by an upper bound ε and 

indicates the reported answer and the exact closest pair distance) in a sense similar to the approximate 

nearest neighbor searching [AMN98]. 
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