
Multi-way Distance Join Queries in Spatial Databases

Antonio Corral Yannis Manolopoulos Yannis Theodoridis Michael Vassilakopoulos

Dept. Languages & Computation

University of Almeria,

04120 Almeria, Spain

acorral@ual.es

Dept. of Informatics

Aristotle University

GR-54006 Thessaloniki, Greece

manolopo@csd.auth.gr

Dept. of Informatics

University of Piraeus

GR-18534 Piraeus, Greece

ytheod@unipi.gr

Dept. of Informatics

TEI of Thessaloniki

GR-54101, Thessaloniki, Greece

vasilako@it.teithe.gr

Abstract: Let a tuple of n objects obeying a query graph (QG) be called the n-tuple. The “Ddistance-
value” of this n-tuple is the value of a linear function of distances of the n objects that make up this n-
tuple, according to the edges of the QG. This paper addresses the problem of finding the K n-tuples
between n spatial datasets that have the smallest Ddistance-values, the so-called K-Multi-Way Distance
Join Query (K-MWDJQ), where each set is indexed by an R-tree-based structure. This query can be
viewed as an extension of K-Closest-Pairs Query (K-CPQ) [CMT+01] for n inputs. In addition, a
recursive non-incremental branch-and-bound algorithm following a Depth-First search for processing
synchronously all inputs without producing any intermediate result is proposed. Enhanced pruning
techniques are also applied to n R-trees nodes in order to reduce the total response time and the
number of distance computations of the query. Due to the exponential nature of the problem, we also
propose a time-based approximate version of the recursive algorithm that combines approximation
techniques to adjust the quality of the result and the global processing time. Finally, we give a detailed
experimental study of the proposed algorithms using real spatial datasets, highlighting their
performance and the quality of the approximate results.

Keywords: Spatial databases, Branch-and-bound algorithms, Distance join queries, R-trees,
Approximate techniques.

1

Multi-way Distance Join Queries in Spatial Databases

1 Introduction
The term spatial database refers to a database that stores data from phenomena on, above or below the
earth's surface [LaT92], or in general, various kinds of multidimensional data of modern life [MTT99].
In a computer system these data are represented by points, line segments, polygons, volumes and other
kinds of 2D/3D geometric entities and are usually referred to as spatial objects. The field of spatial
databases can be defined by its accomplishments and by the needs of existing applications [SCR+99].
Spatial databases are included in specialized applications such as Geographical Information Systems
(GIS), Computer Aided Design (CAD), Multimedia Information Systems (MMIS), Data Warehousing
(DW), etc. The role of spatial databases is continuously increasing in other many applications during
the last years. Transportation planning, resource management and geo-marketing are just some of the
emerging applications assisted by spatial databases.

The key characteristic that makes a spatial database a powerful tool is its ability to manipulate
spatial data, even rather than simply to store and represent them. The most basic form of such a
manipulation is answering queries related to the spatial properties of the data. Some typical spatial
queries are the following.

• A point (range) query involves a single dataset and seeks for spatial objects that fall on a given
point (overlap with a given region, usually expressed as a hyper-rectangle).

• A nearest neighbor query also involves a single dataset and seeks for the spatial objects residing
most closely to a given object. In its simplest form, it discovers one such object (the NN) while
in its generalization it discovers K closest objects (K-NN), for a given K.

• A pairwise (multi-way) join query involves two (n > 2) datasets and discovers pairs (n-tuples, in
general) of spatial objects that satisfy one (M) given predicate(s). The predicate(s) are usually
the intersection or overlap between pair(s) of objects.

• As a combination of nearest neighbor and pairwise join queries, a distance join or closest pair
query involves two datasets and discovers the pair of spatial objects (one from each dataset)
with the smallest possible distance. Like a join query, all pairs of objects are candidates for the
final result; like a nearest neighbor query, proximity metrics are the basis for pruning heuristics
and the final ordering. In its incremental form, the query finds the 1st pair, the 2nd pair, and so
on, until it is stopped by the user or a trigger (e.g. due to a time restriction). On the other hand,
in its non-incremental form (K-Closest-Pairs Query, called K-CPQ), it discovers K pairs of
objects, for a beforehand known K.

Processing of multi-way spatial join queries has recently gained attention [MaP01, PMT99,
MaP99, PCC99]. In the majority of those papers, a multi-way spatial join query is modeled by a query
graph whose nodes represent spatial datasets and edges represent spatial predicates. One way to
process this query, when all join spatial datasets are supported by spatial indexes or not (pipelined or
build-and-match strategies, respectively), is as a sequence of pairwise joins. Another possible way,
when all join spatial datasets are indexed (using e.g. R-trees), is to combine the filter and refinement
steps in a synchronous tree traversal. Moreover, the research interest on distance-based queries
involving two datasets (e.g. distance join queries) has increased in the last years, since they are

2

appropriate for data analysis, decision making, etc. Given two datasets S1 and S2, the similarity join
[KoS98] finds all pairs of objects <obj1i, obj2j> such that obj1i ∈ S1 and obj2j ∈ S2, whose distance is
smaller than a predefined distance threshold ε. Another example of a distance-based query is the
closest pairs query [HjS98, CMT+00, SML00, CMT+01, YaL02], which discovers the K closest pairs
of objects in the Cartesian product S1×S2. If both S1 and S2 are indexed by R-trees, we can use the
synchronous tree traversal with Depth-First or Best-First search for the query processing [CMT+00,
CMT+01].

From the above, it is clear that the extension of distance join queries to n inputs with M predicates
or constraints (like the multi-way joins) results in a novel query type, the so-called K-Multi-way
Distance Join Query (K-MWDJQ). To our knowledge, this query type has not been studied in the
literature so far and this is the aim of this paper.

Definition: Given n non-empty spatial datasets S1, S2, …, Sn and a query graph QG, the K-Multi-
way Distance Join Query retrieves the K distinct n-tuples of objects of these datasets with the K
smallest Ddistance-values (i.e. the K Ddistance-smallest n-tuples).

The general environment for this kind of query can be represented by a network, where nodes
correspond to spatial datasets and edges to binary metric relationships (distances), assigning positive
real number to the edges. This framework is similar to the one defined in [MaP01], where the graph is
viewed as a constraint network: the nodes correspond to problem variables (datasets) and edges to
binary spatial constraints (spatial predicates). Therefore, our network is a weighted directed graph, in
which the directed edges correspond to binary metric relationships (e.g. distances) between pairs of
spatial datasets (nodes) with specific weights (positive real numbers) and directions. We also assume
that the weighted directed graph cannot be split into non-connected subgraphs (in the opposite case,
the graph could be processed by answering the query for all subgraphs and computing the appropriate
combination of results).

K-Multi-way Distance Join Queries are very useful in many applications using spatial data for
decision making (e.g. in logistics) and other demanding data handling operations. For example,
suppose we are given four spatial datasets consisting of the locations of factories, warehouses, stores
and customers, connected as in Figure 1.1.a. A K-MWDJQ will find K different 4-tuples (factory,
warehouse, store, customer) that minimize a Ddistance function (the K smallest Ddistance-values of the 4-
tuples are sorted in ascending order). Such a function would be, for example, the sum of distances
between a factory and a warehouse, this warehouse and a store and this store and a customer. Such
information could then be exploited by a transport agency or a fleet management system for different
purposes (e.g. for minimizing transport cost based on distances). Moreover, the way to connect the
spatial datasets could be more complex than a simple sequence. For example, in Figure 1.1.b, we can
observe the case where the containers of products must be recycled from customers to factories
through stores, and new distances must be considered for computing Ddistance.

3

WarehousesFactories

Stores Customers
(a)

Warehouses Factories

Stores Customers
(b)

Figure 1.1. Examples of directed graphs for factories, warehouses, stores and customers.

We have considered directed graphs instead of undirected graphs, because the former allow us the
expression of itineraries (between the spatial datasets) following a specific order. E.g., the users can
assign directions and weights to the arcs (directed edges) of the itineraries. Another example of K-
MWDJQ application would be the following: a person wants to rent a flat and she/he poses some
constraints to the real estate agency. She/he wants to find the itinerary (flat → swimming-pool →
gymnasium → flat) with the minimum (Manhattan) distance, since her/his schedule after getting up in
the morning at home is to swim, take exercise and return to home. That is, the agency has to report to
the client the 3-tuples (flat, swimming-pool, gymnasium) and the rent price of the flat, ordered by the
Ddistance value of itinerary (flat → swimming-pool → gymnasium → flat). Many other similar problems
can be found in the real life.

An interesting dimension of the problem is the introduction of weights in distances. For example,
covering a distance δ from a factory to a warehouse may be more expensive than covering the same
distance δ from a store to a customer (e.g. because of the different means used). Thus, each distance
should be multiplied by different weights in order to compute Ddistance. For instance, in our example of
(factories, warehouses, stores, customers), if we want to minimize the travel time, we can divide the
distance (kilometers) between pairs of points in the itinerary by its known average velocity or speed
(kilometers/hours). The quantity 1/velocity is the positive multiplier of each directed edge (the weights
of the Query Graph arcs).

Variations of the problem:

The K-MWDJQ can be extended to K-Self-MWDJ, Semi-MWDJ and Multi-way Similarity Join
Queries. In particular,

• The K-Self-MWDJQ corresponds to a special case of query graph, where there is a single
dataset S, which is connected to itself n times (in other words, the query graph contains n self-
loops). This kind of query can be viewed as a K-Multi-way Distance Join Query in the sense
that we can use the same input dataset (S) n times. In the previous example, we wish to obtain
the 4-tuples which are the K Ddistance-smallest 4-tuples of warehouses among all possible such 4-
tuples.

• The Semi-MWDJQ corresponds to the general case of query graph, with the constraint that one
of the datasets is chosen as a “reference”. For example, if we fix “factories”, we wish to obtain
for each factory, the smallest Ddistance-value of the triplets (warehouse, shop, customer).

• The Multi-way Similarity Join Query reports all possible n-tuples of objects that have a distance
smaller than a given distance threshold ε. In this case, the K value is unknown in advance and
the result of the query need not be sorted in ascending order of Ddistance-values. For example, we

4

may wish to obtain those 4-tuples (factory, warehouse, store, customer) that can be visited
within a distance smaller than 2 kilometers.

The application of K-Multi-way Distance Join Queries is not restricted to point datasets only. As
another example, we can consider three spatial datasets representing populated places, roads and
cultural landmarks, respectively. Clearly, the K-MWDJQ can involve non-point datasets as well,
assuming that a well-defined distance norm between those spatial objects exists.

The fundamental assumption in this paper is that the n spatial datasets are indexed by R-tree-based
structures [Gut84]. R-trees are hierarchical, height balanced multidimensional data structures of
secondary storage, and they are used for the dynamic organization of a set of d-dimensional geometric
objects represented by their Minimum Bounding d-dimensional hyper-Rectangles (MBRs). These
MBRs are characterized by “min” and “max” points of hyper-rectangles with faces parallel to the
coordinate axis. Using the MBR instead of the exact geometrical representation of the object, its
representational complexity is reduced to two points where the most important features of the object
(position and extension) are maintained. R-trees are considered an excellent choice for indexing
various kinds of spatial data (points, line segments, polygons, etc.) and have already been adopted in
commercial systems, such as Informix [Bro01] and Oracle [Ora01]. Moreover, we must highlight that,
in case of non-point objects, an R-tree index can only organize objects’ MBRs, together with the
pointers to the place where their actual geometry has been stored. Under this framework, K-MWDJQ
processing algorithms using R-trees only produce a set of n-tuples of MBRs (hence, candidate objects)
in the filter step. For the refinement step, the exact geometry of the spatial objects has to be retrieved
and exact distances have to be computed, according to the Ddistance function based on the query graph.
The algorithms proposed in this paper only address the filter step.

Due to exponential nature of the K-MWDJQ, depending mainly on the cardinalities of the datasets
and the number of inputs, the exact processing of the K-MWDJQ algorithms can be prohibitively
expensive. However, the performance of these algorithms can be improved if the search space is
restricted somehow. Besides, in many situations, for practical purposes, approximate solutions are
usually as valuable as exact ones, because such solutions can provide good upper-bounds of the
optimum result and can be achieved much faster than the precise ones. In this case, the recursive
branch-and-bound algorithm can be used as an approximate algorithm [CCV02] modified with the
“time” constraint. The recursive K-MWDJQ algorithm explores the search space in a Depth-First
order, finds many solutions quickly (although, it may take very long time to obtain the best solution if
it does not traverse the search space in the right direction), improves their qualities continuously and
can be stopped at any time during its execution. Here, we also present the recursive K-MWDJQ
algorithm as a time-based approximate algorithm, and study it in terms of several performance
measurements and its performance profile along time. Based on these results, we draw conclusions
about the performance of approximate algorithms and examine the influence of the approximate
parameters on the trade-off between cost of the algorithm and accuracy of the result.

The organization of the paper is as follows: In Section 2, we review the literature (distance join
queries and multi-way join queries) and motivate the research reported. In Section 3, an expression for
a linear distance function based on a given query graph, the definition of K-MWDJQ, an MBR-based
distance function and a pruning heuristic are presented. In Section 4, enhanced pruning techniques and
a recursive non-incremental branch-and-bound algorithm (called, MPSR) for K-MWDJQ are
presented. Due to the exponential nature of the K-MWDJQ problem, in Section 5 the recursive
algorithm is adapted to a time-based approximate algorithm (called, AMPSR). Section 6 exhibits a
detailed experimental study of the algorithms for K-MWDJQ, including the effect of the increase of K

5

and n, the influence of the approximate parameters in terms of performance and quality of the results,
and the behavior of the approximate algorithm over the time. In Section 7, conclusions on the
contribution of this paper and related future research plans are summarized.

2. Related Work and Motivation
The K-Multi-way Distance Join Query can be seen as a “combination” of K-Closest-Pairs query and
Multi-way Spatial Join Query; therefore, we review these query types, focusing on the processing
techniques that are employed by the query algorithms. Related work includes the following two well-
known research areas:

• K-Closest-Pair (or distance join) Queries: the problem consists of two given point sets, P =
{p1, p2, ... , pNP} and Q = {q1, q2, ... , qNQ} in the multidimensional Euclidean space, stored in a
spatial database and a constant K (maximum cardinality in the final result). Then, the result of
the K closest pairs query (K-CPQ) is a set of ordered sequences of K (1 ≤ K ≤ |P|·|Q|) different
pairs of points of P×Q, with the K smallest distances between all possible pairs of points that
can be formed by choosing one point of P and one point of Q. [CMT+00, CMT+01] presented
recursive (Depth-First) and iterative (Best-First) branch-and-bound algorithms for K-CPQ
following a non-incremental approach, which compute this operation when K is known in
advance and the K elements, belonging to the result, are reported all together at the end of the
algorithm, i.e. the user can not have any result until the algorithm ends. The main issue of the
non-incremental variant is to separate the treatment of the terminal candidate (the elements of
the final result) from the rest of the candidates (intermediate elements). One important
advantage of this approach is that the pruning process during the execution of the algorithm is
more effective even when K is large enough, making use of various distance functions
(MINMINDIST, MINMAXDIST and MAXMAXDIST). Moreover, two well-known
optimization techniques are included in the algorithms to reduce the execution time (distance-
based plane-sweep technique) and I/O activity (buffering). Recently, a new index structure (the
bichromatic Rddn-Tree, which uses information about nearest neighbors to help pruning of the
search path more effectively) for improving closest pairs and related distance join queries in
spatial databases by implementing several algorithms in a non-incremental manner was
proposed [YaL02].
On the other hand, the incremental (Best-First) approach for solving the distance join queries
[HjS98, SML00] computes the desired elements in the result one-by-one in ascending order of
distance (pipelined fashion), i.e. the user can have part of the final result before ending the
algorithm. The incremental algorithms work in the sense that having obtained K elements in the
result, to obtain the (K+1)-th element, it is not necessary to restart the algorithm, but just to
perform an additional step. The kernel of the incremental algorithms is a priority queue
(distance queue) built on a distance function associated to the specific kind of the distance-
based query. The strong point of this approach is that, when K is unknown in advance, the user
stops the algorithm when he/she is satisfied by the result. On the other hand, when the number
of elements in the result grows, the amount of the required resources to perform the query
increases too. Thus, incremental algorithms are competitive when a small quantity of elements
of the result is needed. For large K values, the distance queue may not work well as an effective
pruning tool, because the cutoff value (pruning distance) stored in the distance queue may
remain too high for a long duration. Finally, we must highlight that the work proposed in
[HjS98] was enriched in [SML00] by including the plane-sweep technique during the expansion

6

of node pairs, using the estimation of the k-closest pair distance (eDmax) to suspend
unnecessary computations of MBR distances and insertions into the distance queue for the
incremental processing.
Besides, several closely related studies for distance-based queries have been recently reported in
the literature. For example, the similarity join [KoS98] involves two spatial datasets and a given
distance threshold δ; the answer is a set of pairs of spatial objects within distance δ from each
other. The iceberg distance join [SMC+03] also involves two spatial datasets, a given distance
threshold δ and a cardinality threshold K; it reports a set of pairs of spatial objects within
distance δ from each other, provided that the first object appears at least K times in the join
result. Another example is the K nearest neighbors join [BoK02], which involves two spatial
datasets and a cardinality threshold K; the answer is the smallest subset from the Cartesian
Product of the two input datasets that contains for each point of the first dataset at least K points
of the second one (i.e. this query combines each of the points of the first dataset with its K
nearest neighbors in the second dataset). Moreover, there are nearest neighbor search algorithms
based on Voronoi cells [BEK+98] and branch and bound techniques [RKV95], a nearest
neighbor search algorithm for ranking requirements [HjS99] and multi-step k-nearest neighbor
search algorithms [SeK98].

• Multi-way Spatial Join Queries: The problem consists of n given datasets D1, D2, …, Dn (each
indexed by an R-tree) and a query Q. The multi-way join query finds all tuples {(r1,w, …, ri,x, …,
rj,y, …, rn,z) such that ∀i,j : ri,x ∈ Di, rj,y ∈ Dj, ri,x Qij rj,y}, where Qij represents the spatial
predicate that should hold between Di and Dj, [MaP01]. In general, multi-way join queries can
be considered as a generalization of pairwise spatial joins. [MaP99] proposed a pairwise join
method that combines pairwise join algorithms in a processing tree where the leaves are input
relations indexed by R-trees and the intermediate nodes are join operators. Processing multi-
way joins by integration of a sequence of pairwise join algorithms is the standard approach in
relational databases, and the order of pairwise joins is determined by the minimization of
expected I/O cost (in terms of page accesses). [PMT99] proposed a multi-way spatial join by
applying systematic search algorithms that exploit R-trees to efficiently guide search, without
building temporary indexes or materializing intermediate results. On the other hand, [PCC99]
proposed a multi-way R-tree join (M-way join algorithm) as a generalization of the original R-
tree join [BKS93], taking into account its optimization techniques (the ordering of the search
space restriction and the plane-sweep method). In addition, a recent and extensive work
[MaP01] reviews pairwise spatial join algorithms and shows how they can be combined for
multiple inputs, explores the applications of synchronous tree traversal for processing
synchronously all inputs without producing intermediate results; the integration of the two
approaches (synchronous tree traversal and pairwise algorithms) in an engine using dynamic
programming to determine the optimal execution plan is also presented in [MaP01]. Moreover,
two optimizations for synchronous tree traversal algorithm which exploit the spatial structure of
the multi-way join problem were proposed in the same paper: (1) Static Variable Ordering (it
pre-orders the problem variables by placing the most constrained one first; hence, variables are
sorted in decreasing order of their degree), and (2) Plane-Sweep combined with Forward
Checking (this is an improved implementation of procedure find-combinations, which
decomposes a local problem into a series of smaller problems, one for each event of the sweep
line). In this paper, experimental results showed that the improvement due to the first
improvement is significant when the few first variables are more constrained, whereas this does
not apply for complete query graphs. Moreover, the combination of both optimizations showed

7

significant reduction in both I/O and CPU cost, compared to the version of synchronous tree
traversal algorithm that does not use them.
Since a multi-way spatial join is the combination of sequence of pairwise joins and in this
sequence a pair does not necessarily correspond to a join between two R-trees [BKS93, HJR97],
we also have to consider as related work the cases where only one of the inputs is indexed
[LoR94, PRS99, MaP03] or when both inputs are non-indexed [LoR96, PaD96, KoS97].

All the previous efforts have been mainly focused on multi-way spatial join queries, using a
sequence of pairwise join algorithms or synchronous tree traversal over R-tree structures on the filter
step and on the design of efficient (incremental or non-incremental) K-CPQ algorithms between two
R-trees. The main objective of this paper is to investigate the behavior of recursive branch-and-bound
algorithms that work in a non-incremental manner for K-MWDJQ as a generalization of K-CPQ
between n spatial datasets indexed by R-trees, without producing any intermediate result. To do this,
we extend the distance metrics and the pruning heuristic based on the query graph for solving this kind
of distance-based query. In addition, we apply techniques for improving the performance with respect
to the I/O activity (global buffering) and response time (distance-based plane-sweep) in our
experiments over real spatial datasets of different nature (points and line segments).

3 K-Multi-way Distance Join Queries using R-trees
Let us recall the assumptions we make:

1. n spatial datasets are involved, each supported by an R-tree structure

2. M (M ≥ n – 1) spatial predicates (metric relationships) between pairs of objects are defined

3. A query graph declares the spatial constraints that have to be fulfilled

In the following, we state more formally the details of the problem.

3.1 The Query Graph and the Ddistance Function

Query Graph (QG). A query graph QG = (S, E) is a weighted directed graph which consists of a
finite nonempty set of nodes S = {s1, s2, …, sn} and a finite set of directed edges E = {ei,j = (si → sj) :
si, sj ∈ S and 1 ≤ i, j ≤ n}; each directed edge ei,j connects an ordered pair of nodes (si → sj), where si
and sj are called start and end nodes of the directed edge, respectively. Associated with each directed
edge ei,j, there exists a weight wi,j, which is a positive real number (wi,j ∈ ℜ+). A directed edge is called
self-loop, if both start-end nodes are identical; this is the case of ei,i (si → si).

A directed path is a sequence of directed edges connecting pairs of nodes {e1,2, e2,3, …, eh-1,h} such
that: ei,i+1 and ei+1,i+2 have only a common node (si+1) and there does not exist any self-loop. In this
case, s1 and sh are called the start and end nodes of the directed path. A directed path is called simple if
no node appears on it more than once (simple directed path). A directed circuit is a directed path
whose start and end nodes are the same. A directed circuit is called simple if no node, apart from start-
end node, appears more than once, and the start-end node does not appear elsewhere in the directed
circuit.

Different configurations of QG depending on the required results by the users are possible.
Examples include sequential or “chain” queries (Figure 3.1.a), where the QG is an acyclic weighted
directed graph among all datasets, obeying the constraints of a simple directed path that does not

8

e3,4

e1,2

e2,3

s1 s2

s4 s3

e3,1

e3,4

e4,3
e2,3

e1,2
s1 s2

s4 s3

(a) (b)
Figure 3.1. Types of query graphs from four spatial datasets.

contain any directed circuit. Queries with cycles (Figure 3.1.b) correspond to a QG, with at least one
simple directed circuit among its nodes (i.e. ordered sequences of nodes with simple directed circuits).

 Based on the previous definition of the query graph, we can now define the Ddistance function as
follows:

Ddistance Function. Consider n non-empty spatial object datasets S1, S2, …, Sn, organized according to
a query graph QG. The Ddistance is a function from the n-tuples of objects from S1 × S2 × … × Sn to
ℜ+. Let t represent such an n-tuple. The Ddistance(t) is defined as a linear function of distances of the
pairs of objects of t that result from the directed edges of QG. More formally, we can define Ddistance(t)
as follows:

),()(
 e

,
ji,

ji
E

ji objobjwtD
QG

∑
∈

= distancedistance

where t = (obj1, obj2, …, objn) ∈ S1 × S2 × … × Sn, the datasets of the objects of the ordered pair
(obji, objj) are connected in QG by the directed edge ei,j, wi,j ∈ ℜ+ is the weight of ei,j and distance
may represent any Minkowski distance norm (Euclidean, Manhattan, etc.) between pairs of spatial
objects.

3.2 Definition of the K-Multi-Way Distance Join Query

We define the K-Multi-way Distance Join Query in the spatial database environment as follows:

K-Multi-Way Distance Join Query. Let n non-empty spatial object datasets S1, S2, …, Sn,
organized according to a query graph QG, where a Ddistance function is defined. Assume that each
object of any of the above datasets is a member of the d-dimensional Euclidean space Ed. The result of
the K-Multi-way Distance Join Query, K-MWDJQ(S1, S2, …, Sn, QG, K), is a set of ordered
sequences of K (1 ≤ K ≤ |S1|·|S2|·…·|Sn|) different n-tuples of spatial objects of S1 × S2 × … × Sn,
with the K smallest Ddistance-values between all possible n-tuples of spatial objects that can be formed
by choosing one spatial object for each spatial dataset (i.e. the K Ddistance-smallest n-tuples):

K-MWDJQ(S1, S2, …, Sn, QG, K) =

{(t1, t2, ... , tK): ∀i ti ∈ (S1 × S2 × … × Sn)K and ∀i ≠ j ti ≠ tj, 1 ≤ i, j ≤ K and

∀t ∈ S1 × S2 × … × Sn – {(t1, t2, ... , tK)}

Ddistance(t) ≥ Ddistance(tK) ≥ Ddistance(t(K-1)) ≥ …≥ Ddistance(t2) ≥ Ddistance(t1)}

In other words, the K Ddistance-smallest n-tuples from the n spatial object datasets obeying the query
graph QG are the K n-tuples that have the K smallest Ddistance-values between all possible n-tuples of
spatial objects that can be formed by choosing one spatial object of S1, one spatial object of S2, …,

9

and one spatial object of Sn. Of course, K must be smaller than or equal to |S1|·|S2|·…·|Sn|, where |Si|
is the cardinality of the dataset Si, i.e. the number of possible n-tuples that can be formed from S1, S2,
…, Sn.

Note that, due to ties of Ddistance-values, the result of the K-Multi-way Distance Join Query may not
be unique for a specific K and a set of n spatial datasets S1, S2, …, Sn. The aim of the presented
algorithms is to find one of the possible instances, although it would be straightforward to obtain all of
them.

3.3 MBR-based Distance Function and Pruning Heuristic

The following distance functions between MBRs in Ed have been proposed for the K-CPQ [CMT+00,
CMT+01] as bounds for the non-incremental branch-and-bound algorithms: MINMINDIST (it
determines the minimum distance between two MBRs, and it is a generalization of the function that
calculates the minimum distance between points and MBRs), MINMAXDIST (it expresses un upper
bound for the distance of the closest pair of spatial objects) and MAXMAXDIST (it obtains the
maximum distance between two MBRs).

In the following we present the definition of the new metric, called DMINMINDIST, between n MBRs
that depends on the query graph and is based on MINMINDIST distance function between two MBRs
in Ed (i.e. DMINMINDIST can be viewed as an instance of Ddistance for MINMINDIST function).

MINMINDIST Function. Let M(A, B) represent an MBR in Ed, where A = (a1, a2, ..., ad) and B = (b1,
b2, ..., bd), such that ai ≤ bi, for 1 ≤ i ≤ d, are the endpoints of one of its major diagonals. Given two
MBRs M1(A, B) and M2(C, D) in Ed, MINMINDIST(M1(A, B), M2(C, D)) is defined as:

∑
=

=
d

i
iyMMMINMINDIST

1

2
21),(,








>−
>−

=
otherwise

daifda
bcifbc

y iiii

iiii

i

 ,0
 ,
 ,

DMINMINDIST Function. Let M(A, B) represent an MBR in Ed, where A = (a1, a2, ..., ad) and B = (b1, b2,
..., bd), such that ai ≤ bi, for 1 ≤ i ≤ d, are the endpoints of one of its major diagonals. RSi is the R-tree
associated to the dataset Si and QG is a query graph obeyed by the n R-trees RS1, RS2, …, RSn. Given
an n-tuple t of MBRs stored in the n R-trees (i.e. t is a tuple of n MBRs from RS1, RS2, …, RSn),
DMINMINDIST(t) is a linear function of MINMINDIST distance function values of the pairs of t that result
from the edges of QG. More formally, we can define DMINMINDIST(t) as follows:

),()(
 e

,
ji,

ji
E

ji MMINMINDISTwtD
QG

∑
∈

= MMIMINDIST

where t = (M1, M2, ..., Mn) with Mi an MBR of the R-tree RSi (1 ≤ i ≤ n), the R-trees of the MBRs if the
ordered pair (Mi, Mj) are connected by the directed edge ei,j in QG and wi,j ∈ ℜ+ is the weight of ei,j. In
other words, DMINMINDIST represents our Ddistance function based on MINMINDIST metric for each
possible pair of MBRs that belongs in the n-tuple t and satisfies QG.

DMINMINDIST expresses the minimum possible distance of any n-tuple containing n MBRs. For
example, in Figure 3.2, seven MBRs (a 7-tuple of MBRs, t = (M11, M23, M32, M41, M54, M62, M75)) and
their MINMINDIST distances are depicted for a sequential query (QG = (S1 → S2 → S3 → S4 → S5 →
S6 → S7)). DMINMINDIST represents the sum of their MINMINDIST distance values.

10

11

M23

M32

M41

M54

Figure 3.2: Example of DMINMINDIST for a sequential query.

M75

M62

M11

We can extend the same properties of MINMINDIST metric between two MBRs to the DMINMINDIST
for an n-tuple of MBRs. The most important properties of DMINMINDIST are the following:

• Given an n-tuple t of MBRs, the value of DMINMINDIST, for a given dimension I, 1 ≤ i ≤ d, is
always smaller than or equal to the total computation of DMINMINDIST:

DMINMINDIST(t, i) ≤ DMINMINDIST(t), 1≤ i ≤ d

• Lower-bounding property. For each n-tuple t of spatial objects, enclosed by a n-tuple of MBRs
t’, it holds that:

DMINMINDIST(t’) ≤ Ddistance(t)

• DMINMINDIST, like MINMINDIST, is monotonically non-decreasing with the R-tree heights. This
means that, for a given n-tuple t of MBRs enclosed by another n-tuple of MBRs t’ (where each
MBR of t’ covers its respective MBR in t), it holds that:

DMINMINDIST(t’) ≤ DMINMINDIST(t)

In [CMT+01], a pruning heuristic (based on MINMINDIST) and two updating strategies (based on
MINMAXDIST and MAXMAXDIST, respectively) were presented in order to minimize the pruning
distance during the processing of branch-and-bound algorithms for K-CPQ. Since using the two
updating strategies is optional under given conditions (their computational cost is greater than the gain
of updating the pruning distance), we will consider only the pruning heuristic. It declared that if
MINMINDIST(M1, M2) > z, then the pair of MBRs (M1, M2) can be discarded, where z can be obtained
from the distance of the K-th closest pair of spatial object found so far.

We can extend this pruning heuristic for our new DMINMINDIST function as follows: if DMINMINDIST(t) >
z, then the n-tuple of MBRs t can be pruned, where z is the Ddistance-value of the K-th n-tuple of spatial
objects discovered so far.

4 An Exact Algorithm for K-Multi-way Distance Join Queries

At first thought, it would seem easy to find the solution to the MWDJ query by making use of a
sequence of 2-way computations, like 2-way joins. For example, in the case of Figure 3.1.a, to
compute the K closest pairs between s1 and s2 creating an intermediate result, then to compute the K
closest pairs between this intermediate result and s3 result creating another intermediate result and

finally, to compute the K closest pairs between the latter intermediate result and s4). Although, this
approach would work in the case of overlap joins, it cannot be used in the general case of distance
joins. The tuples that are made up of pairs with minimum distances do not coincide with the tuples that
have an overall minimum distance. It is not difficult to find counterexamples where a tuple produced
by the above strategy does not belong in the result of the MWDJ query, as well as the opposite. We are
going to illustrate this in Figure 4.1 with an example for three datasets (P, Q and R) and a QG
configuration corresponding to a sequential query (P → Q → R) for the K-MWDJQ(P, Q, R, 1, QG).

+ p1

+ p3
+ p2

* q1

* q3

* q2

P

Q / r3

/ r1

/ r2

R

Figure 4.1 Example of three spatial datasets.

It is easy to see that the result for K-CPQ(P, Q, 1) is <p3, q2> (q1 is discarded). Thus the first
intermediate result I will contain <p3, q2>. Then, we execute the K-CPQ(I, R, 1) and the result is <q2,
r2>. Thus, the final result consists of the 3-tuple <p3, q2, r2>. This is a wrong result for the K-
MWDJQ(P, Q, R, 1, QG). It is not difficult to see that the correct result for this query consists of the 3-
tuple <p3, q1, r2>.

Since we assume that all our datasets are indexed by R-trees, we conclude that a strategy that can lead
to the correct result of the MWDJ query is to use a synchronous tree traversal, or generalized tree
traversal [Map01]. In this section, based on DMINMINDIST function and the pruning heuristic, we are
going to propose a recursive non-incremental algorithm for solving the K-Multi-way Distance Join
Query, processing all inputs (n R-trees, indexing n spatial datasets) without producing any
intermediate result. This recursive algorithm follows a Depth-First search between n spatial objects
indexed in n R-trees. Moreover, enhanced pruning techniques are used in the pruning process to avoid
considering all possible n-tuples of MBRs from n R-tree nodes.

4.1 Enhancing the Pruning Process

An improvement over branch-and-bound algorithms consists in exploiting the spatial structure of the
indexes using the plane-sweep technique [PrS85]. We extend the distance-based plane-sweep
technique proposed in [CMT+01] for K-CPQ in order to restrict all possible combinations of n-tuples
of MBRs from n R-tree nodes in a similar way as in the processing of multi-way join query presented
in [MaP01].

Plane-sweep is a common technique for computing intersections [PrS85]. The basic idea is to move
a line, the so-called sweep-line, perpendicular to one of the dimensions, e.g. X-axis, from left to right.
We apply this technique for restricting all possible combinations of n-tuples of MBRs from n R-tree
nodes stored in the n R-trees. If we do not use this technique, then we must create a list with all

12

possible combinations of n-tuples of MBRs or spatial objects from n R-tree nodes and process it. In
the worst case,

∏
=

n

i
RSi

C
1

 is the number of n-tuples that we must consider,

where |CRsi| is the R-tree node capacity for the R-tree RSi, indexing the spatial dataset Si (1 ≤ i ≤ n).

The distance-based plane-sweep technique starts by sorting the entries of the n current R-tree nodes
Ni (1≤i≤n) from n R-trees, based on the coordinates of one of the corners of their MBRs (e.g. lower
left corner) in increasing or decreasing order (according to the choice of the sweeping direction and
the sweeping dimension, based on the sweeping axis criteria [SML00]). Suppose that this order is
increasing and that Sweeping_Dimension = 0, or X-axis. Then, a set of n pointers (one for each R-tree
node) is maintained initially pointing to the first entry of each X-sorted R-tree node. Among all these
entries, let Eix ∈ Ni (1≤x≤CNi, where CNi is the capacity of the R-tree node Ni) be the one with the
smallest X-value of lower left corner of MBR. We fix the current pivot P = Eix. The MBR of the pivot
P must be paired up with all the MBRs of the entries of the other n – 1 R-tree nodes Nj (1≤j≤n and j≠i)
from left to right that satisfy MINMINDIST(P.MBR, Ejy.MBR, Sweeping_Dimension) ≤ z, where Ejy
(1≤y≤C|Nj|) is an entry of the R-tree node Nj and z is the Ddistance-value of the K-th n-tuple of spatial
objects found so far. A set of n-tuples of MBRs, ENTRIES = {t1, t2, …} (empty at the beginning), is
obtained. After all these n-tuples of MBRs have been processed, the pointer currently pointing Ejy is
advanced to the next entry of Nj (according to X-order), P is updated with the next smallest value of a
lower left corner of MBRs pointed by one of the n pointers, and the process is repeated.

Notice that we apply MINMINDIST(Mix, Mjy, Sweeping_Dimension) because the distance over one
dimension between a pair of MBRs is always smaller than or equal to their MINMINDIST(Mix, Mjy) (a
direct extension of the property of MINMINDIST distance function [CMT+01]). Moreover, the
searching is restricted only to the closest MBRs (belonging to the remainder n – 1 R-tree nodes) from
the pivot P according to the z value, and no duplicated n-tuples are obtained because the rectangles are
always checked over sorted R-tree nodes. The application of this technique can be viewed as a sliding
window on the sweeping dimension with a width equal to z plus the length of the MBR of the pivot P
on the sweeping dimension, where we only choose all possible n-tuples of MBRs that can be formed
using the MBR of the pivot P and the others MBRs from the remainder n – 1 R-tree nodes that fall
into the current sliding window.

For example, Figure 4.2 illustrates three sets of MBRs in three (n = 3) R-tree nodes {MP1, MP2,
MP3, MP4, MP5, MP6}, {MQ1, MQ2, MQ3, MQ4, MQ5, MQ6, MQ7}, and {MR1, MR2, MR3, MR4, MR5, MR6},
respectively. Without applying this technique we should generate 6*7*6 = 252 triplets of MBRs and
process them. If we apply the previous method over the X-axis (sweeping dimension), this number of
possible triplets will be considerably reduced. First of all, we fix the MBR of the pivot P = MP1 and it
must be paired up with {MQ1, MQ2, MQ3 and MQ4} and {MR1, MR2 and MR3} because all triplets that
can be formed from them have MINMINDIST(MP1, MRy, Sweeping_Dimension) ≤ z and the other
MBRs can be discarded: {MQ5, MQ6, and MQ7} and {MR4, MR5 and MR6}. In this case, we will obtain a
set of 12 triplets of MBRs with the form {(MP1, MQ1, MR1), (MP1, MQ1, MR2), (MP1, MQ1, MR3), (MP1,
MQ2, MR1), …, (MP1, MQ4, MR3)}. When processing is finished with P = MP1, the algorithm must
establish the pivot P = MQ1 that is the next smallest value of lower left corner and the process is
repeated. At the end, the number of triplets of MBRs is 193 = |ENTRIES| (we save 59 3-tuples).

13

MQ7 MQ4

MQ1

Sweeping Dimension

MQ3

MQ5

MQ6

MP1 MP2

MP4

MP5

MP6

MP3MQ2

z

MR1

MR2
MR3

MR4

MR5

MR6

Sliding Window

Figure 4.2 Using the plane-sweep technique over the MBRs from three R-tree nodes.

After obtaining a reduced set of candidate n-tuples of MBRs from n R-tree nodes (ENTRIES),
applying the distance-based plane-sweep technique, we can consider the DMINMINDIST function based on
the query graph (QG) over the Sweeping_Dimension as another improvement of the pruning process.
Thus, we will choose for processing only those n-tuples t of MBRs that satisfy DMINMINDIST(t,
Sweeping_Dimension) ≤ z. This is called DMINMINDIST–Sweeping_Dimension filter (i.e. apply the
pruning heuristic over the Sweeping_Dimension, preserving the order of entries in such dimension). In
the previous example of Figure 4.2, we can reduce the number of 3-tuples of MBRs (ENTRIES),
depending on the organization of the query graph. If it is a sequential query (RP→RQ→RR) and P =
MP1, then the 3-tuples of MBRs {(MP1, MQ4, MR1), (MP1, MQ4, MR2)} can be discarded. At the end of
the processing of this second filter |ENTRIES| = 164 (we save 29 3-tuples). On the other hand, if the
query graph is a cycle (RP→RQ→RR→RP) and P = MP1, then the 3-tuples of MBRs {(MP1, MQ2, MR3),
(MP1, MQ3, MR2), (MP1, MQ3, MR3), (MP1, MQ4, MR1), (MP1, MQ4, MR2), (MP1, MQ4, MR3)} can be
discarded, considering only a set of 6 3-tuples of MBRs. At the end of the processing of this second
filter |ENTRIES| = 107 (we save 86 3-tuples).

In summary, the pruning process over n R-tree nodes consists of two consecutive filters:

1. Apply the distance-based plane-sweep technique: select all possible n-tuples of MBRs that can
be formed using an MBR as pivot and the others MBRs from the remainder n – 1 R-tree nodes
that fall into a sliding window with width equal to z plus the length of the pivot MBR on the
Sweeping_Dimension (ENTRIES); since MINMINDIST(Mix, Mjy, Sweeping_Dimension) ≤
MINMINDIST(Mix, Mjy).

2. Apply the DMINMINDIST-Sweeping_Dimension filter: consider from ENTRIES, only those n-tuples
of MBRs that satisfy DMINMINDIST(t, Sweeping_Dimension) ≤ z, since DMINMINDIST(t, i) ≤
DMINMINDIST(t), 1≤i≤d. Therefore, ENTRIES = ENTRIES – {t ∈ ENTRIES: DMINMINDIST(t,
Sweeping_Dimension) > z}.

4.2 A Recursive Branch-and-Bound Algorithm for K-Multi-way Distance Join Query

The recursive non-incremental branch-and-bound algorithm follows a Depth-First searching strategy
making use of recursion and the previous pruning heuristic based on the DMINMINDIST function. In

14

MPSR1 Start from the roots of the n R-trees and set z to ∞.

MPSR2 If you access to a set of n internal nodes, apply the distance-based plane-sweep technique
and the DMINMINDIST-Sweeping_Dimension filter in order to obtain the set of n-tuples of
candidate MBRs, ENTRIES. Propagate downwards recursively only for those n-tuples of
MBRs from ENTRIES that have DMINMINDIST-value smaller than or equal to z.

MPSR3 If you access a set of n leaf nodes, apply the distance-based plane-sweep technique and the
DMINMINDIST-Sweeping_Dimension filter to obtain the set of candidate n-tuples of entries,
ENTRIES. Then calculate the Ddistance-value of each n-tuple of spatial objects stored in
ENTRIES. If this distance is smaller than or equal to z, remove the n-tuple of spatial objects
in the root of the K-heap and insert the new one, updating z and the K-heap.

Figure 4.3. MPSR algorithm.

addition, we employ the distance-based plane-sweep technique and DMINMINDIST-Sweeping_Dimension
filter for obtaining a reduced set of candidate n-tuples of entries from n R-tree nodes (ENTRIES).
Then, it iterates in the ENTRIES set and propagates downwards only for the n-tuples of entries with
DMINMINDIST-value smaller than or equal to z (Ddistance-value of the K-th n-tuple of spatial objects found
so far). Also, we need an additional data structure, organized as a maximum binary heap (called K-
heap) that holds n-tuples of spatial objects according to their Ddistance-values, which stores the K
Ddistance-smallest n-tuples and helps us to update z (pruning distance). The MPSR algorithm (extension
of the PSR algorithm [CMT+01] for the K-Multi-way Distance Join Query) for n R-trees storing
spatial objects (points or line-segments) on the leaf nodes, with the same height is illustrated in Figure
4.3.

In general, the algorithm synchronously processes the n R-tree indexes of all spatial datasets
involved in the query (following a Depth-First traversal pattern), using the combinations of R-tree
nodes reported by the application of the distance-based plane-sweep technique and DMINMINDIST-
Sweeping_Dimension filter that satisfy the query graph and pruning the n-tuples which DMINMINDIST-
value (n internal nodes) or Ddistance-value (n leaf nodes) larger than z.

The advantage of the algorithm that synchronously traverses, with a Depth-First search strategy, all
R-trees is that it transforms the problem into smaller local subproblems at each tree level and it does
not produce any intermediate result. The downward propagation in step MPSR2 is done in the order
produced by the distance-based plane-sweep technique; this order is quite good, since it leads to very
accurate results quickly (see the comments of Figure 6.4). In addition, the algorithm consumes an
amount of space that is only a linear function of the heights of the trees and n (number of inputs), and
its implementation is relatively easy, because we can use recursion. A disadvantage of this algorithm
(Depth-First search) is that it tends to consume time to exit, once it deviates to branches where no
optimal solutions of the initial problem are located and the recursion gets more expensive with the
increase of n.

5 Approximate Algorithms for K-Multi-way Distance Join Queries
The MPSR algorithm solves the K-Multi-way Distance Join Query accurately, i.e. it focuses on the
retrieval of the exact result with no time limitation for the query processing. Depending on the query
nature, data properties, cardinalities of the datasets and the number of inputs involved on the query

15

exhaustive processing of K-MWDJQ can be prohibitively expensive due to the exponential nature of
the problem (i.e. in the worst case, the complexity of the algorithm over n R-trees is O(Nn)).

Since this kind of distance-based query (K-MWDJQ) has an exponential nature, there may not be
enough processing time to find the exact result. Therefore, algorithms that obtain one or more
approximate solutions can be used. In many situations, for practical purposes, the users are willing to
sacrifice the algorithm accurateness for improving performance; approximate solutions, that can be
obtained faster than the precise ones, are usually as valuable as them. In order to obtain sufficiently
good results quickly and restrict the search space, we can adopt one (or a combination) of the two
following modifications of the query algorithm:

• To include into the recursive non-incremental branch-and-bound algorithm (MPSR) a
combination of approximation techniques (N-consider and α-allowance [CCV02]) in order to
try to control the trade-off between cost and accuracy of the result. This combination consists of
two consecutive filters at internal level of the R-trees. In the first filter, we adopt the N-consider
approximate technique, producing a set of candidates. Each candidate is examined by the
second filter, using the α-allowance technique.

− N-consider (based on the structure of the access method) only takes into account a
specified portion, or percentage of the total number of items examined from the
combination of n internal nodes (0.0 < NI ≤ 1.0).

− α-allowance (distance-based approximate technique) is applied over the pruning heuristic
and it consists of reducing the pruning distance (z) with an allowance function α(z) that
depends on z. That is, an n-tuple of MBRs t is discarded if DMINMINDIST(t) > z – α(z). A
typical form of α(z) is α(z) = z*γ (0.0 ≤ γ ≤ 1.0); therefore, the modified pruning heuristic
is “if DMINMINDIST(t) > z*(1 – γ), then the n-tuple of MBRs t can be pruned”.

This combination is appropriate for tuning the trade-off between cost and accuracy of the result
and the algorithmic parameters (NI and γ) can act as adjusters of such a balance (the exact result
is obtained when NI = 1.0 and γ = 0.0). In [CCV02], it was detected that low values of NI (0.2 ≤
NI ≤ 0.6) and high values for γ (0.6 ≤ γ ≤ 1.0) are good choices for obtaining K approximate
closest pairs of points with an acceptable balance between cost and accuracy in high-
dimensional data spaces using R-trees.

16

AMPSR1 Start from the n roots of the n R-trees and set z to ∞.

AMPSR2 If you access to a set of n internal nodes and the consumed time is larger than total_time
(and K-heap is full), then stop. Else, choose only a portion (Total’ = NI*Total) of all possible
n-tuples of MBRs (Total) stored in the nodes, and apply the distance-based plane-sweep
technique and the DMINMINDIST-Sweeping_Dimension filter over Total’ in order to obtain the set
of n-tuples of candidate MBRs, ENTRIES. Propagate downwards recursively only for those
n-tuples of MBRs from ENTRIES that have DMINMINDIST-value smaller than or equal to z*(1–γ).

AMPSR3 If you access to a set of n leaf nodes and the consumed time is larger than total_time (and
K-heap is full), then stop. Else, apply the distance-based plane-sweep technique and the
DMINMINDIST-Sweeping_Dimension filter in order to obtain the set of candidate n-tuples of
entries, ENTRIES. Then calculate the Ddistance-value of each n-tuple of spatial objects stored
in ENTRIES. If this distance is smaller than or equal to z, then remove the n-tuple of spatial
objects in the root of the K-heap and insert the new one, updating z and the K-heap.

Figure 5.1. AMPSR algorithm.

• To retrieve the best possible (exact or approximate) result within a given global processing time
threshold, total_time, (i.e. the algorithm is stopped at the time point total_time, reporting the
result found so far). Obviously, total_time must be large enough for reaching at least one
complete approximate solution (i.e. K-heap must contain at least K n-tuples of spatial objects).
We adopt this time-based approximate technique, since the users, in many occasions, prefer fast
retrieval of sufficiently good approximate solutions to accuracy of the answer. We obtain the
exact result when total_time = ∞.

To obtain a time-based approximate K-MWDJQ algorithm, we will apply the previous approximate
techniques over the MPSR algorithm based on Depth-First search using recursion in its
implementation. Since, this search policy sets higher priority to the subproblems is larger depth,
approximate solutions are usually available even if the computation is stopped before the normal
termination. As an example, an approximate version of MPSR (AMPSR) based on time for processing
K-MWDJQ between n R-trees with the same height is illustrated in Figure 5.1 (where NI, γ and
total_time are given by the user).

For example, if we want to obtain the exact solution of K-MWDJQ, we can run AMPSR using NI =
1.0, γ = 0.0 and total_time = ∞, i.e. MPSR is a special case of AMPSR for the previous values of the
approximation parameters.

6 Experimental Results
This section provides the results of an extensive experimentation study aiming at measuring and
evaluating the efficiency of the K-MWDJQ algorithms proposed in Sections 4 and 5, namely MPSR
(exact) and AMPSR (approximate). In our experiments, we have used the R*-tree [BKS+90] as the
underlying disk-resident access method and a global LRU buffer over the n R*-trees with 512 pages.
R*-trees nodes, disk pages and buffer pages have the same size. If the R*-trees have different heights,
we use the fix-at-leaves technique [CMT+00]. All experiments were run on an Intel/Linux workstation
at 450 MHz with 256 Mbytes RAM and several Gbytes of secondary storage. The programs were
created using the GNU C++ compiler (gcc).

17

In order to evaluate the K-MWDJQ algorithms, we have used four real spatial datasets of North
America in the same workspace from [DCW97], representing (a) populated places consisting of
24,493 2d-points, (b) cultural landmarks consisting of 9,203 2d-points, (c) roads consisting of 569,120
line-segments, and (d) railroads consisting of 191,637 line-segments. Besides, we have generated (e) a
‘pseudo-real’ dataset from the ‘populated places’, simulating archeological places of North America
and consisting of 61,012 2d-points. With these datasets, we have designed the following
configurations for our experiments, where SQ represents a sequential query and CY represents a query
with cycles in the query graph and the weights (wi,j) of the directed edges in such query graphs were
equal to 1.0 (i.e. only the distances were considered).

• n = 2: K-MWDJQ(NApp, NAcl, QG, K): QG = (NApp → NAcl).

• n = 3: K-MWDJQ(NApp, NArd, NAcl, QG, K): QGSQ = (NApp → NArd → NAcl) and QGCY =
(NApp → NArd → NAcl → NApp).

• n = 4: K-MWDJQ(NApp, NArd, NArr, NAcl, QG, K): QGSQ = (NApp → NArd → NArr →
NAcl) and QGCY = (NApp → NArd → NArr → NAcl → NArr → NApp).

• n = 5: K-MWDJQ(NApp, NArd, NAap, NArr, NAcl, QG, K): QGSQ = (NApp → NArd → NAap
→ NArr → NAcl) and QGCY = (NApp → NArd → NAap → NArr → NAcl → NArr → NApp).

Due to the different nature of the spatial objects (points and line-segments) involved in the query,
we have implemented the minimum distances between points and segments as follows [Oro98]:

• Point-point distance. Given two points, p and q, the minimum Euclidean distance between them
is defined as follows: PointsDistance(p, q) = (∑i|pi – qi|2)1/2 = MINMINDIST(p, q) [CMT+01],
since, MINMINDIST is a generalization of the minimum distance between points and MBRs.

()qpMINMINDISTqpqpancePointsDist
d

i
ii ,),(

1

2 =−= ∑
=

• Point-segment distance. Consider a point p and a line-segment S = (s1, s2) characterized by two
endpoints s1 and s2. Let ⊥(p, S) be the perpendicular line to S that passes through p. The
computation of the minimum distance between p and S (MinimumDistance(p, S)) is defined as
follows: If ⊥(p, S) intersects S at a point q, then MinimumDistance(p, S) = MINMINDIST(p, q),
otherwise MinimumDistance(p, S) = min{MINMINDIST(p, s1), MINMINDIST(p, s2)}.

• Segment-segment distance. Given two line-segments, S = (s1, s2) and T = (t1, t2), we consider the
previous case (point-segment distance) for <s1, T>, <s2, T>, <t1, S> and <t2, S>, taking the
minimum of these distances. If there is no intersection between the perpendicular line of the
segment passing through the point with the segment, then MinimumDistance(S, T) =
min{MINMINDIST(s1, t1), MINMINDIST(s1, t2), MINMINDIST(s2, t1), MINMINDIST(s2,
t2)}. That is, given the endpoints si, and ti of two different line-segments S and T,
MinimumDistance(S, T) is the minimum distance among all possible pairs of endpoints. Of
course, if S and T intersect, then MinimumDistance(S, T) = 0.0.

We have measured the performance of our algorithms based on the following two metrics: (1)
number of Disk Accesses (DA), which represents the number of R*-tree nodes fetched from disk, and
may not exactly correspond to actual disk I/O, since R*-tree nodes can be found in system buffers, and
(2) Response Time (RT), which is reported in seconds and represents the overall CPU time consumed,
as well as the total I/O performed by the algorithm (i.e. the total query time or total elapsed time).

18

 ½ Kbyte 1 Kbyte 2 Kbytes 4 Kbytes 8 Kbytes
 DA RT DA RT DA RT DA RT DA RT

n = 2 2029 0.35 996 0.41 492 0.43 237 0.46 122 0.51
n = 3 32158 16.95 17884 19.39 9436 27.99 4477 34.28 2250 49.75
n = 4 39720 423.38 24551 932.36 13292 2765.07 6384 16603.11 3041 17723.21

Table 6.1. Comparison of the MPSR algorithm for K-MWDJQ varying the R*-tree node size.

Apart of the previous performance metrics, we have taken into account two additional quality
measurements of the approximate results: (1) Average Relative Distance Error (ARDE); to obtain
ARDE, we calculate the exact result for the K-MWDJQ off-line, then apply the approximate algorithm
and calculate the average relative distance error of all the K items of the result. (2) Quality of the
Approximate Result (QAR); QAR calculates the percentage of the K items of the approximate solution
that also appear in the exact result (i.e. values of QAR close to 1.0 indicate a good quality of the
approximate solution, since QAR = 1.0 is the value for the exact result):

∑
= 








=
K

i otherwise
resultexacttheinappearsiitemeapproximattheif

K
QAR

1 ,0
 "" ,11

The first experiment studies the best page size for the K-MWDJQ algorithms, since the smaller the
R*-tree node size is, the smaller the number of n-tuples of R*-tree items have to be considered in the
algorithms. We have adopted the following query configurations for MPSR: n = 2, 3 and 4; QGSQ
(sequential query graphs) and K = 100. Table 6.1 compares the performance measurements for
different R*-tree node sizes, where M is the maximum R*-tree node capacity: ½ Kbyte (M = 25), 1
Kbyte (M = 50), 2 Kbytes (M = 102), 4 Kbytes (M = 204) and 8 Kbytes (M = 409). m = M*0.4 was
used as minimum R*-tree node capacity, according to [BKS+90], for obtaining the best query
performance.

We can observe from the previous table that the smaller the R*-tree node size is, the faster the
MPSR algorithm is, although it obviously needs more disk accesses (using a global LRU buffer
minimizes the extra I/O cost). As expected, there is a balance between I/O activity (DA) and CPU cost
(RT). Since deriving the optimum page size is an unmanageable task due to the number of parameters
involved, we rather focus on the algorithmic issues and not on this question. On the other hand,
hardware developments are rapid and manufacturers provide disks with larger page sizes year-after-
year. Thus, we provide results for the case of page size (R*-tree node size) equal to 1 Kbyte (resulting
in M = 50 and m = 20 branching factors for the R*-trees). The reader can extrapolate the method
performance for other page sizes. For example, if we compare the page sizes of 1 Kbyte and 4 Kbytes
for n = 4, the algorithm for the 1 Kbyte size becomes faster than the 4 Kbytes size by a factor of 17.8,
although the increase of disk accesses is only by a factor of 3.8, using a global LRU buffer with 512
pages.

Moreover, an important observation about the results appearing Table 6.1 concerns the processing
cost to obtain the exact result (e.g. for n = 4 and a page size of 4 Kbytes, the branching factors are M =
204 and m = 82, the number of disk accesses is 6384 and the response time is 16603.11 seconds). The
CPU cost of K-MWDJQ is, in general, exponential to the number of datasets (n) involved in the query,
mainly due to the number of distance computations (for n = 4 and page size of 4 Kbytes, in the worst
case, the number of distance computations can vary from 2044 = 1731891456 to 824 = 45212176,
when 4 R-tree nodes are considered). Since this problem is computationally very demanding (in terms
of distance computations, which implies a very high cost in execution time), our main target is to

19

 N = 2 n = 3 N = 4 n = 5
 DA RT DA RT DA RT DA RT

SQ 996 0.45 17884 19.43 24551 932.36 42124 93942.51
CY 17773 26.47 24088 1169.25 38947 120550.21

Table 6.2. Comparison of the MPSR algorithm, as a function of the number of inputs.

study ways for its most efficient computation. This motivates the need for efficient discovery of
approximate solutions through approximation techniques that restrict the search space. Note that, since
the performance achieved, although improved, may still not be acceptable for on-line applications, the
(exact, or approximate) algorithms for answering the K-MWDJQ are mainly useful in offline
applications (even in these applications, performance is a big issue).

The second experiment studies the behavior of the MPSR algorithm (exact results) as a function of
the number of the spatial datasets involved in the K-MWDJQ. In particular, we use n = 2, 3, 4 and 5, K
= 100, SQ and CY (configurations of the query graph) as the algorithmic parameters for the query.
Table 6.2 shows the performance measurements (DA and RT) of the experiment. We can observe that
the increase of the response time is almost exponential with respect to the number of inputs, whereas
the increase of the number of disk accesses is almost linear. This is due to the fact that the number of
distance computations depends on the number of considered items in the combination of n R-tree
nodes, which is an exponential function of the R-tree structures (fan-outs, heights, etc.) and n. For
example, if we compare n = 4 and n = 5 with QGSQ, the increases of DA and RT are by factors of 1.7
and 100.7, respectively. Therefore, we can conclude that the response time is more affected than the
number of disk accesses with the increase of the number of inputs in this kind of distance-based query;
hence, approximate approaches that aim at obtaining sufficiently good results quickly are worth
considering.

The third experiment studies the performance of the MPSR algorithm with respect to the increase
of K (number of n-tuples in the result) values, varying from 1 to 100000. Figure 6.1 illustrates the
performance measurements for the following configuration: n = 4 (for n = 3, the tendencies were
similar), SQ and CY. We can notice from the left chart of the figure that the I/O activity of the
algorithm gets higher as K increases and both query graph configurations have similar I/O trends.
Moreover, the deterioration is not smooth, although the increase of DA from K = 1 to K = 100000 is
only around a 20%. In the right diagram, we can notice that the larger the K values are, the slower the
MPSR algorithm becomes, mainly for large K values. For example, when K = 1 and K = 10000, the
algorithm becomes slower by a factor of 6, and from K = 1 to K = 100000 the algorithm is 23 times
slower for SQ and 27 for CY. From these results, we must highlight the huge response time necessary
to report the exact result for large K values (K = 100000) and the very small number of required disk
accesses. This suggests that the MPSR algorithm reaches many intermediate solutions and it takes a
long time to obtain the exact solution, if it does not traverse the search path in the right direction; we
have to avoid this unnecessary work by using a time-based approximate algorithm, obtaining
sufficiently good results quickly.

In the forth experiment, we are going to study the behavior of AMPSR algorithm (time-based
approximate version of MPSR) with respect to the performance measurements and the quality of the
results as a function of the approximate parameters NI and γ (total_time = ∞, i.e. no time control). The
main objective of this experiment is to determine the best values of NI and γ for AMPSR. Figure 6.2
shows the performance measurements (DA and RT) for the following experiment configuration: n = 4,

20

SQ (for CY, the trends were similar), K = 100, total_time = ∞, 0.2 ≤ NI ≤ 0.6, and 0.6 ≤ γ ≤ 1.0. It is
clear that the smaller the value of NI is, the faster and the smaller the I/O activity of the AMPSR
algorithm is; although for NI ≥ 0.5 the AMPSR algorithm does not obtain any improvement (i.e. NI =
0.5 is a performance threshold). On the other hand, the saving in DA is almost negligible with the
increase of γ, but the algorithm becomes faster (the RT is reduced considerably). For example, using
NI = 0.5 and γ = 1.0, we save only a 4.54% of disk accesses (23436 / 24551), but the algorithm
becomes 2.6 times faster in seconds (361.37 / 932.36) than the exact one. In addition, this result is
quite interesting, because the approximate result has an excellent quality (ARDE = 0.0095 and QAR =
0.98, i.e. very close to the exact solution) and much time (570.99 seconds) was saved. Also, we must
highlight that for NI = 0.5, the algorithm works with half of all possible combinations of MBR n-
tuples, when n internal nodes are visited; however these combinations are chosen by the distance-
based plane-sweep technique that produces a quite good ordering of all possible combinations.

23000

24400

25800

27200

28600

30000

1 10 100 1000 10000 100000

K (cardinality of the result)

D
is

k
A

cc
es

se
s

SQ CY

0

4400

8800

13200

17600

22000

1 10 100 1000 10000 100000

K (cardinality of the result)

R
es

po
ns

e
Ti

m
e

SQ CY

Figure 6.1. Performance comparison of the MPSR algorithm for K-MWDJQ varying K for disk
accesses (left) and response time (right).

0.6 0.7 0.8 0.9 1.0
0.2

0.3
0.4

0.5
0.6

100

180

260

340

420

500

R
es

po
ns

e
Ti

m
e

Gamma

NI

Figure 6.2. Number of disk accesses (left) and response time (right) of the AMPSR algorithm for K-
MWDJQ, as a function of NI in the range [0.2, 0.6] and γ in the range [0.6, 1.0].

0.6 0.7 0.8 0.9 1.0
0.2

0.3
0.4

0.5
0.6

5000

9000

13000

17000

21000

25000

D
is

k
Ac

ce
ss

es

Gamma

NI

We can observe that NI = 0.5 and γ = 1.0 are the most promising approximate parameter values in
order to obtain a good performance. Which is the quality of the reported result with respect to the
exact one? Figure 6.3 shows the quality measurements (ARDE and QAR) of the same experiment
configuration as the one of Figure 6.2. Note that in the left chart of Figure 6.3 (ARDE), we have
changed the order of NI values (decreasing) to observe clearly the behavior (evolution) of this
parameter, since the bars for ARDE when NI = 0.2 and 0.3 can hide the bars for the other NI values
(0.4, 0.5 and 0.6). Moreover, values of ARDE close to 0.0 indicate good quality if the approximate
solutions, because ARDE = 0.0 represents that the approximate result coincides with the exact one.
For NI = 0.5 and γ = 1.0, the quality is very high, since ARDE = 0.009488648 and QAR = 0.98; very

21

close to the values for the exact result (ARDE = 0 and QAR = 1.0). In general, the quality metrics are
more affected by NI parameter than γ (the increase of γ values does not affect significantly the quality
of the approximate result). The reduction of NI values saves DA and RT, but it loses quality of the
approximate solutions (NI = 0.5 is a quality threshold); and the increase of γ saves DA and RT, but it
almost does not affect quality. Thus, NI = 0.5 and γ = 1.0 is an interesting combination of values of the
approximate parameters to obtain a good trade-off between cost of the algorithm and accuracy of the
approximate solution.

Using this combination of the approximate parameter values (NI = 0.5 and γ = 1.0), we have
executed experiments for n = 5, SQ (for CY, the results were very similar), K = 100 and total_time =
∞. The AMPSR algorithm saved a 9.3% in DA (38210 / 42124) with respect to MPSR, but it was
around 3 times faster than the exact one (28669.28 / 93942.51), and the quality of the approximate
result was ARDE = 0.0 and QAR = 1.0 (i.e. the approximate solution was identical to the exact one);
for this particular case (n = 5 and real data), all the n-tuples that make up the exact result exist in the
approximate result (note that it is possible for the approximate algorithm, AMPSR, to reach the exact
result). In this specific experimental setting, the ordering produced by the distance-based plane-sweep
technique was excellent. For other experimental settings, the approximate algorithm did not discover
the exact result, although we noticed that the accuracy of the approximate result was always very high.
This is the case of the results presented in the next experiment.

0.6 0.7 0.8 0.9 1.0

0.2
0.3

0.4
0.5

0.6
0.0

0.2

0.4

0.6

0.8

1.0

A
R

D
E

Gamma

NI

0.6 0.7 0.8 0.9 1.0

0.2
0.3

0.4
0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

Q
A

R

Gamma

NI

Figure 6.3. ARDE (left) and QAR (right) of the AMPSR algorithm for K-MWDJQ, as a function of NI
in the range [0.2, 0.6] and γ in the range [0.6, 1.0].

0

5000

10000

15000

20000

25000

60 120 180 240 255 270 285 293 300 330 358

Time (seconds)

D
is

k
A

cc
es

se
s

0.0

0.2

0.4

0.6

0.8

1.0

60 120 180 240 255 270 285 293 300 330 358

Time (seconds)

A
R

D
E

0.0

0.2

0.4

0.6

0.8

1.0

Q
A

R

ARDE QAR

Figure 6.4. Comparison of the AMPSR algorithm for K-MWDJQ varying the processing total_time for
disk accesses (left) and quality metrics: ARDE and QAR (right).

In the fifth experiment, we measure the quality of the approximate solutions retrieved over time.
Since the AMPSR algorithm starts with a solution which has very low quality, as the processing time
passes the algorithm improves the solution until the accurate one is reached. Figure 6.4 shows the

22

performance metric (DA) and the quality measurements (ARDE and QAR) of the experimental
configuration: n = 4 (similar tendencies were obtained for n = 5), SQ (for CY, the trends were similar),
K = 100, NI = 0.5, γ = 1.0, varying the total_time (total_time ≤ 358.01 seconds, which was the total
time for AMPSR when total_time = ∞). As expected, if we give more processing time to the AMPSR
algorithm, then the number of disk accesses is also increased. On the other hand, the behavior of the
quality measurements is very interesting: ARDE and QAR follow opposite trends; the smaller the
ARDE (larger the QAR) values are, the more accurate of the approximate solutions are; it is easy to
see that QAR(t) ≈ 1 – ARDE(t), where ≈ stands for ‘follows a similar trend to’. Moreover, at the
beginning of the execution of the algorithm, the quality of the approximate solution is low, but close to
the end it is very high, and after a time point the approximate solution found so far is so good that it
gets difficult for the algorithm to obtain a better one.

If we observe both charts of Figure 6.4, we can see that a relation between performance (DA) and
quality (QAR) measurements over time. The overall performance of a time-based approximate
algorithm (AMPSR) can be related to the quality of the result found and the amount of computation
time consumed to obtain such a result. DA and QAR follow a similar trend: the larger the number of
disk accesses is, the larger the QAR values are; the relation between them is DA(t) ≈ QAR(t).

7 Conclusions and Ideas for Future Extensions
In this paper, we have examined the problem of finding the K n-tuples between n spatial datasets that
have the smallest Ddistance-values, the K-Multi-Way Distance Join Query (K-MWDJQ), where each
dataset is indexed by an R-tree-based structure. In addition, we have proposed a recursive non-
incremental branch-and-bound algorithm following a Depth-First search for processing synchronously
all inputs without producing any intermediate result (MPSR). Due to the exponential nature of this
kind of distance-based query, we have also proposed a time-based approximate version of MPSR that
combines approximation techniques to adjust the quality of the approximate result and the global
processing time (AMPSR). To the best of our knowledge, these are the first algorithms that solve this
new and complex distance-based query. The most important conclusions drawn from our experimental
study using real spatial datasets are the following:

(1) The response time of the query is more affected than the number of disk accesses with the
increase of n for a given K, mainly due to the necessary number of distance computations; a
similar behavior is obtained with the increase of K for a given n.

(2) For AMPSR, we have found values of the approximate parameters that are useful for the users
who seek a good balance between cost and quality of the approximate result, when the total
time of processing is not limited (NI = 0.5 and γ = 1.0).

(3) As expected, the quality of the best approximate solution found so far using AMPSR is
successively improved as long as more computation time is given and follows a similar trend
to the behavior of the performance (number of disk accesses) of the approximate algorithm.

Future work may include:

• Extending our recursive non-incremental branch-and-bound algorithms to K-Self-MWD Join
Query, Semi-MWD Join Query, as well as, finding the K Ddistance-largest n-tuples. We can also
easily adapt our algorithms to support the Multi-way Similarity Join Query and obtain all the
n-tuples of objects that do not exceed a given distance threshold ε.

23

• Using in our recursive algorithms for K-MWDJQ other approximation techniques that
combine local and evolutionary search with underlying indexes to prune the search space
[PaA02], or randomized search methods like iterative improvement, random sampling,
simulated annealing, etc. [MaP01].

• Supporting an arbitrary graph (or tree), not just sequences or sequences with cycles,
considering other alternatives for Ddistance and not just a linear function with positive
multipliers.

• Extending our algorithms to support spatio-temporal databases (i.e., one or some spatial
datasets, consisting of moving objects).

REFERENCES
[BEK+98] S. Berchtold, B. Ertl, D. Keim, H.P. Kriegel and T. Seidl: “Fast Nearest Neighbor Search

in High-Dimensional Spaces”, Proceedings of 14th International Conference on Data
Engineering (ICDE’98), pp.209-218, 1998.

[BKS+90] N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger: “The R*-tree: an Efficient and
Robust Access Method for Points and Rectangles”, Proceedings of ACM SIGMOD
Conference. pp.322-331, 1990.

[BKS93] T. Brinkhoff, H.P. Kriegel and B. Seeger: “Efficient Processing of Spatial Joins Using
R-trees”, Proceedings of ACM SIGMOD Conference, pp.237-246, 1993.

[BoK02] C. Böhm and F. Krebs: “High Performance Data Mining Using the Nearest Neighbor
Join”, Proceedings of 2nd International Conference on Data Mining (ICDM’02), pp.43-
50, 2002.

[Bro01] P. Brown: Object-Relational Database Development: a Plumber’s Guide, Prentice Hall,
2001.

[CCV02] A. Corral, J. Cañadas and M. Vassilakopoulos: “Approximate Algorithms for Distance-
Based Queries in High-Dimensional Data Spaces using R-trees”, Proceedings of 6th
Conference on Advances in Databases and Information Systems (ADBIS’02), pp.163-
176, 2002.

[CMT+00] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Closest Pair
Queries in Spatial Databases”, Proceedings of ACM SIGMOD Conference, pp.189-200,
2000.

[CMT+01] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos: “Algorithms for
Processing K Closest Pair Queries in Spatial Databases”, Data & Knowledge
Engineering, to appear.

[DCW97] Digital Chart of the World: Real spatial datasets of the world at 1:1,000,000 scale. 1997.
Downloadable from: http://www.maproom.psu.edu/dcw.

[GaG98] V. Gaede and O. Günther: “Multidimensional Access Methods”, ACM Computing
Surveys, Vol.30, No.2, pp.170-231, 1998.

[Gut84] A. Guttman: “R-trees: a Dynamic Index Structure for Spatial Searching”, Proceedings of
ACM SIGMOD Conference, pp.47-57, 1984.

24

[HJR97] Y.W. Huang, N. Jing and E.A. Rundensteiner: “Spatial Joins Using R-trees: Breadth-First
Traversal with Global Optimizations”, Proceedings of 23rd VLDB Conference, pp.396-
405, 1997.

[HjS98] G.R. Hjaltason and H. Samet: “Incremental Distance Join Algorithms for Spatial
Databases”, Proceedings of ACM SIGMOD Conference, pp.237-248, 1998.

[HjS99] G.R. Hjaltason and H. Samet: “Distance Browsing in Spatial Databases”, ACM
Transactions on Database Systems, Vol.24, No.2, pp.265-318, 1999.

[KoS97] N. Koudas and K.C. Sevcik: “Size Separation Spatial Join”, Proceedings of ACM
SIGMOD Conference, pp.324-335, 1997.

[KoS98] N. Koudas and K.C. Sevcik: “High Dimensional Similarity Joins: Algorithms and
Performance Evaluation”, Proceedings of 14th International Conference on Data
Engineering (ICDE’98), pp.466-475, 1998.

[LaT92] R. Laurini and C Thomson: Fundamentals of Spatial Information System, Academic
Press, 1992.

[LoR94] M.L. Lo and C.V. Ravishankar: “Spatial Joins Using Seeded Trees”, Proceedings of
ACM SIGMOD Conference, pp.209-220, 1994.

[LoR96] M.L. Lo and C.V. Ravishankar: “Spatial Hash-Joins”, Proceedings of ACM SIGMOD
Conference, pp.247-258, 1996.

[MaP99] N. Mamoulis and D. Papadias: “Integration of Spatial Join Algorithms for Processing
Multiple Inputs”, Proceedings of ACM SIGMOD Conference. pp.1-12, 1999.

[MaP01] N. Mamoulis and D. Papadias: “Multiway Spatial Joins”, ACM Transactions on Database
Systems, Vol.26, No.4, pp.424-475, 2001.

[MaP03] N. Mamoulis and D. Papadias: “Slot Index Spatial Join”, IEEE Transactions on
Knowledge and Data Engineering, Vol.15, No.1, pp.211-231, 2003.

[MTT99] Y. Manolopoulos, Y. Theodoridis and V. Tsotras: Advanced Database Indexing, Kluwer
Academic Publishers, 1999.

[Ora01] Oracle Technology Network: “Oracle Spatial”, an Oracle Technical White Paper, 2001.
Downloadable from: http://otn.oracle.com/products/oracle9i/pdf/OracleSpatial.pdf.

[Oro98] J. O’Rourke: Computational Geometry in C, Cambridge University Press, 1998.

[PaA02] D. Papadias and D. Arkoumanis: “Approximate Processing of Multiway Spatial Joins in
Very Large Databases”, Proceedings of 8th EDBT Conference, pp.179-196, 2002.

[PaD96] J.M. Patel and D.J. DeWitt: “Partition Based Spatial-Merge Join”, Proceedings of ACM
SIGMOD Conference, pp.259-270, 1996.

[PCC99] H.H. Park, G.H. Cha and C.W. Chung: “Multi-way Spatial Joins Using R-Trees:
Methodology and Performance Evaluation”, Proceedings of 6th International Symposium
on Spatial Databases (SSD'99), pp.229-250, 1999.

[PMT99] D. Papadias, N. Mamoulis and Y. Theodoridis: “Processing and Optimization of
Multiway Spatial Joins Using R-Trees”, Proceedings of 18th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’99), pp.44-55, 1999.

25

[PrS85] F.P. Preparata and M.I. Shamos: Computational Geometry: an Introduction, Springer-
Verlag, 1985.

[PRS99] A. Papadopoulos, P. Rigaux, and M. Scholl: “A Performance Evaluation of Spatial Join
Processing Strategies”. Proceedings of 6th Symposium on Large Spatial Databases (SSD’
99), pp.286-307, 1999.

[RKV95] N. Roussopoulos, S. Kelley and F. Vincent: “Nearest Neighbor Queries”, Proceedings of
ACM SIGMOD Conference, pp.71-79, 1995.

[SCR+99] S. Shekhar, S. Chawla, S. Rivada, A. Fetterer, X. Lui and C. Lu: “Spatial Databases,
Accomplishments and Research Needs”, IEEE Transactions on Knowledge and Data
Engineering, Vol.11, No.1, pp.45-55, 1999.

[SeK98] T. Seidl and H.P. Kriegel: “Optimal Multi-Step K-Nearest Neighbor Search”,
Proceedings of ACM SIGMOD Conference, pp.154-165, 1998.

[SMC+03] Y. Shou, N. Mamoulis, H. Cao, D. Papadias, and D.W. Cheung: “Evaluation of Iceberg
Distance Joins”, Proceedings of 8th Symposium on Spatial and Temporal Databases
(SSTD’03), pp.270-288, 2003.

[SML00] H. Shin, B. Moon and S. Lee: “Adaptive Multi-Stage Distance Join Processing”,
Proceedings of ACM SIGMOD Conference, pp.343-354, 2000.

[YaL02] C. Yang and K.I. Lin: “An Index Structure for Improving Nearest Closest Pairs and
Related Join Queries in Spatial Databases”, Proceedings of International Database
Engineering and Applications Symposium (IDEAS’02), pp.140-149, 2002.

26

