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Abstract: Let a tuple of n objects obeying a query graph (QG) be called the n-tuple. The “Ddistance-
value” of this n-tuple is the value of a linear function of distances of the n objects that make up this n-
tuple, according to the edges of the QG. This paper addresses the problem of finding the K n-tuples 
between n spatial datasets that have the smallest Ddistance-values, the so-called K-Multi-Way Distance 
Join Query (K-MWDJQ), where each set is indexed by an R-tree-based structure. This query can be 
viewed as an extension of K-Closest-Pairs Query (K-CPQ) [CMT+01] for n inputs. In addition, a 
recursive non-incremental branch-and-bound algorithm following a Depth-First search for processing 
synchronously all inputs without producing any intermediate result is proposed. Enhanced pruning 
techniques are also applied to n R-trees nodes in order to reduce the total response time and the 
number of distance computations of the query. Due to the exponential nature of the problem, we also 
propose a time-based approximate version of the recursive algorithm that combines approximation 
techniques to adjust the quality of the result and the global processing time. Finally, we give a detailed 
experimental study of the proposed algorithms using real spatial datasets, highlighting their 
performance and the quality of the approximate results. 

 

 

Keywords: Spatial databases, Branch-and-bound algorithms, Distance join queries, R-trees, 
Approximate techniques. 
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Multi-way Distance Join Queries in Spatial Databases 
 

1 Introduction 
The term spatial database refers to a database that stores data from phenomena on, above or below the 
earth's surface [LaT92], or in general, various kinds of multidimensional data of modern life [MTT99]. 
In a computer system these data are represented by points, line segments, polygons, volumes and other 
kinds of 2D/3D geometric entities and are usually referred to as spatial objects. The field of spatial 
databases can be defined by its accomplishments and by the needs of existing applications [SCR+99]. 
Spatial databases are included in specialized applications such as Geographical Information Systems 
(GIS), Computer Aided Design (CAD), Multimedia Information Systems (MMIS), Data Warehousing 
(DW), etc. The role of spatial databases is continuously increasing in other many applications during 
the last years. Transportation planning, resource management and geo-marketing are just some of the 
emerging applications assisted by spatial databases. 

The key characteristic that makes a spatial database a powerful tool is its ability to manipulate 
spatial data, even rather than simply to store and represent them. The most basic form of such a 
manipulation is answering queries related to the spatial properties of the data. Some typical spatial 
queries are the following. 

• A point (range) query involves a single dataset and seeks for spatial objects that fall on a given 
point (overlap with a given region, usually expressed as a hyper-rectangle). 

• A nearest neighbor query also involves a single dataset and seeks for the spatial objects residing 
most closely to a given object. In its simplest form, it discovers one such object (the NN) while 
in its generalization it discovers K closest objects (K-NN), for a given K. 

• A pairwise (multi-way) join query involves two (n > 2) datasets and discovers pairs (n-tuples, in 
general) of spatial objects that satisfy one (M) given predicate(s). The predicate(s) are usually 
the intersection or overlap between pair(s) of objects. 

• As a combination of nearest neighbor and pairwise join queries, a distance join or closest pair 
query involves two datasets and discovers the pair of spatial objects (one from each dataset) 
with the smallest possible distance. Like a join query, all pairs of objects are candidates for the 
final result; like a nearest neighbor query, proximity metrics are the basis for pruning heuristics 
and the final ordering. In its incremental form, the query finds the 1st pair, the 2nd pair, and so 
on, until it is stopped by the user or a trigger (e.g. due to a time restriction). On the other hand, 
in its non-incremental form (K-Closest-Pairs Query, called K-CPQ), it discovers K pairs of 
objects, for a beforehand known K. 

Processing of multi-way spatial join queries has recently gained attention [MaP01, PMT99, 
MaP99, PCC99]. In the majority of those papers, a multi-way spatial join query is modeled by a query 
graph whose nodes represent spatial datasets and edges represent spatial predicates. One way to 
process this query, when all join spatial datasets are supported by spatial indexes or not (pipelined or 
build-and-match strategies, respectively), is as a sequence of pairwise joins. Another possible way, 
when all join spatial datasets are indexed (using e.g. R-trees), is to combine the filter and refinement 
steps in a synchronous tree traversal. Moreover, the research interest on distance-based queries 
involving two datasets (e.g. distance join queries) has increased in the last years, since they are 
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appropriate for data analysis, decision making, etc. Given two datasets S1 and S2, the similarity join 
[KoS98] finds all pairs of objects <obj1i, obj2j> such that obj1i ∈ S1 and obj2j ∈ S2, whose distance is 
smaller than a predefined distance threshold ε. Another example of a distance-based query is the 
closest pairs query [HjS98, CMT+00, SML00, CMT+01, YaL02], which discovers the K closest pairs 
of objects in the Cartesian product S1×S2. If both S1 and S2 are indexed by R-trees, we can use the 
synchronous tree traversal with Depth-First or Best-First search for the query processing [CMT+00, 
CMT+01]. 

From the above, it is clear that the extension of distance join queries to n inputs with M predicates 
or constraints (like the multi-way joins) results in a novel query type, the so-called K-Multi-way 
Distance Join Query (K-MWDJQ). To our knowledge, this query type has not been studied in the 
literature so far and this is the aim of this paper. 

Definition: Given n non-empty spatial datasets S1, S2, …, Sn and a query graph QG, the K-Multi-
way Distance Join Query retrieves the K distinct n-tuples of objects of these datasets with the K 
smallest Ddistance-values (i.e. the K Ddistance-smallest n-tuples). 

The general environment for this kind of query can be represented by a network, where nodes 
correspond to spatial datasets and edges to binary metric relationships (distances), assigning positive 
real number to the edges. This framework is similar to the one defined in [MaP01], where the graph is 
viewed as a constraint network: the nodes correspond to problem variables (datasets) and edges to 
binary spatial constraints (spatial predicates). Therefore, our network is a weighted directed graph, in 
which the directed edges correspond to binary metric relationships (e.g. distances) between pairs of 
spatial datasets (nodes) with specific weights (positive real numbers) and directions. We also assume 
that the weighted directed graph cannot be split into non-connected subgraphs (in the opposite case,  
the graph could be processed by answering the query for all subgraphs and computing the appropriate 
combination of results). 

K-Multi-way Distance Join Queries are very useful in many applications using spatial data for 
decision making (e.g. in logistics) and other demanding data handling operations. For example, 
suppose we are given four spatial datasets consisting of the locations of factories, warehouses, stores 
and customers, connected as in Figure 1.1.a. A K-MWDJQ will find K different 4-tuples (factory, 
warehouse, store, customer) that minimize a Ddistance function (the K smallest Ddistance-values of the 4-
tuples are sorted in ascending order). Such a function would be, for example, the sum of distances 
between a factory and a warehouse, this warehouse and a store and this store and a customer. Such 
information could then be exploited by a transport agency or a fleet management system for different 
purposes (e.g. for minimizing transport cost based on distances). Moreover, the way to connect the 
spatial datasets could be more complex than a simple sequence. For example, in Figure 1.1.b, we can 
observe the case where the containers of products must be recycled from customers to factories 
through stores, and new distances must be considered for computing Ddistance. 
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Figure 1.1. Examples of directed graphs for factories, warehouses, stores and customers. 

We have considered directed graphs instead of undirected graphs, because the former allow us the 
expression of itineraries (between the spatial datasets) following a specific order. E.g., the users can 
assign directions and weights to the arcs (directed edges) of the itineraries. Another example of K-
MWDJQ application would be the following: a person wants to rent a flat and she/he poses some 
constraints to the real estate agency. She/he wants to find the itinerary (flat → swimming-pool → 
gymnasium → flat) with the minimum (Manhattan) distance, since her/his schedule after getting up in 
the morning at home is to swim, take exercise and return to home. That is, the agency has to report to 
the client the 3-tuples (flat, swimming-pool, gymnasium) and the rent price of the flat, ordered by the 
Ddistance value of itinerary (flat → swimming-pool → gymnasium → flat). Many other similar problems 
can be found in the real life. 

An interesting dimension of the problem is the introduction of weights in distances. For example, 
covering a distance δ from a factory to a warehouse may be more expensive than covering the same 
distance δ from a store to a customer (e.g. because of the different means used). Thus, each distance 
should be multiplied by different weights in order to compute Ddistance. For instance, in our example of 
(factories, warehouses, stores, customers), if we want to minimize the travel time, we can divide the 
distance (kilometers) between pairs of points in the itinerary by its known average velocity or speed 
(kilometers/hours). The quantity 1/velocity is the positive multiplier of each directed edge (the weights 
of the Query Graph arcs). 

Variations of the problem: 

The K-MWDJQ can be extended to K-Self-MWDJ, Semi-MWDJ and Multi-way Similarity Join 
Queries. In particular, 

• The K-Self-MWDJQ corresponds to a special case of query graph, where there is a single 
dataset S, which is connected to itself n times (in other words, the query graph contains n self-
loops). This kind of query can be viewed as a K-Multi-way Distance Join Query in the sense 
that we can use the same input dataset (S) n times. In the previous example, we wish to obtain 
the 4-tuples which are the K Ddistance-smallest 4-tuples of warehouses among all possible such 4-
tuples. 

• The Semi-MWDJQ corresponds to the general case of query graph, with the constraint that one 
of the datasets is chosen as a “reference”. For example, if we fix “factories”, we wish to obtain 
for each factory, the smallest Ddistance-value of the triplets (warehouse, shop, customer). 

• The Multi-way Similarity Join Query reports all possible n-tuples of objects that have a distance 
smaller than a given distance threshold ε. In this case, the K value is unknown in advance and 
the result of the query need not be sorted in ascending order of Ddistance-values. For example, we 
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may wish to obtain those 4-tuples (factory, warehouse, store, customer) that can be visited 
within a distance smaller than 2 kilometers. 

The application of K-Multi-way Distance Join Queries is not restricted to point datasets only. As 
another example, we can consider three spatial datasets representing populated places, roads and 
cultural landmarks, respectively. Clearly, the K-MWDJQ can involve non-point datasets as well, 
assuming that a well-defined distance norm between those spatial objects exists. 

The fundamental assumption in this paper is that the n spatial datasets are indexed by R-tree-based 
structures [Gut84]. R-trees are hierarchical, height balanced multidimensional data structures of 
secondary storage, and they are used for the dynamic organization of a set of d-dimensional geometric 
objects represented by their Minimum Bounding d-dimensional hyper-Rectangles (MBRs). These 
MBRs are characterized by “min” and “max” points of hyper-rectangles with faces parallel to the 
coordinate axis. Using the MBR instead of the exact geometrical representation of the object, its 
representational complexity is reduced to two points where the most important features of the object 
(position and extension) are maintained. R-trees are considered an excellent choice for indexing 
various kinds of spatial data (points, line segments, polygons, etc.) and have already been adopted in 
commercial systems, such as Informix [Bro01] and Oracle [Ora01]. Moreover, we must highlight that, 
in case of non-point objects, an R-tree index can only organize objects’ MBRs, together with the 
pointers to the place where their actual geometry has been stored. Under this framework, K-MWDJQ 
processing algorithms using R-trees only produce a set of n-tuples of MBRs (hence, candidate objects) 
in the filter step. For the refinement step, the exact geometry of the spatial objects has to be retrieved 
and exact distances have to be computed, according to the Ddistance function based on the query graph. 
The algorithms proposed in this paper only address the filter step. 

Due to exponential nature of the K-MWDJQ, depending mainly on the cardinalities of the datasets 
and the number of inputs, the exact processing of the K-MWDJQ algorithms can be prohibitively 
expensive. However, the performance of these algorithms can be improved if the search space is 
restricted somehow. Besides, in many situations, for practical purposes, approximate solutions are 
usually as valuable as exact ones, because such solutions can provide good upper-bounds of the 
optimum result and can be achieved much faster than the precise ones. In this case, the recursive 
branch-and-bound algorithm can be used as an approximate algorithm [CCV02] modified with the 
“time” constraint. The recursive K-MWDJQ algorithm explores the search space in a Depth-First 
order, finds many solutions quickly (although, it may take very long time to obtain the best solution if 
it does not traverse the search space in the right direction), improves their qualities continuously and 
can be stopped at any time during its execution. Here, we also present the recursive K-MWDJQ 
algorithm as a time-based approximate algorithm, and study it in terms of several performance 
measurements and its performance profile along time. Based on these results, we draw conclusions 
about the performance of approximate algorithms and examine the influence of the approximate 
parameters on the trade-off between cost of the algorithm and accuracy of the result. 

The organization of the paper is as follows: In Section 2, we review the literature (distance join 
queries and multi-way join queries) and motivate the research reported. In Section 3, an expression for 
a linear distance function based on a given query graph, the definition of K-MWDJQ, an MBR-based 
distance function and a pruning heuristic are presented. In Section 4, enhanced pruning techniques and 
a recursive non-incremental branch-and-bound algorithm (called, MPSR) for K-MWDJQ are 
presented. Due to the exponential nature of the K-MWDJQ problem, in Section 5 the recursive 
algorithm is adapted to a time-based approximate algorithm (called, AMPSR). Section 6 exhibits a 
detailed experimental study of the algorithms for K-MWDJQ, including the effect of the increase of K 
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and n, the influence of the approximate parameters in terms of performance and quality of the results, 
and the behavior of the approximate algorithm over the time. In Section 7, conclusions on the 
contribution of this paper and related future research plans are summarized. 

 

2. Related Work and Motivation 
The K-Multi-way Distance Join Query can be seen as a “combination” of K-Closest-Pairs query and 
Multi-way Spatial Join Query; therefore, we review these query types, focusing on the processing 
techniques that are employed by the query algorithms. Related work includes the following two well-
known research areas: 

• K-Closest-Pair (or distance join) Queries: the problem consists of two given point sets, P = 
{p1, p2, ... , pNP} and Q = {q1, q2, ... , qNQ} in the multidimensional Euclidean space, stored in a 
spatial database and a constant K (maximum cardinality in the final result). Then, the result of 
the K closest pairs query (K-CPQ) is a set of ordered sequences of K (1 ≤ K ≤ |P|·|Q|) different 
pairs of points of P×Q, with the K smallest distances between all possible pairs of points that 
can be formed by choosing one point of P and one point of Q. [CMT+00, CMT+01] presented 
recursive (Depth-First) and iterative (Best-First) branch-and-bound algorithms for K-CPQ 
following a non-incremental approach, which compute this operation when K is known in 
advance and the K elements, belonging to the result, are reported all together at the end of the 
algorithm, i.e. the user can not have any result until the algorithm ends. The main issue of the 
non-incremental variant is to separate the treatment of the terminal candidate (the elements of 
the final result) from the rest of the candidates (intermediate elements). One important 
advantage of this approach is that the pruning process during the execution of the algorithm is 
more effective even when K is large enough, making use of various distance functions 
(MINMINDIST, MINMAXDIST and MAXMAXDIST). Moreover, two well-known 
optimization techniques are included in the algorithms to reduce the execution time (distance-
based plane-sweep technique) and I/O activity (buffering). Recently, a new index structure (the 
bichromatic Rddn-Tree, which uses information about nearest neighbors to help pruning of the 
search path more effectively) for improving closest pairs and related distance join queries in 
spatial databases by implementing several algorithms in a non-incremental manner was 
proposed  [YaL02]. 
On the other hand, the incremental (Best-First) approach for solving the distance join queries 
[HjS98, SML00] computes the desired elements in the result one-by-one in ascending order of 
distance (pipelined fashion), i.e. the user can have part of the final result before ending the 
algorithm. The incremental algorithms work in the sense that having obtained K elements in the 
result, to obtain the (K+1)-th element, it is not necessary to restart the algorithm, but just to 
perform an additional step. The kernel of the incremental algorithms is a priority queue 
(distance queue) built on a distance function associated to the specific kind of the distance-
based query. The strong point of this approach is that, when K is unknown in advance, the user 
stops the algorithm when he/she is satisfied by the result. On the other hand, when the number 
of elements in the result grows, the amount of the required resources to perform the query 
increases too. Thus, incremental algorithms are competitive when a small quantity of elements 
of the result is needed. For large K values, the distance queue may not work well as an effective 
pruning tool, because the cutoff value (pruning distance) stored in the distance queue may 
remain too high for a long duration. Finally, we must highlight that the work proposed in 
[HjS98] was enriched in [SML00] by including the plane-sweep technique during the expansion 
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of node pairs, using the estimation of the k-closest pair distance (eDmax) to suspend 
unnecessary computations of MBR distances and insertions into the distance queue for the 
incremental processing. 
Besides, several closely related studies for distance-based queries have been recently reported in 
the literature. For example, the similarity join [KoS98] involves two spatial datasets and a given 
distance threshold δ; the answer is a set of pairs of spatial objects within distance δ from each 
other. The iceberg distance join [SMC+03] also involves two spatial datasets, a given distance 
threshold δ and a cardinality threshold K; it reports a set of pairs of spatial objects within 
distance δ from each other, provided that the first object appears at least K times in the join 
result. Another example is the K nearest neighbors join [BoK02], which involves two spatial 
datasets and a cardinality threshold K; the answer is the smallest subset from the Cartesian 
Product of the two input datasets that contains for each point of the first dataset at least K points 
of the second one (i.e. this query combines each of the points of the first dataset with its K 
nearest neighbors in the second dataset). Moreover, there are nearest neighbor search algorithms 
based on Voronoi cells [BEK+98] and branch and bound techniques [RKV95], a nearest 
neighbor search algorithm for ranking requirements [HjS99] and multi-step k-nearest neighbor 
search algorithms [SeK98]. 

• Multi-way Spatial Join Queries: The problem consists of n given datasets D1, D2, …, Dn (each 
indexed by an R-tree) and a query Q. The multi-way join query finds all tuples {(r1,w, …, ri,x, …, 
rj,y, …, rn,z) such that ∀i,j : ri,x ∈ Di, rj,y ∈ Dj, ri,x Qij rj,y}, where Qij represents the spatial 
predicate that should hold between Di and Dj, [MaP01]. In general, multi-way join queries can 
be considered as a generalization of pairwise spatial joins. [MaP99] proposed a pairwise join 
method that combines pairwise join algorithms in a processing tree where the leaves are input 
relations indexed by R-trees and the intermediate nodes are join operators. Processing multi-
way joins by integration of a sequence of pairwise join algorithms is the standard approach in 
relational databases, and the order of pairwise joins is determined by the minimization of 
expected I/O cost (in terms of page accesses). [PMT99] proposed a multi-way spatial join by 
applying systematic search algorithms that exploit R-trees to efficiently guide search, without 
building temporary indexes or materializing intermediate results. On the other hand, [PCC99] 
proposed a multi-way R-tree join (M-way join algorithm) as a generalization of the original R-
tree join [BKS93], taking into account its optimization techniques (the ordering of the search 
space restriction and the plane-sweep method). In addition, a recent and extensive work 
[MaP01] reviews pairwise spatial join algorithms and shows how they can be combined for 
multiple inputs, explores the applications of synchronous tree traversal for processing 
synchronously all inputs without producing intermediate results; the integration of the two 
approaches (synchronous tree traversal and pairwise algorithms) in an engine using dynamic 
programming to determine the optimal execution plan is also presented in [MaP01]. Moreover, 
two optimizations for synchronous tree traversal algorithm which exploit the spatial structure of 
the multi-way join problem were proposed in the same paper: (1) Static Variable Ordering (it 
pre-orders the problem variables by placing the most constrained one first; hence, variables are 
sorted in decreasing order of their degree), and (2) Plane-Sweep combined with Forward 
Checking (this is an improved implementation of procedure find-combinations, which 
decomposes a local problem into a series of smaller problems, one for each event of the sweep 
line). In this paper, experimental results showed that the improvement due to the first 
improvement is significant when the few first variables are more constrained, whereas this does 
not apply for complete query graphs. Moreover, the combination of both optimizations showed 
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significant reduction in both I/O and CPU cost, compared to the version of synchronous tree 
traversal algorithm that does not use them. 
Since a multi-way spatial join is the combination of sequence of pairwise joins and in this 
sequence a pair does not necessarily correspond to a join between two R-trees [BKS93, HJR97], 
we also have to consider as related work the cases where only one of the inputs is indexed 
[LoR94, PRS99, MaP03] or when both inputs are non-indexed [LoR96, PaD96, KoS97]. 

All the previous efforts have been mainly focused on multi-way spatial join queries, using a 
sequence of pairwise join algorithms or synchronous tree traversal over R-tree structures on the filter 
step and on the design of efficient (incremental or non-incremental) K-CPQ algorithms between two 
R-trees. The main objective of this paper is to investigate the behavior of recursive branch-and-bound 
algorithms that work in a non-incremental manner for K-MWDJQ as a generalization of K-CPQ 
between n spatial datasets indexed by R-trees, without producing any intermediate result. To do this, 
we extend the distance metrics and the pruning heuristic based on the query graph for solving this kind 
of distance-based query. In addition, we apply techniques for improving the performance with respect 
to the I/O activity (global buffering) and response time (distance-based plane-sweep) in our 
experiments over real spatial datasets of different nature (points and line segments). 

 

3 K-Multi-way Distance Join Queries using R-trees 
Let us recall the assumptions we make: 

1. n spatial datasets are involved, each supported by an R-tree structure 

2. M (M ≥ n – 1) spatial predicates (metric relationships) between pairs of objects are defined 

3. A query graph declares the spatial constraints that have to be fulfilled 

In the following, we state more formally the details of the problem. 

 

3.1 The Query Graph and the Ddistance Function 

Query Graph (QG). A query graph QG = (S, E) is a weighted directed graph which consists of a 
finite nonempty set of nodes S = {s1, s2, …, sn} and a finite set of directed edges E = {ei,j = (si → sj) : 
si, sj ∈ S and 1 ≤ i, j ≤ n}; each directed edge ei,j connects an ordered pair of nodes (si → sj), where si 
and sj are called start and end nodes of the directed edge, respectively. Associated with each directed 
edge ei,j, there exists a weight wi,j, which is a positive real number (wi,j ∈ ℜ+). A directed edge is called 
self-loop, if both start-end nodes are identical; this is the case of ei,i (si → si). 

A directed path is a sequence of directed edges connecting pairs of nodes {e1,2, e2,3, …, eh-1,h} such 
that: ei,i+1 and ei+1,i+2 have only a common node (si+1) and there does not exist any self-loop. In this 
case, s1 and sh are called the start and end nodes of the directed path. A directed path is called simple if 
no node appears on it more than once (simple directed path). A directed circuit is a directed path 
whose start and end nodes are the same. A directed circuit is called simple if no node, apart from start-
end node, appears more than once, and the start-end node does not appear elsewhere in the directed 
circuit. 

Different configurations of QG depending on the required results by the users are possible. 
Examples include sequential or “chain” queries (Figure 3.1.a), where the QG is an acyclic weighted 
directed graph among all datasets, obeying the constraints of a simple directed path that does not 
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Figure 3.1. Types of query graphs from four spatial datasets. 

contain any directed circuit. Queries with cycles (Figure 3.1.b) correspond to a QG, with at least one 
simple directed circuit among its nodes (i.e. ordered sequences of nodes with simple directed circuits). 

 Based on the previous definition of the query graph, we can now define the Ddistance function as 
follows: 

Ddistance Function. Consider n non-empty spatial object datasets S1, S2, …, Sn,  organized according to 
a query graph QG. The Ddistance is a function from the n-tuples of objects from S1 × S2 × … × Sn to 
ℜ+. Let t represent such an n-tuple. The Ddistance(t) is defined as a linear function of distances of the 
pairs of objects of t that result from the directed edges of QG. More formally, we can define Ddistance(t) 
as follows: 

),()(
  e

,
ji,

ji
E

ji objobjwtD
QG

∑
∈

= distancedistance  

where t = (obj1, obj2, …, objn) ∈ S1 × S2 × … × Sn, the datasets of the objects of the ordered pair  
(obji, objj) are connected in QG  by the directed edge ei,j, wi,j ∈ ℜ+ is the weight of ei,j and distance 
may represent any Minkowski distance norm (Euclidean, Manhattan, etc.) between pairs of spatial 
objects. 

 

3.2 Definition of the K-Multi-Way Distance Join Query 

We define the K-Multi-way Distance Join Query in the spatial database environment as follows: 

K-Multi-Way Distance Join Query. Let n non-empty spatial object datasets S1, S2, …, Sn, 
organized according to a query graph QG, where a Ddistance function is defined. Assume that each 
object of any of the above datasets is a member of the d-dimensional Euclidean space Ed. The result of 
the K-Multi-way Distance Join Query, K-MWDJQ(S1, S2, …, Sn, QG, K), is a set of ordered 
sequences of K (1 ≤ K ≤ |S1|·|S2|·…·|Sn|) different n-tuples of spatial objects of S1 × S2 × … × Sn, 
with the K smallest Ddistance-values between all possible n-tuples of spatial objects that can be formed 
by choosing one spatial object for each spatial dataset (i.e. the K Ddistance-smallest n-tuples): 

K-MWDJQ(S1, S2, …, Sn, QG, K) =  

{(t1, t2, ... , tK): ∀i ti ∈ (S1 × S2 × … × Sn)K  and ∀i ≠ j ti ≠ tj, 1 ≤ i, j ≤ K and 

∀t ∈ S1 × S2 × … × Sn – {(t1, t2, ... , tK)} 

Ddistance(t) ≥ Ddistance(tK) ≥ Ddistance(t(K-1)) ≥ …≥ Ddistance(t2) ≥ Ddistance(t1)} 

In other words, the K Ddistance-smallest n-tuples from the n spatial object datasets obeying the query 
graph QG are the K n-tuples that have the K smallest Ddistance-values between all possible n-tuples of 
spatial objects that can be formed by choosing one spatial object of S1, one spatial object of S2, …, 
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and one spatial object of Sn. Of course, K must be smaller than or equal to |S1|·|S2|·…·|Sn|, where |Si| 
is the cardinality of the dataset Si, i.e. the number of possible n-tuples that can be formed from S1, S2, 
…, Sn. 

Note that, due to ties of Ddistance-values, the result of the K-Multi-way Distance Join Query may not 
be unique for a specific K and a set of n spatial datasets S1, S2, …, Sn. The aim of the presented 
algorithms is to find one of the possible instances, although it would be straightforward to obtain all of 
them. 

 

3.3 MBR-based Distance Function and Pruning Heuristic 

The following distance functions between MBRs in Ed have been proposed for the K-CPQ [CMT+00, 
CMT+01] as bounds for the non-incremental branch-and-bound algorithms: MINMINDIST (it 
determines the minimum distance between two MBRs, and it is a generalization of the function that 
calculates the minimum distance between points and MBRs), MINMAXDIST (it expresses un upper 
bound for the distance of  the closest pair of spatial objects) and MAXMAXDIST (it obtains the 
maximum distance between two MBRs). 

In the following we present the definition of the new metric, called DMINMINDIST, between n MBRs 
that depends on the query graph and is based on MINMINDIST distance function between two MBRs 
in Ed (i.e. DMINMINDIST can be viewed as an instance of Ddistance for MINMINDIST function). 

MINMINDIST Function. Let M(A, B) represent an MBR in Ed, where A = (a1, a2, ..., ad) and B = (b1, 
b2, ..., bd), such that ai ≤ bi, for 1 ≤ i ≤ d, are the endpoints of one of its major diagonals. Given two 
MBRs M1(A, B) and M2(C, D) in Ed, MINMINDIST(M1(A, B), M2(C, D)) is defined as: 
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DMINMINDIST Function. Let M(A, B) represent an MBR in Ed, where A = (a1, a2, ..., ad) and B = (b1, b2, 
..., bd), such that ai ≤ bi, for 1 ≤ i ≤ d, are the endpoints of one of its major diagonals. RSi is the R-tree 
associated to the dataset Si and QG is a query graph obeyed by the n R-trees RS1, RS2, …, RSn. Given 
an n-tuple t of MBRs stored in the n R-trees (i.e. t is a tuple of n MBRs from RS1, RS2, …, RSn), 
DMINMINDIST(t) is a linear function of MINMINDIST distance function values of the pairs of t that result 
from the edges of QG. More formally, we can define DMINMINDIST(t) as follows: 
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where t = (M1, M2, ..., Mn) with Mi an MBR of the R-tree RSi (1 ≤ i ≤ n), the R-trees of the MBRs if the 
ordered pair (Mi, Mj) are connected by the directed edge ei,j in QG and wi,j ∈ ℜ+ is the weight of  ei,j. In 
other words, DMINMINDIST represents our Ddistance function based on MINMINDIST metric for each 
possible pair of MBRs that belongs in the n-tuple t and satisfies QG. 

DMINMINDIST expresses the minimum possible distance of any n-tuple containing n MBRs. For 
example, in Figure 3.2, seven MBRs (a 7-tuple of MBRs, t = (M11, M23, M32, M41, M54, M62, M75)) and 
their MINMINDIST distances are depicted for a sequential query (QG = (S1 → S2 → S3 → S4 → S5 → 
S6 → S7)). DMINMINDIST represents the sum of their MINMINDIST distance values. 
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Figure 3.2: Example of DMINMINDIST for a sequential query. 
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We can extend the same properties of MINMINDIST metric between two MBRs to the DMINMINDIST 
for an n-tuple of MBRs. The most important properties of DMINMINDIST are the following: 

• Given an n-tuple t of MBRs, the value of DMINMINDIST, for a given dimension I, 1 ≤ i ≤ d, is 
always smaller than or equal to the total computation of DMINMINDIST: 

DMINMINDIST(t, i) ≤ DMINMINDIST(t),  1≤ i ≤ d 

• Lower-bounding property. For each n-tuple t of spatial objects, enclosed by a n-tuple of MBRs 
t’, it holds that: 

DMINMINDIST(t’) ≤ Ddistance(t) 

• DMINMINDIST, like MINMINDIST, is monotonically non-decreasing with the R-tree heights. This 
means that, for a given n-tuple t of MBRs enclosed by another n-tuple of MBRs t’ (where each 
MBR of t’ covers its respective MBR in t), it holds that: 

DMINMINDIST(t’) ≤ DMINMINDIST(t) 

In [CMT+01], a pruning heuristic (based on MINMINDIST) and two updating strategies (based on 
MINMAXDIST and MAXMAXDIST, respectively) were presented in order to minimize the pruning 
distance during the processing of branch-and-bound algorithms for K-CPQ. Since using the two 
updating strategies is optional under given conditions (their computational cost is greater than the gain 
of updating the pruning distance), we will consider only the pruning heuristic. It declared that if 
MINMINDIST(M1, M2) > z, then the pair of MBRs (M1, M2) can be discarded, where z can be obtained 
from the distance of the K-th closest pair of spatial object found so far. 

We can extend this pruning heuristic for our new DMINMINDIST function as follows: if DMINMINDIST(t) > 
z, then the n-tuple of MBRs t can be pruned, where z is the Ddistance-value of the K-th n-tuple of spatial 
objects discovered so far. 

 

4 An Exact Algorithm for K-Multi-way Distance Join Queries 
 
At first thought, it would seem easy to find the solution to the MWDJ query by making use of a 
sequence of 2-way computations, like 2-way joins. For example, in the case of Figure 3.1.a, to 
compute the K closest pairs between s1 and s2 creating an intermediate result, then to compute the K 
closest pairs between this intermediate result and s3 result creating another intermediate result and 



finally, to compute the K closest pairs between the latter intermediate result and  s4). Although, this 
approach would work in the case of overlap joins, it cannot be used in the general case of distance 
joins. The tuples that are made up of pairs with minimum distances do not coincide with the tuples that 
have an overall minimum distance. It is not difficult to find counterexamples where a tuple produced 
by the above strategy does not belong in the result of the MWDJ query, as well as the opposite. We are 
going to illustrate this in Figure 4.1 with an example for three datasets (P, Q and R) and a QG 
configuration corresponding to a sequential query (P → Q → R) for the K-MWDJQ(P, Q, R, 1, QG). 
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Figure 4.1 Example of three spatial datasets. 

 

It is easy to see that the result for K-CPQ(P, Q, 1) is <p3, q2> (q1 is discarded). Thus the first 
intermediate result I will contain <p3, q2>. Then, we execute the K-CPQ(I, R, 1) and the result is <q2, 
r2>. Thus, the final result consists of the 3-tuple <p3, q2, r2>. This is a wrong result for the K-
MWDJQ(P, Q, R, 1, QG). It is not difficult to see that the correct result for this query consists of the 3-
tuple <p3, q1, r2>.  

 
Since we assume that all our datasets are indexed by R-trees, we conclude that a strategy that can lead 
to the correct result of the MWDJ query is to use a synchronous tree traversal, or generalized tree 
traversal [Map01]. In this section, based on DMINMINDIST function and the pruning heuristic, we are 
going to propose a recursive non-incremental algorithm for solving the K-Multi-way Distance Join 
Query, processing all inputs (n R-trees, indexing n spatial datasets) without producing any 
intermediate result. This recursive algorithm follows a Depth-First search between n spatial objects 
indexed in n R-trees. Moreover, enhanced pruning techniques are used in the pruning process to avoid 
considering all possible n-tuples of MBRs from n R-tree nodes. 

 

4.1 Enhancing the Pruning Process 

An improvement over branch-and-bound algorithms consists in exploiting the spatial structure of the 
indexes using the plane-sweep technique [PrS85]. We extend the distance-based plane-sweep 
technique proposed in [CMT+01] for K-CPQ in order to restrict all possible combinations of n-tuples 
of MBRs from n R-tree nodes in a similar way as in the processing of multi-way join query presented 
in [MaP01]. 

Plane-sweep is a common technique for computing intersections [PrS85]. The basic idea is to move 
a line, the so-called sweep-line, perpendicular to one of the dimensions, e.g. X-axis, from left to right. 
We apply this technique for restricting all possible combinations of n-tuples of MBRs from n R-tree 
nodes stored in the n R-trees. If we do not use this technique, then we must create a list with all 
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possible combinations of n-tuples of MBRs or spatial objects from n R-tree nodes and process it. In 
the worst case, 

∏
=

n

i
RSi

C
1

 is the number of n-tuples that we must consider, 

where |CRsi| is the R-tree node capacity for the R-tree RSi, indexing the spatial dataset Si (1 ≤ i ≤ n). 

The distance-based plane-sweep technique starts by sorting the entries of the n current R-tree nodes 
Ni (1≤i≤n) from n R-trees, based on the coordinates of one of the corners of their MBRs (e.g. lower 
left corner) in increasing or decreasing order (according to the choice of the sweeping direction and 
the sweeping dimension, based on the sweeping axis criteria [SML00]). Suppose that this order is 
increasing and that Sweeping_Dimension = 0, or X-axis. Then, a set of n pointers (one for each R-tree 
node) is maintained initially pointing to the first entry of each X-sorted R-tree node. Among all these 
entries, let Eix ∈ Ni (1≤x≤CNi, where CNi  is the capacity of the R-tree node Ni) be the one with the 
smallest X-value of lower left corner of MBR. We fix the current pivot P = Eix. The MBR of the pivot 
P must be paired up with all the MBRs of the entries of the other n – 1 R-tree nodes Nj (1≤j≤n and j≠i) 
from left to right that satisfy MINMINDIST(P.MBR, Ejy.MBR, Sweeping_Dimension) ≤ z, where  Ejy  
(1≤y≤C|Nj|) is an entry of the R-tree node Nj and z is the Ddistance-value of the K-th n-tuple of spatial 
objects found so far. A set of n-tuples of MBRs, ENTRIES = {t1, t2, …} (empty at the beginning), is 
obtained. After all these n-tuples of MBRs have been processed, the pointer currently pointing Ejy is 
advanced to the next entry of Nj (according to X-order), P is updated with the next smallest value of a 
lower left corner of MBRs pointed by one of the n pointers, and the process is repeated. 

Notice that we apply MINMINDIST(Mix, Mjy, Sweeping_Dimension) because the distance over one 
dimension between a pair of MBRs is always smaller than or equal to their MINMINDIST(Mix, Mjy) (a 
direct extension of the property of MINMINDIST distance function [CMT+01]). Moreover, the 
searching is restricted only to the closest MBRs (belonging to the remainder n – 1 R-tree nodes) from 
the pivot P according to the z value, and no duplicated n-tuples are obtained because the rectangles are 
always checked over sorted R-tree nodes. The application of this technique can be viewed as a sliding 
window on the sweeping dimension with a width equal to z plus the length of the MBR of the pivot P 
on the sweeping dimension, where we only choose all possible n-tuples of MBRs that can be formed 
using the MBR of the pivot P and the others MBRs from the remainder n – 1 R-tree nodes that fall 
into the current sliding window. 

For example, Figure 4.2 illustrates three sets of MBRs in three (n = 3) R-tree nodes {MP1, MP2, 
MP3, MP4, MP5, MP6}, {MQ1, MQ2, MQ3, MQ4, MQ5, MQ6, MQ7}, and {MR1, MR2, MR3, MR4, MR5, MR6}, 
respectively. Without applying this technique we should generate 6*7*6 = 252 triplets of MBRs and 
process them. If we apply the previous method over the X-axis (sweeping dimension), this number of 
possible triplets will be considerably reduced. First of all, we fix the MBR of the pivot P = MP1 and it 
must be paired up with {MQ1, MQ2, MQ3 and MQ4} and {MR1, MR2 and MR3} because all triplets that 
can be formed from them have MINMINDIST(MP1, MRy, Sweeping_Dimension) ≤ z and the other 
MBRs can be discarded: {MQ5, MQ6, and MQ7} and {MR4, MR5 and MR6}. In this case, we will obtain a 
set of 12 triplets of MBRs with the form {(MP1, MQ1, MR1), (MP1, MQ1, MR2), (MP1, MQ1, MR3), (MP1, 
MQ2, MR1), …, (MP1, MQ4, MR3)}. When processing is finished with P = MP1, the algorithm must 
establish the pivot P = MQ1 that is the next smallest value of lower left corner and the process is 
repeated. At the end, the number of triplets of MBRs is 193 = |ENTRIES| (we save 59 3-tuples). 
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Figure 4.2 Using the plane-sweep technique over the MBRs from three R-tree nodes. 

After obtaining a reduced set of candidate n-tuples of MBRs from n R-tree nodes (ENTRIES), 
applying the distance-based plane-sweep technique, we can consider the DMINMINDIST function based on 
the query graph (QG) over the Sweeping_Dimension as another improvement of the pruning process. 
Thus, we will choose for processing only those n-tuples t of MBRs that satisfy DMINMINDIST(t, 
Sweeping_Dimension) ≤ z. This is called DMINMINDIST–Sweeping_Dimension filter (i.e. apply the 
pruning heuristic over the Sweeping_Dimension, preserving the order of entries in such dimension). In 
the previous example of Figure 4.2, we can reduce the number of 3-tuples of MBRs (ENTRIES), 
depending on the organization of the query graph. If it is a sequential query (RP→RQ→RR) and P = 
MP1, then the 3-tuples of MBRs {(MP1, MQ4, MR1), (MP1, MQ4, MR2)} can be discarded. At the end of 
the processing of this second filter |ENTRIES| = 164 (we save 29 3-tuples). On the other hand, if the 
query graph is a cycle (RP→RQ→RR→RP) and P = MP1, then the 3-tuples of MBRs {(MP1, MQ2, MR3), 
(MP1, MQ3, MR2), (MP1, MQ3, MR3), (MP1, MQ4, MR1), (MP1, MQ4, MR2), (MP1, MQ4, MR3)} can be 
discarded, considering only a set of 6 3-tuples of MBRs. At the end of the processing of this second 
filter |ENTRIES| = 107 (we save 86 3-tuples). 

In summary, the pruning process over n R-tree nodes consists of two consecutive filters: 

1. Apply the distance-based plane-sweep technique: select all possible n-tuples of MBRs that can 
be formed using an MBR as pivot and the others MBRs from the remainder n – 1 R-tree nodes 
that fall into a sliding window with width equal to z plus the length of the pivot MBR on the 
Sweeping_Dimension (ENTRIES); since MINMINDIST(Mix, Mjy, Sweeping_Dimension) ≤ 
MINMINDIST(Mix, Mjy). 

2. Apply the DMINMINDIST-Sweeping_Dimension filter: consider from ENTRIES, only those n-tuples 
of MBRs that satisfy DMINMINDIST(t, Sweeping_Dimension) ≤ z, since DMINMINDIST(t, i) ≤ 
DMINMINDIST(t), 1≤i≤d. Therefore, ENTRIES = ENTRIES – {t ∈ ENTRIES: DMINMINDIST(t, 
Sweeping_Dimension) > z}. 

 

4.2 A Recursive Branch-and-Bound Algorithm for K-Multi-way Distance Join Query 

The recursive non-incremental branch-and-bound algorithm follows a Depth-First searching strategy 
making use of recursion and the previous pruning heuristic based on the DMINMINDIST function. In 
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MPSR1 Start from the roots of the n R-trees and set z to ∞. 

MPSR2 If you access to a set of n internal nodes, apply the distance-based plane-sweep technique 
and the DMINMINDIST-Sweeping_Dimension filter in order to obtain the set of n-tuples of 
candidate MBRs, ENTRIES. Propagate downwards recursively only for those n-tuples of 
MBRs from ENTRIES that have DMINMINDIST-value smaller than or equal to z. 

MPSR3 If you access a set of n leaf nodes, apply the distance-based plane-sweep technique and the 
DMINMINDIST-Sweeping_Dimension filter to obtain the set of candidate n-tuples of entries, 
ENTRIES. Then calculate the Ddistance-value of each n-tuple of spatial objects stored in 
ENTRIES. If this distance is smaller than or equal to z, remove the n-tuple of spatial objects 
in the root of the K-heap and insert the new one, updating z and the K-heap. 

Figure 4.3. MPSR algorithm. 

addition, we employ the distance-based plane-sweep technique and DMINMINDIST-Sweeping_Dimension 
filter for obtaining a reduced set of candidate n-tuples of entries from n R-tree nodes (ENTRIES). 
Then, it iterates in the ENTRIES set and propagates downwards only for the n-tuples of entries with 
DMINMINDIST-value smaller than or equal to z (Ddistance-value of the K-th n-tuple of spatial objects found 
so far). Also, we need an additional data structure, organized as a maximum binary heap (called K-
heap) that holds n-tuples of spatial objects according to their Ddistance-values, which stores the K 
Ddistance-smallest n-tuples and helps us to update z (pruning distance). The MPSR algorithm (extension 
of the PSR algorithm [CMT+01] for the K-Multi-way Distance Join Query) for n R-trees storing 
spatial objects (points or line-segments) on the leaf nodes, with the same height is illustrated in Figure 
4.3. 

In general, the algorithm synchronously processes the n R-tree indexes of all spatial datasets 
involved in the query (following a Depth-First traversal pattern), using the combinations of R-tree 
nodes reported by the application of the distance-based plane-sweep technique and DMINMINDIST-
Sweeping_Dimension filter that satisfy the query graph and pruning the n-tuples which DMINMINDIST-
value (n internal nodes) or Ddistance-value (n leaf nodes) larger than z. 

The advantage of the algorithm that synchronously traverses, with a Depth-First search strategy, all 
R-trees is that it transforms the problem into smaller local subproblems at each tree level and it does 
not produce any intermediate result. The downward propagation in step MPSR2 is done in the order 
produced by the distance-based plane-sweep technique; this order is quite good, since it leads to very 
accurate results quickly (see the comments of Figure 6.4). In addition, the algorithm consumes an 
amount of space that is only a linear function of the heights of the trees and n (number of inputs), and 
its implementation is relatively easy, because we can use recursion. A disadvantage of this algorithm 
(Depth-First search) is that it tends to consume time to exit, once it deviates to branches where no 
optimal solutions of the initial problem are located and the recursion gets more expensive with the 
increase of n. 

 

5 Approximate Algorithms for K-Multi-way Distance Join Queries 
The MPSR algorithm solves the K-Multi-way Distance Join Query accurately, i.e. it focuses on the 
retrieval of the exact result with no time limitation for the query processing. Depending on the query 
nature, data properties, cardinalities of the datasets and the number of inputs involved on the query 
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exhaustive processing of K-MWDJQ can be prohibitively expensive due to the exponential nature of 
the problem (i.e. in the worst case, the complexity of the algorithm over n R-trees is O(Nn)). 

Since this kind of distance-based query (K-MWDJQ) has an exponential nature, there may not be 
enough processing time to find the exact result. Therefore, algorithms that obtain one or more 
approximate solutions can be used. In many situations, for practical purposes, the users are willing to 
sacrifice the algorithm accurateness for improving performance; approximate solutions, that can be 
obtained faster than the precise ones, are usually as valuable as them. In order to obtain sufficiently 
good results quickly and restrict the search space, we can adopt one (or a combination) of the two 
following modifications of the query algorithm: 

• To include into the recursive non-incremental branch-and-bound algorithm (MPSR) a 
combination of approximation techniques (N-consider and α-allowance [CCV02]) in order to 
try to control the trade-off between cost and accuracy of the result. This combination consists of 
two consecutive filters at internal level of the R-trees. In the first filter, we adopt the N-consider 
approximate technique, producing a set of candidates. Each candidate is examined by the 
second filter, using the α-allowance technique. 

− N-consider (based on the structure of the access method) only takes into account a 
specified portion, or percentage of the total number of items examined from the 
combination of n internal nodes (0.0 < NI ≤ 1.0). 

− α-allowance (distance-based approximate technique) is applied over the pruning heuristic 
and it consists of reducing the pruning distance (z) with an allowance function α(z) that 
depends on z. That is, an n-tuple of MBRs t is discarded if DMINMINDIST(t) > z – α(z). A 
typical form of α(z) is α(z) = z*γ (0.0 ≤ γ ≤ 1.0); therefore, the modified pruning heuristic 
is “if DMINMINDIST(t) > z*(1 – γ), then the n-tuple of MBRs t can be pruned”. 

This combination is appropriate for tuning the trade-off between cost and accuracy of the result 
and the algorithmic parameters (NI and γ) can act as adjusters of such a balance (the exact result 
is obtained when NI = 1.0 and γ = 0.0). In [CCV02], it was detected that low values of NI (0.2 ≤ 
NI ≤ 0.6) and high values for γ (0.6 ≤ γ ≤ 1.0) are good choices for obtaining K approximate 
closest pairs of points with an acceptable balance between cost and accuracy in high-
dimensional data spaces using R-trees. 
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AMPSR1 Start from the n roots of the n R-trees and set z to ∞. 

AMPSR2 If you access to a set of n internal nodes and the consumed time is larger than total_time 
(and K-heap is full), then stop. Else, choose only a portion (Total’ = NI*Total) of all possible 
n-tuples of MBRs (Total) stored in the nodes, and apply the distance-based plane-sweep 
technique and the DMINMINDIST-Sweeping_Dimension filter over Total’ in order to obtain the set 
of n-tuples of candidate MBRs, ENTRIES. Propagate downwards recursively only for those 
n-tuples of MBRs from ENTRIES that have DMINMINDIST-value smaller than or equal to z*(1–γ). 

AMPSR3 If you access to a set of n leaf nodes and the consumed time is larger than total_time (and 
K-heap is full), then stop. Else, apply the distance-based plane-sweep technique and the 
DMINMINDIST-Sweeping_Dimension filter in order to obtain the set of candidate n-tuples of 
entries, ENTRIES. Then calculate the Ddistance-value of each n-tuple of spatial objects stored 
in ENTRIES. If this distance is smaller than or equal to z, then remove the n-tuple of spatial 
objects in the root of the K-heap and insert the new one, updating z and the K-heap. 

Figure 5.1. AMPSR algorithm. 

• To retrieve the best possible (exact or approximate) result within a given global processing time 
threshold, total_time, (i.e. the algorithm is stopped at the time point total_time, reporting the 
result found so far). Obviously, total_time must be large enough for reaching at least one 
complete approximate solution (i.e. K-heap must contain at least K n-tuples of spatial objects). 
We adopt this time-based approximate technique, since the users, in many occasions, prefer fast 
retrieval of sufficiently good approximate solutions to accuracy of the answer. We obtain the 
exact result when total_time = ∞. 

To obtain a time-based approximate K-MWDJQ algorithm, we will apply the previous approximate 
techniques over the MPSR algorithm based on Depth-First search using recursion in its 
implementation. Since, this search policy sets higher priority to the subproblems is larger depth, 
approximate solutions are usually available even if the computation is stopped before the normal 
termination. As an example, an approximate version of MPSR (AMPSR) based on time for processing 
K-MWDJQ between n R-trees with the same height is illustrated in Figure 5.1 (where NI, γ and 
total_time are given by the user). 

For example, if we want to obtain the exact solution of K-MWDJQ, we can run AMPSR using NI = 
1.0, γ = 0.0 and total_time = ∞, i.e. MPSR is a special case of AMPSR for the previous values of the 
approximation parameters. 

 

6 Experimental Results 
This section provides the results of an extensive experimentation study aiming at measuring and 
evaluating the efficiency of the K-MWDJQ algorithms proposed in Sections 4 and 5, namely MPSR 
(exact) and AMPSR (approximate). In our experiments, we have used the R*-tree [BKS+90] as the 
underlying disk-resident access method and a global LRU buffer over the n R*-trees with 512 pages. 
R*-trees nodes, disk pages and buffer pages  have the same size. If the R*-trees have different heights, 
we use the fix-at-leaves technique [CMT+00]. All experiments were run on an Intel/Linux workstation 
at 450 MHz with 256 Mbytes RAM and several Gbytes of secondary storage. The programs were 
created using the GNU C++ compiler (gcc). 
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In order to evaluate the K-MWDJQ algorithms, we have used four real spatial datasets of North 
America in the same workspace from [DCW97], representing (a) populated places consisting of 
24,493 2d-points, (b) cultural landmarks consisting of 9,203 2d-points, (c) roads consisting of 569,120 
line-segments, and (d) railroads consisting of 191,637 line-segments. Besides, we have generated (e) a 
‘pseudo-real’ dataset from the ‘populated places’, simulating archeological places of North America 
and consisting of 61,012 2d-points. With these datasets, we have designed the following 
configurations for our experiments, where SQ represents a sequential query and CY represents a query 
with cycles in the query graph and the weights (wi,j) of the directed edges in such query graphs were 
equal to 1.0 (i.e. only the distances were considered). 

• n = 2: K-MWDJQ(NApp, NAcl, QG, K): QG = (NApp → NAcl). 

• n = 3: K-MWDJQ(NApp, NArd, NAcl, QG, K): QGSQ = (NApp → NArd → NAcl) and QGCY = 
(NApp → NArd → NAcl → NApp). 

• n = 4: K-MWDJQ(NApp, NArd, NArr, NAcl, QG, K): QGSQ = (NApp → NArd → NArr → 
NAcl) and QGCY = (NApp → NArd → NArr → NAcl → NArr → NApp). 

• n = 5: K-MWDJQ(NApp, NArd, NAap, NArr, NAcl, QG, K): QGSQ = (NApp → NArd → NAap 
→ NArr → NAcl) and QGCY = (NApp → NArd → NAap → NArr → NAcl → NArr → NApp). 

Due to the different nature of the spatial objects (points and line-segments) involved in the query, 
we have implemented the minimum distances between points and segments as follows [Oro98]: 

• Point-point distance. Given two points, p and q, the minimum Euclidean distance between them 
is defined as follows: PointsDistance(p, q) = (∑i|pi – qi|2)1/2 = MINMINDIST(p, q) [CMT+01], 
since, MINMINDIST is a generalization of the minimum distance between points and MBRs. 
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• Point-segment distance. Consider a point p and a line-segment S = (s1, s2) characterized by two 
endpoints s1 and s2. Let ⊥(p, S) be the perpendicular line to S that passes through p. The 
computation of the minimum distance between p and S (MinimumDistance(p, S)) is defined as 
follows: If ⊥(p, S) intersects S at a point q, then MinimumDistance(p, S) = MINMINDIST(p, q), 
otherwise MinimumDistance(p, S) = min{MINMINDIST(p, s1), MINMINDIST(p, s2)}. 

• Segment-segment distance. Given two line-segments, S = (s1, s2) and T = (t1, t2), we consider the 
previous case (point-segment distance) for <s1, T>, <s2, T>, <t1, S> and <t2, S>, taking the 
minimum of these distances. If there is no intersection between the perpendicular line of the 
segment passing through the point with the segment, then MinimumDistance(S, T) = 
min{MINMINDIST(s1, t1), MINMINDIST(s1, t2), MINMINDIST(s2, t1), MINMINDIST(s2, 
t2)}. That is, given the endpoints si, and ti of two different line-segments S and T, 
MinimumDistance(S, T) is the minimum distance among all possible pairs of endpoints. Of 
course, if S and T intersect, then MinimumDistance(S, T) = 0.0. 

We have measured the performance of our algorithms based on the following two metrics: (1) 
number of Disk Accesses (DA), which represents the number of R*-tree nodes fetched from disk, and 
may not exactly correspond to actual disk I/O, since R*-tree nodes can be found in system buffers, and 
(2) Response Time (RT), which is reported in seconds and represents the overall CPU time consumed, 
as well as the total I/O performed by the algorithm (i.e. the total query time or total elapsed time). 
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 ½ Kbyte 1 Kbyte 2 Kbytes 4 Kbytes 8 Kbytes 
 DA RT DA RT DA RT DA RT DA RT 

n = 2 2029 0.35 996 0.41 492 0.43 237 0.46 122 0.51 
n = 3 32158 16.95 17884 19.39 9436 27.99 4477 34.28 2250 49.75 
n = 4 39720 423.38 24551 932.36 13292 2765.07 6384 16603.11 3041 17723.21

Table 6.1. Comparison of the MPSR algorithm for K-MWDJQ varying the R*-tree node size. 

Apart of the previous performance metrics, we have taken into account two additional quality 
measurements of the approximate results: (1) Average Relative Distance Error (ARDE); to obtain 
ARDE, we calculate the exact result for the K-MWDJQ off-line, then apply the approximate algorithm 
and calculate the average relative distance error of all the K items of the result. (2) Quality of the 
Approximate Result (QAR); QAR calculates the percentage of the K items of the approximate solution 
that also appear in the exact result (i.e. values of QAR close to 1.0 indicate a good quality of the 
approximate solution, since QAR = 1.0 is the value for the exact result): 
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The first experiment studies the best page size for the K-MWDJQ algorithms, since the smaller the 
R*-tree node size is, the smaller the number of n-tuples of R*-tree items have to be considered in the 
algorithms. We have adopted the following query configurations for MPSR: n = 2, 3 and 4; QGSQ 
(sequential query graphs) and K = 100. Table 6.1 compares the performance measurements for 
different R*-tree node sizes, where M is the maximum R*-tree node capacity: ½ Kbyte (M = 25), 1 
Kbyte (M = 50), 2 Kbytes (M = 102), 4 Kbytes (M = 204) and 8 Kbytes (M = 409). m = M*0.4 was 
used as minimum R*-tree node capacity, according to [BKS+90], for obtaining the best query 
performance. 

We can observe from the previous table that the smaller the R*-tree node size is, the faster the 
MPSR algorithm is, although it obviously needs more disk accesses (using a global LRU buffer 
minimizes the extra I/O cost). As expected, there is a balance between I/O activity (DA) and CPU cost 
(RT). Since deriving the optimum page size is an unmanageable task due to the number of parameters 
involved, we rather focus on the algorithmic issues and not on this question. On the other hand, 
hardware developments are rapid and manufacturers provide disks with larger page sizes year-after-
year. Thus, we provide results for the case of page size (R*-tree node size) equal to 1 Kbyte (resulting 
in M = 50 and m = 20 branching factors for the R*-trees). The reader can extrapolate the method 
performance for other page sizes. For example, if we compare the page sizes of 1 Kbyte and 4 Kbytes 
for n = 4, the algorithm for the 1 Kbyte size becomes faster than the 4 Kbytes size by a factor of 17.8, 
although the increase of disk accesses is only by a factor of 3.8,  using a global LRU buffer with 512 
pages. 

Moreover, an important observation about the results appearing Table 6.1 concerns the processing 
cost to obtain the exact result (e.g. for n = 4 and a page size of 4 Kbytes, the branching factors are M = 
204 and m = 82, the number of disk accesses is 6384 and the response time is 16603.11 seconds). The 
CPU cost of K-MWDJQ is, in general, exponential to the number of datasets (n) involved in the query, 
mainly due to the number of distance computations (for n = 4 and page size of 4 Kbytes, in the worst 
case, the number of distance computations can vary from 2044 = 1731891456 to 824 = 45212176, 
when 4 R-tree nodes are considered). Since this problem is computationally very demanding (in terms 
of distance computations, which implies a very high cost in execution time), our main target is to 
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 N = 2 n = 3 N = 4 n = 5 
 DA RT DA RT DA RT DA RT 

SQ 996 0.45 17884 19.43 24551 932.36 42124 93942.51 
CY   17773 26.47 24088 1169.25 38947 120550.21 

Table 6.2. Comparison of the MPSR algorithm, as a function of the number of inputs. 

study ways for its most efficient computation. This motivates the need for efficient discovery of 
approximate solutions through approximation techniques that restrict the search space. Note that, since 
the performance achieved, although improved, may still not be acceptable for on-line applications, the 
(exact, or approximate) algorithms for answering the K-MWDJQ are mainly useful in offline 
applications (even in these applications, performance is a big issue). 

The second experiment studies the behavior of the MPSR algorithm (exact results) as a function of 
the number of the spatial datasets involved in the K-MWDJQ. In particular, we use n = 2, 3, 4 and 5, K 
= 100, SQ and CY (configurations of the query graph) as the algorithmic parameters for the query. 
Table 6.2 shows the performance measurements (DA and RT) of the experiment. We can observe that 
the increase of the response time is almost exponential with respect to the number of inputs, whereas 
the increase of the number of disk accesses is almost linear. This is due to the fact that the number of 
distance computations depends on the number of considered items in the combination of n R-tree 
nodes, which is an exponential function of the R-tree structures (fan-outs, heights, etc.) and n. For 
example, if we compare n = 4 and n = 5 with QGSQ, the increases of DA and RT are by factors of 1.7 
and 100.7, respectively. Therefore, we can conclude that the response time is more affected than the 
number of disk accesses with the increase of the number of inputs in this kind of distance-based query; 
hence, approximate approaches that aim at obtaining sufficiently good results quickly are worth 
considering. 

The third experiment studies the performance of the MPSR algorithm with respect to the increase 
of K (number of n-tuples in the result) values, varying from 1 to 100000. Figure 6.1 illustrates the 
performance measurements for the following configuration: n = 4 (for n = 3, the tendencies were 
similar), SQ and CY. We can notice from the left chart of the figure that the I/O activity of the 
algorithm gets higher as K increases and both query graph configurations have similar I/O trends. 
Moreover, the deterioration is not smooth, although the increase of DA from K = 1 to K = 100000 is 
only around a 20%. In the right diagram, we can notice that the larger the K values are, the slower the 
MPSR algorithm becomes, mainly for large K values. For example, when K = 1 and K = 10000, the 
algorithm becomes slower by a factor of 6, and from K = 1 to K = 100000 the algorithm is 23 times 
slower for SQ and 27 for CY. From these results, we must highlight the huge response time necessary 
to report the exact result for large K values (K = 100000) and the very small number of required disk 
accesses. This suggests that the MPSR algorithm reaches many intermediate solutions and it takes a 
long time to obtain the exact solution, if it does not traverse the search path in the right direction; we 
have to avoid this unnecessary work by using a time-based approximate algorithm, obtaining 
sufficiently good results quickly. 

In the forth experiment, we are going to study the behavior of AMPSR algorithm (time-based 
approximate version of MPSR) with respect to the performance measurements and the quality of the 
results as a function of the approximate parameters NI and γ (total_time = ∞, i.e. no time control). The 
main objective of this experiment is to determine the best values of NI and γ for AMPSR. Figure 6.2 
shows the performance measurements (DA and RT) for the following experiment configuration: n = 4, 
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SQ (for CY, the trends were similar), K = 100, total_time = ∞, 0.2 ≤ NI ≤ 0.6, and 0.6 ≤ γ ≤ 1.0. It is 
clear that the smaller the value of NI is, the faster and the smaller the I/O activity of the AMPSR 
algorithm is; although for NI ≥ 0.5 the AMPSR algorithm does not obtain any improvement (i.e. NI = 
0.5 is a performance threshold). On the other hand, the saving in DA is almost negligible with the 
increase of γ, but the algorithm becomes faster (the RT is reduced considerably). For example, using 
NI = 0.5 and γ = 1.0, we save only a 4.54% of disk accesses (23436 / 24551), but the algorithm 
becomes 2.6 times faster in seconds (361.37 / 932.36) than the exact one. In addition, this result is 
quite interesting, because the approximate result has an excellent quality (ARDE = 0.0095 and QAR = 
0.98, i.e. very close to the exact solution) and much time (570.99 seconds) was saved. Also, we must 
highlight that for NI = 0.5, the algorithm works with half of all possible combinations of MBR n-
tuples, when n internal nodes are visited; however these combinations are chosen by the distance-
based plane-sweep technique that produces a quite good ordering of all possible combinations. 
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Figure 6.1. Performance comparison of the MPSR algorithm for K-MWDJQ varying K for disk 
accesses (left) and response time (right). 
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Figure 6.2. Number of disk accesses (left) and response time (right) of the AMPSR algorithm for K-
MWDJQ, as a function of NI in the range [0.2, 0.6] and γ in the range [0.6, 1.0]. 
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We can observe that NI = 0.5 and γ = 1.0 are the most promising approximate parameter values in 
order to obtain a good performance. Which is the quality of the reported result with respect to the 
exact one? Figure 6.3 shows the quality measurements (ARDE and QAR) of the same experiment 
configuration as the one of Figure 6.2. Note that in the left chart of Figure 6.3 (ARDE), we have 
changed the order of NI values (decreasing) to observe clearly the behavior (evolution) of this 
parameter, since the bars for ARDE when NI = 0.2 and 0.3 can hide the bars for the other NI values 
(0.4, 0.5 and 0.6). Moreover, values of ARDE close to 0.0 indicate good quality if the approximate 
solutions, because ARDE = 0.0 represents that the approximate result coincides with the exact one. 
For NI = 0.5 and γ = 1.0, the quality is very high, since ARDE = 0.009488648 and QAR = 0.98; very 
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close to the values for the exact result (ARDE = 0 and QAR = 1.0). In general, the quality metrics are 
more affected by NI parameter than γ (the increase of γ values does not affect significantly the quality 
of the approximate result). The reduction of NI values saves DA and RT, but it loses quality of the 
approximate solutions (NI = 0.5 is a quality threshold); and the increase of γ saves DA and RT, but it 
almost does not affect quality. Thus, NI = 0.5 and γ = 1.0 is an interesting combination of values of the 
approximate parameters to obtain a good trade-off between cost of the algorithm and accuracy of the 
approximate solution. 

Using this combination of the approximate parameter values (NI = 0.5 and γ = 1.0), we have 
executed experiments for n = 5, SQ (for CY, the results were very similar), K = 100 and total_time = 
∞. The AMPSR algorithm saved a 9.3% in DA (38210 / 42124) with respect to MPSR, but it was 
around 3 times faster than the exact one (28669.28 / 93942.51), and the quality of the approximate 
result was ARDE = 0.0 and QAR = 1.0 (i.e. the approximate solution was identical to the exact one); 
for this particular case (n = 5 and real data), all the n-tuples that make up the exact result exist in the 
approximate result (note that it is possible for the approximate algorithm, AMPSR, to reach the exact 
result). In this specific experimental setting, the ordering produced by the distance-based plane-sweep 
technique was excellent. For other experimental settings, the approximate algorithm did not discover 
the exact result, although we noticed that the accuracy of the approximate result was always very high. 
This is the case of the results presented in the next experiment. 
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Figure 6.3. ARDE (left) and QAR (right) of the AMPSR algorithm for K-MWDJQ, as a function of NI 
in the range [0.2, 0.6] and γ in the range [0.6, 1.0]. 
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Figure 6.4. Comparison of the AMPSR algorithm for K-MWDJQ varying the processing total_time for 
disk accesses (left) and quality metrics: ARDE and QAR (right). 

In the fifth experiment, we measure the quality of the approximate solutions retrieved over time. 
Since the AMPSR algorithm starts with a solution which has very low quality, as the processing time 
passes the algorithm improves the solution until the accurate one is reached. Figure 6.4 shows the 
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performance metric (DA) and the quality measurements (ARDE and QAR) of the experimental 
configuration: n = 4 (similar tendencies were obtained for n = 5), SQ (for CY, the trends were similar), 
K = 100, NI = 0.5, γ = 1.0, varying the total_time (total_time ≤ 358.01 seconds, which was the total 
time for AMPSR when total_time = ∞). As expected, if we give more processing time to the AMPSR 
algorithm, then the number of disk accesses is also increased. On the other hand, the behavior of the 
quality measurements is very interesting: ARDE and QAR follow opposite trends; the smaller the 
ARDE (larger the QAR) values are, the more accurate of the approximate solutions are; it  is easy to 
see that QAR(t) ≈ 1 – ARDE(t), where ≈ stands for ‘follows a similar trend to’. Moreover, at the 
beginning of the execution of the algorithm, the quality of the approximate solution is low, but close to 
the end it is very high, and after a time point the approximate solution found so far is so good that it 
gets difficult for the algorithm to obtain a better one. 

If we observe both charts of Figure 6.4, we can see that a relation between performance (DA) and 
quality (QAR) measurements over time. The overall performance of a time-based approximate 
algorithm (AMPSR) can be related to the quality of the result found and the amount of computation 
time consumed to obtain such a result. DA and QAR follow a similar trend: the larger the number of 
disk accesses is, the larger the QAR values are; the relation between them is DA(t) ≈ QAR(t). 

 

7 Conclusions and Ideas for Future Extensions 
In this paper, we have examined the problem of finding the K n-tuples between n spatial datasets that 
have the smallest Ddistance-values, the K-Multi-Way Distance Join Query (K-MWDJQ), where each 
dataset is indexed by an R-tree-based structure. In addition, we have proposed a recursive non-
incremental branch-and-bound algorithm following a Depth-First search for processing synchronously 
all inputs without producing any intermediate result (MPSR). Due to the exponential nature of this 
kind of distance-based query, we have also proposed a time-based approximate version of MPSR that 
combines approximation techniques to adjust the quality of the approximate result and the global 
processing time (AMPSR). To the best of our knowledge, these are the first algorithms that solve this 
new and complex distance-based query. The most important conclusions drawn from our experimental 
study using real spatial datasets are the following:  

(1) The response time of the query is more affected than the number of disk accesses with the 
increase of n for a given K, mainly due to the necessary number of distance computations; a 
similar behavior is obtained with the increase of K for a given n. 

(2) For AMPSR, we have found values of the approximate parameters that are useful for the users 
who seek a good balance between cost and quality of the approximate result, when the total 
time of processing is not limited (NI = 0.5 and γ = 1.0). 

(3) As expected, the quality of the best approximate solution found so far using AMPSR is 
successively improved as long as more computation time is given and follows a similar trend 
to the behavior of the performance (number of disk accesses) of the approximate algorithm. 

Future work may include: 

• Extending our recursive non-incremental branch-and-bound algorithms to K-Self-MWD Join 
Query, Semi-MWD Join Query, as well as, finding the K Ddistance-largest n-tuples. We can also 
easily adapt our algorithms to support the Multi-way Similarity Join Query and obtain all the 
n-tuples of objects that do not exceed a given distance threshold ε. 
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• Using in our recursive algorithms for K-MWDJQ other approximation techniques that 
combine local and evolutionary search with underlying indexes to prune the search space 
[PaA02], or randomized search methods like iterative improvement, random sampling, 
simulated annealing, etc. [MaP01]. 

• Supporting an arbitrary graph (or tree), not just sequences or sequences with cycles, 
considering other alternatives for Ddistance and not just a linear function with positive 
multipliers. 

• Extending our algorithms to support spatio-temporal databases (i.e., one or some spatial 
datasets, consisting of moving objects). 
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