

UNIVERSITY OF PIRAEUS

DEPARTMENT OF INFORMATICS

Trajectory Data Management in

Moving Object Databases

PhD Thesis

ELIAS K. FRENTZOS

Dipl. Civil Engineer, NTUA (1997)
MSc in Geoinformatics, NTUA (2002)

Athens, July 2008

 ii

 iii

UNIVERSITY OF PIRAEUS

Advisory Committee:

Supervisor:

Yannis Theodoridis
Asst. Professor U. Piraeus

Members:

Georgios Vasilakopoulos
Professor U. Piraeus

Timos Sellis
Professor NTUA

Thesis

submitted for the degree of
Doctor of Philosophy

at the Department of Informatics,
University of Piraeus

ELIAS K. FRENTZOS

“Trajectory Data Management in

Moving Object Databases”

Examination Committee:

Nikolaos Aleksandris
Professor U. Piraeus

Themistoklis Panagiotopoulos
Professor U. Piraeus

Emmanuel Stefanakis
Asst. Professor Harokopio University

Charampos Konstantopoulos
Lecturer U. Piraeus

 iv

 v

Preface

The domain of Moving Object Databases (MODs) is an important research area that has received a lot

of attention during the last decade. The objective of moving object databases is to extend database

technology to support the representation and querying of moving objects and their trajectory. MODs

have become an emerging technological field due to the development of the ubiquitous location-aware

devices, such as PDAs, mobile phones etc., as well as the variety of the information that can be

extracted from such databases. However, the development of mechanisms that enable MODs to

efficiently support trajectory data involves several physical aspects of the database technology, such as

indexing, advanced query processing and query optimization.

The challenge accepted in this thesis is to provide mechanisms that enable MODs to manage

trajectory data efficiently. Towards this goal, we develop a series of access methods, and dedicated

query processing techniques which are subsequently implemented in prototypes in order to demonstrate

their efficiency. Following the proposals of our thesis, existing moving object indexing techniques are

enabled to support a wide range of standard and advanced queries. Beyond that, by applying the

suggestions of related work we develop a model for the prediction of the effect of uncertainty in spatio-

temporal querying. The results of our research may be directly employed in the context of spatial and

spatio-temporal databases and warehouses, as well as, for query optimization purposes over distributed

data with uncertainty. Finally, we provide a model that estimates the effect of trajectory compression in

spatio-temporal querying. Our model expose interesting details regarding the error distribution of

compressed trajectories which may lead to a new generation of more efficient compression algorithms,

while it can be used as an additional criterion in order for a user to decide whether the compressed data

are suitable for his / her needs.

July 2008 Elias Frentzos

 vi

 vii

Table of Contents

1. INTODUCTION..1

1.1. MOVING OBJECT DATABASES ..1
1.2. BASIC CONCEPTS OF TRAJECTORIES ..3
1.3. RESEARCH PROBLEMS AND CHALLENGES IN TRAJECTORY DATABASES5

1.3.1. Indexing ..5
1.3.2. Advanced Query Processing...6
1.3.3. Supporting Uncertainty ..8
1.3.4. Compressing Trajectories...10

1.4. THESIS CONTRIBUTION ..10
1.5. TRAJECTORY DATASETS OVERVIEW ..14

1.5.1. Real trajectories ...14
1.5.2. Synthetic Trajectories Simulating Uncostrained Movement...14
1.5.3. Synthetic Trajectories Simulating Road-network Costrained Movement15

1.6. THESIS OUTLINE ..15

2. TRAJECTORY INDEXING ..17

2.1. INTRODUCTION...17
2.1.1. Specifications for Trajectory Indexing..18
2.1.2. What is proposed ..20

2.2. RELATED WORK...21
2.2.1. Indexing the Trajectories of Objects Moving in Unconstrained Space...........................21
2.2.2. Indexing the Trajectories of Objects Moving in Fixed Networks....................................23

2.3. INDEXING THE TRAJECTORIES OF OBJECTS MOVING IN UNCONSTRAINED SPACE25
2.3.1. The TB-tree ...25
2.3.2. The TB

*
-tree..26

2.4. INDEXING THE TRAJECTORIES OF OBJECTS MOVING IN FIXED NETWORKS32
2.4.1. The FNR-tree Structure ..33
2.4.2. The FNR-tree Algorithms ...34

2.5. EXPERIMENTAL STUDY: UNRESTRICTED MOVEMENT ..39
2.5.1. Experimental Setup...39
2.5.2. Results on Tree Size and Insertion Cost ...40
2.5.3. Results on Search Cost ...41
2.5.4. Summary of the Experiments ..43

2.6. EXPERIMENTAL STUDY: NETWORK-CONSTRAINED MOVEMENT..44
2.6.1. Experimental Setup...44
2.6.2. Results on Tree Size and Insertion Cost ...44
2.6.3. Results on Search Cost ...45
2.6.4. Summary of the Experiments ..47

2.7. CONCLUSIONS ..47

3. ADVANCED TRAJECTORY QUERY PROCESSING: NEAREST NEIGHBOR

SEARCH ...49

3.1. INTRODUCTION...49
3.2. RELATED WORK...52
3.3. PROBLEM STATEMENT AND METRICS FOR NEAREST NEIGHBOR SEARCH54

3.3.1. Problem Statement..54
3.3.2. Metrics ..56

 viii

3.3.3. Determining the Function of Distance between two Synchronously Moving Trajectories

 57
3.4. ALGORITHMS FOR NEAREST NEIGHBOR QUERIES OVER TRAJECTORIES...............................59

3.4.1. Non-incremental (Depth-First) NN Algorithms over Trajectories59
3.4.2. Incremental (Best-First) NN Algorithms over Trajectories ..62

3.5. ALGORITHMS FOR HISTORICAL CONTINUOUS NEAREST NEIGHBOR QUERIES OVER

TRAJECTORIES ..64
3.5.1. HCNN Algorithm for Stationary Query Objects ...64
3.5.2. HCNN Algorithm for Moving Query Objects ...65
3.5.3. Maintaining the Nearests List...66
3.5.4. Extending to k-HCNN algorithms...68

3.6. EXPERIMENTAL STUDY ..68
3.6.1. Experimental Setup...68
3.6.2. Results on the Calculation of the MINDIST Metric ..68
3.6.3. Results on the Search Cost of the Historical Non-continuous Algorithms......................69
3.6.4. Results on the Search Cost of the Historical Continuous Algorithms.............................75
3.6.5. Summary of the Experiments ..78

3.7. CONCLUSIONS ..78

4. ADVANCED TRAJECTORY QUERY PROCESSING: SIMILARITY SEARCH80

4.1. INTRODUCTION...80
4.2. RELATED WORK...81
4.3. PROBLEM STATEMENT AND METRICS FOR MOST SIMILAR TRAJECTORY SEARCH84

4.3.1. Problem Statement..84
4.3.2. Speed-Dependent Metrics ...87
4.3.3. Speed-Independent Metrics...90
4.3.4. Heuristics..92

4.4. ALGORITHMS FOR K-MOST SIMILAR TRAJECTORY SEARCH ...92
4.4.1. Depth-First MST Search Algorithm..93
4.4.2. Best-First MST Search Algorithm...94
4.4.3. Extending to k-MST algorithms ..95
4.4.4. Error Management ...96

4.5. EXPERIMENTAL STUDY ..96
4.5.1. Experimental Setup...96
4.5.2. Experiments on the Quality...97
4.5.3. Experiments on the Performance..99

4.6. CONCLUSIONS ..102

5. MANAGING THE EFFECT OF LOCATION UNCERTAINTY IN TRAJECTORY

DATABASES ..103

5.1. INTRODUCTION...103
5.2. RELATED WORK...106
5.3. MODELING ERROR DUE TO LOCATION UNCERTAINTY..108

5.3.1. Estimating the Number of False Negatives...110
5.3.2. Estimating the Number of False Positives ..113
5.3.3. Discussion...115

5.4. RELAXING THE UNIFORMITY ASSUMPTIONS ..116
5.4.1. Relaxing the Uncertainty Uniformity Assumption ..116
5.4.2. Relaxing the Data Uniformity Assumption ...120
5.4.3. Relaxing the Constant Uncertainty Radius Assumption ...123

5.5. EXPERIMENTAL STUDY: SPATIO-TEMPORAL DATA ..125
5.5.1. Experimental Setup...125
5.5.2. Experimental Results ..126

5.6. EXPERIMENTAL STUDY: SPATIAL DATA...127
5.6.1. Experimental Setup...128
5.6.2. Experiments on the Quality...128
5.6.3. Experiments on the Efficiency...134

5.7. CONCLUSIONS ..135

6. MANAGING THE EFFECT OF TRAJECTORY COMPRESSION IN SPATIO-

TEMPORAL QUERYING ..137

 ix

6.1. INTRODUCTION...137
6.2. BACKGROUND ..138

6.2.1. Compressing Trajectories...138
6.2.2. Related Work on Error Estimation ...141

6.3. ANALYSIS...141
6.3.1. Proof of Lemma 6.1 ..143
6.3.2. Discussion on Lemma 6.1 ...145

6.4. EXPERIMENTAL STUDY ..147
6.4.1. Experimental Setup...147
6.4.2. Experiments on the Performance..147
6.4.3. Experiments on the Quality...148

6.5. CONCLUSIONS ..150

7. EPILOGUE..151

7.1. CONCLUSIONS ..151
7.2. OPEN ISSUES ..154

8. REFERENCES..159

 x

List of Tables

Table 1.1: Summary dataset information about GSTD synthetic datasets..14
Table 2.1: Classification of spatio-temporal queries (extracted from [Pfo02])18
Table 2.2: Results on tree size (GSTD synthetic datasets) ...40
Table 2.3: Index size, space utilization and node accesses per insertion on the GSTD2000 dataset40
Table 2.4: Results on tree size (NG synthetic datasets)..44
Table 2.5: Index size, space utilization and node accesses per insertion on the NG 2000 dataset..........44
Table 3.1: Table of notations ..54
Table 3.2: Actual indexed space accessed by each NN algorithm for the GSTD 2000 dataset78
Table 4.1: Table of notations ..83
Table 4.2: Summary dataset information..97
Table 4.3: Query Settings ...99
Table 5.1: Table of notations ..109
Table 5.2: Histogram statistics ...134
Table 6.1: Table of notations ..142
Table 6.2: Summary Dataset Information...147

 xi

List of Figures

Figure 1.1: The spatio-temporal trajectory of a moving point: dots represent sampled positions and
lines in between represent alternative interpolation techniques (linear vs. arc interpolation).
Unknown type of motion can be also found in a trajectory (see [t3, t4) time interval)3

Figure 1.2: Linear interpolation..4
Figure 1.3: Querying trajectory databases ..6
Figure 1.4: Trajectories with different sampling rates..8
Figure 1.5: Modeling of Moving Object Uncertainty [TWHC04]..9
Figure 1.6: Snapshots of real and synthetic spatio-temporal data...15
Figure 1.7: Real-world network of San Joaquin, with a snapshot of the generated data15
Figure 2.1: An example of spatial data, their Minimum Bounding Boxes (MBBs), a range query and the

corresponding R-tree [MNPT05]. ...17
Figure 2.2: Combined search queries ...19
Figure 2.3: The SETI [CEP03] structure ..21
Figure 2.4: The initial query window Q (a) is decomposed into a number of smaller query windows Q1,

Q2,.. (b) with respect to infrastructure elements (drawn in black). ...22
Figure 2.5: (a) Example data and (b) the corresponding aRB-tree [PTKZ02]..24
Figure 2.6: Alternative ways that a 3D line segment can be contained inside a MBB25
Figure 2.7: The TB-tree structure ...25
Figure 2.8: The single points appearing twice in the TB*-tree are the starting and ending ones at each

leaf. ...27
Figure 2.9: The TB*-tree Insert Algorithm..28
Figure 2.10: The strategy followed when a leaf node becomes full: (a) The leaf node n becomes full (b)

Entry en is deleted from the tree, and (c) Entry en is re-inserted in the tree28
Figure 2.11: The InsertInNewNode algorithm ..29
Figure 2.12: The TB*-tree structure..30
Figure 2.13: The DeleteTrajectory Algorithm...31
Figure 2.14: The CompressIndex Algorithm..32
Figure 2.15: The FNR-tree structure ..33
Figure 2.16: An FNR-tree example: (a) trajectories of three objects on a road network and (b) the

corresponding FNR-tree components ...33
Figure 2.17: (a) The ‘orientation’ flag in 2D R-tree entries; (b) the ‘direction’ flag in 1D R-tree entries

..34
Figure 2.18: FNR-tree Insertion Algorithm..35
Figure 2.19: New entries are always inserted in the right-most node of each 1D R-tree when insertions

are performed in chronological order..35
Figure 2.20: Insertion of a new entry in the FNR-tree..36
Figure 2.21: FNR-tree Search-from-2D-R-tree Algorithm...37
Figure 2.22: FNR-tree Search-from-Parent-1D-R-tree Algorithm......................................37
Figure 2.23: Searching the FNR-tree using Search-from-2D-R-tree Algorithm38
Figure 2.24: Searching the FNR-tree using Search-from-Parent-1D-R-tree Algorithm.........................38
Figure 2.25: FNR-tree Parent-1D-R-Tree-Construction Algorithm.....................................39
Figure 2.26: Queries Q1 – Q3 with the synthetic data inserted organized by time..................................41
Figure 2.27: Queries Q1 – Q3 with the synthetic data inserted organized by id/time..............................42
Figure 2.28: Queries Q4 with the synthetic data organized by (a) time, (b) id/time42
Figure 2.29: Combined queries, (Q5) with the synthetic data organized by (a) time, (b) id/time43
Figure 2.30: Queries Q1 – Q3 ..46
Figure 2.31: Queries Q4 – Q6 ..46

 xii

Figure 2.32: Timeslice queries with incremental spatial extent in the FNR-tree with 2000 moving
objects ...47

Figure 3.1: NN queries over moving objects trajectories ...50
Figure 3.2: Calculating MINDIST between a line segment and a rectangle [TPS02]56
Figure 3.3: The proposed calculation method of MINDIST between a line segment and a rectangle56
Figure 3.4: The proposed calculation method of MINDIST between a route (projection of a trajectory

on the plane) and a rectangle...57
Figure 3.5: Minimum Synchronous Euclidean distance (i.e., “horizontal”) between two trajectories ...58
Figure 3.6: Historical NN search algorithm for stationary query points...60
Figure 3.7: Historical NN search algorithm for moving query points ..61
Figure 3.8: Generating Branch List of Node N against Trajectory Q ...61
Figure 3.9: Historical Incremental NN search algorithm for stationary query points.............................62
Figure 3.10: Historical Incremental NN search algorithm for moving query points63
Figure 3.11: Historical CNN search algorithm for stationary query points ..65
Figure 3.12: Historical CNN search algorithm for moving query points ...66
Figure 3.13: UpdateNearests Algorithm...67
Figure 3.14: Graphical illustration of UpdateNearests Algorithm Comparisons............................67
Figure 3.15: (a) Execution Time and (b) actual Distance Evaluations for query sets Qa and Qb

increasing the number of moving objects ...69
Figure 3.16: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing

point NN search over the 3D R-tree indexing the GSTD datasets ..70
Figure 3.17: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing

point NN search over the TB-tree indexing the GSTD datasets ...70
Figure 3.18: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing

point NN search over the TB*-tree indexing the GSTD datasets ..71
Figure 3.19: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing

trajectory NN search over the 3D R-tree indexing the GSTD datasets ...72
Figure 3.20: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing

trajectory NN search over the TB-tree indexing the GSTD datasets ..72
Figure 3.21: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing

trajectory NN search over the TB*-tree indexing the GSTD datasets ...73
Figure 3.22: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q3 executing

point NN search over the 3D R- and the TB-tree indexing the Trucks dataset74
Figure 3.23: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q3 executing

point NN search over the 3D R- and the TB-tree indexing the Trucks dataset74
Figure 3.24: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q4 executing

trajectory NN search over the 3D R- and the TB-tree indexing the Trucks dataset75
Figure 3.25: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q4 executing

trajectory NN search over the 3D R-tree indexing the Trucks dataset ..75
Figure 3.26: Node Accesses and Execution Time in queries Q5 (a, b) and Q6 (c, d) over the 3D R-tree,

the TB-tree and the TB*-tree increasing the number of moving objects76
Figure 3.27: Node Accesses and Execution Time in queries Q7 (a, b) and Q8 (c, d) over the 3D R-tree,

the TB-tree and the TB*-tree indexes increasing the query temporal extent77
Figure 3.28: Node Accesses and Execution Time in queries Q7 (a, b) and Q8 (c, d) over the 3D R-tree,

the TB-tree and the TB*-tree indexes increasing the number of k...77
Figure 4.1: Trapezoid approximation ...86
Figure 4.2: LDD definition ...87
Figure 4.3: MINDISSIM definition ...88
Figure 4.4: OPTDISSIM definition...89
Figure 4.5: PESDISSIM definition ...90
Figure 4.6: OPTDISSIMINC definition ..91
Figure 4.7: Depth-first most similar trajectory search algorithm (DFMSTSearch algorithm)94
Figure 4.8. Best-first most similar trajectory search algorithm (BFMSTSearch algorithm)95
Figure 4.9: Different degree of compression on a trajectory ..98
Figure 4.10: False results increasing the value the TD-TR parameter..99
Figure 4.11: Scaling with the dataset cardinality (Q1) ...100
Figure 4.12: Scaling with the MMS (Q2)..100
Figure 4.13: Scaling with the query length (Q3) ..101
Figure 4.14: Scaling with number of k (Q4) ...102
Figure 5.1: Problem Setting..104

 xiii

Figure 5.2: Partial containment in Trajectory Data Warehouses ..105
Figure 5.3: Snapshot of trajectories contributing to the number of false negatives..............................110
Figure 5.4: The unit space (a) and three details of it (b, c, d) ...111
Figure 5.5: Zones where area Ai,j contributing in false negatives is expressed as a single function.....112
Figure 5.6: Zones where area Ai,j contributing in false positives is expressed as a single function......114
Figure 5.7: Uniform difference distribution pdfs in (a) 1D and (b) 2D space.......................................117
Figure 5.8: (a) Two-Dimensional UDD, (b) bivariate normal distribution and, (c) best fitting in a single

dimension (c) ..118
Figure 5.9: (a) A timeslice query window over of a snapshot of a spatio-temporal histogram (b) A

timeslice query window over a snapshot of the augmented 4-D space.122
Figure 5.10: Average false negatives / positives and their estimations scaling with (a) d and (b) the

query size (synthetic data – uniform distribution of uncertainty). ..126
Figure 5.11: Real datasets: (a) North East and (b) Digital Chart of the World.....................................128
Figure 5.12: Average false negatives / positives and their estimations scaling with (a) d and (b) the

query size (synthetic data – uniform distribution of uncertainty). ..129
Figure 5.13: Average false negatives, positives and estimation scaling (a) with σ and (b) with the query

size (synthetic data - normal distribution of uncertainty)..130
Figure 5.14: Average estimation error of (a) false positives

PES and (b) false negatives
NES , in each

query, scaling with d and the query size (synthetic data – normal distribution of uncertainty). .131
Figure 5.15: Average false negatives / positives and their estimations scaling with (a) σ and (b) the

query size (real data – bivariate normal distribution of uncertainty). ...132
Figure 5.16: Average estimation error of (a) false positives PES and (b) false negatives NES , in each

query, scaling with σ and the query size (real data – bivariate normal distribution of uncertainty).
..132

Figure 5.17: (a) Average false negatives / positives and estimation error in each individual query using
different model approaches (real data – normal distribution of uncertainty). (b) Average false
negatives / positives and their estimations scaling with the query size (real data – bivariate
normal distribution of uncertainty). ..133

Figure 5.18: (a) Error between the actual number of false hits and their estimation in the roll-up
operation from the cell to state level in the USA map, (b) a bad approximation of a state by its
MBB..134

Figure 7.1. The distinct-counting problem in trajectory histograms...157
Figure 7.2. The effect of uncertainty in general range queries ...157

 1

1. Intoduction

This chapter highlights the background of the thesis and outlines its structure. In Section 1.1 we

introduce some basic knowledge about trajectories and motivate the thesis. Section 1.2 presents the

notion of trajectories, which are the general subject of this work. In Section 1.3 we set the problems

that we will cope with, and Section 1.4 sketches the contributions of this thesis. In Section 1.5 the

datasets used throughout the thesis are introduced and finally, Section 1.6 outlines the rest of the thesis.

1.1. Moving Object Databases

The domain of Moving Object Databases (MODs) is an important research area that has received a lot

of interest during the last decade. The objective of moving object databases is to extend database

technology to support the representation and querying of moving objects and their trajectory. MODs

have become an emerging technological field due to the development of the ubiquitous location-aware

devices, such as PDAs, mobile phones etc., as well as the variety of the information that can be

extracted from such databases. Currently, a number of decision support tasks can exploit the presence

of MODs, such as traffic estimation and prediction, analysis of traffic congestion conditions, fleet

management systems, battlefield and animal immigration habits analysis [GS05].

Traditionally, the following taxonomy exists in the spatio-temporal database literature: (a) work

on the present and future positions of moving objects, such as [SJLL00], [BJKS02], [MXA04] and (b)

work on the past positions of objects, asking historical queries, such as [TVS96], [PJT00]. The latter

category, can be also classified into two other categories: (a) approaches that model and treat spatial

data changing discretely over time, with examples including management of multimedia data [TVS96],

simple spatial [NST99] and more comlex, spatial referenced data, such as cadastral data [ACNV99],

and, (b) approaches that deal with data changing continuously their position with time [GBE+00],

[PJT00]; the latter is the category into which this thesis belongs.

Moving objects are geometries, which may be points, lines, areas or volumes, changing over

time, while a trajectory is the description of the movement of those objects. As the geographical space

per se is continuous, the physical movement is described by a continuous change of position, i.e., a

function from time to geographical space. Movement also implies a temporal dimension as we can only

perceive movement through comparison at two different instants. Therefore, a trajectory can be

equivalently defined as the recording of a time-varying spatial phenomenon.

According to the previous discussion, a historical trajectory can be quite simply defined as a

function from time to geographical space; on the other hand, its description, representation and

 2

manipulation are much more complex. Indeed, from an application point of view, a trajectory is the

recording of the movement of some object i.e., the recording of the positions of the object at specific

moments in time. Thus, while we naturally think of a well-shaped curve representing the trajectory of

the object, in reality the trajectory has to be built from a set of sample points, i.e., the sampled positions

of the object; then the trajectory curve is obtained by applying interpolation methods on the set of

sample points. However, whichever interpolation method is being employed, the resulting curve will

only be a guess of the actual trajectory; a guess that is even worse when considering the possible

measurement errors that inevitably happen when recording the original sampled points. There is thus an

inherent uncertainty associated with trajectories. In order to model and manage adequately uncertainty,

different modelling concepts have been proposed in the literature [TWHC04], [TWZC02], [PJ99].

Moreover, given that trajectories have to be a first-class modeling construct, rather than

computable derived data, their concept was introduced in some early papers [CR99], [EGSV99],

[FGNS00], which addressed the need for capturing and modeling the complete history of objects’

movement. Assessing the fact that location data may change over time, the respective database must

contain the whole history of this development; and the Database Management System (DBMS) should

be allowed to go back in time at any particular timestamp, and retrieve the state of the database at that

time.

Specifically, according to [GBE+00] moving points (mpoints) and moving regions (mregions)

are described as 3D (2D space + time) or higher-dimensional entities whose structure and behaviour is

captured by modeling them as abstract data types. Such types and their operations for spatial values

changing over time can be integrated as base (attribute) data types into an extensible DBMS.

[GBE+00] introduced a type constructor τ which transforms any given atomic data type a into a type

τ(a) with semantics τ(a) = time Ø a. In this way, the two aforementioned basic types, namely mpoint

and mregion, may be also represented as τ(point) and τ(region), respectively. [GBE+00] also provided

an algebra with data types (such as moving point, moving region, moving real, etc.) together with a

comprehensive set of operations, supporting a variety of queries over spatio-temporal trajectory data.

The realization of such data models proposed in the literature, as well as packaging corresponding

functionality to specific technical solutions results in moving object database engines. In the literature,

one can find at least two MOD engines developed to realize the model proposed by Gutting et al.

[GBE+00], namely the SECONDO prototype [AGB06] and the HERMES engine [PT06], [PTVP06].

Then again, the development of such engines involves physical aspects of database technology,

such as indexing, and dedicated query processing and query optimization techniques. The challenge

thus accepted in this thesis is to provide efficient mechanisms that allow MOD Engines to efficiently

store and query trajectories. Towards this goal, a number of access methods and dedicated advanced

query processing techniques are developed in this thesis and are subsequently implemented and shown

to be efficient. All these methods are initially implemented as prototypes in independent development

environments, while their porting in commercial DBMS is left as future work; nevertheless, a number

of the proposed techniques have been already implemented in the HERMES engine [PFGT08] and the

PostgreSQL [Post08b] together with the PostGIS spatial extension [Post08a].

 3

Briefly outlining the main topics that we will cope with in this thesis, which are physical subjects

of a MOD engine, they include indexing techniques for moving object trajectories, dedicated query

processing techniques, models for querying under the presence of uncertainty, and, finally, issues on

trajectory compression.

1.2. Basic Concepts of Trajectories

Generally speaking, spatio-temporal trajectories can be classified into two major categories, according

to the nature of the underlying spatial object: (i) objects without area represented as moving points, and

(ii) objects with area, represented as moving regions; in this case the region extent may also change

with time. Among the above two categories, the former has attracted the main part of the research

interest, since the majority of the real-world applications involving spatio-temporal trajectories

consider objects represented as points, e.g., fleet management systems monitoring cars in road

networks. It is therefore the former type on which this thesis is focused; as such, in the followings our

discussion is restricted to trajectories of moving points.

Under this perspective, a trajectory can be straightforwardly defined as a function from the

temporal I ⊆ � domain to the geographical space 2
� , i.e., the 2D plane. Formally, a trajectory T is a

continuous mapping from the temporal I ⊆ � to the spatial domain (2
� , the 2D plane):

() () ()()2 : ,x yI t a t a t a t⊆ → =� � a , (1.1)

and,

() ()(){ } 2, , |
x y

T a t a t t t I= ∈ ⊂ ×� � (1.2)

On the other hand, from an application point of view, a trajectory is the recording of an object’s

motion, i.e., the recording of the positions of an object at specific timestamps; while the actual

trajectory consists of a curve, real-world requirements imply that the trajectory has to be built upon a

set of sample points, i.e., the time-stamped positions of the object. Thus, trajectories of moving points

are often defined as sequences of (x, y, t) triples:

() () (){ }1 1 1 2 2 2, , , , , ,..., , ,n n nT x y t x y t x y t= , (1.3)

where , ,i i ix y t ∈� , and t1 < t2 < .. < tn , and the actual trajectory curve is approximated by applying

spatio-temporal interpolation methods on the set of sample points (Figure 1.1).

x

y

t1

t2

t3

t4

t5

t6

t

Figure 1.1: The spatio-temporal trajectory of a moving point: dots represent sampled positions and

lines in between represent alternative interpolation techniques (linear vs. arc interpolation). Unknown

type of motion can be also found in a trajectory (see [t3, t4) time interval)

 4

The first and foremost restriction posed by such spatio-temporal interpolation methods, is that a

trajectory connected to a data sample should contain the sample points. i.e., for all points (), ,i i ix y t in

the sample it holds that () () ()(), , , ,i i i x i y i ix y t a t a t t= . Secondly, given a data sample, there is an

infinite number of trajectories connected to that data sample, which implies that the trajectory is by no

means unique. Finding a suitable curve connecting the sample points, is called interpolation.

Interpolation brings along its own problems; we wish it to be fast, easily manageable, flexible and

accurate. Unfortunately improving one property doesn't necessarily improve another. Linear

interpolation is the fastest and easiest of them all (Figure 1.2). The idea is to connect the sample points

with straight lines; the linearity is expressed in the fact that equal jumps in time (between the same

sample points) lead to equal jumps in space. For example, the segment between the points (), ,i i ix y t

and ()1 1 1, ,i i ix y t+ + + is given by

() () ()1 1 1

1

, , , , , ,i

i i i i i i i i i

i i

t t
x y t x y t x x y y t t

t t
+ + +

+

−
= + − − −

−
, and 1i it t t +≤ ≤ , (1.4)

which is a straight line segment in 2 ×� � parameterized by t œ [ti, ti+1]. Finally, the trajectory consists

of the concatenation of all these segments. Therefore, a trajectory may be also regarded as a collection

of n-1 3D-line segments { }1 2 1, ,..., nT L L L −= with () (){ }1 1 1, , , , ,i i i i i i iL x y t x y t+ + += .

y

x

t

(xi-1, yi-1, ti-1)

(xi, yi, ti)

(xi+1, yi+1, ti+1)

Figure 1.2: Linear interpolation

Linear interpolation in this manner is not so innocent; along the way some assumptions have

been made. The first one is that the moving object keeps constant speed and direction between the

sample points. Moreover, this speed is the average speed needed to cover the distance between (),i ix y

and ()1 1,i ix y+ + in time 1i it t+ − . Secondly, changes in speed and direction at sample points are often

abrupt and discontinuous, due to the sharp corners of the trajectory at the sample points. On the other

hand, linear interpolation is fast to construct and to handle, and this is the main reason why it has been

widely adopted in the trajectory database literature. Hereafter in this thesis, the term ‘trajectories’ will

be used to describe such sets of triplets as in Eq.(1.3), applying linear interpolation in-between them as

determined by Eq.(1.4).

 5

1.3. Research Problems and Challenges in Trajectory Databases

Among the variety of technologies involved in the development of MODs for supporting historical

trajectories of moving points, in this thesis we focus on a number of physical aspects, namely,

indexing, advanced query processing, uncertainty support, and finally, trajectory compression. In the

next sections, we briefly present the main research problems and challenges on trajectory databases that

we will cope with in this thesis.

1.3.1. Indexing

Querying in MODs could be very expensive due to the nature of the underlying data and the

complexity of the query processing algorithms. Given also the ubiquitousness of location-aware

devices, trajectory databases will, sooner or later, face enormous volumes of data. It consequently

arises that performance in the presence of vast data sizes, will be a significant problem for trajectory

databases and the only way to deal with such enormous sizes is the exploitation of specialized access

methods used for spatio-temporal indexing purposes.

The domain of spatio-temporal indexing is dominated by the presence of the R-tree [Gut84],

along with its variations and extensions; this is actually an expected phenomenon given the popularity

of the R-tree in spatial databases. The variations and extensions of the R-tree in the spatio-temporal

domain include, among others, 3D R-trees [TVS96], TB-trees and STR-trees [PJT00], PA-trees

[NR07], MON-trees [AG05], while SETI [CEP03] is a hybrid R-tree-based and partition-based

technique. Since our interest in this thesis focuses on historical MODs, we restrict our discussion to

indexing techniques recording past locations. The reader interested in indexing current locations and

motion vectors can find very interesting work in [SJ02], [SJLL00], [TPS03], and [XP03].

However, as pointed out in [PJT00], the vast majority of the proposed spatio-temporal indexes

overlook the challenges posed by the nature of trajectory data, and they just index collections of line

segments in the spatio-temporal space, only concerning about the processing of traditional coordinate-

based queries ignoring at the same time other useful types, such as topological and navigational

queries, which are trajectory-based. Moreover, existing spatio-temporal indexes not preserving moving

object trajectories and dealing with the spatio-temporal data as collection of line segments in the 2+1

dimensional space (such as SETI [CEP03] and 3D R-tree [TVS96]), overlook the need for deletion

operations; albeit the deletion of a line segment from trajectory database may sound meaningless, the

deletion of an entire trajectory is a very useful operation which has to be supported by any real-world

trajectory index. The same need for trajectory preservation arises when dealing with compression

mechanisms, which as we will see in the next chapter, by definition requires treating each trajectory as

a single object.

Two index structures presented in [PJT00], namely the Spatio-Temporal R-tree (STR-tree) and

the Trajectory Bundle tree (TB-tree), try to fulfill these needs and to efficiently support trajectory-

based operations. The outcome of this work was that the TB-tree could support non-traditional queries

much more efficiently than the traditional 3D R-tree and the STR-tree. Unfortunately, in spite of its

clear advantages in trajectory-based query processing, the TB-tree has a crucial drawback due to its

insertion strategy: new trajectory data are always inserted at the right ‘end’ of the tree, leading its

performance to heavily depend on the data insertion ordering. However, in real-world applications, this

 6

assumption is not guaranteed to be always true. For example, consider an application with the need to

support real-time insertions, and a situation where the moving object enters an area where the position

transmission system does not function; then its trajectory could be stored locally in the object and be

transmitted to the central server – where the index operates – at a later time. Meanwhile, other moving

objects could have transmitted their positions, violating the above TB-tree assumption. Furthermore,

the structure of the TB-tree is not suitable for supporting deletion and compression operations; a

trajectory deletion would leave ‘holes’ in the nodes, and trajectory compression as we will discuss in

the sequel, requires the index to handle data inserted in non-chronological order.

Another interesting approach regarding the indexing of spatio-temporal trajectories, arise

acknowledging that trajectories are more likely to be network – constraint. As pointed in [KGT99], the

existence of restrictions in the space in which moving objects realize their movement is a condition that

can be used to improve the performance of spatio-temporal indexes. Actually, this is the case in most

real-world applications: planes fly in air-paths, cars and pedestrians move on road networks, while

trains have fixed trajectories on railway networks. These kinds of special conditions (moving

restrictions) have been the subject of research interest [KGT99], [PTKZ02].

More specifically, according to Kollios et al. [KGT99], the domain of the object’s trajectories

moving on a network is not the 2+1 dimensional space, rather than, a space with 1.5 dimensions, as line

segments comprising the network can be stored in a conventional index of spatial data (such as the R-

tree). Then, indexing of objects moving in a network is reduced to a one-dimensional indexing

problem. In [KGT99], the problem of network-constraint trajectory indexing is studied under a more

theoretical view rather than actually proposing an access method that could be used in real-world

applications. On the other hand, following the directions provided by [KGT99], in this thesis, we show

how this intuition can be realized by developing novel access methods for indexing network-constraint

trajectory data.

t y

Q1

Q2

x

T1
T2

Q3

 T3

T4

Q5

Q4

t1

t4

t2

t6

t3

Q6

Figure 1.3: Querying trajectory databases

1.3.2. Advanced Query Processing

Advanced query processing over MODs storing historical trajectory information aims at developing

specialized query processing techniques suitable for executing advanced queries, which may (or may

not) exploit existing index structures being present to support more traditional queries. Here we have to

point out that, queries of the form “find all objects located within a given area during a certain time

interval”, i.e., range queries (Q2 in Figure 1.3), are regarded as traditional queries, and they are by

 7

definition supported by any index; in the same category fall also the queries of the form “find all

objects' locations within a given area at a certain time instance”, which are called timeslice queries,

and constitute a specialization of simple range queries having their lifespan set to zero (Q1 in Figure

1.3) . The execution of range queries is usually a straightforward task; for example, the execution of a

range query over R-tree-like (such as, the 3D R-tree [TVS96], the TB- and STR-trees [PJT00] and the

TB*-tree) structures storing historical trajectory information is a straightforward extension of the

FindLeaf algorithm, originally proposed in [Gut84], in the 3D space formed by the two spatial and the

one temporal dimension.

On the other hand, there is a variety of spatio-temporal operators, which require more

sophisticated query processing techniques in order to be efficiently processed; often these operators are

extensions of the respective spatial ones. Among them, an important class of queries that has been

introduced in the MOD directly from the spatial domain is the so-called k nearest neighbor (k-NN)

search, where one is interested in finding the k closest trajectories to a predefined query object Q. To

the best of our knowledge, the database literature regarding such queries primarily deal with either

static ([RKV95], [CF98], [HS99]) or continuously moving query points ([SR01], [TPS02]) over

stationary datasets, or queries about the future or current positions of a set of continuously moving

points ([BJKS02], [TP02], [ISS03], [YPK05], [XMA05], [MHP05]). Apparently, these types of queries

do not cover NN search on historical trajectories. Thus, one of the challenges being present in the

domain of trajectory databases is to develop mechanisms to perform k-NN search on MODs exploiting

spatio-temporal indexes storing historical information.

Moreover, the complexity of the underlying data makes the possible nearest neighbor operators

over MODs storing historical trajectory data to be classified as follows: (a) according to the nature of

the query object, which may be either a stationary or a moving point, i.e., another trajectory not

contained in the MOD and, (b) according to the requested output of the operator, i.e., between the

nearest to the query object during the query lifespan, and the nearest(s) at any time instance during the

query lifespan; the latter are called historical continuous nearest neighbor queries.

To make the previous taxonomy more intelligible, recall Figure 1.3 illustrating a trajectory

database containing four trajectories {T1, T2, T3, T4}, and several queries posed against it. Query Q3

asks for the nearest trajectory to the query object (which is a stationary point) during the time period

[t1, t4]; this is the simple case, and the answer to the query is trajectory T3. Similarly, Q4 is equivalent

with Q3, with the single difference that the query object is another trajectory, not contained in the

database; in this case, the answer is trajectory T4. Now, consider query Q5 which is a historical

continuous nearest neighbor query; in this case the query output should be a list of tuples containing the

nearest trajectories along with the time period during which they were the nearest trajectory, i.e., {(T4,

[t1,t3)), [T3, [t3, t4])}.

Another interesting query type that is useful in MOD search is the so-called trajectory similarity

problem, which aims to find ‘similar’ trajectories of moving objects. To handle such queries efficiently,

MOD systems should include methods for answering the so-called Most-Similar-Trajectory (MST)

search also discussed in [The03]; an example of an MST query is Q6 in Figure 1.3, which retrieves

trajectory T1 as its most similar. Trajectory similarity search is a relatively new topic in the literature;

 8

the majority of the methods proposed so far are based on either the context of time series analysis or

the Longest Common Subsequence (LCSS) model [VKG02] and the recently proposed Edit Distance

on Real Sequence (EDR) [COO05].

T

Q

Figure 1.4: Trajectories with different sampling rates

However, the majority of the proposed methods either ignore the time dimension of the

movement, therefore calculating the spatial (and not the spatio-temporal) similarity between the

trajectories, or assume that the trajectories have the same sampling rate. To exemplify the problem

derived when different sampling rates are present, consider Figure 1.4 illustrating trajectories T and Q

with their position being sampled in different rates; while these two trajectories are obviously similar,

methods based on the LCSS or the EDR model cannot detect this kind of similarity since they try to

match trajectory sampled positions one by one, which clearly does not happen in the above (real world)

example. What is more, the majority of the proposed approaches exploit specialized index structures in

order to prune the search space and retrieve the most similar to a query trajectory. Thus, one of the

challenges being present in the domain of trajectory databases is to develop mechanisms to perform k-

MST search on MODs exploiting existing spatio-temporal indexes that support other type of queries as

well.

1.3.3. Supporting Uncertainty

In the literature, uncertainty has been defined as the measure of the difference between the actual

contents of a database, and the contents that the current user or application would have created by

direct and perfectly accurate observation of reality [ZG02]. Sources of uncertainty may be one of the

followings:

• Imperfect observation of the real world,

• Incomplete representation language,

• Ignorance, laziness or inefficiency.

Pfoser and Jensen [PJ99] propose a representation of location uncertainty due to measurement and

sampling errors, which fall into the first and the third of the above error sources, respectively.

According to [PJ99] the spatial projection of the trajectory of an object can be modeled as a 2D

elliptical area, defined by the two consecutive tracked positions. On the other hand, a model that

simultaneously captures both kinds of uncertainty is described by [TWHC04], [TWZC02]. In this

model an uncertainty threshold is introduced, denoting the maximal distance of the object to the

assumed location on the trajectory. Specifically, given the sampled points, after applying linear

interpolation between them, this model assigns to each point on the trajectory a disc, parallel to the XY-

plane, of radius equal to the threshold. Taking all those discs together in the 3D space-time, they finally

result in a tube around the polyline connecting the sample points (Figure 1.5). This threshold

 9

incorporates interpolation uncertainty and measurement errors all at once, and it does not discriminate

sample points from interpolated points.

Figure 1.5: Modeling of Moving Object Uncertainty [TWHC04]

The literature on the management of the location uncertainty of spatio-temporal objects so far,

apart from uncertainty representation issues [Tra03], [TWHC04], [WSCY99], also deals with

probabilistic algorithms [TWHC04], [TWZC02], [CKP04] that process queries in the presence of

uncertainty, estimating the probability of each trajectory to be included in the query result. On the other

hand, there are cases where the user would prefer to know the influence of the measurement error in the

query results, without actually executing the query. Consider for example the following real-world

situation, inspired by the emerging open agoras paradigm [Ioa07]: let us assume a user who wishes to

pose a query over several distributed subscribe-based data-sources containing the same spatio-temporal

objects (i.e., trajectories) represented at different levels of uncertainty due to different measurement

methods and, consequently, different uncertainty thresholds associated; though the criterion used to

choose among them is the optimization, i.e., the minimization, of the uncertainty introduced in the final

query results, the data-sources provide during the negotiation step [Ioa07] their potential customers-

users with aggregate-only data. The only way thus to decide on the uncertainty of the results is the

presence of a model that serves for this purpose, based on the aggregate-only information provided by

the providers.

Another challenging problem, related to the one previously presented, is to determine the

maximum permitted (im)precision of the trajectory data that will feed a MOD given the required

accuracy in the results of timeslice queries. Then, users can be guided by the DBMS in the employment

of the appropriate, more or less accurate - which also entails a more/less expensive - positioning

method to be used for the data that will feed the system.

Both previous requirements could be fulfilled by a model that predicts the error introduced in

query results based on known dataset (such as the uncertainty threshold) and query properties, without

actually executing the query; moreover, such a model could be also utilized in an interactive query

 10

builder / optmizer, informing the user about the effect of uncertainty in the query results, along with

other interesting measures such as the query selectivity, estimated execution time etc.. To the best of

our knowledge, a theoretical study on modeling the error introduced in spatio-temporal query results

due to the uncertainty of trajectories is lacking; thus, it remains an open research problem in the

domain of spatio-temporal databases.

1.3.4. Compressing Trajectories

As addressed in [MB04], it is expected that all the ubiquitous positioning devices will eventually

generate an unprecedented data stream of time-stamped positions. Sooner or later, such enormous

volumes of data will lead to storage, transmission, computation, and display challenges. Hence the

need for compression techniques arises. However, existing work in this domain is relatively limited

[CWT03], [MB04], [PPS06], [PPS06a], [PPS07], and mainly guided by advances in the field of line

simplification, cartographic generalization and data series compression. According to [MB04], the

objectives for trajectory data compression are:

• to obtain a lasting reduction in data size;

• to obtain a data series that still allows various computations at an acceptable (low)

complexity;

• to obtain a data series with known, small margins of error, which are preferably parametrically

adjustable.

As a consequence, we are interest in lossy compression techniques, which eliminate some redundant or

unnecessary information under well-defined error bounds.

Especially on the subject of the error introduced on the produced data by such compression

techniques, the single related work [MB04] provides a formula that estimates the mean error of the

approximated trajectory in terms of distance from the original data stream. On the other hand, there are

other kinds of errors that could help a user of a MOD to decide on the quality of the compressed data.

For example, it is much more meaningful to provide the user with information about the mean error

introduced in query results over the compressed data. Therefore, the need for an analytical model that

estimates the error due to compression in the results of spatio-temporal queries arises.

Such a model could be utilized right after the compression of a trajectory dataset in order to

provide the user with the average error introduced in the results of spatio-temporal queries of several

sizes; it could be therefore exploited as an additional criterion for the user in order to decide whether

compressed data are suitable for his/her needs, and possibly decide on different compression rates, and

so on. Moreover, it could be used so as to improve the efficiency of the proposed solutions regarding

trajectory compression; given that a model of this kind would expose the actual measures on which the

error is depended, it could subsequently provide intuitive directions towards the employment of more

sophisticated / efficient solutions. The challenge thus being present regarding trajectory compression is

to provide a theoretical model that estimates the error due to compression in the results of spatio-

temporal queries, and also adapt it in the context of MODs.

1.4. Thesis Contribution

This thesis presents several works being necessary for the efficient Management of Trajectory Data.

 11

The uttermost goal of the conducted research is to provide effective mechanisms that allow Moving

Object Databases to efficiently store and query historical trajectories; as such, the research deals with

indexing, advanced query processing, supporting of uncertainty and issues on trajectory compression.

Next, we discuss the contributions of this thesis, grouped by the respective issue. Here, we have

to point out, that the novelty of our approach is established in each different chapter, by appropriately

presenting the respective related work. This approach is selected, instead of providing the related work

in a single chapter, due to the variety of the issues so as to facilitate the reading of the thesis.

Indexing. In order to deal with the indexing requirements earlier presented, in this thesis we introduce

two novel indexes, namely, the TB*-tree and the FNR-tree. The TB*-tree is an extension of the TB-tree

which enables it to support non-chronological insertions; it is more compact, it advances its

performance in terms of construction time, while, it outperforms its predecessor in the majority of the

querying settings. Apart from the construction and query processing algorithms, the TB*-tree supports

trajectory deletions, while its structure makes it capable of supporting trajectory compression

algorithms as well, two of the properties not supported by the original TB-tree . It is essential however

to clarify that the proposed TB*-tree, does not exploit the special conditions that objects have when

moving on fixed networks; quite the opposite, it indexes objects moving freely in the 2D space.

On the other hand, under the network-constraint scenario this thesis provides a novel index,

called Fixed Network R-tree (FNR-tree) which is an extension of the well-known R-tree [Gut84]. The

general ideas on which the FNR-tree is based are roughly presented in [Fre02], nevertheless, without

giving any implementation or experimental evaluation of the proposed method. The FNR-tree can be

briefly portrayed as a forest of 1D (1D) R-trees on top of a 2D (2D) R-tree. The 2D R-tree is used to

index the spatial data of the network graph (i.e., roads consisting of line segments), while the 1D R-

trees are used to index the time interval of each object’s movement on a given segment of the network.

As it will be shown experimentally, the proposed FNR-tree outperforms all of its competitors in

general coordinate-based queries, something that comes for the cost of lacking a mechanism which

preserves trajectories.

Our results in the aforementioned topics are presented in Chapter 2. Preliminary results have

been already published in [Fre03], [FT06].

Advanced Query Processing: Nearest Neighbor Search. In order to efficiently support nearest neighbor

search on moving object trajectories we first propose a set of novel metrics being necessary for the

ordering and pruning strategies followed by the proposed algorithms. More specifically, the definition

of the minimum distance metric MINDIST between points and rectangles, initially proposed in

[RKV95] and extended in [TPS02], is further extended in order for our algorithms to calculate the

minimum distance between trajectories and rectangles efficiently. We then propose query processing

algorithms to perform NN search over spatio-temporal indexes storing historical information of moving

objects. Among the candidate spatio-temporal indexes, we exploit on the most commonly found

indexes which are the ones supporting unconstrained movement, i.e., R-tree-like structures as the 3D

R-tree [TVS96], the TB-tree [PJT00] and the TB*-tree proposed in this thesis. The description of our

 12

algorithms for different queries depends on the type of the query object (point or trajectory) as well as

on whether the query itself is continuous or not. In particular, we present efficient depth-first and best-

first algorithms for historical NN queries as well as depth-first algorithms for their continuous

counterparts. All the proposed algorithms are generalized to find the k nearest neighbors. Finally, we

conduct a comprehensive set of experiments over large synthetic and real datasets demonstrating that

the algorithms are highly scalable and efficient in terms of node accesses, execution time and pruned

space.

Our results in the aforementioned topics are presented in Chapter 3. Preliminary results have

been already published in [FGPT05], [FGPT07], [PFGT08].

Advanced Query Processing: Similarity Search. The issues mentioned on the subject of trajectory

similarity search are addressed in this thesis, by efficiently supporting the k-MST search in MODs

storing historical trajectory information, indexed by R-tree-like structures. More specifically, we

support k-MST search by defining a dissimilarity metric (DISSIM) for the measurement of the spatio-

temporal dissimilarity between two trajectories; this metric is also employed in [NP06] and can be seen

as the average distance between the two trajectories in time. We subsequently propose an efficient

approximation method to overcome its costly calculation, while, in the sequel, we develop a set of

novel metrics along with several associated lemmas, which are employed for ordering and pruning

purposes by the proposed most similar trajectory search algorithms. More specifically, using these

metrics, we propose a depth-first and best-first query processing algorithm to perform k-MST search on

R-tree-like structures storing historical trajectory information. We close this subject by conducting a

comprehensive set of experiments over large synthetic and real datasets demonstrating that the

algorithms are highly scalable and efficient in terms of node accesses, execution time and pruned

space. We further demonstrate that the proposed similarity metric efficiently retrieves spatio-

temporally similar trajectories in cases where related work fails. Finally, we describe how this work

can be adjusted so as to support density-based trajectory clustering.

We have to point out that all the proposed algorithms do not require any dedicated index

structure and can be directly applied to any member of the R-tree family used to index trajectories,

such as the 3D R-tree [TVS96], the TB-tree [PJT00] and the TB*-tree proposed in this thesis. To the

best of our knowledge, the proposal of this thesis is the first that provides techniques for a spatio-

temporal index to support classical range, topological, nearest neighbor and similarity based queries.

Our results in the aforementioned topics are presented in Chapter 4. Preliminary results have

been already published in [FGT07].

Supporting Uncertainty: The problems regarding the management of uncertainty highlighted in the

previous section are initially covered by proving two lemmas that estimate the average number of false

positives and false negatives when executing timeslice queries over uniformly distributed uncertain

trajectories modelled via the [TWHC04], proposal; both errors depend on the radius of the cylindrical

volume (i.e., the uncertainty threshold) and the perimeter of the timeslice query window, rather than its

area. Then, in order to relax the location uncertainty uniformity assumption (directly derived from the

 13

model of [TWHC04]) and to utilize the real-world adapted bivariate normal distribution [Lei95]

[PTJ05], it is efficiently approximated with the uniform difference distribution. The results are close

enough to the ones of the original analysis. The extension of the model towards supporting arbitrarily

distributed trajectories and various distributions of the uncertainty radiuses is covered by employing

novel spatio-temporal and other augmented histograms. We then perform a comprehensive set of

experiments demonstrating the correctness and accuracy of the analysis. Finally, it is shown how the

results of the analysis may be applied over spatial datasets: the solutions proposed are implemented on

top of a commercial Spatial Database Management Systems (SDBMS), namely, the PostgreSQL

[Post08b] with PostGIS spatial extension [Post08a]. Here, it is worth to note that off-the-shelf spatial

histograms, already used in SDBMS for query selectivity estimation, support the proposed model

without additional requirements.

Our results in the aforementioned topics are presented in Chapter 5. Preliminary results have

been already published in [FGT08].

Compressing Trajectories: In order to cover the issues raised by the previous discussion regarding

trajectory compression, we first describe two types of errors (namely, false negatives and false

positives) when executing timeslice queries over compressed trajectories, and we prove a lemma that

estimates the average number of the above error types. It is proven that the average number of the false

hits of both error types depends on the Synchronous Euclidean Distance [CWT03], [MB04], [PPS06],

[PPS06a] along the x- and y- axes between the original and the compressed trajectory, and the

perimeter (rather than the area) of the query window. We subsequently show how the cost of evaluating

the developed formula can be reduced to a small overhead over the employed compression algorithm,

while we discuss how the developed analytical model helps to provide more effective compression

algorithms. Finally, we conduct a comprehensive set of experiments over synthetic and real trajectory

datasets demonstrating the applicability, correctness and accuracy of our analysis. It is worth to note

that the most prominent application of the proposed model is based on the intruition it provides towards

the development of more effective compression algorithms than the ones already present in the

database literature.

Our results in the aforementioned topics are presented in Chapter 6. Preliminary results have

been already published in [FT07].

In summary, the main contributions of our research are:

• The development of two novel spatio-temporal indexes, called TB*-tree and FNR-tree

respectively, with the former enhancing the well known TB-tree towards the supporting of

more realistic operation scenarios, and the latter exploiting the network-constraint assumption,

outperforming all other compared indexes.

• The proposal of several scalable and efficient algorithms for nearest neighbor search over R-

tree-like structures storing historical trajectory information.

• The development of two algorithms for Most Similar Trajectory search over R-tree-like

structures storing historical trajectory information. Here, it is worth to note that using the

 14

proposed NN and MST search algorithms, enables R-tree-like structures to support a wide

range of spatio-temporal queries.

• The proposition of an analytical model that estimates the effect of uncertainty in timeslice

queries over trajectory data, along with its extension to support arbitrarily distributed

trajectories with the aim of histograms; the same model demonstrates great applications over

stationary spatial data, while it can be directly employed in existing SDBMS.

• The development of an analytical model that estimates the effect of trajectory compression in

spatio-temporal querying.

1.5. Trajectory Datasets Overview

Throughout this thesis we have experimented with a variety of real and synthetic trajectory datasets.

Specifically, we have used two real trajectory datasets and also synthetic datasets generated by the

GSTD data generator [TSN99], the network-based data generator of [Bri02] and a custom trajectory

generator developed to fulfill specific purposes [FGT07]. The details of the employed datasets are

given in Table 1.1.

Table 1.1: Summary dataset information about GSTD synthetic datasets

Dataset # trajectories # entries

Real Data (Trucks) 276 112K

Real Data (Buses) 145 66K

GSTD 100 100 485K

GSTD 250 250 1213K

GSTD 500 500 2426K

GSTD 1000 1000 4850K

GSTD 2000 2000 9701K

NG 200 200 106K

NG 400 400 213K

NG 800 800 417K

NG 1200 1200 626K

NG 1600 1600 831K

NG 2000 2000 1043K

1.5.1. Real trajectories

The origin of the two employed real datasets, was a fleet of trucks (dataset Trucks) and a fleet of school

buses (dataset Buses), illustrated in Figure 1.6(a) and (b), respectively. The two real datasets consist of

276 (112203) and 145 (66096) trajectories (entries), respectively. Both datasets are available at

http://www.rtreeportal.org.

1.5.2. Synthetic Trajectories Simulating Uncostrained Movement

In order to produce trajectories moving in the unconstrained space, we have used the GSTD data

generator [TSN99]. A snapshot of the generated data using GSTD is illustrated in Figure 1.6(c). The

synthetic trajectories generated by GSTD correspond to 100, 250, 500, 1000 and 2000 moving objects

resulting in datasets of 500K, 1250K, 2500K, 5000K, and 10000K entries (the position of each object

 15

was sampled approximately 5000 times), thus building indices of up to 500 Mbytes size (the case of 3D

R-tree index for the GSTD 2000 dataset). Regarding the rest parameters of the GSTD generator, the

initial distribution of points was Gaussian while their movement was ruled by a random distribution.

(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data

Figure 1.6: Snapshots of real and synthetic spatio-temporal data

1.5.3. Synthetic Trajectories Simulating Road-network Costrained Movement

Regarding the case of network-constrained moving objects, our experiments were based upon synthetic

datasets created using a network-based data generator [Bri02] and the real-world road network of San

Joaquin (Figure 1.7). We produced the NG trajectory datasets constituting of 200, 400, 800, 1200, 1600

and 2000 moving objects, where each object’s position was sampled 400 times. While the output of the

generator was of the form (id, t, x, y), in our experiments we wanted to utilize those data only if (x, y)

are the coordinates of a node of the network. Therefore, the generator was modified in order to produce

records of the form (id, t, x, y) each time a moving object was passing through each node of the

network. The maximum volume of line segments produced by the network-based generator was

approximately 1M entries and that came up for 2000 moving objects.

Figure 1.7: Real-world network of San Joaquin, with a snapshot of the generated data

1.6. Thesis Outline

The outline of the thesis is as follows: In Chapter 2 we propose and evaluate two novel indexes for

spatio-temporal trajectories for unconstraint (the TB*-tree) and network-constraint movement (the

FNR-tree), respectively. Chapters 3 and 4 propose solutions for efficient support of nearest neighbor

and similarity search, respectively, over historical trajectory information. Chapters 5 and 6 propose two

models, the former for the prediction of the effect of uncertainty in spatio-temporal queries, and the

 16

latter, for the estimation of the effect of trajectory compression in spatio-temporal queries. Finally,

Chapter 7 closes the thesis by summarizing the conclusions and discussing interesting open issues.

 17

2. Trajectory Indexing

In this chapter we focus on the indexing problem regarding trajectory databases, and we present our

two proposals, the TB*-tree and the FNR-tree. The outline of the chapter is as follows: Section 2.1

introduces the issues being related to the indexing of spatio-temporal trajectories while, Section 2.2

examines the related work. Section 2.3 presents the structure and the algorithms for maintaining and

searching the TB*-tree, while section 2.4 stands for the structure and the algorithms of the FNR-tree.

Sections 2.5 and 2.5.4 present the experimental study in unrestricted, and network-constraint space,

respectively, and finally, Section 2.6.4 closes the chapter providing the conclusions.

2.1. Introduction

Like in traditional databases, querying in MODs could be very expensive due to the nature of data and

the complexity of query processing algorithms. Given also that location-aware devices are almost

ubiquitous nowadays, trajectory databases will, sooner or later, face enormous volumes of data. It

consequently arises that performance in the presence of vast data sizes, will be a significant problem

for trajectory databases. Since ordering is far from the nature of the geographic (multi-dimensional)

data, traditional indexes like B-trees are not useful in spatial (and consequently in spatio-temporal)

databases. In the domain of spatial databases, the R-tree proposed by Guttman [Gut84] is “almost

ubiquitous”, with applications ranging from Geographical Information Systems (GIS) and Computer

Aided Design (CAD) to Image and Multimedia Management Systems [MNPT05].

D

E

F

G

H

K

J

I

M

L
N

A

B

C

A B C

D E F G H I J K L M N

Q

Figure 2.1: An example of spatial data, their Minimum Bounding Boxes (MBBs), a range query and

the corresponding R-tree [MNPT05].

The R-tree can be considered as an extension of the B-tree in n-dimensional spaces. Similar to

the B-tree, R-tree is a height-balanced tree with the index records in its leaf nodes containing pointers

 18

to the actual data objects. Leaf node entries are of the form <id, MBB>, where id is an identifier that

points to the actual object and MBB (Minimum Bounding Box) is an n-dimensional interval. Non-leaf

node entries are of the form <ptr, MBB>, where ptr is a pointer to a child node, and MBB the bounding

box that covers all child nodes. A node in the tree corresponds to a physical disk page (or disk block,

which is the fundamental element on which the actual disk storage is organized) and contains between

m and M entries (M is the node capacity and m is a tuning parameter - usually m is set to M/2 which

guarantees that the space utilization is at least 50%). Contrary to the B-tree, node MBBs belonging to

the same tree level are allowed to overlap. Figure 2.1 illustrates a set of spatial objects and the

corresponding R-tree.

In the domain of spatio-temporal indexing, R-tree variations and extensions include, among

others, 3D R-trees [TVS96], TB-trees and STR-trees [PJT00], Octagon-Prism trees OP-tree [ZSI02],

PA-trees [NR07], MON-trees [AG05], while SETI [CEP03] is a hybrid R-tree-based and partition-

based technique. We will thoroughly examine them in the next sections. Moreover, since our interest in

this thesis focuses on historical MODs, we restrict our discussion to indexing techniques recording past

locations. The reader interested in indexing current locations and motion vectors can find very

interesting work in [SJ02], [SJLL00], [TPS03], and [XP03].

Table 2.1: Classification of spatio-temporal queries (extracted from [Pfo02])

Query Type Operation

Coordinate-Based Queries
overlap, inside, nearest

neighbor, etc.

Topological

Queries
enter, leave, cross, bypass, etc.

Trajectory-Based Queries
Navigational

Queries

traveled distance, covered area,

speed, heading, parked, etc.

2.1.1. Specifications for Trajectory Indexing

As pointed out in [PJT00], the vast majority of the proposed spatio-temporal indexes overlook the

challenges posed by the nature of trajectory data, and they just index collections of line segments in the

spatio-temporal space, only concerning about the processing of traditional coordinate-based queries

(such as range and timeslice queries), ignoring at the same time other useful queries, such as

topological and navigational queries, which are trajectory-based. In particular, queries of the form

“find all objects located within a given area during a certain time interval” generalize the spatial range

query of the form “find all objects within a given area” and do not take the notion of trajectory into

consideration; thus, called coordinate-based [PJT00]. Queries of the form “find all objects’ locations

within a given area at a certain time instance”, called timeslice queries, constitute a special type of

range queries where the temporal extent is set to zero. Another straightforward extension of pure

spatial queries in the domain of spatio-temporal applications includes nearest neighbor queries of the

form “find the nearest moving object to a query object during a certain time interval”. Moreover, in the

case of spatio-temporal nearest neighbor queries, the query object could be a 2D point or another

moving object trajectory, while the query would return the nearest to the query object at any time

 19

during a time interval, or, in every time instance of the query time interval (historical continuous

queries).

Furthermore, [PJT00] propose to call trajectory-based the queries which require the knowledge

of the complete – or at least of a subset of the – object’s trajectory in order to be processed. Such

queries are those considering topological relations (enter, leave, etc.) and those providing derived

information about an object’s navigation (average speed, traveled distance etc.). Table 2.1 summarizes

the above two query types.

The combination of range and topological queries produces another type of queries called

combined queries. As an example [PJT00], consider the following query “What were the trajectories of

objects after they left Tucson street between 7 a.m. and 8 a.m. today, in the next hour”, which firstly

locates the trajectories contained in an inner range query window (Tucson street, between 7 a.m. and 8

a.m. today, Qin in Figure 2.2) and then retrieve those parts of objects’ trajectories contained in an outer

query window (in the next hour, Qout in Figure 2.2).

Qout

Qin

Figure 2.2: Combined search queries

In another line of research, [MB04] recently address the need for efficient trajectory compression

mechanisms; according to that work, it is expected that all the ubiquitous positioning devices will

eventually start to generate an unprecedented data stream of time-stamped positions. Sooner or later,

such enormous volumes of data will lead to storage, transmission, computation, and display challenges.

Hence the need for compression techniques arises. However, existing spatio-temporal indexes not

preserving moving object trajectories and dealing with the spatio-temporal data as collection of line

segments in the 2+1 dimensional space (such as SETI [CEP03] and 3D R-tree [TVS96]), overlook the

need for compression, which by definition requires treating each trajectory as a single object. The same

need for trajectory preservation arises when dealing with deletion operations; albeit the deletion of a

line segment from trajectory database may sound meaningless, the deletion of an entire trajectory is a

very useful operation which has to be supported by any real-world trajectory index.

Two index structures presented in [PJT00], namely the Spatio-Temporal R-tree (STR-tree) and

the Trajectory Bundle tree (TB-tree), try to fulfill these needs and to efficiently support trajectory-

based operations such as topological query processing. The outcome of this work was that the TB-tree

could support non-traditional queries much more efficiently than the traditional 3D R-tree and the

STR-tree. Unfortunately, in spite of its clear advantages on trajectory-based query processing, the TB-

tree has a crucial drawback: because of its insertion strategy, new trajectory data are always inserted at

the right ‘end’ of the tree, leading its performance to heavily depend by the order of data insertion.

However, in real-world applications, this assumption is not guaranteed to be always true. For example,

in an application where insertions occur in real-time, if the moving object enters an area where the

 20

position transmission system does not function, its trajectory could be stored locally in the object and

be transmitted to the central server – where the index operates – at a later time; meanwhile, other

moving objects could have transmitted their positions, violating the above TB-tree assumption.

Furthermore, the structure of the TB-tree is not suitable for supporting deletion and compression

operations; a trajectory deletion would leave ‘holes’ in the nodes, and trajectory compression as we

will discuss in the sequel, requires the index to handle data inserted in non-chronological order.

Another interesting approach regarding the indexing of spatio-temporal trajectories arises by

acknowledging that trajectories are more likely to be network–constrained. As pointed out in [KGT99],

the existence of restrictions in the space in which moving objects realize their movement is a condition

that can be used to improve the performance of spatio-temporal indexes. Actually, this is the case in

most real-world applications: planes fly in air-paths, cars and pedestrians move on road networks,

while trains have fixed trajectories on railway networks. These kinds of special conditions (moving

restrictions) have been the subject of research interest [KGT99], [PTKZ02]. More specifically,

according to Kollios et al. [KGT99], the domain of the trajectories of objects moving on a network is

not the 2+1 dimensional space, rather than, a space with 1.5 dimensions, as line segments comprising

the network can be stored in a conventional index of spatial data (such as the R-tree). Then, indexing of

objects moving in such a network is reduced to a one-dimensional indexing problem. In [KGT99], the

problem of network-constraint trajectory indexing is studied under a more theoretical view rather than

actually proposing an access method that could be used in real-world applications. On the other hand,

following the directions provided by [KGT99], in the next sections, we show how the intuition of

[KGT99] can be realized by developing novel access methods for indexing network-constraint

trajectory data.

2.1.2. What is proposed

In order to deal with the above requirements, in this work, two novel indexes are independently

proposed, namely, the TB*-tree and the FNR-tree. In particular, the TB*-tree is an extension of the TB-

tree that overcomes the drawback of its predecessor, that is, the need for trajectory preservation and

the need for non-chronological insertions, preserving at the same time all of its ‘desired’ properties.

Moreover, apart from the construction and query processing algorithms, the TB*-tree supports

trajectory deletions, while its structure makes it capable of supporting trajectory compression

algorithms as well. The TB*-tree structure and algorithms will be demonstrated in the next sections,

followed by an experimental study which reveals the positive and negative aspects of the proposed

index. It is essential however to clarify that the proposed TB*-tree, does not exploit the special

conditions that objects have when moving on fixed networks; quite the opposite, it indexes objects

moving freely in the 2D space.

On the other hand, under the network-constraint scenario this thesis provides a novel index,

called Fixed Network R-tree (FNR-tree) which is an extension of the well-known R-tree [Gut84]. The

general idea that describes the FNR-tree is that of a forest of 1D (1D) R-trees on top of a 2D (2D) R-

tree. The 2D R-tree is used to index the spatial data of the network graph (e.g., roads consisting of line

segments), while the 1D R-trees are used to index the time interval of each object’s movement on a

given segment of the network. As it will be shown experimentally in the next sections, the proposed

 21

FNR-tree outperforms the TB-, the TB*- and the 3D R-tree in general coordinate-based queries;

however the demonstrated efficiency of the FNR-tree in coordinate-based queries comes for the cost of

lacking a mechanism which preserves trajectories, making it therefore unable to support trajectory-

based queries.

2.2. Related Work

In the sequel, the related work in the field of indexing historical trajectories of moving objects is briefly

examined. It is essential to note that we do not include all these structures in our experimental study

since their majority was proposed during the elaboration of this thesis; nevertheless, some of the

examined related work cites, and is compared with, a preliminary version of the FNR-tree presented in

[Fre03], while the others are also evaluated against the original 3D R-tree [TVS96] and TB-tree

[PJT00]. We fist discus structures indexing objects moving in unconstrained space, while in the sequel,

we present some of the network-constraint approaches.

2.2.1. Indexing the Trajectories of Objects Moving in Unconstrained Space

A first enhancement of the TB-tree was proposed by Zhu et al. [ZSI02], which extend the work of

[PJT00] by proposing the Octagon-Prism tree (OP-tree); OP-trees use octagon approximations instead

of MBBs. Based on the conducted experiments, OP-trees are shown to outperform the original TB-tree

on both range and trajectory based queries. Here, it is important to note that the TB* modifications

regarding the original TB-tree (i.e., replacement of 3D line segments by 3D points and the altered

insertion strategy) may be directly applied in the context of the OP-tree by simply replacing MBB

approximations with octagons.

R*-tree

Data File

Data Space

Figure 2.3: The SETI [CEP03] structure

The Scalable and Efficient Trajectory Index (SETI) presented in [CEP03] is a hybrid structure

that indexes trajectories at two levels in order to disjoint the spatial from temporal indexing.

Acknowledging that trajectory data sets continually expand the temporal dimension while the spatial

boundaries remain static or at least rarely change, SETI partitions the 2D space into disjoint hexagon

cells which remain static during the structure's lifetime; other adaptive spatial partitioning strategies

can also be used. Each cell logically contains only those trajectory segments that are completely within

the cell, while in the case of a trajectory segment that crosses the cell boundary, it is split and

subsequently inserted into both cells. In physical level, trajectory segments are inserted into a data file;

each page of the data file contains segments from only one cell. Then, a temporal index (i.e., a 1D R-

 22

tree) indexing the time intervals of each particular cell in the data file, is assigned to the corresponding

cell. Figure 2.3 summarizes the SETI structure.

The insertion and searching algorithms follow a multi-step approach composed of spatial

filtering, temporal filtering and refinement. In particular, during each insertion, the algorithm locates

the cell into which the segment has to be inserted (considering also possible splits between cells), and

then inserts it in the corresponding page of the data file, updating at the same time the corresponding

entry of the 1D R-tree (if this is necessary). Although as presented in the experimental study of

[CEP03], SETI clearly outperforms the 3D R-tree and the TB-tree in time-interval and time-slice

queries, it cannot be used to process trajectory-based queries. This is due to the fact that trajectory line

segments are organized inside the index based only on their spatial and temporal relations; as such,

successive line segments of the same trajectory may be placed in different disk pages. Therefore, in the

worst case scenario the retrieval of a single trajectory would require to read one disk page for each

trajectory line segment. Moreover, the work of [CEP03] do not provide any nearest neighbor query

processing algorithm, while the development of an efficient one is not a straightforward task.

Pfoser et al. [PJ01] use the restrictions placed in the movement of objects by the existing

infrastructure in order to improve the performance of spatio-temporal queries executed against a spatio-

temporal index. The strategy followed does not affect the structure of the index itself. Instead, [PJ01]

adopt an additional pre-processing step before the execution of each query. In particular, provided that

the infrastructure is rarely updated, it can be indexed by a conventional spatial index such as the R-tree.

On the other hand, a general-purpose spatio-temporal index, such as the TB-tree [PJT00] or the 3D R-

tree [TVS96] can be used to index trajectories of moving objects. Then, a pre-processing step of the

query, divides the initial query window in a number of smaller windows, from which the regions

covered by the infrastructure have been excluded (Figure 2.4). Each one of the smaller queries is

executed against the (general-purpose spatio-temporal) index returning a set of candidate objects,

which are finally refined with respect to the initial query window.

Q1

Q

Q4

Q3

Q5

Q2

O2

O1
O3

O4

(a) (b)

Figure 2.4: The initial query window Q (a) is decomposed into a number of smaller query windows

Q1, Q2,.. (b) with respect to infrastructure elements (drawn in black).

In the same paper [PJ01], an algorithm is provided for the implementation of the query pre-

processing step, based on the work presented in [KF93]. According to [KF93], the number of node

accesses required by an R-tree-based index to answer a window query, depends not only on the

 23

window area but also on its extent per dimension. Consequently, what concerns is not only the

minimization of the area of the query window (which is achieved by removing the section containing

the infrastructure from the initial window) but also the minimization of its perimeter. In the

corresponding evaluation, the performance of two spatio-temporal indexes (TB- and 3D R-tree) was

compared, either using the described query pre-processing step (i.e., dividing the initial window in

smaller windows) or not, and it was shown that the query performance was improved for both indexes

when this step was used.

Recently, work has been also done on how to optimally split trajectories for the purpose of

improving range query performance [HKTG02], [HKTG06]. Hadjieleftheriou et al. [HKTG02] use a

partially persistent structure, the PPR-tree, trying to confront the problem of the dead space generated

by MBB approximations of moving object trajectories. Dead space is termed as the amount of space in

an MBB approximation which does not actually covers any object contained inside it. [HKTG02]

introduce “artificial object updates” partitioning the trajectories into smaller elements, thus reducing

the dead space; they use non-linear functions to describe the moving objects' trajectories, which are

initially indexed by the PPR-tree. This work is extended in [HKTG06] where a Multi-Version R-tree,

such as the one proposed in [TPS03] is used instead of the PPR-tree, leading to an indexing schema

with improved performance. Moreover, the proposed algorithms for handling the problem of the dead

space introduced in MBBs can be used in combination with any spatio-temporal data archive, such as

the R-tree and its variants.

However, the most promising approach regarding the indexing of moving object trajectories in

unconstrained space is the one presented in [NR07]; according to [NR07], MBBs are not able to

capture the smoothness of actual trajectory data, they propose that trajectories should be approximated

as a sequence of movement functions with single continuous polynomial. They subsequently introduce

the PA-tree, a parametric index that indexes the resulted polynomials; PA-trees resemble R-trees, with

the main difference that entries consists of polynomial coefficients, rather than MBBs. According to

the experimental study presented, PA-tree outperforms both MVR-tree [HKTG06] and SETI [CEP03]

in the majority of the experimental settings.

2.2.2. Indexing the Trajectories of Objects Moving in Fixed Networks

The first proposal considering network-constrained moving objects was the work by Papadias et al. in

[PTKZ02] which adopted this assumption, in order to create a structure that answers spatio-temporal

aggregate queries of the form "find the total number of objects in the regions intersecting some window

qs during a time interval qt". Same as the FNR-tree, the proposed aggregate R-B-tree (aRB-tree)

follows the intuition of [KGT99] and provides a combination of R- and B-trees based on the following

idea: the lines of the network are stored only once and indexed by an R-tree. Then, in each internal and

leaf node of the R-tree, a pointer to a B-tree is placed, which stores historical aggregate data about the

particular spatial object (e.g. the MBB of the node).

In particular, this approach is based on two types of indexes: a host index, which manages the

region extents and associates to these regions an aggregate information over all the timestamps in the

base relation and some measure indexes (one for each entry of the host index), which are aggregate

temporal structures storing the values of measures during the history, complete the proposed structure.

 24

For a set of static regions, the authors define the aRB-tree, which adopts an R-tree with summarized

information as host index, and a B-tree containing time-varying aggregate data, as measure index.

As already stated, the aRB-tree is well suited for the efficient processing of a window aggregate

query, i.e., for the computation of the aggregated measure of the regions which intersect a given

window. Indeed, for nodes that are totally enclosed within the window query, the summarized measure

is already available thus avoiding descending these nodes. As a consequence, the aggregate processing

is made faster. For instance, let us compute the number of phone calls inside the shaded area in Figure

2.5(a) during the time interval [T1,T3] using the aRB-tree of Figure 2.5(b). Since R5 is completely

included in the window query there is no need to analyze R1 and R2 hence one accesses the B-tree for

R5. The first entry of the root of this B-tree contains the measure for the interval [T1, T3] which is the

value we are interested in. Instead, in order to obtain the sum of phone calls in the interval [T1, T3] for

R3 one has to visit both an entry of the root of the B-tree for R3 and also one leaf (the colored nodes).

Figure 2.5 illustrates an example of the aRB-tree structure

(a) (b)

Figure 2.5: (a) Example data and (b) the corresponding aRB-tree [PTKZ02]

 Exploiting the same property of a spatial network, a variation of the FNR-tree, called Moving

Objects in Networks tree (MON-tree), has been proposed in [AG05]. Instead of using one 1D R-tree for

every leaf node of the 2D R-tree, the MON-tree utilizes a 2D R-tree for every polyline of the spatial

network. The MON-tree is shown to significantly outperform the 3D R-tree and the FNR-tree, in time-

interval and time-slice queries, and is currently considered the state-of-the-art. However, it also shows

the same disadvantage with the previously described schemes, being unable to efficiently process

trajectory-based queries.

Another interesting methodology on the same subject (i.e., indexing of objects moving on

networks) is presented in [PJ03]. This approach suggests the mapping of the underlying network from

two to one dimension by sorting the network edges according to their Hilbert values. Hilbert values is

an approach for ordering the 2D space; they are determined by applying a Hilbert curve covering the

2D space, mapping each 2D to a 1D point [WD04]. Then, the problem of indexing three (i.e., 2 spatial

+ 1 temporal) dimensions is reduced to the problem of indexing two (i.e., 1 spatial + 1 temporal)

dimensions, which can be efficiently handled by employing any existing simple spatial index as the

well known R-tree which is supported by existing DBMS. After that, each range query has to be

mapped accordingly to the reduced one-dimensional space, producing thus a number of two-

 25

1 2

3
4

dimensional (spatial and temporal) rectangles, which are subsequently posed against the R-tree. The

technique also uses an R-tree to index the underlying network so as to speed up the query mapping

process. The experimental study presented in [PJ03] shows that the proposed method clearly

outperforms the three-dimensional approach (e.g., 3D R-tree, treating time as an extra spatial

dimension) as the query size increases; the respective experimental study includes neither FNR nor

MON-tree. Moreover, there is no obvious way on how this approach [PJ03] can process trajectory

based queries.

2.3. Indexing the Trajectories of Objects Moving in Unconstrained Space

Before describing in detail the structure and algorithms of the TB*-tree, it is essential to briefly

introduce the original TB-tree on which the former is based.

2.3.1. The TB-tree

Practically, the first index proposed to support trajectory-based queries was the Trajectory Bundle tree

(TB-tree) [PJT00], which is fundamentally different from other spatio-temporal access methods mainly

because of its insertion and split strategy. Similar to the original R-tree, the TB-tree is a height-

balanced tree with the index records in its leaf nodes; leaf nodes contain entries of the same

trajectories, and are of the form <MBB, Orientation>, where MBB is the 3D bounding box of the 3D

line segment belonging to an object’s trajectory (handling time as the third dimension) and Orientation

is a flag used to reconstruct the actual 3D line segment inside the MBB among four different

alternatives that exist (see Figure 2.6). Since each leaf node contains entries of the same trajectory,

object id can be stored once in the leaf node header.

Figure 2.6: Alternative ways that a 3D line segment can be contained inside a MBB

t3

t1

t7

t11

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 2.7: The TB-tree structure

However, contrary to the majority of the R-tree variations, its insertion algorithm is not based

upon the spatial and temporal relations of moving objects but it relies only on the moving object

 26

identifier (id). When new line segments are inserted, the algorithm searches for the leaf node

containing the last entry of the same trajectory, and simply inserts the new entry in it, thus forming leaf

nodes that contain line segments from a single trajectory. If the leaf node is full, then a new one is

created and is inserted at the right-end of the tree. For each trajectory, a double linked list connects the

leaf nodes that contain its portions together (Figure 2.7), resulting in a structure that can efficiently

answer trajectory-based queries.

On the other hand, the TB-tree performs modestly on range queries as shown in [PJT00] because

its data organization does not consider keeping together entries that lie close in 2D space. A second,

perhaps more crucial, drawback is that its construction algorithm makes a consideration that positions

of moving objects are most probably inserted in a chronological fashion, thus it does not favor the

insertion of a position at time ti when the latest position of any object already inserted in the index,

corresponds to timestamp tj > ti. However, in real-world applications, this assumption is not guaranteed

to be true. As already mentioned, if we assume that an object enters an area where the position

transmission system does not function, its trajectory could be stored locally in the object and be

transmitted at a later time; meanwhile other moving objects could have transmitted their positions,

violating the above TB-tree assumption.

In the next section, acknowledging the basic advantages of the TB-tree on trajectory

preservation, we develop a novel index, called TB*-tree, which overcomes the drawbacks of its

predecessor while preserving all of its ‘desired’ properties.

2.3.2. The TB
*
-tree

The need for an index that supports insertions of object positions independently, the need for deletion

support, the trajectory preservation and the efficiency for both coordinate-based and trajectory-based

queries are the main requirements for the new index. In the following, we present the structure of the

TB*-tree as well as algorithms for inserting, deleting, compressing, and querying object trajectories.

It is important to notice that, contrary to the original TB-tree, the TB*-tree does not care whether

or not entries are inserted in chronological order. There is still an assumption on the trajectory itself

(that also holds for TB-tree): entries belonging in the same trajectory are inserted in chronological

order, i.e., the index does not permit the insertion of a position at time ti when the latest position

already inserted in the index for the same object, was at tj > ti. Even this can be easily relaxed, as will

be sketched in section 2.3.2.2.1.

2.3.2.1. The TB
*
-tree Structure

In the original TB-tree, every time a moving object updates its position, a new 3D line segment is

inserted in it using the insertion algorithm described in [PJT00]. This fact leads to storing each 3D

point of the moving object’s trajectory twice: once as an ending point and once as a starting point.

While this would be necessary for a structure storing entries from different trajectories in its leaf nodes

(e.g. the 3D R-tree [TVS96] and the STR-tree [PJT00]), it is waste of space in the TB-tree: by

definition, line segments stored in the same leaf node belong to the same trajectory.

Instead of 3D line segments, TB*-tree leaf nodes store 3D points forming together a 3D polyline

that represents a part of the exact trajectory of the object. Moreover, since the object id is stored once in

 27

the header of the leaf node, TB*-tree leaf node entries consist of 3D points only (the Orientation flag is

redundant). The single 3D points that appear twice are the ones at the end of a leaf node and at the start

of its consecutive node (Figure 2.8). While these happen at the leaf level, the structure of non-leaf

nodes remains the same as in the original TB-tree.

Formally, TB*-tree leaf nodes are of the form 〈header, {Pi}〉, where each Pi = 〈ti, xi, yi〉 and

header = 〈id, #entries, ptr〉 (in other words, the object identifier, the number of node entries and a

pointer to the parent node). On the other hand, non-leaf nodes are of the form 〈header, {Ei}〉, where

each Ei = 〈MBBi, ptri〉 with MBBi be the enclosing 3D box of the child node pointed by ptri a pointer to

it, and header = 〈#entries, ptr〉 simply stores the number of node entries and a pointer to the parent

node. Furthermore, similar to SETI [CEP03] and in order to support high insertion rates, the TB*-tree

uses an in-memory hashed front-line structure, which maintains tuples of the form 〈id, Pcurr, Ncurr〉 with

the object identifier id, its latest position Pcurr = 〈tcurr, xcurr, ycurr〉 and a pointer Ncurr to the leaf node

containing Pcurr.

Pj

Pi

Pk

Pi…Pj Pj…Pk

Figure 2.8: The single points appearing twice in the TB*-tree are the starting and ending ones at each

leaf.

2.3.2.2. The TB
*
-tree Algorithms

In the sequel, we provide algorithms for maintaining the index by inserting a new position, deleting a

trajectory, and compressing the index. As for query processing regarding the algorithms for range,

trajectory based and combined query processing, they are identical to those presented in [PJT00] for

the original TB-tree. Furthermore, the algorithms used for advanced query processing, such as nearest

neighbor and most similar trajectory, will be examined in the next chapters. Nevertheless, for the sake

of completeness, we include the range search algorithm in our discussion, which is essentially the

FindLeaf algorithm originally proposed in [Gut84] for the original R-tree.

2.3.2.2.1. Inserting new Trajectory Segments

The insertion algorithm of the TB*-tree is executed every time a moving object id transmits its (new)

position Pcurr, thus making, with the help of the front-line structure, a new entry to be inserted in the

tree rooted by Root. The Insert algorithm is illustrated in pseudo-code in Figure 2.9. The presented

pseudo-code includes comments that explain each step of the algorithm. Just note that it is one entry,

Pcurr, which is inserted in the index except the case of a full node where the algorithm results to the

creation of a new node with two entries, the latest already indexed, Pprev, and the new position, Pcurr.

 28

Also, by adding the front-line structure, finding the appropriate leaf node turns out to be a simple

procedure (in contrast to the expensive FindNode algorithm for the TB-tree described in [PJT00]).

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Algorithm Insert(node Root, int Id, 3D Point Pcurr)

 // Algorithm TB*-tree Insert

 // Find leaf node NN containing previous segment

 NN = FrontLine(Id).LastNode

 Pprev = FrontLine(Id).Pcurr

 // If NN exists and has space, insert Pcurr in it and propagate

 // changes upwards using Guttman’s AdjustTree

 IF NN exists

 IF NN has space

 Insert Pcurr in node NN

 AdjustTree (NN)

 // If, after the insertion of Pcurr, node NN becomes full,

 // delete and reinsert its entry in parent node using

 // Guttman’s delete and insert algorithms

 IF NN is full

 PN = NN.Parent

 PE = PN.Entry_pointing_to(NN)

 Delete (Root, PE)

 Insert (Root, PE)

 ENDIF

 ELSE

 // Otherwise, create a new node, insert Pprev and Pcurr in

 // the new node and update the front-line

 NNode=InsertInNewNode(Root,Pprev,Pcurr)

 FrontLine(Id).LastNode = NNode

 ENDIF

 ELSE

 NNode = InsertInNewNode(Root,Pprev,Pcurr)

 FrontLine(Id).LastNode = NNode

 ENDIF

 FrontLine(Id).Pcurr = Pcurr

Figure 2.9: The TB*-tree Insert Algorithm

Node n

.. p1 p2 p3

en

..

Node n

p1 p2 p3

en

(a) (b)

..

Node n

p1 p2 p3

en

(c)

Figure 2.10: The strategy followed when a leaf node becomes full: (a) The leaf node n becomes full

(b) Entry en is deleted from the tree, and (c) Entry en is re-inserted in the tree

A major modification in comparison with the original TB-tree takes place when a leaf node

becomes full (Figure 2.10). Then, the algorithm locates the leaf node’s parent entry and deletes it from

the tree using Guttman’s classic R-tree Delete algorithm [Gut84]. Then, the entry is re-inserted in the

 29

tree, using Guttman’s Insert algorithm, but it is placed higher in the tree (at the level above the leaf

level), so that the (leaf) node that the entry brings together is located at the same level with the rest

leaves – a technique also used in the original R-tree Delete algorithm. With this technique, when a

leaf node gets full it is placed in a ‘better’ position, in terms of spatial neighborhood, since Guttman’s

Insert algorithm uses the least enlargement criterion in order to find the node in which to place the

entry. This “delete and re-insert” technique, originally used in the R*-tree [BKSS90], is the reason for

calling this novel index, TB*-tree.

Another major difference from the original TB-tree concerns the creation of new leaf nodes and

the choice of the location where the new leaf nodes are placed. For this purpose, a new algorithm called

InsertInNewNode is developed (pseudo-code in Figure 2.11), which uses Guttman’s

ChooseLeaf and AdjustTree algorithms [Gut84]. As already discussed, the algorithm initially

places two points, Pprev and Pcurr, in the new leaf (cf. Figure 2.8).

Differently from the TB-tree construction, InsertInNewNode algorithm of the TB*-tree finds

the leaf node next to which the new leaf should be placed using the least enlargement criterion

(Guttman’s ChooseLeaf algorithm). Then, Guttman’s AdjustTree algorithm is invoked passing

both leaf nodes – the one returned by ChooseLeaf and the newly created one – such as it would

happen if the node returned by the ChooseLeaf was previously split. Finally, if the procedure causes

the root node to split, then the tree grows taller by creating a new root whose children are the two

resulted nodes.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

Algorithm InsertInNewNode(node Root, 3D Point Pprev, 3D Point Pcurr)

 // Algorithm TB*-tree InsertInNewNode

 Create New Leaf Node NNode

 Insert Pprev in node NNode

 Insert Pcurr in node NNode

 // Find Position for the new Node using Guttman’s ChooseLeaf

 L = ChooseLeaf (Root, (Pprev,Pcurr))

 // Propagate changes upward

 AdjustTree (L, NNode)

 // Grow tree taller

 IF AdjustTree caused the Root to split

 Create a new Root NRoot

 Insert first resulted node in NRoot

 Insert second resulted node in NRoot

 ENDIF

 // Return the new Node

 RETURN NNode

Figure 2.11: The InsertInNewNode algorithm

With reference to the assumption of the TB*-tree that entries belonging to the same trajectory are

inserted in chronological order, this only happens in order to keep the insertion procedure simple (a

new position is inserted either in the ‘current’ node – as indicated by the front-line structure – or in a

new node, updating accordingly the in-memory front-line). Should this assumption be relaxed, a

backward search in the double-linked list of nodes is required (starting from the ‘current’ node), the

new (‘outdated’) entry is to be inserted in the appropriate node and, since all nodes before the ‘current’

node in the list are by definition full, an entry is to be moved from each node to its next node in the

chain starting from the node the entry was inserted and ending at the ‘current’ node.

 30

Finally, a buffering technique can be used to optimize the insertion process in terms of touched

disk pages. In particular, further than using a traditional buffering mechanism (such as LRU), the TB*-

tree structure can utilize an additional buffer, hereafter called Last Page (LP) Buffer, which would hold

all leaf nodes not yet filled. Since each leaf node is expected to be completely filled with leaf entries,

the LP buffer can be used in order to hold those leaves not yet completed; then when each leaf node is

completely filled, it is saved on the disk just once, and the next (new) leaf node of the same trajectory

takes its place on the LP buffer. Therefore, the size of the LP buffer will always be equal with the

number of trajectories currently indexed by the TB*-tree. As it will also be shown in the experiments,

the LP buffer dramatically reduces the number of disk page accesses required for insertions.

t3

t1

t7

t11

t1

t4 t8 t7 t5 t6 t11 t3 t9 t2 t11 t12

Figure 2.12: The TB*-tree structure

The general picture of the TB*-tree is illustrated in Figure 2.12. Compared with the TB-tree (cf.

Figure 2.7), it is clear that leaf nodes belonging to the same trajectory are no longer placed in

increasing time order (e.g. from left to right), but are placed in locations determined by the least

enlargement criterion.

2.3.2.2.2. Deleting Trajectories

Deletions are often neglected when proposing indexing methods for moving object trajectories, with

the main argument that deleting a 3D line segment from an object’s trajectory is meaningless. Although

this might be assumed to be conceptually correct (transmitted positions are recorded, thus exist),

deleting an entire object’s trajectory is meaningful (trajectories of objects being no more useful could

be deleted from the index). Therefore, we provide an efficient algorithm to support deletions of object

trajectories. The input of the algorithm is the id of the trajectory to be deleted.

The DeleteTrajectory algorithm, illustrated in Figure 2.13, can be used in the TB*-tree in

order to delete a moving object’s trajectory. The algorithm initially locates the ‘current’ leaf node N.

Then, it removes N’s parent entry from its parent node executing Guttman’s R-tree Delete algorithm

[Gut84] and follows the chain backwards to nodes containing parts of the same trajectory, deleting one

after the other. If necessary, according to Delete algorithm, nodes are rearranged, e.g. if the number

of entries falls under the m=M/2 threshold, or even the tree may be forced to condense.

 31

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

Algorithm DeleteTrajectory(int Id)

 // Algorithm TB*-tree DeleteTrajectory

 // Find latest trajectory leaf node N

 N = FrontLine(Id).LastNode

 // Delete leaf node N’s parent entry using Guttman’s Delete

 // Algorithm and follow the pointers to the trajectory’s previous

 // leaf nodes deleting also their parent entries

 DO UNTIL N Is NULL

 PN = N.Parent

 PE = PN.Entry_pointing_to(N)

 Delete (Root, PE)

 N = N.PreviousLeaf

 LOOP

Figure 2.13: The DeleteTrajectory Algorithm

The structure of the TB*-tree looks ideal for providing such an algorithm: having located just one

line segment belonging to an object’s trajectory, one could follow the double-linked lists in order to

retrieve the entire trajectory and delete leaf nodes that compose it. On the other hand, the original TB-

tree cannot easily support trajectory deletions: node deletions result in deletions of entries in non-leaf

nodes which either require condense techniques to be handled (such as the CondenseTree algorithm

[Gut84]) or leave holes in the nodes. In any case, the ‘desired’ TB-tree properties (all leaf nodes but the

‘current’ ones are full; a chronological order of leaf nodes exists, etc.) are not prevented.

As for other index structures (such as the 3D R-tree [TVS96], the STR-tree [PJT00], the SETI

[CEP03]), they by definition lack a mechanism to efficiently retrieve an object’s entire trajectory; thus,

in order to support trajectory deletions they have to answer sequential range queries such as described

in [PJT00] for the combined search of the 3D R-tree and the STR-tree – a very expensive approach as

shown in [PJT00].

2.3.2.2.3. Compressing the Index

While the original TB-tree satisfies the trajectory preservation requirement in order to utilize the TD-

TR trajectory compression algorithm [MB04], such an algorithm would have to read each indexed

trajectory one-by-one, compress it, and finally feed a new TB-tree with the compressed trajectory.

However, since the TB-tree places new entries always at the right ‘end’ of the tree, such an approach

would place entire trajectories on this side of the tree without considering their temporal ordering, thus

leading to a tree with high temporal overlap decreasing its performance. Therefore, in order to

overcome this drawback, we would have to utilize intermediate steps processing all trajectories indexed

by the TB-tree, producing the new compressed ones, sorting them according to their temporal order and

finally feed the new TB-tree. Nevertheless, such a technique would require processing the entire index

in the main memory, or developing specialized algorithms to handle it efficiently. Moreover, the

opening window spatio-temporal algorithm presented in [MB04] would be a solution; then again, such

an approach would lead to utilize a less efficient compression algorithm in terms of both quality and

compression.

On the contrary, the proposed TB*-tree does not show any of these disadvantages. Its insertion

algorithm supports trajectory additions in non-chronological order. As such, in Figure 2.14 we present

a simple algorithm which compresses a TB*-tree by utilizing the TD-TR algorithm [MB04]. The

algorithm starts by creating a new TB*-tree, and then, using the hashed structure, it accesses the last

 32

node of every trajectory. Then, following the pointers to the previous leaves, it retrieves the entire

trajectory on which the TD-TR algorithm [MB04] is applied with the given threshold. Finally, the

algorithm feeds the new TB*-tree with the compressed trajectory and repeats the same procedure for

the remaining trajectories until all have been accessed.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Algorithm CompressIndex(double Threshold, TB*-tree TB)

 // Algorithm TB*-tree CompressIndex

 // Create a new TB*-tree

 NTB = New TB*-Tree

 FOR EACH Id IN TB.Trajectories

 // Find latest trajectory leaf node N

 N = FrontLine(Id).LastNode

 // Create a new Trajectory retrieve all of its entries

 Traj = New Trajectory

 DO UNTIL N Is NULL

 Traj.Add N.Segments

 N = N.PreviousLeaf

 LOOP

 // Apply the top-down spatiotemporal compression algorithm

 // TD-TR in the Trajectory with the given threshold

 TD-TR (Traj, Threshold)

 // Insert in the new TB*-tree each point P of the compressed

 // trajectory

 FOR EACH P IN Traj

 Insert NTB.Root, Id, P

 NEXT

 NEXT

Figure 2.14: The CompressIndex Algorithm

2.3.2.2.4. Querying the TB
*
-tree

As already mentioned, since both the TB- and TB*-tree are based on the well known R-tree, the

respective range search algorithms follows the FindLeaf algorithm originally presented in [Gut84].

This algorithm recursively visits tree nodes, rejecting node MBBs that does not overlap the query

window, while following the pointers from overlapping MBBs to their respective child nodes until all

candidate leaf nodes have been found. Following the example illustrated in Figure 2.1 for spatial

objects, consider a range query Q executed against the 2D R-tree. The algorithm starts by visiting the

tree root, checking whether the MBBs of the root entries overlap Q. If a node entry MBB overlaps Q,

the algorithm follows the pointer to the corresponding child node (entries A and B in our example),

where it repeats recursively the same task. If the algorithm reaches a leaf node, leaf entries are

examined against Q and if their MBB overlap, the algorithm reports their ids (objects F and G when the

algorithm visits leaf node A, and object H when in node B). The extension of the above algorithm in the

spatio-temporal domain is a straightforward task, where each 2D MBB is simply replaced by the

respective 3D MBB of actual objects, nodes or queries.

2.4. Indexing the Trajectories of Objects Moving in Fixed Networks

As already mentioned, following the suggestions of [KGT99], in this thesis we propose the FNR-tree,

an extension of the well-known R-tree [Gut84], designed to index objects moving on fixed networks.

The FNR-tree can be considered as a forest of several 1D R-trees on top of a single 2D R-tree. The 2D

R-tree is used to index the spatial data of the network (i.e., roads consisting of line segments), while

each one of the (temporal) 1D R-trees, hereafter called “Children 1D R-trees”, corresponds to a leaf

 33

node of the 2D R-tree and indexes the time intervals during which moving objects moved on network

links that fall into the Minimum Bounding Box (MBB) of the corresponding 2D R-tree leaf node. As

such, the (spatial) 2D R-tree remains static during the lifetime of the FNR-tree – as long as there are no

changes in the network. An additional (temporal) 1D R-tree hereafter, called “Parent 1D R-tree” is

used to index the leaf nodes of all the children 1D R-trees with respect to their lifetime. Hence, the time

interval of each 1D R-tree’s leaf node is inserted along with a pointer to the actual node as a new entry

in the parent 1D R-tree. The overall structure of the FNR-tree is outlined in Figure 2.15, while Figure

2.16 (b) demonstrates an example for the configuration of objects illustrated in Figure 2.16 (a).

Children
1D R-trees
(temporal)

2D R-tree
(spatial)

Parent
1D R-tree
(temporal)

……
……

…

… …

Figure 2.15: The FNR-tree structure

O1

O2

O3

Links
1,2,3,4

Links
5,6,7,8

Links
9,10,11

Links
12,13,14

Links
15,16,17

(1,9,t1i,t1j),
(3,12,t3i,t3j),
(1,5,t1j,t1k)

(2,14,t3i,t3j),
(3,13,t3j,t3k)

(2,3,t2j,t2k),
(2,16,t2k,t2l)

(t1i,t1k),
(t3i,t3k),
(t2j,t2l)

(a) (b)

Figure 2.16: An FNR-tree example: (a) trajectories of three objects on a road network and (b) the

corresponding FNR-tree components

2.4.1. The FNR-tree Structure

As already mentioned, the FNR-tree can be considerer as a 2D R-tree indexing the network line

segments, along with a forest of 1D R-trees indexing time intervals. Following the standard R-tree

structure, non-leaf nodes of the 2D R-tree are of the form 〈header, {ptri, MBBi}〉, where each MBBi =

〈xmin-i, ymin-i, xmax-i, ymax-i〉 and header = 〈id, #entries, ptr〉. On the other hand, the structure of the 2D R-

tree leaf nodes is slightly modified regarding the conventional R-tree; formally, leaf nodes are of the

form 〈header, {linki, MBBi, orientation}〉 and header = 〈id, #entries, ptr, ptrchild-R-tree〉. According to this

form, the pointer normally located inside each leaf node entry has been replaced by an ‘orientation’

flag (0/1) that describes the exact geometry of the line segment inside the MBB (Figure 2.17(a)). A

 34

similar approach was followed in [PJT00] to represent segments of trajectories in 3D R-tree [TVS96].

Moreover, each 2D R-tree leaf node contains a pointer (ptrchild-R-tree) that points to the root of the

corresponding child 1D R-tree.

(Xmin, Ymin)

(Xmax, Ymax)

1

0

Moving Object Direction 0

Moving Object Direction 1

(a) (b)

Figure 2.17: (a) The ‘orientation’ flag in 2D R-tree entries; (b) the ‘direction’ flag in 1D R-tree entries

Regarding the 1D R-trees, non-leaf nodes are of the form 〈header, {ptri, MBBi}〉, while leafs are

slightly different: 〈header, {Object-idi, Link-idi, MBBi, direction}〉, and MBBi=〈tin, tout〉 is the time

interval during which object with id Object-idi moved on the line segment with id Link-idi, which is

included in the MBB of the corresponding leaf of the 2D R-tree. Direction is another flag (0/1) that

describes the heading of the moving object (Figure 2.17 (b)). Specifically, direction is set to 0 (1) when

the moving object entered the line segment from the left-most (right-most) node. In the special case

where the line segment is vertical, direction is set to 0 (1) for objects entered the line segment from the

bottom-most (top-most) node. Finally, leaf node headers are of the form header = 〈id, #entries, ptr,

ptrparent-R-tree-node〉 where ptrparent-R-tree-node stands for pointing directly from each 1D R-tree leaf node to

the corresponding 2D R-tree leaf node.

Similar to the above is the structure of the parent 1D R-tree. Although the internal nodes remain

identical with the former ones, leaf nodes differ to some extent: they are of the form 〈header, {ptrchild-R-

tree-node, MBBi}〉 with MBBi=〈tmin, tmax〉, and ptrchild-R-tree-node pointing to the corresponding leaf node in the

forest of the children 1D R-trees (cf. Figure 2.15).

2.4.2. The FNR-tree Algorithms

In the sequel, we provide algorithms for inserting a new entry in the FNR-tree (subsection 2.4.2.1) and

searching the FNR-tree with respect to a query window (subsection 2.4.2.2).

2.4.2.1. Inserting new Trajectory Segments

The insertion algorithm of the FNR-tree is executed each time a moving object with Object-idi leaves a

line segment of the network, represented by its MBB (xstart, ystart, xend, yend) and the direction flag. The

list of arguments also includes the time interval (tin, tout) during which Object-idi was moving on the

line segment. The insertion algorithm is illustrated in Figure 2.18.

In this algorithm, R_tree_insert, R_tree_delete and R_tree_search are Guttman’s

classic algorithms described in [Gut84] to maintain and search an (1D or 2D) R-tree. On the other

hand, for the insertion done in line 11 (considering the children 1D R-trees of the FNR-tree), we notice

that the 1D time intervals are inserted in the tree in increasing order for the reason that time is

monotonic. This fact leads us to the following modification of Guttman’s R-tree-insert algorithm,

 35

hereafter called Insert_most_recent, also illustrated in Figure 2.19. Every new entry is simply

inserted in the most recent (right-most) leaf of the 1D R-tree. In case this leaf node is full, a new node

is created and the entry is inserted in it. The new leaf node is inserted in the structure as a sibling node

of the (previously) most recent leaf. As such, it could cause propagates upwards using Guttman’s

AdjustTree algorithm, also described in [Gut84]. This insertion technique results to 1D R-trees with

almost full leaves and very small overlapping.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Algorithm FNR_tree_Insert(object_id, xstart, ystart, xend,

yend, tin, tout)

 // Search the line segment with Link_id in the 2D R-tree

 // that object_id leaves

 Link_id = 2D_R_tree_search(xstart, ystart, xend, yend)

 // follow the pointer from leaf node that contains link_id

 // to the corresponding 1D R-tree, RT

 RT=link_id.Child_R_tree

 // Insert the time interval into the 1D R-tree

 // Let ND be the leaf node where the input was inserted

 RT.Insert_most_recent(tin, tout, object_id, link_id, ND)

 // If necessary, update the Parent 1D R-tree by inserting or

 // updating the MBB of node ND

 IF ND is a new node caused by the insertion

 Parent_1D_R_tree_insert(ND.MBB, ND.ptr)

 ELSEIF the ND.MBB was modified

 Parent_1D_R_tree_delete(ND.MBB, ND.ptr)

 Parent_1D_R_tree_insert(ND.MBB, ND.ptr)

 ENDIF

Figure 2.18: FNR-tree Insertion Algorithm

Figure 2.19: New entries are always inserted in the right-most node of each 1D R-tree when insertions

are performed in chronological order

Nevertheless, given the discussion of section 2.3.2, the strategy of Insert_most_recent

can be considered as a drawback in several application domains where new trajectory segments

insertions do not necessarily follow the timeline. In order to deal with this requirement of non-

chronological insertions, the FNR-tree can be also implemented employing the simple

R_tree_insert [Gut84] algorithm in line 11, an approach which enables the index to efficiently

handle line segments inserted in arbitrary time-order. Concluding, depending on the application, the

FNR-tree may or may not efficiently support non-chronological insertions by simply modifying line

10. Finally, the insertion and deletion algorithms used in lines 14-18 are the conventional R-tree

algorithms [Gut84] mainly due to updates required (deletions and re-insertions).

As illustrated in Figure 2.20, the insertion algorithm is executed when the moving object reaches

a node (Node j) of the network. The first step (line 4) requires a spatial search in the 2D R-tree (with

 36

the coordinates of Nodes i and j as arguments) in order to find link k, enclosed by the MBB of the 2D

R-tree leaf node N. Next, we follow the pointer to the corresponding 1D R-tree, in which we insert a

new entry (tin, tout, object-id, link-id). Depending on the insertion policy, the newly inserted entry is

placed in the right-most 1D R-tree leaf node M (or in the node determined by the R_tree_insert

algorithm). Eventual modifications in the structure due to this insertion (the MBB of that leaf node may

be updated, a new leaf node may be created), are propagated upwards. Such a modification also causes

updates in the Parent 1D R-tree; an updated MBB in the 1D R-tree causes a deletion and re-insertion of

the corresponding entry in the Parent R-tree, while a creation of a new node in the 1D R-tree causes an

insertion of a new entry in the Parent R-tree.

MBR N

Node i

Node j

Link k

tin
tout

Moving Object Trajectory

N

M

Line 2:
2D_R_tree_search
Algorithm

Line 10: Child 1D
Insert_most_recent
Algorithm

Root

Leaf
level

Leaf
level

Line 13: Parent 1D
R_tree_delete and
R_tree_insert Algorithms

Leaf
level

Figure 2.20: Insertion of a new entry in the FNR-tree

2.4.2.2. Querying the FNR-tree

The structure of the FNR-tree offers the flexibility to use two different search algorithms for different

types of queries. The comparative advantages will be presented through examples and the performance

study that will follow.

Search-from-2D-R-tree: The first algorithm, illustrated in Figure 2.21, starts from the 2D R-

tree root, locates the 2D R-tree entries which satisfy the spatial constraints of the query and then,

following the pointer(s) to the corresponding 1D R-tree(s), checks in those trees whether there are

entries satisfying the query temporal constraint as well. Finally, a refinement step ensures that the

algorithm returns only the entries satisfying both spatial and temporal criteria.

 37

1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Algorithm FNR_tree_Search_from_2D(xmin, xmax, ymin, ymax, tmin, tmax)

 // Search in the 2D R-tree with the 2D interval

 // (xmin, xmax, ymin, ymax) retrieving the Links contained in it

 Links = 2D_R_tree_search(xmin, xmax, ymin, ymax)

 // follow the pointers from leaf nodes ND containing the Links

 // to the corresponding 1D R-trees, RT

 FOR EACH ND containing any of Links

 RT=ND.Child_R_tree

 // Search each one of the corresponding 1D R-trees

 Candidates=RT.R_tree_search(tmin, tmax)

 // Refinement

 // If ND2 is completely contained inside (xmin, ymin, xmax,

 // ymax) all entries of ND2 are also inside

 IF ND2.MBB is inside (xmin, ymin, xmax, ymax)

 RETURN all entries in Candidates

 ELSE // ND2 is partially inside (xmin, ymin, xmax, ymax)

 FOR EACH Entry IN Candidates

 IF Links(Entry.Link_id).MBB is inside (xmin, xmax, ymin, ymax)

 RETURN the Entry

 ENDIF

 NEXT

 ENDIF

 NEXT

Figure 2.21: FNR-tree Search-from-2D-R-tree Algorithm

Search-from-Parent-1D-R-tree: The second search algorithm of the FNR-tree utilizes the

Parent 1D R-tree and is illustrated in Figure 2.22. It starts from the Parent 1D R-tree root and locates

the entries satisfying the temporal constraints of the query. Then, following the pointers, it finds the

children 1D R-tree leaf nodes containing the entries satisfying the temporal constraints of the query and

the corresponding 2D R-tree leaf nodes. Finally, a refinement step guarantees that the algorithm returns

only the entries satisfying both temporal and spatial criteria.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Algorithm FNR_tree_Search_from_Parent_1D(xmin, xmax, ymin, ymax, tmin, tmax)

 // Search in the Parent 1D R-tree with the 1D interval

 // (tmin, tmax) retrieving the entries overlapping it

 PEntries = Parent_1D_R_tree_search(xmin, xmax, ymin, ymax)

 // follow the pointer to the children 1D R-tree Leaf Nodes ND1

 FOR EACH PEntry IN PEntries

 ND1=Pentry.Child_1D_R_Tree_Leaf

 // follow the pointer to the parent 2D R-tree Leaf Node

 // ND2 to get spatial extent

 ND2=ND1.Parent_2D_R_Tree_Leaf

 // Refinement

 IF ND2.MBB is outside (xmin, xmax, ymin, ymax)

 Reject ND2

 ELSEIF ND2.MBB is inside (xmin, xmax, ymin, ymax)

 RETURN all entries of ND1

 ELSE // ND2 is partially inside (xmin, ymin, xmax, ymax)

 FOR EACH Entry IN ND1

 IF ND2.Links(Entry.Link_id).MBB is inside(xmin, xmax, ymin, ymax)

 RETURN the Entry

 ENDIF

 NEXT

 ENDIF

 NEXT

Figure 2.22: FNR-tree Search-from-Parent-1D-R-tree Algorithm

Suppose we would search the FNR-tree with a spatio-temporal query window (x1, y1, x2, y2, t1, t2)

using the first search algorithm, Search-from-2D-R-tree (Figure 2.23). The first step requires a

 38

spatial search (for (x1, y1, x2, y2)) in the 2D R-tree in order to locate the line segments and the

corresponding 2D R-tree leaves (in our example, leaf node N) which are covered by the spatial query

window. Next, a search (for (t1, t2)) is executed in each one of the 1D R-trees that correspond to the leaf

nodes of the first step. In our example, the search directs to the 1D R-tree leaf nodes T1 and T2 that

contain (among others) links k, l and o. At the final step, we retrieve from the main memory the

coordinates of each link selected in the second step and – for the reason that the 2D R-tree leaf node N

overlaps the spatial query window – we check and reject those, which are outside the spatial query

window (in our example, link o).

N

Line 4: 2D_R_Tree_
Search_Algorithm

Line 11: Child 1D
R_Tree_Search
Algorithm

Root

Leaf
level

Leaf
level

T1 T2

MBB N

Node i

Node j

Link k

Moving Object Trajectory

Node m

Link l

Link o
Spatial query window

Figure 2.23: Searching the FNR-tree using Search-from-2D-R-tree Algorithm

In order to demonstrate the second search algorithm (Search-from-Parent-1D-R-tree),

we again assume a spatio-temporal query window (x1, y1, x2, y2, t1, t2) (Figure 2.24). The first step of

the algorithm requires a search in the parent 1D R-tree with (t1, t2) as argument in order to locate its

leaf entries which overlap with this interval. Then, following the pointers to the children 1D R-tree leaf

nodes, we locate the nodes containing the 1D R-tree entries that satisfy the temporal constraints of the

query (leaf nodes T1, T2). These nodes belong to different children 1D R-trees, corresponding to

different 2D R-tree leaf nodes, which are traced by following the pointers to them (leaf nodes N1, N2).

Finally, we check whether the entries contained in the nodes N1 and N2 satisfy the spatial query

constraint (x1, y1, x2, y2).

Lines 7, 10: Follow the
pointers from Parent 1D R-
tree entries to T1, T2 and next
to N1, N2

Line 4:
Parent_1D_R_Tree_Search
Algorithm

2D R-Tree

T1

N1 N2

T2

Figure 2.24: Searching the FNR-tree using Search-from-Parent-1D-R-tree Algorithm

 39

A criticism to the second search algorithm is that it only cares about the temporal location of the

data and applies a spatial filtering only at the last step. On the other hand, we expect this algorithm to

be efficient in cases where only the temporal query constraints matter. We illustrate this behavior in the

experimental section that follows.

At this point, it is worth to note that the FNR-tree would also be functional without the presence

of the parent 1D R-tree. In this case, the single modification of the FRN-tree insertion algorithm would

be the absence of lines 11-18 (cf. Figure 2.18). Moreover, the first search algorithm (cf. Figure 2.21)

would be executed ‘as-it-is’. As such, the construction and the operation of the FNR-tree would be

possible without the presence of the Parent 1D R-tree.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

Algorithm FNR_tree_Parent_1D_R_Tree_Construction

 Create a new 1D R-tree

 // Access the 2D R-tree. Use the 2D R-tree structure and locate

 // every leaf node named ND2

 FOR EACH Leaf Node ND2 IN 2D R-tree

 // Follow the pointer to the child 1D R-tree RT

 ND1=ND2.Child_1D_R_Tree_Leaf

 // Access all the child 1D R-tree and insert the leaf

 // nodes in the Parent 1D R-tree

 FOR EACH Leaf Node ND1 IN RT

 // Execute R-tree-insert algorithm in the Parent // 1D R-tree

 // and insert ND1 as a new entry

 Parent_1D_R_tree_insert(ND.MBB, ND.ptr)

 NEXT

 NEXT

Figure 2.25: FNR-tree Parent-1D-R-Tree-Construction Algorithm

However, the function of the second search algorithm (cf. Figure 2.22) requires the existence of

the parent 1D R-tree. This structure can be constructed at any time instance of the FNR-tree lifetime

using the construction algorithm illustrated in Figure 2.25; this algorithm accesses the complete FNR-

tree structure and simply inserts the temporal extents of all children 1D R-trees leaf nodes as entries in

the Parent 1D R-tree.

2.5. Experimental Study: Unrestricted Movement

In order to evaluate the performance of the TB*-tree, we implemented its structure and algorithms

proposed in this chapter and made a comparison of the proposed index with the original TB-tree

[PJT00], as well as the traditional 3D R-tree [TVS96].

2.5.1. Experimental Setup

We have chosen the page size for all trees to be 4 KB resulting in a fanout - maximum capacity (M) for

the TB*-tree of 338 and 145, for the leaf and non-leaf nodes, respectively. Further from the LP buffer

introduced, we used a (variable size) LRU buffer fitting the 10% of the index size, with a maximum

capacity of 1000 pages. The experiments were performed in a PC running Microsoft Windows XP with

AMD Athlon 64 3GHz processor, 1 GB RAM and several GB of disk space.

In order to achieve scalability in the cardinality of the datasets and study the behavior of the

index structures under several settings we have employed the synthetic GSTD datasets introduced in

section 1.5.2 (the real datasets of section 0 are not suitable for our study, since have constant, rather

limitted size). Furthermore, we used two different strategies to insert the datasets into the three

 40

structures. The first strategy requires the dataset to be ordered by time. This is the usual case in online

spatio-temporal applications, where, due to time monotonicity, we expect the trajectory data to be

collected and inserted in the index in ascending order of time (hence, ‘time’ organization in the

experiments to follow). The second strategy does not make this assumption, provided that the trajectory

data of a single moving object are inserted in chronological order. This is the case where moving

objects record their position and do not maintain online communication with the central server that

maintains the index; on the contrary, objects send their location(s) as soon as it is possible (e.g. when

they are in range of the device used for the transmission), or at scheduled timestamps. This is also the

case where the index is built after the compression of another existing index or any other file

containing trajectory information. Thus, in order to simulate both previous situations, trajectory data

are inserted into the index in ascending moving object id / time order (hence, ‘id/time’ organization in

the experiments to follow).

Table 2.2: Results on tree size (GSTD synthetic datasets)

index size in pages (of 4 KB each)
Dataset

3D R-tree TB-tree TB*-tree

GSTD 100 6253 3054 1522

GSTD 250 15471 7649 3808

GSTD 500 30937 15301 7597

GSTD 1000 61864 30588 15156

GSTD 2000 122703 61170 30557

2.5.2. Results on Tree Size and Insertion Cost

The sizes of the built index structures are illustrated in Table 2.2. It is clear that the size of the TB*-tree

is almost half of the size of the TB-tree, and almost the 15% of the size of the standard 3D R-tree.

Moreover, the space utilization for both the TB- and the TB*-tree is as high as expected: about 99% and

96%, respectively, whereas the respective value of the 3D R-tree is 56%, which is a typical value for R-

trees. It is therefore proven that the TB*-tree is a very compact index structure, outperforming both of

its competitors.

Table 2.3: Index size, space utilization and node accesses per insertion on the GSTD2000 dataset

 3D R-tree TB-tree TB*-tree

Index size (KB per object) 99.6 30.6 15.2

Space utilization 56% 99% 96%

Node Accesses per Insertion (average) 2.3 4.0 (1.2) 1.4

The results on node accesses per insertion for all datasets are illustrated in Table 2.3. Each

insertion of a new trajectory line segment in the TB*-tree requires an average of 1.4 node accesses. The

reason for this first-rate performance are the usage of the in-memory front-line structure, which points

directly to the node wherein the new line entry must be inserted, and the presence of the LP buffer. On

the contrary, the TB-tree and the 3D R-tree require larger number of nodes per insertion, 4.0 and 2.3,

respectively; this is due to the TB-tree FindNode algorithm, which follows a multi-way path (and not a

 41

one-way as the ChooseLeaf algorithm of the R-tree does) to find the appropriate node where to place

the new entry.

Here, we have to point out, that the original TB-tree insertion algorithm can be modified using

the front-line structure introduced in the TB*-tree and simply replace the FindNode algorithm step by

following the pointer to the moving object’s ‘current’ leaf node. The original TB-tree can also employ

the LP buffer which, on the contrary, cannot be used in the case of other non-trajectory oriented

indexes (such as the 3D R-tree), because such a strategy would require the LP buffer to hold all the leaf

nodes. Thus, in order to demonstrate the influence of those improvements (front-line and LP buffer) in

the behavior of the simple TB-tree we employed them in the conducted experiments, resulting in the

second number (1.2) in Table 2.3. As it can be seen, these techniques drastically improve the insertion

performance, making therefore the simple TB-tree also able to support high insertion rates.

2.5.3. Results on Search Cost

Range, timeslice, and combined queries were used in order to evaluate the performance of the TB*-tree.

In particular, we used the following set of five queries (Q1 – Q5):

• Q1–Q3: three sets of 500 cubic query windows with a range of 0.01%, 0.1% and 1% of the

total space, respectively, over the synthetic data increasing the number of moving objects

(GSTD100 – GSTD2000 datasets).

• Q4: one set of 500 timeslice query windows with the 100% of the extent in the spatial

dimensions and zero temporal extent, over the synthetic data increasing the number of moving

objects (GSTD100 – GSTD2000 datasets).

• Q5: one set of 500 combined queries with inner window 0.01% and outer 1% of the total

space, over the synthetic data increasing the number of moving objects (GSTD100 –

GSTD2000 datasets).

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

0

50

100

150

200

250

300

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s
e

s

TB

TB*

3D R

(a) Q1 (b) Q2 (c) Q3

Figure 2.26: Queries Q1 – Q3 with the synthetic data inserted organized by time

2.5.3.1. Results on Range Queries

Figure 2.26 illustrates the average number of node accesses per query for various ranges and datasets.

In particular, Figure 2.26 shows the average number of node accesses for range queries with a cubic

window of 0.01%, 0.1% and 1% of the total space over the synthetic data inserted in the structures

organized by chronological order irrespective of id (‘time’), while Figure 2.27 shows the average

number of node accesses for the same range queries over the same data organized by id and then

chronological order (‘id/time’). It is clear that the TB*-tree has superior range query performance over

both its competitors regarding the query with sizes of 0.1% (Q2) and 1% (Q3) of the total space for both

 42

different insertion organizations. Regarding the queries with smaller size (0.01% of the total space, Q1)

and the trajectory data organized by chronological order, the TB*-tree performance is only marginally

better than the original TB-tree, a difference which is more clear as the dataset cardinality grows.

Another conclusion that arises from the comparison between Figure 2.26 and Figure 2.27 is that,

while the TB*-tree and the 3D R-tree show approximately the same behavior following the two

different insertion strategies (the slope of the TB*-tree and the 3D R-tree lines is approximately the

same in Figure 2.26 and Figure 2.27), the behavior of the original TB-tree is significantly affected,

resulting in the second case in a tree with drastically decreased performance. This behavior of the TB-

tree is expectable since the basic assumption which the efficiency of the tree in range queries is based

on, i.e. the insertion of new entries in chronological order, does not hold any more.

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

0

50

100

150

200

250

300

0 500 1000 1500 2000
Moving Objects

N
o

d
e
 a

c
c

e
s

s
e

s
TB

TB*

3D R

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e
s

s
e
s

TB

TB*

3D R

(a) Q1 (b) Q2 (c) Q3

Figure 2.27: Queries Q1 – Q3 with the synthetic data inserted organized by id/time

0

500

1000

1500

2000

2500

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

(a) (b)

Figure 2.28: Queries Q4 with the synthetic data organized by (a) time, (b) id/time

2.5.3.2. Results on Timeslice Queries

Figure 2.28(a) presents the average number of node accesses for timeslice queries with 100% in each

spatial dimension (e.g. find all objects in a certain timestamp) when inserting the trajectory data

organized in purely chronological order. As shown, in the first case, the original TB-tree only

marginally outperforms the TB*-tree, which is an expected behavior, since the original TB-tree takes

full advantage of the monotonicity of time and stores object’s trajectories considering only the order in

which they are inserted in the index. However, this turns out to be a drawback when data are not

inserted in purely chronological order (Figure 2.28(b)); in this case, the TB*-tree shows better

performance, a behavior that is similar to the one showed by this structure when data were inserted in

strictly chronological order.

 43

As a conclusion, the TB*-tree performance in timeslice queries is reduced compared with its

performance in range queries, although it still outperforms the TB-tree when the trajectory data inserted

in the structures are organized by ‘id/time’.

2.5.3.3. Results on Combined Queries

Figure 2.29 shows the average number of node accesses required by the TB- the TB*- and the 3D R-

tree in order to answer combined queries. In both figures the TB*-tree outperforms both TB- and 3D R-

tree regardless of the dataset cardinality. Moreover, in accordance with all the previous experiments,

the difference in the performance between the TB- and the TB*-tree increases in favor of the TB*-tree

with the dataset cardinality. Furthermore, in the second case (Figure 2.29(b)) where that data inserted

in the trees with ‘id/time’ organization, the TB*-tree shows even better performance over its

predecessor.

0

100

200

300

400

500

600

700

0 500 1000 1500 2000
Moving Objects

N
o
d

e
 a

c
c

e
s

s
e

s

TB

TB*

3D R

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000
Moving Objects

N
o
d
e

 a
c

c
e
s

s
e
s

TB

TB*

3D R

(a) (b)

Figure 2.29: Combined queries, (Q5) with the synthetic data organized by (a) time, (b) id/time

2.5.4. Summary of the Experiments

The experiments conducted in order to evaluate the performance of the proposed TB*-tree against the

original TB-tree and the 3D R-tree showed that the proposed index supports range queries efficiently.

More specifically, when dealing with relative large query extents (0.1% and 1% of the entire space) the

TB*-tree always outperforms the TB-tree and the 3D R-tree, while in smaller query extents (0.01% of

the total space) it is marginally better than its competitors, a benefit which becomes clearer as the

dataset cardinality increases. On the contrary, in timeslice queries the TB*-tree appears to have reduced

performance, requiring a few more page accesses in order to process a timeslice query.; in this case the

“winner” is the 3D R-tree. Finally, regarding the combined queries the new index shows superior

performance over the original TB-tree in all settings. Moreover, the superiority of the proposed index is

established in the general case where the indexes are built inserting the trajectory data not in purely

chronological order (‘id/time’ organization), a case which is expected in real-world applications and

when the index is built after a dataset compression. Under such conditions, the TB*-tree is always

much more efficient than the TB-tree. On the subject of the size of the TB*-tree, its space utilization,

like the original TB-tree, reaches up to 96%, and the average size per moving object is the half than

that of the TB-tree. Moreover, the TB*-tree supports high insertion rates since its insertion algorithm is

proved to be very fast, is more compact than its competitors, behaves well in non-chronological

trajectory insertions that appear in real-world environments, and supports trajectory deletions and

trajectory compression efficiently.

 44

2.6. Experimental Study: Network-Constrained Movement

In order to determine the conditions under which the FNR-tree is efficient, we compared it with other

spatio-temporal access methods, namely the 3D R-, the TB- and the TB*-tree.

2.6.1. Experimental Setup

In order to evaluate the performance of the FNR-tree, we implemented its structure in main memory,

simulating its behaviour. We have chosen the page size for all trees to be 4096 bytes, acquiring the

following fanout settings for the FNR-tree: (a) for the 2D R-tree a fanout of 193 and 202, for leaf and

non-leaf nodes, respectively; (b) for the children 1D R-trees a fanout of 290 and 339, for leaf and non-

leaf nodes, respectively; (c) for the Parent 1D R-tree, a fanout of 339 for both leaf and non-leaf nodes.

Compared with the fanout of its competitors, the FNR-tree is as compact as the TB*-tree

(outperforming the other two index structures). We also used a (variable size) LRU buffer fitting the

10% of the index size, with a maximum capacity of 1000 pages. The experiments were performed in a

PC running Microsoft Windows XP with AMD Athlon 64 3GHz processor and 1 GB RAM. In order to

achieve scalability in the cardinality of the datasets and study the behavior of the index structures under

several settings we have employed the synthetic NG datasets introduced in section 1.5.3 (again, the real

datasets of section 0 are not suitable for our study since they have constant, rather limited size).

Table 2.4: Results on tree size (NG synthetic datasets)

index size in pages (of 4 KB each)
Dataset

FNR-tree 3D R-tree TB-tree TB*-tree

NG 200 769 1204 770 424

NG 400 1139 2397 1533 848

NG 800 1850 4603 3040 1669

NG 1200 2575 7001 4499 2495

NG 1600 3281 9234 5972 3310

NG 2000 4030 11636 7455 4158

2.6.2. Results on Tree Size and Insertion Cost

The size of the built index structures is illustrated in Table 2.4. As listed there, the FNR-tree is much

smaller than the 3D R-tree and the TB-tree. The ratio between the index size of FNR and 3D R-tree

varies between 0.30 and 0.45 for large number of moving objects. For example, the size of the FNR-

tree for 2000 moving objects is about 16 MB, while the size of the respective 3D R-tree is 48 MB. It is

only the TB*-tree that appears to have a comparable size with the FNR-tree.

Table 2.5: Index size, space utilization and node accesses per insertion on the NG 2000 dataset

 FNR-tree 3D R-tree TB-tree TB*-tree

Index size (KB per object) 8.1 24.0 14.9 8.3

Space utilization 92% 64% 86% 75%

Node Accesses per Insertion (average) 2.0 2.1 4.0 1.04

Similar results are exposed regarding the space utilization. As shown in Table 2.5, the space

utilization of the 3D R-tree is about the typical 65%, remaining steady regardless of the number of

 45

moving objects. Likewise, the space utilization for the TB- and TB*-tree is respectively about 86% and

75%, respectively, percentages that are not affected by the number of moving objects. Nevertheless, we

have to point that the space utilization of TB- and TB*-tree is mainly affected by the number of each

trajectory’s time-stamped positions, which is rather low, around 500 vertices per trajectory; bearing in

mind that each leaf node contains approximately 300 entries, it becomes clear that each trajectory

should occupy 2 leaf nodes, the first being completely filled, and the other being half-full. On the

contrary, the space utilization of the FNR-tree grows with the dataset cardinality. Thus, the space

utilization of the FNR-tree with 200 moving objects is 65 %, while, for 1200 and over it reaches 92%.

Regarding the results on node accesses per insertion, each insertion of a 3D line segment in the

FNR-tree requires an average cost of 2.0 node accesses, while an insertion in the 3D R-tree requires an

average of 2.1 node accesses. It is clear, that the pre-searching in the 2D R-tree in order to find the 1D

R-tree to place the newly inserted line segment does not add significant additional overhead, mainly

due to the effect of the employed LRU buffer. Regarding the TB- and TB*-tree, they still demonstrate

the same behavior observed in the previous experiments in unrestricted space, being able to support

high insertion rates.

2.6.3. Results on Search Cost

Range and timeslice queries were used in order to evaluate the performance of the FNR-tree. Both were

executed against the FNR-, the 3D R-, the TB- and the TB*-tree indexing the NG datasets. In particular,

we used sets of 500 queries with the following query windows:

• Q1–Q3: three sets of 500 cubic query windows with a range of 0.01%, 0.1% and 1% of the

total space, respectively, increasing the number of moving objects.

• Q4–Q6: three timeslice query windows with a range of 1%, 10% and 100% extent in each

spatial dimension and zero temporal extent.

We used the Search-from-2D-R-tree (cf. Figure 2.21) FNR-tree algorithm against all the

above queries and additionally, we tested Search-from-Parent-1D-R-tree (cf. Figure 2.22)

against Q6 i.e., those with 100% extent in each spatial dimension.

2.6.3.1. Results on Range Queries

Figure 2.30 illustrates the average number of node accesses per query for various ranges and datasets.

In particular, Figure 2.30 (a), (b) and (c), show the average number of node accesses for range queries

with a window of 0.01%, 0.1% and 1% of the total space. As it is clearly illustrated, the FNR-tree has

superior range query performance over all of its competitors for dataset cardinality above a threshold,

in all query sizes. The break-even point after which the FNR-tree outperforms the rest depends on the

query size. Specifically the break-even point is at about 400 moving objects for small query sizes

(0.01%), while greater query sizes result in smaller break-even point, abound 200 moving objects.

Regarding the rest structures, the 3D R-tree performs always much better than the TB- and the TB*-tree

two when using the data moving on the networks; note that the diagrams may not contain all the curves

of the four indexes, due to the fact that they are not contained inside the given display scale (i.e., they

have values greater than the ones displayed in the diagram’s y- axis). We have to point however, that

the observation regarding the performance of 3D R-, TB- and TB*-tree can not be generalized.

 46

Specifically, the poor performance that TB- and TB*-tree demonstrate in the experiments, is mainly

due to the small number of time-stamped positions in each trajectory, which forces each trajectory to be

divided between two tree nodes only. It is expected (as also the previous experiments showed) that as

the temporal extent of trajectories grows and more time-stamped positions are added into each

individual trajectory, the performance of TB- and TB*-tree will tend to have more “normal” values as

the ones demonstrated in the experiments on unrestricted space. Nevertheless, the tool provided by

[Bri02] and used to produce the synthetic trajectories on netowrks, can not generate longer trajectories;

therefore we can not employ larger (elongated in the temporal dimension) datasets.

0

10

20

30

40

50

60

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

FNR

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

FNR

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

FNR

(a) Q1 (b) Q2 (c) Q3

Figure 2.30: Queries Q1 – Q3

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

FNR

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s
e

s

TB

TB*

3D R

FNR

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e
s

s
e

s

TB
TB*

3D R
FNR
FNRT

(a) (b) (c)

Figure 2.31: Queries Q4 – Q6

2.6.3.2. Results on Timeslice Queries

The FNR-tree performance in timeslice queries is reduced compared with its performance in range

queries, although it still outperforms its competitors in most cases. Figure 2.30 shows the average

number of node accesses for timeslice queries with several datasets and spatial extents. In particular,

the FNR-tree shows better performance over its competitors for a number of moving objects and above;

the break-even point depends on the query size and is about 1600 for 1%, 1200 for 10% and 1000 for

100% query size in each spatial dimension. The other two competitors (TB- and TB*-tree) still show

the same disadvantages that demonstrated in the previous experiment regarding general range queries.

Furthermore, the line marked as FNRT in Figure 2.31(c) represents the performance of the FNR-

tree using the second search algorithm, which in this special type of queries outperforms the first.

Specifically, using the second algorithm shifts the break-even point from which the FNR-tree is better

than the 3D R-tree from 1000 to 800 moving objects. For a direct comparison between the two FNR-

tree search algorithms, we also present Figure 2.32. There, it is clearly illustrated that the average

 47

number of node accesses of the second search algorithm – for 2000 objects – remains stable regardless

of the query spatial extent, while the cost of the first search algorithm grows sublinearly with the

spatial extent.

0

100

200

300

400

500

600

0 50 100
Spatial Extent

N
o

d
e

 a
c

c
e

s
s

e
s

FNR

FNRT

Figure 2.32: Timeslice queries with incremental spatial extent in the FNR-tree with 2000 moving

objects

2.6.4. Summary of the Experiments

The experiments that we conducted in order to evaluate the performance of the FNR-tree showed that it

supports range and timeslice queries much more efficiently than its three competitors. Especially for

the latter case of timeslice queries, the FNR-tree only conditionaly outperforms the 3D R-tree; this

happens after the cardinality of the dataset exceeds 1000 trajectories. Besides, we establish the

conditions under which the second search algorithm is more efficient than the first; it is shown that

timeslice queries with spatial extent greater than the 50% of the total spatial space are more efficiently

supported by the Search-from-Parent-1D-R-tree algorithm. On the subject of the size of the

FNR-tree, its space utilization may reach 92%; the average size per moving object is comparable with

the one of the TB*-tree, and it may become 3 times smaller than the respective size of the 3D R-tree.

Finaly, the average node accesses per insertion in the FNR-tree is better then the one of the original

TB-tree and in the same order of magnitude with the simple 3D R-tree.

2.7. Conclusions

The domain of indexing spatio-temporal data has been very active during the last decade. While the

vast majority of real-world spatio-temporal applications concerns objects producing trajectory data, a

great part of the developed indexes overlook the challenges posed by the nature of the these data, and

they just index collections of line segments in the spatio-temporal space, handling only traditional

coordinate-based queries. Moreover, since a great number of such applications assumes that the space

on which objects move is network-constrained (fleet management systems, and so on), spatio-temporal

indexes should exploit this property in order to become more efficient as suggested in [KGT99].

The first in the literature index proposed to efficiently support trajectory-based queries, the TB-

tree [PJT00], was fundamentally different from other spatio-temporal access methods since it proposed

grouping of line segments in the same leaf nodes, based not on their spatial or temporal proximity but

on the trajectory in which they belong. However, the TB-tree turns out to have some drawbacks with

the major one being its dependence on the order in which trajectory data are inserted into the index.

Moreover, while motion restrictions have been a subject of research [KGT99], [PTKZ02], [Pfo02],

 48

[PJ01], until recently, there was no proposal for a spatio-temporal access method suitable for objects

moving on fixed networks.

In this chapter, state-of-the-art is advanced towards two independent directions:

• In the first case, where objects move freely in the space, acknowledging the basic advantages

of the TB-tree, we propose an extension of it, called TB*-tree. The proposed index overcomes

the main disadvantages of its predecessor while at the same time preserving all of its ‘desired’

properties. In particular, it supports trajectory insertions, deletions and compression, while

querying is performed by employing the same algorithms provided in [PJT00].

• In the second case of network-constrained objects, a novel indexing technique, called Fixed

Network R-tree (FNR-tree) is proposed. The general idea that describes the FNR-tree is that of

a forest of several 1D R-trees [Gut84] on top of a single 2D R-tree. The 2D R-tree is used to

index the spatial data of the network (i.e., roads consisting of line segments), while the 1D R-

trees are used to index the time interval of each object’s movement on a given segment of the

network. Additionally, the leaf nodes of all the 1D R-trees are indexed by another 1D R-tree

used to answer queries with no spatial extent.

The experiments conducted in order to evaluate the performance of the proposed TB*-tree

against the original TB-tree and the 3D R-tree showed that the proposed index supports range and

combined queries efficiently. Its superiority is established in the general case where the indexes are

built inserting the trajectory data not in purely chronological order (‘id/time’ organization), a case

which is expected in real-world applications and when the index is built after a dataset compression.

The TB*-tree, is more compact than the original TB-tree, it supports high insertion rates, behaves well

in non-chronological trajectory insertions that appear in real-world environments, and supports

trajectory deletions and trajectory compression efficiently.

We also experimentally compared the FNR-tree with the TB*-tree and the traditional 3D R-tree

[TVS96] and TB-tree [PJT00]. Under various datasets and range queries, the FNR-tree was shown to

outperform all its competitors in the vast majority of settings. The FNR-tree has high space utilization,

smaller size per moving object and supports range queries much more efficiently. In general, we argue

that the FNR-tree is an access method ideal for fleet management applications; however, it may only be

used under the network-constrained scenario.

 49

3. Advanced Trajectory Query Processing:

Nearest Neighbor Search

In this chapter we provide a set of algorithms for performing nearest neighbor search on moving object

trajectories, by employing R-tree-like structures storing historical trajectory information. The chapter is

organized as follows. Section 3.1 provides an introduction to the core subject of this chapter. Related

work is discussed in Section 3.2, while Section 3.3 introduces, at an abstract level, the set of k-NN

algorithms over moving object trajectories, as well as the metrics that support our search ordering and

pruning strategies. Sections 3.4 and 3.5 constitute the core of the chapter describing in detail the query

processing algorithms to perform NN search over historical trajectory information together with their

continuous counterparts; the algorithms presented are based on the depth-first and best-first paradigm,

on R-tree-like structures. Section 3.6 presents the results of our experimental study and Section 3.6.5

provides our conclusions.

3.1. Introduction

Research in the field of advanced query processing in historical spatio-temporal trajectory databases is

guided by related work performed in the domain of (stationary) spatial databases. For example, queries

of the form “find all objects located within a given area during a certain time interval” generalize the

respective spatial range query of the form “find all objects within a given area”. Such queries are

considered as basic ones, since the proposed indexes by definition should support them; for that reason,

they are not further examined hereafter. On the other hand, other spatial operators, such as nearest

neighbor [RKV95] and distance join [HS99], are considered as advanced, since they require more

sophisticated query processing techniques in order to be efficiently processed. Moreover, such

advanced techniques may or may not consider the presence of a spatio-temporal index. Then again, in

MODs we typically have to deal with huge volumes of historical data which correspond to a large

number of mobile and stationary objects. As a consequence, querying functionality embedded in an

extensible DBMS that supports moving objects has to present robust behavior in the above mentioned

issues. Hence, in this thesis, we restrict our discussion on advanced query processing techniques under

the perspective of the former case, that is, assuming the operation of some kind of spatio-temporal

index.

An important class of queries that is definitely useful for MOD processing is the so-called k

nearest neighbor (k-NN) queries, where one is interested in finding the k closest trajectories to a

 50

predefined query object Q. To our knowledge, in the literature such queries primarily deal with either

static ([RKV95], [CF98], [HS99]) or continuously moving query points ([SR01], [TPS02]) over

stationary datasets, or queries about the future or current positions of a set of continuously moving

points ([BJKS02], [TP02], [ISS03], [YPK05], [XMA05], [MHP05]). Apparently, these types of queries

do not cover NN search on historical trajectories.

Thus, one of the challenges accepted in this thesis is to describe diverse mechanisms to perform

k-NN search on MODs exploiting spatio-temporal indexes storing historical information. To illustrate

the problem, consider an application tracking the positions of rare species of wild animals. Such an

application is composed of a MOD storing the location dependent data, together with a spatio-temporal

index for searching and answering k-NN queries in an efficient manner. Experts in the field would be

advantaged if they could pose a query like “find the nearest trajectories of animals to some stationary

point (lab, source of food or other non-emigrational species) from which this species passed during

March”. Now imagine that the expert’s wish is to pose the same query with the difference that the

query object Q is not a stationary point but a moving animal moving from location P1 to P2 during a

period of time. This query gives us rise to deduce a more generic query where the expert may wish to

set another trajectory of the same or relative class of species as the query object Q. It is self-evident

that by these types of queries an expert may figure out motion habits and patterns of wild species or

deviations from natural emigration, which could be interrelated with environmental and/or ecological

changes or destructions. Having in mind that MOD users are usually interested in continuous types of

queries, the two previously discussed queries are extended to their continuous counterparts. In their

continuous variation, each query returns a time-varying number (denoting the nearest distance, which

depends on time) along with a collection of trajectory ids and the appropriate time intervals for which

each moving object is valid {O1[t1, t2), O2[t2, t3), …}.

x

t

y
Q1

O1 O2

Q2

O3 O6 O4 O5

t1

t4

t2

t6

t3

t5

Figure 3.1: NN queries over moving objects trajectories

Posing the problem in a more human-centric context, consider an application analyzing the

dynamics of urban and regional systems. The intention here is to assist the development of spatio-

temporal decision support systems (STDSS) aimed at the planning profession. Such a case requires

similar methodologies for comprehending, in space and time, the interrelations of the life courses of

individuals. The life courses of most individuals are built around two interlocking successions of

events: a residential trajectory and an occupational career. These patterns of events became more

 51

complex during last decades, creating new challenges for urban and regional planners. We believe that

an expert may take advantage of the features provided by our nearest neighbor query processing

algorithms and utilize them for analyzing human life courses.

To make the previous examples more intelligible, consider Figure 3.1 illustrating the trajectories

of six moving animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1 and Q2)

representing two sources of food. Now, consider the following queries also demonstrated in Figure 3.1

(Queries 2 and 4 are the continuous counterparts of Queries 1 and 3, respectively):

• Query 1. “Find which animal was nearest to the stationary food source Q1 during the time

period [t1,t4]”, resulting to animal O1.

• Query 2. “Find which animal was nearest to the stationary food source Q2 at any time

instance of the time period [t1,t4]”, resulting to a list of objects: O2 for the interval [t1,t3); O1

for the interval [t3,t4].

• Query 3. “Find which animal was nearest to animal O3 during the time period [t2,t6]”,

resulting to O2.

• Query 4. “Find which animal was nearest to animal O6 at any time instance of the time period

[t2,t6]”, resulting to a list of objects: O5 for the interval [t2,t5); O4 for the interval [t5,t6].

Unlike traditional databases, MODs have the characteristic that several spatio-temporal queries

are by nature continuous. In contrast to snapshot queries, which are invoked only once, continuous

queries require continuous evaluation as the query result becomes invalid after a short period of time.

Putting the previous discussion under the perspective of historical trajectories, although queries 2 and 4

are continuous in nature (at any time instance) they cannot be characterized as pure continuous queries;

with respect to the database engine, a continuous query is one that is submitted to the database only

once and remains active, continuously updating the query result with the evolution of time, until its

completion is declared by either a user’s message or a predetermined query lifetime [BW01], [HXL05],

[MXA04]. In this sense, queries 2 and 4 are snapshot queries. However, in order to differentiate them

from queries 1 and 3 and also from pure continuous queries, hereafter we will call them Historical

Continuous NN queries (HCNN).

Summarizing the previous discussion, the main contributions of the current chapter are outlined

as follows:

• We propose novel metrics to support our search ordering and pruning strategies. More

specifically, the definition of the minimum distance metric MINDIST between points and

rectangles, initially proposed in [RKV95] and extended in [TPS02], is further extended in

order for our algorithms to calculate the minimum distance between trajectories and rectangles

efficiently.

• We propose query processing algorithms to perform NN search on spatio-temporal indexes

storing historical information of moving objects. We exploit on the most commonly founded

spatio-temporal indexes, supporting unconstrained movement, i.e., R-tree-like structures such

as the 3D R-tree [TVS96], the TB-tree [PJT00] and the TB*-tree proposed in this thesis. The

description of our algorithms for different queries depends on the type of the query object

(point or trajectory) as well as on whether the query itself is continuous or not. In particular,

 52

we present efficient depth-first and best-first (incremental) algorithms for historical NN

queries as well as depth-first algorithms for their continuous counterparts. All the proposed

algorithms are generalized to find the k nearest neighbors.

• We conduct a comprehensive set of experiments over large synthetic and real datasets

demonstrating that the algorithms are highly scalable and efficient in terms of node accesses,

execution time and pruned space.

We have to point out that the proposed algorithms do not require any dedicated index structure

and can be directly applied to any member of the R-tree family used to index trajectories, such as the

ones presented in the previous chapter.

3.2. Related Work

In the last decade, NN queries have motivated the spatial and spatio-temporal database community with

a series of interesting noteworthy research issues. An affluence of methods for the efficient processing

of NN queries for static query points already exist, the most influential probably being the branch-and-

bound R-tree traversal algorithm proposed by Roussopoulos et al. [RKV95] for finding the nearest

neighbor of a single stationary point. The algorithm utilizes two metrics, MINDIST and MINMAXDIST,

in order to implement tree pruning and ordering. Specifically, starting from the root of the tree, the

algorithm identifies the entry with the minimum distance from the query point (with the use of the

above metrics). The process is recursively repeated until the leaf level is reached, where the first

candidate nearest neighbor is found. Returning from this recursion, only the entries with a minimum

distance less than the distance of the nearest neighbor already found are visited. The above process was

generalized to support k-NN queries. Later, Cheung and Fu [CF98] proved that, given the MINDIST-

based ordering, the pruning obtained by [RKV95] can be preserved without the use of MINMAXDIST

metric (the calculation of which is computationally expensive).

Hjaltason and Samet [HS99] presented a general incremental NN algorithm, which employs a

best-first traversal of the R-tree structure. When deciding what node of the tree to traverse next, the

proposed algorithm picks the node with the least distance in the set of all nodes that have yet to be

visited. In order to achieve this, the algorithm utilizes a priority queue where the tree nodes are stored

in increasing order of their distance from the query object. This best-first algorithm outperforms

Roussopoulos et al. algorithm in terms of pruned space. Additionally, once the nearest neighbor has

been found, the k-NN can be retrieved with virtually no additional work, since the algorithm is

incremental. The basic drawback of this best-first algorithm is that its performance depends on the size

of the priority queue. In case the priority queue becomes very large, the execution time of the algorithm

increases rapidly.

The first algorithm for k-NN search over a moving query point was proposed in [SR01]. The

algorithm assumes that sites (landmark points) are static and their locations (known in advance) are

stored in an R-tree-like structure. A discrete time dimension is assumed, thus a periodical sampling

technique is applied on the trace of the moving query point. The location of the query point that lies

between two consecutive sampled locations is estimated using linear or polynomial splines. Executing

a Point Nearest Neighbor (PNN) query for every sample point of the query trace is highly inefficient,

 53

so the proposed algorithm adopts a progressive approach, based on the observation that when two

query points are close, the results of the k-NN search at these locations have to be related. Therefore,

when computing the result set for a sample location, the algorithm tries to exploit information provided

by the result sets of the previous samples. The basic drawback of this approach is that the accuracy of

the results depends on the sampling rate. Moreover, there is a significant computational overhead.

A technique that avoids the drawbacks of sampling relies on the concept of time-parameterized

(TP) queries [TP02]. TP queries retrieve the current result at the time the query is issued, the validity

period of the result and the change (i.e. the set of objects) that causes the expiration of the result. Given

the current result and the set of objects that affect its validity, the next result can be incrementally

computed. The significance of TP queries is two-fold: i) as stand-alone methods, they are suitable for

applications involving dynamic environments, where any result is valid for a certain period of time, and

ii) they lie at the core of more complex query mechanisms, such as the Continuous NN (CNN) queries.

The main disadvantage of using TP queries for the processing of a CNN query is that several NN

queries are required to be performed. Thus, the cost of the method is prohibitive for large datasets.

Using the TPR-tree (Time Parameterized Tree) structure [SJLL00], Benetis et al. [BJKS02]

presented efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for moving objects.

(An RNN query returns all the objects that the query object is the nearest neighbor of.) The proposed

algorithm was the first to address continuous RNN queries, since previous existing RNN algorithms

were developed under the assumption that the query point is stationary. The algorithms for both NN

and RNN queries in [BJKS02] refer to future (estimated) locations of the query and data points, which

are assumed to be continuously moving on the plane. In the same paper, an algorithm for answering

CNN queries is also proposed.

Tao et al. [TPS02] also studied CNN queries and proposed an R-tree based algorithm (for

moving query points and static data points) that avoids the pitfalls of previous ones (false misses and

high processing cost). The proposed tree pruning heuristics exploit the MINDIST metric presented in

[RKV95]. At each leaf entry, the algorithm focuses on the accurate calculation of the split points (the

points of the query segment that demonstrate a change of neighborhood). A theoretical analysis of the

optimal performance for CNN algorithms was presented and cost models for node accesses were

proposed. Furthermore, the CNN algorithm was extended for the case of k neighbors and trajectory

inputs.

Based on the TP queries presented in [TP02], Iwerks et al. [ISS03] described a technique that

focuses on the maintenance of CNN queries (for future predicted locations) in the presence of updates

on moving points, where the motion of the points is represented as a function of time. A new approach

was also presented, which filters the number of objects to be taken into account when maintaining a

future CNN query.

Recently, under the same field, Xiong et al. [XMA05], proposed a method for scalable

processing of CNN queries in spatio-temporal databases. They propose a general framework for

processing large numbers of simultaneous k-CNN queries with static or moving queries over static or

(currently) moving datasets without making any assumptions about the object trajectories. Unlike other

proposals, their solution in order to support high update rates is not based on the R-tree but on a simple

 54

grid structure maintained on the disk. A similar method was also proposed by Yu et al. [YPK05] for

monitoring k-CNN queries over (currently) moving objects without making any assumptions about the

object trajectories. The method also uses (main memory) grid indices indexing moving objects and

queries and is shown to outperform R-tree-based solutions. Mouratidis et al. [MHP05] also relax the

assumption that moving object’s trajectories are fully predictable by their motion parameters, and

propose a comprehensive technique for the efficient monitoring of continuous NN queries. The

proposed method, named conceptual partitioning monitoring method (CPM), uses also a grid structure

and achieves low running time by handling moving object’s location updates only from objects falling

in the vicinity of some query. The experimental results presented in [MHP05] show that the CPM

method outperforms the techniques presented in [XMA05] and [YPK05].

Shahabi et al. [SKS03] presented the first algorithm for processing the k-NN queries for moving

objects in road networks. Their proposed algorithm, which utilizes the network distance between two

locations instead of the Euclidean, is based on transforming the road network into a higher dimensional

space, in which simpler distance functions can be applied. Using this embedding space, efficient

techniques are proposed for finding the shortest path between two points in the road network. The

above procedure, which is utilized in the case of static query points, is slightly modified in order to

support the case of moving query points.

Acknowledging the advantages of the above fundamental techniques, in this thesis we present

the first complete treatment of historical NN queries over moving object trajectories indexed by

specialized and general-purpose indexes, handling both stationary and moving query objects.

3.3. Problem Statement and Metrics for Nearest Neighbor Search

We first define the NN queries that are considered in this thesis. Subsequently, we present the

heuristics utilized by our algorithms and the metrics required to formulate our ordering and pruning

strategy. Finally, an analytical method is provided in order to formulate the function of distance with

time between two objects moving synchronously with constant speed and direction, i.e., between two

consecutively sampled points, as well as its minimum value; both analysis outcomes are essential for

the algorithms provided in the next section. The notation used is summarized in Table 3.1.

Table 3.1: Table of notations

Notation Description

D a trajectory database

Oi A moving object identifier

Ti an indexed trajectory

Ti,k the k-th line segment of Ti

xi,k, yi,k, ti,k the coordinates of trajectory Ti a timestamp tk

Qp, QT, Qper A query point, a query trajectory and a query period [tstart, tend]

3.3.1. Problem Statement

Let D be a database of N moving objects with objects ids {O1, O2, …, ON} and trajectories {T1, T2, …,

TN}. We have already stated that NN queries search for the closest trajectories to a query object Q. In

our case, we distinguish two types of query objects: Qp, a point (x, y) that remains stationary during the

 55

time period of the query Qper[tstart, tend], and QΤ, a moving object with trajectory T. Having in mind the

previous discussion, we define the following two types of NN queries:

• NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that remains

stationary during a time period Qper, and returns the closest to Qp point pc from which a

moving object Oi passed during the time period Qper, as well as the implied minimum distance.

• NN_QT (D, QT, Qper) query is similar to the previous with the difference being upon the query

object Q which in the current case is a moving object with trajectory T.

The extensions of the above queries to their historical continuous counterparts vary in the output

of the algorithms. In the continuous case, each query returns a time-varying real number, as the nearest

distance depends on time. We introduce the following two types of historical CNN queries:

• HCNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time period

Qper returns a list of triplets consisting of the time-varying real value Ri along with a moving

object Oi (belonging in database D) and the corresponding time period [ti-start, ti-end) for which

the nearest distance between Qp and Oi stands. These time-varying real values Ri are, at any

time instance of their lifetime, smaller or equal to the distance between any moving object Oj

in D and the query point Qp. The time periods [ti-start, ti-end) are mutually disjoint and their

union forms Qper.

• Similarly, HCNN_QT (D, QT, Qper) differs, compared to the previous, upon the query object Q

which in the current case is a moving object with trajectory T. The corresponding time-

varying real values Ri are, at any time instance of their lifetime, smaller or equal to the

distance between any moving object Oj and the query trajectory QT. The respective time

periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.

The above four queries are generalized to produce the corresponding k-NN queries. The

generalization of the first two queries is straightforward by simply requesting the 1st, 2nd, …, k-th

nearest point – with respect to a query point or a query trajectory – from which a moving object Oi

passed during the time period Qper, excluding at the same time points belonging to a moving object

already marked as the j-th nearest (1 ≤ j < k). The historical continuous queries are generalized to

produce k-HCNN requesting to provide with k lists of {Ri, [ti-start, ti-end), Oi} triplets. Then, for any time

during the time period Qper, the i-th list (1 ≤ i ≤ k) will contain the i-order NN moving object (with

respect to the query point or the query trajectory) at this time instance.

To exemplify the proposed k-NN extensions, let us recall Figure 3.1. Searching for the 2-NN

versions of the four queries (Query 1, 2, 3 and 4) presented in Section 3.1, we will have the following

results:

• Query 1 (historical non-continuous): O1 (1
st NN) and O2 (2

nd NN)

• Query 2 (historical continuous): 1-NN list includes O2 for the interval [t1,t3) and O1 for the

interval [t3,t4]; 2-NN list includes O1 for the interval [t1,t3) and O2 for the interval [t3,t4]

• Query 3 (historical non-continuous): O2 (1
st NN) and O4 (2

nd NN)

• Query 4 (historical continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for the

interval [t5,t6]; 2-NN list includes O4 for the interval [t2,t5) and O5 for the interval [t5,t6].

 56

3.3.2. Metrics

We exploit on the definition of the minimum distance metric (MINDIST) presented in [RKV95]

between points and rectangles, in order to calculate the minimum distance between line segments and

rectangles and the minimum distance between trajectories and rectangles, both of which are needed to

implement the above discussed algorithms.

Initially, in [RKV95], Roussopoulos et al. defined the Minimum Distance (MINDIST) between a

point P and a rectangle R in the n-dimensional space as the square of the Euclidean distance between P

and the nearest edge of R, if P is outside R (or zero, if P is inside R). Then, Tao et al. [TPS02] proposed

a method to calculate the MINDIST between a 2D line segment L and a rectangle M (Figure 3.2).

 M

L
d1

d5

d6

d4
d3

d2

Figure 3.2: Calculating MINDIST between a line segment and a rectangle [TPS02]

MINDIST calculation method in [TPS02] initially determines whether L intersects M; if so,

MINDIST is set to zero. Otherwise, the shortest among six distances is chosen, namely the four

distances between each corner point of M and L (d1, d2, d3, d4) and the two minimum distances from the

start and end point of L to M (d5, d6). Therefore, the calculation of MINDIST between a line segment

and a rectangle involves an intersection check, four segment-to-point MINDIST calculations and two

point-to-rectangle MINDIST calculations.

M

L

d1

d3

d2

M

L

d1

d3

d2

d4

M

L

d1

d2

Case 1: L.start and L.end belong to the same
quadrant

Case 2: L.start and L.end belong to
adjacent quadrants

Case 3: L.start and L.end belong to non
adjacent quadrants

Figure 3.3: The proposed calculation method of MINDIST between a line segment and a rectangle

In this thesis, we propose a more efficient method to calculate MINDIST between a line segment

L and a rectangle M (Figure 3.3). As before, if L intersects M, then MINDIST is obviously zero.

Otherwise, we decompose the space in four quadrants using the two axes passing through the center of

M and we determine the quadrants Qs and Qe in which the start (L.start) and the end (L.end) point of L

lie in, respectively.

Then, MINDIST is the minimum among:

• Case 1 (the two end points of the line segment belong to the same quadrant (Qs)): (i)

MINDIST between the corner of M in Qs and L, (ii) MINDIST between L.start and M, and (iii)

MINDIST between L.end and M.

 57

• Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (i) MINDIST

between the corner of M in Qs and L, (ii) MINDIST between the corner of M in Qe and L, (iii)

MINDIST between L.start and M, and (iv) MINDIST between L.end and M.

• Case 3 (L.start and L.end belong to non adjacent quadrants Qs and Qe, respectively): two

MINDIST between the two corners of M, that do not belong in either Qs or Qe, and L.

M

T

d1

d4

d2

d3 d5
d6

d7
d8

Figure 3.4: The proposed calculation method of MINDIST between a route (projection of a trajectory

on the plane) and a rectangle

This method utilizes a smaller number of (point-to-segment and point-to-rectangle) distance

calculations compared to the corresponding algorithm in [TPS02]. The worst-case scenario of the

proposed MINDIST calculation includes the determination of the quadrant in which the starting and

ending points of the line segment belong, and two point-to-segment and two point-to-rectangle distance

calculations, while the corresponding algorithm of [TPS02] employs four point-to-segment and two

point-to-rectangle calculations. Therefore, the proposed MINDIST calculation, in its worst case,

determines the quadrant of the starting and ending point instead of performing two additional point-to-

segment distance calculations.The efficiency of the proposed improvement over the MINDIST

computation for line segments and trajectories will be shown in the experimental section.

Finally, we extend the above algorithm in order to calculate MINDIST metric between the

projection of a trajectory T on the plane (usually called route) and a rectangle M (Figure 3.4), and

provide the MINDIST_Trajectory_Rectangle metric. Since a route can be viewed as a collection of 2D

line segments, the MINDIST_Trajectory_Rectangle between a route of a trajectory and a rectangle can

be computed as the minimum of all MINDIST between the rectangle and each line segment composing

the route. The efficiency of this calculation can be enhanced by simply not computing twice, with

respect to the query rectangle, the quadrant and the MINDIST of the end and the start of adjacent line

segments.

3.3.3. Determining the Function of Distance between two Synchronously Moving

Trajectories

Before proceeding into the core of this chapter describing the respective algorithms, it is essential to

point out that any algorithm that queries a trajectory database in order to retrieve the nearest to a query

trajectory (i.e., the NN_QT(D, QT, Qper) case following the notation of section 0), should calculate the

minimum distance between two concurrently moving trajectories; moreover, given that the historical

continuous nearest neighbor search HCNN_QT(D, QT, Qper) retrieves time-varying real values Ri

describing the distance between the query trajectory and the nearest database trajectories at any time

instance of the query period Qper, it naturally results that these time varying real values should be

 58

functions of distance with time between the corresponding trajectories. Then again, given that moving

object trajectories are modeled as strings of consecutive 3D line segments (i.e., 3D polylines), this

minimum distance may be translated to the minimum distance between two 3D line segments.

x

t

y

O1 O2

dmin

Figure 3.5: Minimum Synchronous Euclidean distance (i.e., “horizontal”) between two trajectories

The function of the Synchronous Euclidean distance (i.e., “horizontal”, illustrated in Figure 3.1)

between two 3D line segments, () ()()1 1 1 2 2 2, , , , ,
x y x y

P P P t P P t and () ()()1 1 1 2 2 2, , , , ,
x y x y

Q Q Q t Q Q t is:

() () ()() () ()()22

x x y y
t t t t tDist Q P Q P+= − − (3.1)

Replacing () ()1 2 1x x xt
x

Q Q Q Q t= + − ⋅∆ , () ()1 2 1y y y
t

y
Q Q Q Q t= + − ⋅∆ , () ()1 2 1x x x xtP P P P t= + − ⋅∆ ,

() ()1 2 1y y y ytP P P P t= + − ⋅∆ , in (3.1), we get

() () ()() () ()()22

1 2 1 1 2 1 1 2 1 1 2 1x x x x x x y y y y y y
tDist Q Q Q t P P P t Q Q Q t P P P t= + − ⋅∆ − − − ⋅∆ + + − ⋅∆ − − − ⋅∆

In the sequel, we use the square of the Euclidean distance for sake of readiness.

() () ()() () ()()222
1 2 1 1 2 1 1 2 1 1 2 1x x x x x x y y y y y ytDist Q Q Q t P P P t Q Q Q t P P P t= + − ⋅∆ − − − ⋅∆ + + − ⋅∆ − − − ⋅∆ =

() ()()
()() ()()() () ()

2

2 1 2 1 2 1 2 1

2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1

2 2

22
2

x x x x y y y y

x x x x x x y y y y y y x x y y

Q Q P P Q Q P P t

Q Q P P Q P Q Q P P Q P t Q P Q P− − − − − + −

= − − + + − − + ⋅∆ +

+ − + + − + ⋅∆ +

Setting

() ()2

2 1 2 1 2 1 2 1

2
x x x x y y y y

A Q Q P P Q Q P P= − − + + − − + (3.2)

()() ()()()2 1 2 1 1 1 2 1 2 1 1 12 x x x x x x y y y y y yB Q Q P P Q P Q Q P P Q P− − − −= − + + − + (3.3)

() ()1 1 1 1

22
x x y y

C Q P Q P− + −= (3.4)

and replacing ∆t according to the following formula 1

2 1

t t
t

t t
−∆ = − , the Synchronous Euclidean

“horizontal” distance function of two 3D line segments is computed as follows:

()
() () ()

2
2 2 1 1 1

2 1 2 12 1 2 1 2 1
2 2 2

2()t
A B A t A t B t

Dist t t C
t t t tt t t t t t

⋅ ⋅ ⋅= + − + − +− −− − −
, (3.5)

where A, B, C are defined by formulas (3.2), (3.3), and (3.4), respectively.

 59

According to equation (3.5), the square of the Synchronous Euclidean “horizontal” distance

function between two 3D line segments has the quadratic form () 2
Dist t a t b t c= ⋅ + ⋅ + , which is

minimized at
2

min 4

b
Dist c

a
= − for

2

b
t

a
= − . Thus, in our case

()

()

()

1

2 2 1 2 12 1 1
min

2 12 1

2 1

2

2

2

2

2

4

B A t
t t t tA t B t

Dist C
t t At t

t t

 
 
 
 

⋅−
− −⋅ ⋅= − + −−−

−

 (3.6)

for

()

()

1

2 12 1

2 1

2

2

2

2

A t B
t tt t

t
A

t t

−
⋅

−−
=

−

 (3.7)

where A, B, C are defined by formulas (3.2), (3.3), and (3.4), respectively.

We have to note that formula (3.6) can be used in case where t calculated by formula (3.7) is

inside the query time period Qper[tstart, tend]. Otherwise, we distinguish between the following two cases:

• if t ≤ tstart, then the minimum synchronous Euclidean “horizontal” distance is provided by

formula (3.5) by setting t = tstart

• if t ≥ tend, then the minimum synchronous Euclidean “horizontal” distance is provided by

formula (3.5) by setting t = tend.

3.4. Algorithms for Nearest Neighbor Queries over Trajectories

In this section several algorithms, answering the first two (historical non-continuous) types of NN

queries presented in Section 0 are thoroughly introduced and, then, generalized in order to support the

respective k-NN queries. Both approaches traditionally used to process nearest neighbor queries over

spatial data, are followed, namely the Depth-First [RKV95] and the Best-First [HS99] approach. As

such, depth-first algorithms are first presented, followed by their best-first counterparts.

3.4.1. Non-incremental (Depth-First) NN Algorithms over Trajectories

Hereafter are presented non-incremental algorithms answering the first two (historical non-continuous)

types of NN queries presented in Section 0, also generalized in order to support the respective k-NN

queries.

3.4.1.1. Non-incremental NN Algorithm for Stationary Query Objects

The non-incremental NN algorithm for stationary query objects (PointNNSearch algorithm

illustrated in Figure 3.6), provides the ability to answer NN queries for a static query object Qp, during

a certain query time period Qper[tstart, tend]. The algorithm uses the same heuristics as in [RKV95] and

[CF98], pruning the search space according to Qper.

The algorithm accesses the tree structure (which indexes the trajectories of the moving objects)

in a depth-first way pruning the tree nodes according to Qper rejecting those being fully outside it. At

the leaf level, the algorithm iterates through the leaf entries checking whether the lifetime of an entry

overlaps Qper (Line 7); if the temporal component of the entry is fully inside Qper, the algorithm

calculates the actual Euclidean distance between Q and the (spatial component of the) entry; otherwise,

 60

if the temporal component of the entry is only partially inside Qper, a linear interpolation is applied so

as to compute the entry’s portion being inside Qper (Line 9) and calculate the Euclidean distance

between Q and the portion of that entry. When a candidate nearest is selected, the algorithm,

backtracking to the upper level, prunes the nodes in the active branch list (Line 27) applying the

MINDIST heuristic [RKV95] [CF98].

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Algorithm PointNNSearch(node N, point Q, period Qper, struct Nearest)

 IF N Is Leaf

 // Iterate through leaf entries computing Euclidean

 //distance from point Q

 FOR EACH Entry E IN N

 // If entry is (fully or partially) inside the period

 IF Qper Overlaps (E.TS, E.TE)

 // Compute entry’s spatial extent inside the period

 nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE))

 // Compute Entry’s actual distance from Q.

 // Update Nearest if necessary

 Dist = Euclidean_Dist_2D(Q, nE)

 IF Dist < Nearest.Dist Update Nearest with nE, Dist

 ENDIF

 NEXT

 ELSE

 // Generate Node’s branch list with entries overlapping

 // the query period

 BranchList = GenBranchList(Q, N, Qper)

 // Sort active branch List by MinDist

 SortBranchList(BranchList)

 // Iterate through active branch List

 FOR EACH Entry E IN BranchList

 // Visit Child Nodes

 PointNNSearch(E.ChildNode, Q, Qper, Nearest)

 // Apply MinDist heuristic to do pruning

 PruneBranchList(BranchList)

 NEXT

 ENDIF

Figure 3.6: Historical NN search algorithm for stationary query points

3.4.1.2. Non-incremental NN Algorithm for Moving Query Objects

PointNNSearch algorithm can be modified in order to support the second type of NN query where

the query object is a trajectory of a moving point (TrajectoryNNSearch algorithm, illustrated in

Figure 3.7). At the leaf level, the algorithm calculates the minimum Euclidean distance between each

leaf entry and each query trajectory segment by using the Min_Horizontal_Dist function (Line

10), which computes the minimum Synchronous Euclidean distance between two 3D line segments,

applying equations (3.6) or (3.5), according to the corresponding discussion. In addition, for each query

trajectory segment QE and before calculating its distance from the current leaf entry we first interpolate

in order to produce a tuple of entry - query segment with identical temporal extent (Lines 8, 9). In order

to decrease the number of temporal overlap evaluations between leaf entries and trajectory segments,

our algorithm utilizes a plane sweep method, which scans leaf entries and trajectory segments in their

temporal dimension in a single pass (Lines 5, 6, 7). This requires that the leaf entries are previously

sorted according to their temporal extent (Line 4), unless the underlying tree structure (such as the TB-

tree) stores them in temporal order anyway.

 61

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Algorithm TrajectoryNNSearch(node N, trajectory Q, period Qper,

 struct Nearest)

 Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 IF N Is Leaf

 Sort(N, TS) // Sort A-Z Entries in Node N by their Tstart

 FOR EACH Entry E IN N

 Find next query trajectory entry QS with QS.Te<N.TS; QE=QS

 DO UNTIL QE.Ts > E.Te

 nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE))

 nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE))

 Dist = Min_Horizontal_Dist(nQE, nE)

 IF Dist < Nearest.Dist Update Nearest with nE, Dist

 NEXT query entry QE

 Return QE in the query entry QS

 NEXT

 ELSE

 BranchList = GenTrajectoryBranchList(Q, N)

 SortBranchList(BranchList)

 FOR EACH Entry E IN BranchList

 TrajectoryNNSearch(E.ChildNode, E.Trajectory, Nearest)

 PruneBranchList(BranchList)

 NEXT

 ENDIF

Figure 3.7: Historical NN search algorithm for moving query points

At the non-leaf levels, the algorithm utilizes the GenTrajectoryBranchList function

(pseudo-code in Figure 3.8) instead of GenBranchList. The GenTrajectoryBranchList

function utilizes the MinDist_Trajectory_Rectangle metric introduced in Section 3.3.2 in order to

calculate MINDIST between the query trajectory and the rectangle of each entry of node N. Here, we

have to point out that we do not need to calculate MinDist_Trajectory_Rectangle against the actual

query trajectory Q, but only against the part of Q being inside the temporal extent of the bounding

rectangle of N, and in order to do this (if it is necessary) we interpolate to produce the new query

trajectory nQ (Line 6). The interpolated trajectory nQ is also stored inside the Branchlist along with the

respective node entry and the calculated distance (Line 8). Since all the nodes in the sub-tree of N are

spatially and temporally contained inside N, the interpolated trajectory nQ can be used as the query

trajectory for the nodes of the next level inside the sub-tree, allowing us to avoid unnecessary

calculations.

1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

Algorithm genTrajectoryBranchList(node N, trajectory Q)

 FOR EACH Entry E IN N

 // If entry is partially inside the trajectory lifetime

 IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)

 // Compute trajectory’s spatial extent inside E’s lifetime

 nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE))

 // Compute MinDist between the trajectory and the rectangle

 Dist=MinDist_Trajectory_Rectangle(nQ, E)

 // Add the rectangle along with its calculated distance and

 // the interpolated trajectory in the list

 List.Add(E, Dist, nQ)

 ENDIF

 NEXT

 RETURN List

Figure 3.8: Generating Branch List of Node N against Trajectory Q

 62

3.4.1.3. Extending to non-incremental k-NN Algorithms

In the same fashion as in [RKV95], we generalize the above two algorithms to searching the k-nearest

neighbors by considering the following:

• Using a buffer of at most k (current) nearest objects sorted by their actual distance from the

query object (point or trajectory)

• Pruning according to the distance of the (currently) furthest nearest object in the buffer.

• Updating the distance of each moving object inside the buffer when visiting a node that

contains an entry of the same object closer to the query object.

3.4.2. Incremental (Best-First) NN Algorithms over Trajectories

Following from the previous section, we now present the best-first counterparts of the previously

presented algorithms and, then, we generalize them in order to support the respective k-NN queries.

3.4.2.1. Incremental NN Algorithm for Stationary Query Objects

The proposed algorithm, which is based on the NN algorithm for static objects presented in [HS99],

traverses the tree structure in a best-first way. The algorithm uses a priority queue, in which the entries

of the tree nodes are stored in increasing order of their distance from the query object.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Algorithm IncPointNNSearch(R-tree R, 2D point Q, time period Qper)

 EnQueue Queue, R.RootNode, 0

 DO WHILE Queue.Count > 0

 Element = DeQueue(Queue)

 IF Element Is MovingObjectEntry

 RETURN Element as the next nearest object

 ELSEIF Element Is Leaf

 // Iterate through leaf entries computing Euclidean

 // distance from Q

 FOR EACH Entry E IN leaf node Element

 // If entry is (fully or partially) inside the period

 IF Qper Overlaps (E.TS, E.TE)

 // Compute entry’s spatial extent inside the period

 nE = Interpolate(E,Max(Qper.TS E.TS),Min(Qper.TE,E.TE))

 // Compute Entry’s actual distance from Q.

 Dist = Euclidean_Dist_2D(Q, nE)

 EnQueue Queue, nE, Dist

 ENDIF

 NEXT

 ELSE // Element is a non leaf node

 // Iterate through node entries computing their

 // minimum distance from Q

 FOR EACH Entry E IN node Element

 // If entry is (fully or partially) inside the period

 IF Qper Overlaps (E.TS, E.TE)

 // Compute Entry’s MinDist from Q.

 Dist = MinDist(Q, E)

 EnQueue Queue, E, Dist

 ENDIF

 NEXT

 ENDIF

 LOOP

Figure 3.9: Historical Incremental NN search algorithm for stationary query points

Figure 3.9 illustrates the IncPointNNSearch algorithm. In Line 1, the priority queue is

initialized. In Line 6, the next nearest object is reported. As in the respective depth-first algorithm

described in Section 3.4.1.1, at the leaf level the algorithm iterates through the leaf entries checking

 63

whether the lifetime of an entry overlaps the time period of the query Qper (Line 10); if the temporal

component of the entry is fully inside Qper, the algorithm calculates the actual Euclidean distance

between Q and the (spatial component of the) entry; otherwise, if the temporal component of the entry

is only partially inside Qper, a linear interpolation is applied so as to compute the entry’s portion being

inside Qper (Line 14) and calculate the Euclidean distance between Q and the portion of that entry (Line

16). In Line 17, the leaf entry is enqueued along with its real distance from the query object. At the non

leaf levels (Lines 23-30), the algorithm simply calculates MINDIST between the query object and each

node’s entry overlapping the query period Qper, and in the sequel enqueues this entry along with its

MINDIST value.

3.4.2.2. Incremental NN Algorithm for Moving Query Objects

The IncPointNNSearch algorithm proposed above can be slightly modified in order to support the

second type of NN query where the query object is a trajectory of a moving point, thus resulting in

IncTrajectoryNNSearch algorithm, illustrated in Figure 3.10. The changes to be made are the

following three: firstly, as in the respective depth-first algorithm (Section 3.4.1.1), at the leaf level, the

algorithm calculates the minimum “horizontal” Euclidean distance between each leaf entry and each

segment of the query trajectory Q, using the Min_Horizontal_Dist function (Line 15) exploiting

equation (3.6). We also utilize the same plane sweep algorithm, so as to determine which leaf entries

and segments of Q overlap in their temporal dimension, and then we calculate the distance between

those who do overlap (Lines 10-12).

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Algorithm IncTrajectoryNNSearch(R-tree R,trajectory Q, period Qper)

 Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 EnQueue Queue, R.RootNode, Q, 0

 DO WHILE Queue.Count > 0

 DeQueue(Queue, Element, Q)

 IF Element Is MovingObjectEntry

 RETURN Element as the next nearest object

 ELSEIF Element Is Leaf

 Sort(Element, TS)// Sort A-Z Entries in Node by their Tstart

 FOR EACH Entry E IN leaf node Element

 Find next query trajectory entry QS with QS.Te<N.TS; QE=QS

 DO UNTIL QE.Ts > E.Te

 nE = Interpolate(E,Max(QE.TS, E.TS),Min(QE.TE, E.TE))

 nQE = Interpolate(QE,Max(QE.TS, E.TS),Min(QE.TE, E.TE))

 Dist = Min_Horizontal_Dist(nQE, nE)

 EnQueue Queue, nE, Dist

 NEXT query entry QE

 Return QE in the query entry QS

 NEXT

 ELSE

 FOR EACH Entry E IN node Element

 IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)

 nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE))

 Dist = MinDist_Trajectory_Rectangle(nQ, E)

 EnQueue Queue, E, Dist, nQ

 ENDIF

 NEXT

 ENDIF

 LOOP

Figure 3.10: Historical Incremental NN search algorithm for moving query points

 64

At the non-leaf levels, the algorithm utilizes the MinDist_Trajectory_Rectangle metric in order

to calculate the MINDIST between the query trajectory and the rectangle of each entry of the node

(Line 24). Just like TrajectoryNNSearch algorithm, if necessary, we interpolate in order to

produce nQ, which is the part of Q being inside the temporal extent of the bounding rectangle of each

node’s entry (Line 23), and then we store it inside the Queue along with the respective node entry and

the calculated distance (Line 25). Since all the nodes in the N’s sub-tree are spatially and temporally

contained inside N, then, the interpolated trajectory nQ can be further used as the query trajectory for

the nodes of the next level inside the sub-tree, allowing us to avoid unnecessary calculations.

3.4.2.3. Extending to Incremental k-NN Algorithms

The algorithms described in Sections 3.4.2.1 and 3.4.2.2 are incremental in the sense that the k-th NN

can be obtained with very little additional work once the (k-1)-th NN has been found. Recall for

example IncTrajectoryNNSearch illustrated in Figure 3.10; after having found the 1st NN, the

next time the condition of Line 4 is true, the 2nd NN will have been found, and so on.

Here, we have to point out that the two different strategies used for the historical non-continuous

NN algorithms appear to have both advantages and drawbacks. As already mentioned, while the best-

first approach results always in fewer actually visited nodes, and fewer distance evaluations, its

performance heavily depends on the size of the priority queue; as it will be clearly shown in the

experiments, this drawback can cause the incremental algorithms to perform worse than the depth-first

algorithms in terms of execution time, even though they require fewer nodes to be visited and less

distances to be evaluated. On the other hand, the incremental algorithms have a serious advantage over

the depth-first ones, which is the ability of retrieving each of the k nearest neighbors incrementally,

while the depth-first approach requires the prior knowledge of the parameter k.

3.5. Algorithms for Historical Continuous Nearest Neighbor Queries over

Trajectories

In this section we describe the historical continuous counterparts of the algorithms of Section 3.4. In

particular, we will address the third type of NN query (searching for NN with respect to a stationary

query point at any time during a given time period) and the fourth type of NN query (where the query

object is the trajectory of a moving point) and then we will extend them towards k-NN search.

3.5.1. HCNN Algorithm for Stationary Query Objects

We begin the description of the algorithms with the third type of NN query, which searches for the

nearest moving objects to a stationary query point at any time during a given time period, The

HContPointNNSearch algorithm proposed for this type of query is illustrated in Figure 3.11.

All the historical continuous algorithms use a MovingDist structure (Figure 3.11, Line 6), storing

the parameters of the distance function (calculated using the coefficients of Eq.(3.5)), along with the

entry’s temporal extent and the associated minimum and maximum of the function during its lifetime.

We also store the actual entry inside the structure in order to be able to return it as the query result. The

ConstructMovingDistance function simply calculates this structure (e.g. the parameters of the

 65

distance function a, b, c, and the minimum Dmin and maximum Dmax of the function inside the lifetime

of the entry, also applying the discussion of Section 3.3.3).

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Algorithm HContPointNNSearch(node N, 2D point Q, Period Qper, List

 Nearests, Roof)

 IF N Is Leaf

 FOR EACH Entry E IN N

 IF Qper Overlaps (E.TS, E.TE)

 nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE,E.TE))

 MovingDist = ConstructMovingDistance(nE, Q)

 IF MovingDist.Dmin < Roof

 UpdateNearests(Nearests,MovingDist,Roof)

 ENDIF

 ENDIF

 NEXT

 ELSE

 BranchList = GenBranchList(Q, N, Qper)

 SortBranchList(BranchList)

 PruneHContBranchList(BranchList, Nearests, Roof)

 FOR EACH Entry E IN BranchList

 HContPointNNSearch(E.ChildNode, Q, Qper, Nearests, Roof)

 PruneHContBranchList(BranchList, Nearests, Roof)

 NEXT

 ENDIF

Figure 3.11: Historical CNN search algorithm for stationary query points

An interesting point of the algorithm is exposed in Line 6, where the Nearests structure is

introduced. Nearests is a list of adjacent “Moving Distances” temporally covering the period Qper.

Roof is the maximum of all moving distances stored inside the Nearests list and is used as a

threshold to quickly reject those entries (and prune those branches at the non-leaf level) having their

minimum distance greater than Roof (consequently, greater than all moving distances stored inside the

Nearests list). Section 3.5.3, is comprehensively presents the maintenance of the Nearests list.

When at non-leaf levels, the HContPointNNSearch algorithm in its backtracking applies the

pruning algorithm PruneHContBranchList (Line 18), which prunes the branch list using the

MINDIST heuristic: First, it compares the MINDIST of each entry with Roof and then it calculates the

maximum distance inside the Nearests list during the entry’s lifetime. Then, it prunes all entries

having MINDIST greater than the one calculated.

3.5.2. HCNN Algorithm for Moving Query Objects

The fourth type of NN query is the historical continuous version of the NN query where the query

object is the trajectory of a moving point. The HContTrajNNSearch algorithm, used to process this

type of query is illustrated in Figure 3.12.

HContTrajNNSearch differs from HContPointNNSearch at only two points: The first is

that, at the leaf level, the ConstructMovingDistance function calculates the “moving distance”

between two moving points, instead of one moving and one stationary (Line 10). Secondly, at the non-

leaf levels, GenBranchList is replaced by the GenTrajectoryBranchList function

introduced in the description of the TrajectoryNNSearch algorithm (Line 18). Moreover, as in

TrajectoryNNSearch, for each query trajectory segment QE and before calculating the moving

distance from the current leaf entry we first interpolate in order to produce a tuple of entry - query

segment with identical temporal extent (Lines 8, 9). We also use the same plane sweep method, in

 66

order to reduce the number of distance calculations between the segments of Q and the leaf entries

(Lines 5-7).

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Algorithm HContTrajNNSearch (node N, Trajectory Q, period Qper, List

 Nearests, Roof)

 Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 IF N Is Leaf

 Sort(N, TS)

 FOR EACH Entry E IN N

 FIND next query trajectory entry QS with QS.Te<N.TS; QE=QS

 DO UNTIL QE.Ts > E.Te

 nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE))

 nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE))

 MovingDist = ConstructMovingDistance(nE, nQE)

 IF MovingDist.Dmin<Roof

 UpdateNearests(Nearests,MovingDist,Roof)

 ENDIF

 NEXT query entry QE

 Return QE in the query entry QS

 NEXT

 ELSE

 BranchList = GenTrajectoryBranchList(Q, N)

 SortBranchList(BranchList)

 PruneHContBranchList(BranchList, Nearests, Roof)

 FOR EACH Entry E IN BranchList

 HContTrajNNSearch(E.ChildNode,E.Trajectory,Nearests, Roof)

 PruneHContBranchList(BranchList, Nearests, Roof)

 NEXT

 ENDIF

Figure 3.12: Historical CNN search algorithm for moving query points

3.5.3. Maintaining the Nearests List

The pseudo-code of the UpdateNearests function, which is responsible for the maintenance of the

Nearests list, is presented in Figure 3.13. In particular, the algorithm iterates through the elements of

the active Nearests list searching for those elements temporally overlapping the checked entry (CM).

When such an element is found, the algorithm applies linear interpolation in both entries (the checked

and the one already on the list) producing two new entries having the same temporal extent (M and T).

Then, it compares the two distance functions in order to determine whether the entry already on the list

is to be replaced or not.

Figure 3.14 graphically explains all the possible comparisons between the parabolas of two

“Moving Distance” functions. In particular, Figure 3.14(a) corresponds to line 6 of the algorithm

presented in Figure 3.13, where the maximum distance of M is smaller than the minimum of T, leading

to the replacement of T with M. Otherwise, after computing the discriminant of the difference between

the distance functions of M and T, we have to distinguish among three different cases:

• Case 1: The discriminant is less than zero, meaning that the two functions M and T are

asymptotic and they do not intersect (Line 10); we only have to check their minimum in order

to determine which is the global minimum (see Figure 3.14(b))

• Case 2: The discriminant is equal to zero, meaning that the two functions osculate in their

common minimum (Line 12); we only have to check their maximum in order to determine the

global minimum (see Figure 3.14(c))

 67

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Algorithm UpdateNearests (List Nearests, struct CM, Roof)

 FOR EACH T IN Nearests

 IF (T.TS, T.TE)Overlaps(CM.TS, CM.TE)

 M=Interpolate(CM, Max(CM.TS, T.TS), Min(CM.TE, T.TE))

 T=Interpolate(T, Max(CM.TS, T.TS), Min(CM.TE, T.TE))

 IF M.DMax < T.DMin

 Nearests.Replace T with M

 ELSEIF M.DMax < T.DMax

 D = Discriminant(M-T)

 IF D < 0

 IF T.DMin > M.DMin THEN Nearests.Replace T with M

 ELSEIF D=0

 IF T.DMax > M.DMax THEN Nearests.Replace T with M
 ELSE

 RR1=Solution1(T - M); RR2=Solution2(T - M)

 R1=Min(RR1,RR2); R2=Max(RR1,RR2)

 IF R2<T.TS OR R1>T.TE

 IF T.DMax > M.DMax THEN Nearests.Replace T with M
 ELSEIF R2<T.TE AND R1>T.TS

 IF M.Dmin < T.Dmin

 M1=Part(M,,R1); M2=Part(M,R2); T1=Part(T,R1,R2)

 Nearests.Replace T with (M1,T1,M2)

 ELSE

 T1=Part(T,,R1); T2=Part(T,R2); M1=Part(M,R1,R2)

 Nearests.Replace T with (T1,T2,M1)

 ENDIF

 ELSE

 IF M(R1 - 1)<T(R1 – 1)

 M1=Part(M,,R1); T1=Part(T,R1)

 Nearests.Replace T with (M1,T1)

 ELSE

 T1=Part(T,,R1); M1=Part(M,R1)

 Nearests.Replace T with (T1,M1)

 ENDIF

 ENDIF

 ENDIF

 ENDIF

 ENDIF

 Roof=max(Roof,T.Dmax)

 NEXT

Figure 3.13: UpdateNearests Algorithm

Figure 3.14: Graphical illustration of UpdateNearests Algorithm Comparisons

 68

• Case 3: The discriminant is greater than zero, meaning that the two functions intersect in two

points (Line 14). In this case, we have to determine whether these time instances are inside the

entry’s lifetime. Hence, we further distinguish among three sub-cases:

• Case 3a: Both solutions are outside the temporal extent of M (and T) (Line

17). We only have to check their maximum in order to determine which is the

globally minimum inside the current temporal interval (see Figure 3.14(d))

• Case 3b: Both solutions are inside the temporal extent of M (and T) (Line 19).

We must break apart the entry into 3 different entries (see Figure 3.14(e)) and

determine the part of T to be replaced by M.

• Case 3c: Only one solution is found inside the temporal extent of M (Line 27).

We must break apart the entry into two different entries (see Figure 3.14(f))

and determine the part of T to be replaced by M.

3.5.4. Extending to k-HCNN algorithms

The two historical continuous algorithms proposed above can be also generalized to searching the k-

nearest neighbors by considering the following:

• Using a buffer of at most k current Nearests lists;

• Pruning according to the distance of the furthest Nearests lists in the buffer – therefore Roof is

calculated as the maximum distance of the furthest Nearests list;

• Processing each entry against the i-th list (with i increasing, from 1 to k) checking whether it

qualifies to be in a list;

• When a moving distance is replaced by a new entry in the i-th list, testing it against the (i+1)-

th list to find whether it qualifies to be in that list.

3.6. Experimental Study

The above illustrated algorithms can be implemented in any R-tree-like structure storing historical

moving object information such as the 3D R-tree, the STR-tree [PJT00] the TB-tree [PJT00] and the

TB*-tree.

3.6.1. Experimental Setup

All algorithms were implemented on top of our implementation of R-tree-like structures used in the

previous chapter, employing the development environment of Microsoft Visual Basic. The experiments

were performed in a PC running Microsoft Windows XP with AMD Athlon 64 3GHz processor, 512

MB RAM and several GB of disk space, a page size of 4 KB and a (variable size) buffer fitting the

10% of the index size, with a maximum capacity of 1000 pages. Finally, in our experimentation we

employed the real and synthetic trajectory datasets introduced in sections 0 and 1.5.2, respectively.

3.6.2. Results on the Calculation of the MINDIST Metric

In order to demonstrate the efficiency of the proposed MINDIST calculation over the one presented in

[TPS02], we conducted a set of experiments executing 500 queries over the GSTD datasets indexed by

the TB-tree using the TrajectoryNNSearch algorithm; nevertheless, similar results gathered when

employing the other two alternatives, namely, the 3D R- and the TB*-tree. The queries were initially

 69

executed with the proposed MINDIST calculation, forming the Qa query set, and then with the

MINDIST calculation proposed in [TPS02], forming the Qb query set. The set of 500 query objects

(trajectories) were produced using GSTD also employing a Gaussian initial distribution and a random

movement distribution. Then, a random 1% part of each trajectory was used as the query trajectory.

Each query performance was measured in terms of execution time and actual distance evaluations

between point and point, point and line, and point and MBB.

Figure 3.15(a) illustrates the average execution time for query sets Qa and Qb. Clearly, the

TrajectoryNNSearch algorithm with the proposed improvement over the MINDIST computation

is always superior over the corresponding computation as proposed in [TPS02], in all datasets. The

improvement over the execution time varies between 8% (in the GSTD 100 dataset) and 17% (in the

GSTD 250 dataset). The efficiency of the proposed improvement over the MINDIST computation can

be further established by Figure 3.15(b), illustrating the actual distance evaluations made from each

alternative computation; Figure 3.15(b) shows that the proposed MINDIST computation requires in all

settings almost half of the distance evaluations made by the analogous computation proposed in

[TPS02].

0

100

200

300

400

500

600

700

100 250 500 1000 2000
Mov ing Objects

E
x

e
c

u
ti
o

n
 T

im
e
 (

m
s
)

Qb Qa

0

10

20

30

40

50

60

100 250 500 1000 2000
Mov ing Objects

D
is

ta
n

c
e

 E
v

a
lu

a
ti
o

n
s

 (
x

 1
0

0
0

)

Qb Qa

(a) (b)

Figure 3.15: (a) Execution Time and (b) actual Distance Evaluations for query sets Qa and Qb

increasing the number of moving objects

3.6.3. Results on the Search Cost of the Historical Non-continuous Algorithms

The performance of the proposed algorithms was measured in terms of node accesses and execution

time. Several queries were used in order to evaluate the performance of the proposed algorithms over

the synthetic and real data sets. In particular, we have used the following query sets:

• Q1: the PointNNSearch and the IncPointNNSearch algorithms were evaluated with

one set of 500 NN queries increasing the number of moving objects over the GSTD datasets

indexed by TB-, TB*- and 3D R-tree. The queries used a random point in the 2D space and a

time period of 1% of the temporal dimension for Q1.

• Q2: the TrajectoryNNSearch and the IncPointNNSearch algorithms were evaluated

with one set of 500 NN queries increasing the number of moving objects over the GSTD

datasets indexed by TB-, TB*- and 3D R-tree. The set of 500 query objects (trajectories) was

produced using GSTD employing also a Gaussian initial distribution and a random movement

distribution. Then, in Q2 we used a random 1% part of each trajectory as the query trajectory.

 70

• Q3, Q4: two sets of 500 k-NN queries over the real Trucks dataset increasing the number of k

with fixed time and increasing the size of the time interval (with fixed k=1) respectively. For

the PointNNSearch algorithm we used a random point in the 2D space with a 1% of time

as query period, while for TrajectoryNNSearch algorithm we used a random part of a

random trajectory belonging to the Buses dataset, temporally covering 1% of the time.

Figure 3.16 illustrates the results for the Q1 query set evaluating PointNNSearch and

IncPointNNSearch algorithms over the 3D R-tree, in terms of (a) average number of node

accesses and (b) average execution time per query. As it is clearly illustrated, the performance of both

algorithms depends sub-linearly on the dataset cardinality, downgrading (more pages are accessed) as

the cardinality grows. Another conclusion drawn from the same charts is that IncPointNNSearch

algorithm outperforms the PointNNSearch algorithm in all datasets, in terms of both node accesses

and execution time. Figure 3.16(c) illustrates the average length (in nodes) of the queue utilized by the

IncPointNNSearch in order to answer the queries, increasing linearly with the cardinality of the

dataset.

0

1

2

3

4

5

6

7

8

9

0 1000 2000
Mov ing Objects

N
o

d
e
 A

c
c

e
s

s
e
s

PointNNSearch

IncPointNNSearch

0

10

20

30

40

50

60

70

0 1000 2000
Mov ing Objects

E
x

e
c
u

ti
o
n

 T
im

e
 (

m
s

)

PointNNSearch

IncPointNNSearch

0

50

100

150

200

250

100 250 500 1000 2000
Mov ing Objects

Q
u

e
u
e

 L
e
n

g
th

(a) (b) (c)

Figure 3.16: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing

point NN search over the 3D R-tree indexing the GSTD datasets

0

5

10

15

20

25

30

0 1000 2000
Mov ing Objects

N
o
d

e
 A

c
c
e

s
s
e

s

PointNNSearch

IncPointNNSearch

0

50

100

150

200

250

300

350

400

0 1000 2000
Mov ing Objects

E
x
e

c
u
ti

o
n

 T
im

e
 (

m
s

)

PointNNSearch

IncPointNNSearch

0

500

1000

1500

2000

2500

100 250 500 1000 2000
Mov ing Objects

Q
u
e

u
e
 L

e
n
g

th

(a) (b) (c)

Figure 3.17: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing

point NN search over the TB-tree indexing the GSTD datasets

The Q1 query set evaluating PointNNSearch and IncPointNNSearch was also executed

against the TB-tree and the TB*-tree, leading to the results presented in Figure 3.17 and Figure 3.18,

respectively. Although, just as reported for the 3D R-tree, the IncPointNNSearch outperforms

PointNNSearch in terms of average node accesses per query in all datasets (Figure 3.17(a) and

 71

Figure 3.18(a)), the actual average time required for each query execution (Figure 3.17(b) and Figure

3.18(b)) by the IncPointNNSearch, increases faster than the respective execution time of the

PointNNSearch, leading to a superiority of the non-incremental algorithm as the cardinality of the

dataset grows.

0

5

10

15

20

25

0 1000 2000
Mov ing Objects

N
o

d
e
 A

c
c
e

s
s

e
s

PointNNSearch

IncPointNNSearch

0

50

100

150

200

250

300

350

0 1000 2000
Mov ing Objects

E
x
e

c
u
ti

o
n
 T

im
e
 (

m
s
)

PointNNSearch

IncPointNNSearch

0

100

200

300

400

500

600

700

800

900

1000

100 250 500 1000 2000
Mov ing Objects

Q
u

e
u

e
 L

e
n
g
th

(a) (b) (c)

Figure 3.18: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing

point NN search over the TB*-tree indexing the GSTD datasets

Exactly the same trend as the one presented for the execution time of the IncPointNNSearch

is presented in Figure 3.17(c) and Figure 3.18(c) illustrating the length of the queue utilized by the

respective algorithm. More specifically, PointNNSearch outperforms its incremental counterpart

when the average length of the respective queue exceeds a certain number of nodes (approximately 400

nodes in the GSTD 500 dataset). The above conclusion can be also verified from the results of the 3D

R-tree, where the length of the queue is always less than 400, leading to a superiority of the

incremental algorithm. Regarding the comparison between the performance of the TB, the TB* and the

3D R-tree, the latter outperforms the other two as the dataset cardinality grows, like what was reported

in [PJT00] regarding simple range queries of small extent; then again, the original TB-tree seems to

marginally outperform the developed in this thesis TB*-tree.

Figure 3.19 illustrates the results for the Q2 query set evaluating TrajectoryNNSearch and

IncTrajectoryNNSearch algorithms over the 3D R-tree, in terms of average number of node

accesses (a) and average execution time per query (b). The performance of both algorithms depends

linearly on the dataset cardinality, downgrading as the dataset cardinality grows. Although

IncTrajectoryNNSearch outperforms TrajectoryNNSearch in all datasets in terms of node

accesses, the average execution time of the incremental algorithm becomes greater than the respective

time of the non-incremental one, as the dataset cardinality grows. The average queue length utilized by

the IncTrajectoryNNSearch, is also illustrated in Figure 3.19(c); following the results for the

execution time of the incremental algorithm, the queue length increases linearly with the cardinality of

the dataset. This enlargement of the queue length is also responsible for the behavior showed regarding

the comparison of the execution time between the TrajectoryNNSearch and the

IncTrajectoryNNSearch algorithm; as the queue length increases, each update becomes a more

expensive operation leading to the downgrade of the performance of the respective algorithm.

 72

0

2

4

6

8

10

12

14

16

18

0 1000 2000
Mov ing Objects

N
o
d

e
 A

c
c
e

s
s
e

s

TrajectoryNNSearch

IncTrajectoryNNSearch

0

50

100

150

200

250

300

0 1000 2000
Mov ing Objects

E
x

e
c

u
ti

o
n
 T

im
e

 (
m

s
)

TrajectoryNNSearch

IncTrajectoryNNSearch

0

200

400

600

800

1000

1200

1400

100 250 500 1000 2000
Mov ing Objects

Q
u
e
u
e
 L

e
n
g
th

(a) (b) (c)

Figure 3.19: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing

trajectory NN search over the 3D R-tree indexing the GSTD datasets

Regarding a comparison of the performance of the incremental algorithms illustrated in Figure

3.16 and Figure 3.19 leads to the observation that while in the first case, fewer node accesses lead to

smaller execution time (than the non-incremental one), in the second case the execution time of the

incremental algorithm becomes higher than the respective of its non incremental counterpart. This fact

can be explained by observing the respective queue lengths: in the first case the queue length in not

more than 200 objects (i.e., less than a typical BranchList), while in the second case, the queue length

includes 1000’s of objects resulting in a decrease of the algorithm’s performance.

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000
Mov ing Objects

N
o
d

e
 A

c
c
e

s
s

e
s

TrajectoryNNSearch

IncTrajectoryNNSearch

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000
Moving Objects

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
s
)

TrajectoryNNSearch

IncTrajectoryNNSearch

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

100 250 500 1000 2000
Mov ing Objects

Q
u

e
u
e

 L
e
n

g
th

(a) (b) (c)

Figure 3.20: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing

trajectory NN search over the TB-tree indexing the GSTD datasets

The results of the Q2 query set over the TB-tree and the TB*-tree are presented in Figure 3.20

and Figure 3.21, respectively. While IncTrajectoryNNSearch always outperforms

TrajectoryNNSearch in terms of average node accesses (Figure 3.20(a) and Figure 3.21(a)), their

disparity is not as significant as it was reported for the 3D R-tree. Moreover, the actual execution time

of the incremental algorithm (Figure 3.20(b) and Figure 3.21(b)) is always by far longer than the

respective execution time of the non-incremental one. These results can be explained by two reasons.

The first is that the actual execution time of the incremental algorithm depends heavily on the

respective queue length which, as shown in Figure 3.20(c) and Figure 3.21(c), exceeds 1000 nodes for

the GSTD 250 dataset reaching 9000 nodes in the GSTD 2000 dataset indexed by the TB-tree, while in

the case of the TB*-tree the queue cardinality grows to even higher values (14000). The second is that

TB-tree and TB*-tree group entries belonging to the same trajectory together, exploiting only the

 73

temporal order in which the entry insertion occurs ignoring at the same time any spatial proximity. This

insertion strategy leads to nodes with high spatial (and low temporal) overlap, meaning that internal

nodes will often cross the query trajectory, and the respective MINDIST will be equal to zero. Then, the

internal nodes need to be visited since their MINDIST equals to zero and they are leading inside the

queue, resulting to the loss of the advantage of the incremental algorithm.

0

50

100

150

200

250

300

350

0 500 1000 1500 2000
Moving Objects

N
o
d
e
 A

c
c
e
s
s
e
s

TrajectoryNNSearch

IncTrajectoryNNSearch

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000
Moving Objects

E
x

e
c
u
ti
o

n
 T

im
e

 (
m

s
)

TrajectoryNNSearch

IncTrajectoryNNSearch

0

2000

4000

6000

8000

10000

12000

14000

16000

100 250 500 1000 2000
Mov ing Objects

Q
u
e

u
e

 L
e
n

g
th

(a) (b) (c)

Figure 3.21: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing

trajectory NN search over the TB*-tree indexing the GSTD datasets

The same reasons also affect the comparison of the performance between the TB-, the TB*- and

the 3D R-tree, where the latter outperforms the other two as the dataset cardinality grows. Moreover,

the advantage of the original TB-tree against the TB*-tree that has been revealed in point NN queries,

becomes clearer here, where the latter always perform worse than the former. It becomes therefore

obvious that the structure of the TB*-tree is not suitable for NN queries. This is mainly due to the fact

that the TB*-tree contains wider MBBs (since its leaf capacity is almost the double of the original TB-

tree), leading to higher node overlap and lower spatial discrimination; the same tendency has been also

detected in the original work of [PJT00] regarding the TB-tree, in the case of range queries of small

extent (1% along each dimension, i.e., 0.0001% of the total space), where the high space utilization of

TB-tree becomes a drawback that affects its performance. This similarity between small range and

nearest neighbor queries can be actually justified considering the work of [TZPM04], where the cost of

executing NN queries over multidimensional data is estimated by approximating the vicinity circle C(q,

R), i.e., the circle inside which the search is performed with center the query point q and radius R its

distance from the k-th nearest neighbor, with a vicinity rectangle of equal area. As such, the more

objects in the index, the smaller the radius of the k-th NN, and the smaller the respective vicinity

rectangle; finally, the equivalent of a NN query turns to be a range query with small extent (and total

area equal to the area of C(q, R)). Due to the aforementioned reasons, as well as for the sake of the

clarity of the presentation, the TB*-tree will not be further included in the experimental study on

historical non-continuous NN queries. Nevertheless, the rest of the conducted experiments verify the

observed trend so far, and show that the TB*-tree performs always worse than its other two

competitors.

The performance of the historical non-continuous point NN algorithms increasing the query

temporal extent, in terms of average node access and average execution time per query, is shown in

Figure 3.22 against the 3D R-tree and the TB-tree, both indexing the Trucks dataset. Clearly, under

both indexes, the number of node accesses needed for the processing of a NN query, increases linearly

 74

with the query temporal extent, with the IncPointNNSearch being always below the

PointNNSearch. In terms of execution time, both indexes show the same behavior having a

breakeven point where the superlinearly increasing execution time of the IncPointNNSearch (a

consequence of the increasing queue length illustrated in Figure 3.22 (c)) becomes even with the

linearly increasing execution time of the PointNNSearch algorithm. Regarding the TB-tree, the

breakeven point is around the 1.5% of the temporal extent while in the 3D R-tree increases around

3.5%.

0

2

4

6

8

10

12

14

16

18

20

0% 2% 4% 6% 8% 10%
temporal extent

N
o
d
e
 A

c
c
e
s
s
e
s

TB-PointNNSearch

TB-IncPointNNSearch

R-PointNNSearch

R-IncPointNNSearch

0

20

40

60

80

100

120

140

0% 2% 4% 6% 8% 10%
temporal extent

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

TB-PointNNSearch

TB-IncPointNNSearch

R-PointNNSearch

R-IncPointNNSearch

0

200

400

600

800

1000

1200

2% 4% 6% 8% 10%
temporal extent

Q
u
e
u
e
 L

e
n
g
th

TB-tree

R-tree

(a) (b) (c)

Figure 3.22: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q3 executing

point NN search over the 3D R- and the TB-tree indexing the Trucks dataset

Figure 3.23 illustrates the average number of node accesses and execution time per historical

non-continuous point query increasing the number of k against the Trucks dataset indexed by the 3D R-

tree and TB-tree. Under both indexes it is clear that the incremental algorithm outperforms the

PointNNSearch in terms of both average node accesses and execution time. Using the 3D R-tree,

the performance of both algorithms decreases linearly with the number of k, whereas when using the

TB-tree the reduction is sub-linear.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10
k

N
o
d
e
 A

c
c
e
s
s
e
s

TB-PointNNSearch

TB-IncPointNNSearch

R-PointNNSearch

R-IncPointNNSearch

0

20

40

60

80

100

120

0 2 4 6 8 10
k

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

TB-PointNNSearch

TB-IncPointNNSearch

R-PointNNSearch

R-IncPointNNSearch

0

50

100

150

200

250

300

350

400

2 4 6 8 10
k

Q
ue

u
e
 L

e
n
g
th

TB-tree

R-tree

(a) (b) (c)

Figure 3.23: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q3 executing

point NN search over the 3D R- and the TB-tree indexing the Trucks dataset

The results for the historical non-continuous trajectory NN algorithms increasing the query

temporal extent against the 3D R-tree and TB-tree indexing the Trucks dataset are illustrated in Figure

3.24. Once again, the number of node accesses required for the processing of a NN query with both

algorithms under both indexes, increases linearly with the query temporal extent. However, regarding

the execution time, the performance of the incremental algorithm grows superlinearly with the

temporal extent as a consequence of the excessive queue length (Figure 3.24(c)).

 75

0

20

40

60

80

100

120

140

0% 2% 4% 6% 8% 10%
temporal extent

N
o
d
e
 A

c
c
e
s
s
e
s

TB-PointNNSearch

TB-IncPointNNSearch

R-PointNNSearch

R-IncPointNNSearch

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0% 2% 4% 6% 8% 10%
temporal extent

E
x
e

c
u

ti
o
n

 T
im

e
 (

m
s

)

TB-TrajectoryNNSearch

TB-IncTrajectoryNNSearch

R-TrajectoryNNSearch

R-IncTrajectoryNNSearch

0

5000

10000

15000

20000

25000

30000

2% 4% 6% 8% 10%
temporal extent

Q
u
e
u
e
 L

e
n
g
th

TB-tree

R-tree

(a) (b) (c)

Figure 3.24: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q4 executing

trajectory NN search over the 3D R- and the TB-tree indexing the Trucks dataset

The performance of the historical non-continuous trajectory query increasing the number of k

against the Trucks dataset is shown in Figure 3.25 where the TrajectoryNNSearch algorithm

outperforms its incremental counterpart in terms of execution time, with the respective queue

containing in any case more than 1000 nodes.

0

20

40

60

80

100

120

0 2 4 6 8 10
k

N
o
d
e
 A

c
c
e
s
s
e
s

TB-TrajectoryNNSearch

TB-IncTrajectoryNNSearch

R-TrajectoryNNSearch

R-IncTrajectoryNNSearch

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10
k

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

TB-PointNNSearch

TB-IncPointNNSearch

R-PointNNSearch

R-IncPointNNSearch

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10
k

Q
u
e
u
e
 L

e
n
g
th

TB-tree

R-tree

(a) (b) (c)

Figure 3.25: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q4 executing

trajectory NN search over the 3D R-tree indexing the Trucks dataset

3.6.4. Results on the Search Cost of the Historical Continuous Algorithms

In coincidence with the experiments conducted for the historical non-continuous algorithms, the

historical continuous NN search algorithms were evaluated, also in terms of node accesses and

execution time, with the following query sets:

• Q5: the HContPointNNSearch algorithm was evaluated with one set of 500 NN queries

increasing the number of moving objects over the GSTD datasets indexed by TB-, TB* and 3D

R-tree like what was done for query set Q1.

• Q6: the HContTrajectoryNNSearch algorithm was evaluated with one set of 500 NN

queries increasing the number of moving objects over the GSTD datasets indexed by TB-, TB*

and 3D R-tree like what was done for query set Q2.

• Q7, Q8: two sets of 500 k-NN queries over the real Buses dataset increasing the number of k

with fixed time and increasing the size of the time interval (with fixed k = 1), respectively. For

the HContPointNNSearch algorithm we used a random point in the 2D space with a 1%

of time as query period, while for HContTrajectoryNNSearch algorithm we used a

 76

random part of a random trajectory belonging to the Trucks dataset, temporally covering 1%

of the time.

0

10

20

30

40

50

60

0 1000 2000
Mov ing Objects

N
o
d
e
 A

c
c
e
s
s
e
s

3D R-tree

TB-tree

TB*-tree

0

100

200

300

400

500

600

0 1000 2000
Mov ing Objects

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
) 3D R-tree

TB-tree

TB*-tree

(a) (b)

0

50

100

150

200

250

300

350

400

450

0 1000 2000
Mov ing Objects

N
o
d
e
 A

c
c
e
s
s
e
s

3D R-tree

TB-tree

TB*-tree

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000
Mov ing Objects

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

3D R-tree

TB-tree

TB*-tree

(c) (d)

Figure 3.26: Node Accesses and Execution Time in queries Q5 (a, b) and Q6 (c, d) over the 3D R-tree,

the TB-tree and the TB*-tree increasing the number of moving objects

Figure 3.26(a) and (b) illustrates the results of the HContPointNNSearch algorithm over the

GSTD datasets by increasing the number of moving objects in terms of (a) average node accesses and

(b) average execution time per query. As in its historical non-continuous counterpart, the performance

of the algorithm depends linearly on the dataset cardinality downgrading as the cardinality grows,

while the average execution time for both indexes follows the same trend as the average number of

visited nodes. Another result gathered is that, as the cardinality grows, the 3D R-tree outperforms the

TB-tree and the TB*-tree, following the same trend illustrated in [PJT00] for simple range queries of

small extent. Similar results are illustrated in Figure 3.26(c) and (d) where the

HContTrajectoryNNSearch algorithm is executed against the GSTD datasets.

A comparison between the historical non-continuous NN algorithms with their continuous

counterpart (i.e., Figure 3.16 and Figure 3.17 vs. Figure 3.26(a) and (b), and Figure 3.19 and Figure

3.20 vs. Figure 3.26(c) and (d)), shows that the historical continuous algorithms are much more

expensive than the non-continuous ones. This conclusion was expected since the historical continuous

algorithms do not utilize a single distance to prune the search space; instead they use a list of moving

distances, which in general stores greater distances than the minimum. Actually, the historical non-

continuous algorithms prune the search space with the minimum possible distance stored inside the

Nearests list, therefore performing pruning much more efficiently than their continuous counterpart.

 77

0

5

10

15

20

25

30

35

40

0 0.02 0.04 0.06 0.08 0.1T

N
o
d
e
 A

c
c
e
s
s
e
s

TB-tree

3D R-tree

TB*-tree

0

200

400

600

800

1000

1200

1400

1600

0 0.02 0.04 0.06 0.08 0.1
T

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

TB-tree

3D R-tree

TB*-tree

(a) (b)

0

10

20

30

40

50

60

0 2 4 6 8 10k

N
o
d
e
 A

c
c
e
s
s
e
s

TB-tree

3D R-tree

TB*-tree

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10
k

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

TB-tree

3D R-tree

TB*-tree

(c) (d)

Figure 3.27: Node Accesses and Execution Time in queries Q7 (a, b) and Q8 (c, d) over the 3D R-tree,

the TB-tree and the TB*-tree indexes increasing the query temporal extent

0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1T

N
o
d
e
 A

c
c
e
s
s
e
s

TB-tree

3D R-tree

TB*-tree

0

1000

2000

3000

4000

5000

6000

7000

0 0.02 0.04 0.06 0.08 0.1
T

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

TB-tree

3D R-tree

TB*-tree

(a) (b)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10k

N
o
d
e
 A

c
c
e
s
s
e
s

TB-tree

3D R-tree

TB*-tree

0

5000

10000

15000

20000

25000

0 2 4 6 8 10
k

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

TB-tree

3D R-tree

TB*-tree

(c) (d)

Figure 3.28: Node Accesses and Execution Time in queries Q7 (a, b) and Q8 (c, d) over the 3D R-tree,

the TB-tree and the TB*-tree indexes increasing the number of k

The scaling of the historical continuous algorithms with the query temporal extent is presented in

Figure 3.27. Both algorithms (HContPointNNSearch and HContTrajectoryNNSearch) were

executed over the real Buses dataset indexed by the TB-, the TB*- and the 3D R-tree. From Figure

 78

3.27(a) and (c) it is clear that the performance of both algorithms in terms of node accesses is sub-

linear with respect to the query temporal extent. Nevertheless, the actual execution time needed by each

query increases superlinearly with the query extent, as a consequence of the increasing length of the

query output (the Nearests list). The performance of the historical continuous NN algorithms

increasing the number of k against the Buses dataset indexed by the TB, the TB*- and the 3D R-tree is

illustrated in Figure 3.28. As drawn from Figure 3.28(a) and (c), the average number of node accesses

required for the processing of a k-HCNN point or trajectory query increases sub-linearly with k.

However, the actual execution time presented in Figure 3.28(b) and (d) increases superlinearly with the

k, similarly with the temporal extent, as a consequence of the increasing size of the query output (the k

Nearests lists).

3.6.5. Summary of the Experiments

Most of the presented algorithms, in terms of node accesses, are linear or sub-linear with the main

parameters of our experimental study: the dataset cardinality, the query temporal extent and the number

of k. However, the execution time of the IncPointNNSearch and IncTrajectoryNNSearch

algorithms seems to grow super-linearly with the query temporal extent as a result of the increasing

queue length, similarly with the execution time of HContPointNNSearch and

HContTrajectoryNNSearch, which have the same trend with respect to the temporal extend and

the number of k, as a consequence of the increasing Nearests list length.

Table 3.2: Actual indexed space accessed by each NN algorithm for the GSTD 2000 dataset

Algorithm 3D R-tree TB-tree TB*-tree

PointNNSearch 0.006% 0.022% 0.070%

IncPointNNSearch 0.003% 0.010% 0.044%

TrajectoryNNSearch 0.014% 0.148% 0.963%

IncTrajectoryNNSearch 0.008% 0.134% 0.868%

HContPointNNSearch 0.016% 0.042% 0.124%

HContTrajectoryNNSearch 0.053% 0.259% 1.248%

Table 3.2 summarizes the pruning power of our algorithms presenting the percentage of the

indexed space accessed in order to execute all the proposed algorithms with k=1 and temporal extent

the 1% of the indexed time. As it can be concluded our algorithms show high pruning ability, well

bounding the space to be searched in order to answer NN and HCNN queries, except of the case of the

TB*-tree which, overall, seems that is not a good choice when dealing with NN queries.

3.7. Conclusions

NN queries have been in the core of spatial and spatio-temporal database research during the last

decade. The majority of the algorithms processing such queries so far mainly deals with either

stationary or moving query points over static datasets or future (predicted) locations over a set of

continuously moving points. In this work, acknowledging the contribution of related work, we

presented the first complete treatment of historical NN queries over moving object trajectories stored

on R-tree-like structures.

 79

Based on our proposed novel metrics (i.e., MINDIST_Trajectory_Rectangle), which support our

ordering and pruning strategies, we presented algorithms answering the NN and HCNN queries for

stationary query points or trajectories and generalized them to search for the k nearest neighbors. The

algorithms are applicable to R-tree variations for trajectory data, among which for our performance

study we used the 3D R-tree, the TB-tree and the TB*-tree. Appart from the implementation of the

proposed algorithms over R-tree-like structures used during the experimental study, the

IncPointNNSearch and IncTrajectoryNNSearch, algorithms have been implemented in the

ORACLE Object – Relational DBMS and integrated into the HERMES engine [PFGT08], which has

been also extended so as to include the TB-tree [PJT00].

In order to measure the performance of our algorithms we conducted an extensive experimental

study based on synthetic and real datasets. At first, we demonstrated that our improvement over the

MINDIST computation can sufficiently increase the performance of the proposed algorithms.

Regarding the historical non-continuous algorithms, it has been shown that while the incremental (best-

first) approach is always less expensive than the non-incremental (depth-first) in terms of node

accesses, its actual execution time heavily depends on the used queue length. In general, the best-first

approach outperforms its competitor only for point NN queries under small temporal extent (less than

2-4% depending on the index used and under any k), while in all other cases the depth first approach

takes less time to be executed. This drawback of the incremental algorithms is mainly due to the queue

length which may become huge, especially in the case of the TB-tree ant the TB*-tree. Regarding a

comparison between the used indexes, the 3D R-tree outperforms the TB-tree in terms of both node

accesses and execution time, while the TB*-tree proposed in Chapter 3 is shown that it is not a suitable

choice when dealing with NN queries.

 80

4. Advanced Trajectory Query Processing:

Similarity Search

The purpose of this chapter is to demonstrate the algorithms for similarity search on R-tree-like

structures storing historical trajectories of moving objects. Its structure is as follows: Section 4.1

motivates the chapter and provides the initial ideas. Related work is discussed in Section 4.2. Section

4.3 formally introduces the main purpose of this chapter and thoroughly examines the metrics

employed for Most Similar Trajectory (MST) search, as well as the ones used to support our search

ordering and pruning strategies. Section and 4.4 constitutes the core of the chapter describing in detail

the query processing algorithms to perform MST search over historical trajectory information; the

algorithms presented are based on the depth-first and best-first paradigm, employing R-tree-like index

structures. Section 4.5 presents the results of our experimental while our conclusions are presented in

Section 4.6.

4.1. Introduction

Another interesting query type that is useful in MOD search is derived from the so-called trajectory

similarity problem, which aims to find ‘similar’ trajectories of moving objects. To illustrate the

problem, consider the following example. Suppose that the metro network of a city has been recently

extended, initiating a new transportation line, in view of providing transport services to a major part of

the residents of the city suburbs. This metro network extension requires the re-designing of the existing

transportation network (buses, tram, trolley-buses, etc.). Experts in the field would be assisted if they

could pose queries about the similarity between the trajectories of the existing transport means and the

new metro line. As such, they would be able, for example, to change the timetable of a bus line, if it

matches in a certain day with the timetable of the new metro line, or even abort it. To handle such

queries efficiently, MOD systems should include methods for answering the so-called Most-Similar-

Trajectory (MST) search also discussed in [The03].

Trajectory similarity search is a relatively new topic in the literature; the majority of the methods

proposed so far are based on either the context of time series analysis and the Longest Common

Subsequence (LCSS) model [VKG02], or the recently proposed Edit Distance on Real Sequence

(EDR) [COO05]. However, all these methods have the main drawback that they either ignore the time

dimension of the movement, therefore calculating the spatial (and not the spatio-temporal) similarity

between the trajectories, or assume that the trajectories are of the same length and have the same

 81

sampling rate. To exemplify the problem derived when different sampling rates are present, recall

Figure 1.4 presenting two trajectories T and Q with their position being sampled in different rates.

While Q and T sample their position 4 and 32 times respectively, they have approximately the same

length traversing through the same area. Though the two trajectories are obviously similar, methods

based on the LCSS or the EDR model cannot detect this kind of similarity since they try to match

trajectory sampled positions one by one, which clearly does not happen in the above (real world)

example. Moreover, the majority of the proposed approaches exploit specialized index structures in

order to prune the search space and retrieve the most similar to a query trajectory.

The challenge thus accepted in this thesis, is to efficiently support the k-MST search in MODs

storing historical trajectory information, indexed by R-tree-like structures. The main contributions of

this chapter are outlined as follows:

• A dissimilarity metric (DISSIM) for the measurement of the spatio-temporal dissimilarity

between two trajectories is defined; this metric which can be seen as the average distance

between the two trajectories in time is also independently presented and employed in [NP06].

We subsequently propose an efficient approximation method to overcome its costly

calculation.

• A set of novel metrics (MINDISSIM, PESDISSIM, OPTDISSIM) along with several associated

lemmas are proposed, and subsequently used for pruning purposes by two most similar

trajectory search algorithms. Specifically, using these metrics, we propose a depth-first and a

best-first query processing algorithm to perform k-MST search on R-tree-like structures

storing historical trajectory information.

• We conduct a comprehensive set of experiments over large synthetic and real datasets

demonstrating that the algorithms are highly scalable and efficient in terms of node accesses,

execution time and pruned space. We further demonstrate that the proposed similarity metric

(DISSIM) efficiently retrieves spatio-temporally similar trajectories in cases where related

work fails.

• Finally, we show how the proposed metrics and heuristics can be employed in the context of

density-based trajectory clustering [NP06].

Again, we have to point out that all the proposed algorithms do not require any dedicated index

structure and can be directly applied to any member of the R-tree family used to index trajectories,

such as the 3D R-tree, the TB-tree [PJT00] and the TB*-tree proposed in this thesis. To the best of our

knowledge, the proposal of this thesis is the first that provides techniques for a spatio-temporal index to

support traditional range, as well as topological and similarity based queries.

4.2. Related Work

Similarity search has been extensivelly studied in the time series analysis domain. As a measure of

approximate matching, Agrawal et al. [AFS93] proposed the utilization of the Discrete Fourier

Transformation (DFT). An alternative time series matching technique through dimension reduction was

proposed by Chan and Fu [CF99], using the Discrete Wavelet Transformation (DWT). In order to

compare sequences with different lengths, Berndt and Clifford [BC96] used the Dynamic Time

 82

Warping (DTW) technique that allowed sequences to be stretched along the time axis to minimize the

distance between sequences. Although DTW incurred a heavy computation cost, it was more robust

against noise.

In [YAS03] an indexing method for processing shape-based similarity queries for trajectory

databases was presented. The proposed method was based on Euclidean Distance. However it could be

applied only on trajectories with same lengths being valid during the same time interval. Cai and Ng

[CN04] proposed the utilization of Chebyshev polynomials for approximating and indexing trajectories

for similarity matching purposes. Still, this method suffered from the requirement that the trajectories

should be of the same length (in terms of the number of spatio-temporal points that are composed of).

Vlachos et al. [VGD04] presented a distance measure that allowed to find similar trajectories

under translation, scaling and rotational transformations. The first step of their method was the

mapping of each trajectory to a trajectory in a rotation invariant space. For the calculation of the

distance between two trajectories in the new rotation invariant space, the DTW technique was utilized.

Sakurai et al. [SYF05] proposed an improved version of DTW, the Fast search method for

Dynamic Time Warping (FTW), based on a new lower bounding measure for the approximation of the

time warping distance. They proved that FTW could prune a significant portion of the search space,

leading to a significant reduction of the search cost. Recently, Lin and Su [LS05] have studied the time

independent similarity search problem of moving object trajectories. The “one way distance” (OWD)

function is introduced for comparing the spatial shapes of trajectories along with appropriate

algorithms for computing OWD. Their experimental study shows that the adoption of OWD function

outperforms DTW algorithm in terms of precision and performance.

Several approaches are based on the Longest Common Sub Sequence (LCSS) similarity

measure. LCSS measure matches two sequences by allowing them to stretch, without rearranging, the

sequence of the elements, but allowing some elements to be unmatched (which is the main advantage

of the LCSS measure compared with Euclidean Distance and DTW). Therefore, LCSS can efficiently

handle outliers and different scaling factors. Vlachos et al. [VKG02] adopted the utilization of the

LCSS method. Introducing two similarity measures allowing time stretching and translations

respectively, the authors proposed non-metric similarity functions, which were very robust to the

presence of noise and provided an intuitive notion of similarity between trajectories by giving more

weight to the similar portions of the trajectories. Moreover, an efficient index structure (based on

hierarchical clustering) for similarity queries was presented. However, as will be shown in the

experimental study, the proposed method suffers when trajectories have different sampling rates.

In [COO05] a distance function, called Edit Distance on Real Sequences (EDR), was introduced.

This distance function, based on edit distance, was shown to be more robust than DTW and LCSS over

trajectories with noise. The efficiency of this distance function was improved by the application of

three pruning strategies, which reduced the respective computational cost in terms of computations

between the query and data trajectories without introducing false dismissals. On the other hand, same

as LCSS, EDR determines spatial similarity only, ignoring time, while trajectories with different

sampling rates cannot be handled efficiently, as it will be shown in the experimental study. Moreover,

 83

both [VKG02] and [COO05] propose the employment of dedicated indexes to prune the search space

so as to efficiently support k-MST search.

Keogh et al. [KWX+06] presented an algorithm (based on the LB_Keogh function introduced in

[Keo02]), which dramatically reduced the time complexity of the calculation of the Euclidean Distance

measure. This speed up was further achieved by allowing indexing. However, the above algorithm,

which was generalized to other distance measures, such as DTW and LCSS, could be applied only to

2D shapes.

Recently, Pelekis et al. [PKM+07], consider the problem of trajectory similarity search through a

different perspective. Contrary to other works which make use of generic similarity metrics that

virtually ignore the temporal dimension, [PKM+07] introduce a framework consisting of a set of

distance operators based on primitive (space and time) as well as derived parameters of trajectories

(speed and direction); as a consequence, they define different distance measures for each kind of

similarity between trajectories: spatial, temporal, spatio-temporal, speed-pattern and directional

similarity. The novelty of the approach is not only to provide qualitatively different means to query for

similar trajectories, but also to support trajectory clustering and classification mining tasks, which

definitely imply a way to quantify the distance between two trajectories. For each of the proposed

distance operators highly parametric algorithms are devised, the efficiency of which is evaluated

through an extensive experimental study.

Acknowledging the contributions of the above proposals, in the sequel we propose novel metrics

and algorithms for trajectory similarity search on R-tree-like structures.

Table 4.1: Table of notations

Notation Description

D a trajectory database

Oi A moving object identifier

T, Q an indexed and a query trajectory

Tk, Qk the k-th line segment of T or Q

xk, yk, tk the coordinates of trajectory T a timestamp tk

DistQ,T(t) function with time of the synchronous Euclidean distance between trajectories Q and T

, ,a b c factors of the DistQ,T(t) trinomial

EQ,T calculation error of the dissimilarity between trajectories

Dist distance between trajectories

V relative speed between moving objects

N R-tree node

MINDIST(Q,N) minimum distance between Q and N

Vmax
the sum of the maximum speed of indexed trajectories plus the maximum speed of the

query trajectory

SR the set of line segments already retrieved from the index

SC
the set of trajectories with line segments already retrieved from the index but not yet fully

completed inside the given time period.

 84

4.3. Problem Statement and Metrics for Most Similar Trajectory Search

In this section the notion of Most Similar Trajectory (MST) queries w.r.t. a dissimilarity metric is

defined, and then, the notion of spatio-temporal dissimilarity used in the approach of this thesis is

formally introduced. Finally, a series of metrics and heuristics for MST Search used in the algorithms

presented in this thesis is established. Table 4.1 presents the notations used in the rest of this chapter.

4.3.1. Problem Statement

Let D be a database of N moving objects with objects ids {O1, O2, …, ON} assuming linear

interpolation between sampled points. The trajectory T of a moving object Oi consists of n-1 3D-line

segments {T1, T2, .. Tn-1}. Each 3D line segment Tk is of the form ((xk, yk, tk), (xk+1, yk+1, tk+1)), where t0 ≤

tk < tk+1≤ now. Bearing in mind that many similarity metrics have been proposed in the literature, as

discussed in the previous section, the definition of an MST query should be as general as possible.

Therefore, we formally define MST search to be independent of the underlying similarity metric:

Definition 4.1: Given a query trajectory Q, a trajectory database D and a metric DSIM measuring the

dissimilarity between two trajectories, a most similar trajectory query is a query

() ()() () (), , , : , , ' 'MST D Q T DSIM Q T DSIM Q T DSIM Q T T D= ≤ ∀ ∈ (4.1)

that searches database D for the trajectory T having the minimum dissimilarity with the query

trajectory Q among all trajectories in D, as well as the implied value of dissimilarity.

However, regarding the underlying similarity metric, the majority of existing work in the domain

of trajectory similarity search, either ignores the time dimension of the movement, as such calculating

the spatial similarity between trajectories or assumes that trajectories have the same lengths (in terms of

the number of spatio-temporal points that are composed of) and the same sampling rate. In order to

overcome these obstacles, we may generalize the well known Euclidean Distance metric and provide

the notion of spatio-temporal dissimilarity between two trajectories T and Q both being valid during a

definite time interval [t1, tn], by integrating their Euclidean distance in time.

Definition 4.2: The Dissimilarity DISSIM(Q, T) between trajectories Q and T being valid during the

period [t1, tn] is defined as the definite integral of the function of time of the Euclidean distance

between the two trajectories during the same period:

() ()
1

,,
nt

Q T

t

DISSIM Q T Dist t dt= ∫ , (4.2)

where DistQ,T(t) is the function of the Euclidean distance between trajectories Q and T with time.

However, since each trajectory is represented by a collection of discrete points where linear

interpolation is applied in between, the definition of dissimilarity is transformed to:

() ()
11

,
1

,
k

k

tn

Q T

k t

DISSIM Q T Dist t dt
+−

=

=∑ ∫ , (4.3)

where tk are the timestamps that objects T and Q recorded their position. Obviously, in real world

applications, the sampling rates of trajectories may vary, resulting in trajectories with positions

sampled at different timestamps; however, considering two trajectories with this characteristic, the

position of the first object at the time instance when the second recorded its position can be

approximated by applying linear interpolation.

 85

The Euclidean distance between two points moving with linear functions of time between

consecutive timestamps, was determined in Eq.(3.5) and is the square root of a trinomial:

() 2
,Q TDist t at bt c= + + , (4.4)

where a, b, c are the factors of this trinomial (real numbers, 0a ≥).

In order to calculate the integral of DistQ,T(t), we distinguish between the following two cases for

the value of the non-negative factor a :

• 0a = . As shown in [MB04], it implies that 0b = . Hence,

()
1

,

1

k

k

t

Q T

k kt

c
Dist t dt

t t

+

+

=
−∫ (4.5)

• 0a > . According to [MB04]:

()
1

1 2
2

,
2

2 4 2
arcsinh

4 8 4

i
k

k
i

t
t

Q T

t t

at b b ac at b
Dist t dt at bt c

a a a ac b

+
+  + − +

= + + −   − 
∫ (4.6)

In order to avoid such a computationally expensive operation, we adopt the utilization of the

Trapezoid Rule for the computation of the integral, resulting in the following Lemma.

Lemma 4.1: The dissimilarity value between two points moving linearly with time can be

approximated by the following expression:

() () () ()() ()()
1

, , 1 1
1

1
, ,

2

n

approx Q T k Q T k k k

k

DISSIM Q T DISSIM Q T Dist t Dist t t t
−

+ +
=

≈ = + ⋅ −∑ (4.7)

with the error of the approximation, which depends on tk, tk+1 values, being bounded by:

() ()
() ()

() ()

3

1 (2)
, 1

3
1

1 (2)
, , 1 1

1

3

1 (2)
, 1

,2 212

, 212

, 212

k k

Q T k k

n
k k

Q T Q T k k k

k

k k

Q T k k k

t t
b bDist if t t

a a

t t
bE Dist t if t t

a

t t
bDist t if t t

a

+
+

−
+

+ +
=

+
+

 −
− ≤ − ≤


 −

≤ < < −

 −
 − < <


∑ (4.8)

Proof: The Trapezoid approximation ()nT f of ()
0

nx

x

f x dx∫ associated with the partition

0 1 ... nx x x< < < is given by:

() () () () () ()0 0 1 1

1
2 ... 2

2n n n nT f x x f x f x f x f x− = − ⋅ + + + +  (4.9)

If ()(2)
f x is continuous in 0[,]nx x , then the error ()nE f in the trapezoid rule is bounded as follows:

() () ()
3

0 (2)

212
n

n

x x
E f f M

n

−
≤ , (4.10)

where ()(2)
f M is the maximum value of ()(2)

f x in 0[,]nx x , i.e.,

() () [](2) (2)
0 , nf M f x x x x≥ ∀ ∈ (4.11)

In our case, by setting 1n = , we finally calculate:

() () ()() ()
1

, , , 1 1

1

2

k

k

t

Q T Q T k Q T k k k

t

Dist t dt Dist t Dist t t t
+

+ +≈ + ⋅ −∫ (4.12)

with the error of our approximation being bounded by:

 86

() ()
3

1 (2)
, ,12k k

k k

Q T Q T

t t
E Dist M

+ −
≤ , (4.13)

where ()(2)
,Q TDist M is the maximum value of ()(2)

,Q TDist t in 1[,]k kt t + . Therefore, we determine the

maximum value of ()
()

2
(2)

, 3 22

4

4
Q T

ac b
Dist t

at bt c

−
=

+ +
 in 1[,]k kt t + . Since the first derivative of ()(2)

,Q TDist t ,

()(3)
,Q TDist t zeroes at 2

bt
a

= − and () ()
()

5 2

(4)
, 3 22

3 4
2

4 4
Q T

a a
bD

a
ac b

−
− =

−
 0≤ (since 0a ≥), the largest value

of (2)
, ()Q TDist t in � is ()(2)

, 2Q T
bDist

a
− . Finally, we distinguish between three cases:

• 12k k
bt t

a +≤ − ≤ . In this case, ()(2)
,Q TDist M = ()(2)

, 2Q T
bDist

a
− and the error

is
() ()

3

1 (2)
, , 212k k

k k

Q T Q T

t t
bE Dist

a
+ −

≤ − ;

• 1 2k k
bt t

a+< < . In this case, ()(2)
,Q TDist M = ()(2)

, 1Q T kDist t + and the error is

() ()
3

1 (2)
, , 112k k

k k

Q T Q T k

t t
E Dist t

+
+

−
≤ ;

• 12 k k
b t t

a +− < < . In this case, ()(2)
,Q TDist M = ()(2)

,Q T kDist t and the error is

() ()
3

1 (2)
, ,12k k

k k

Q T Q T

t t
E Dist t

+ −
≤ .

Summing the n-1 equations of the dissimilarity error calculation by sides, it implies that the

approximation error EQ,T is computed as presented in Lemma 1. �

Figure 4.1 demonstrates the trapezoid approximation illustrating the approximation error E in the three

above cases: the value of
2

b
a

− is the flex of (2)
,Q TDist ; Ek is calculated based on the value of

()(2)
, 1Q T kDist t + (case b), Ek+1 is calculated based on the value of ()(2)

, 2Q T
bDist

a
− (case a) and Ek+2 is

calculated based on ()(2)
, 2Q T kDist t + (case c).

 Distance

t

tk+2

tk+1

2b a−

tk

tk+3

Ek

Ek+1

Ek+2

,Q T
D

Figure 4.1: Trapezoid approximation

So far we have defined the dissimilarity between two trajectories (Definition 4.2) and have

approximated this measure with a less expensive computation and a bounded error. As already

mentioned, the location of non-recorded timestamps is approximated by linear interpolation between

 87

consecutive recorder points (Support of non-linear e.g. arc, movement is left as an open issue). In the

sequel, we will provide a series of metrics that will be used in our MST search algorithms.

4.3.2. Speed-Dependent Metrics

In this section we define two metrics, namely OPTDISSIM and PESDISSIM, and provide several

lemmas to be used for pruning purposes during MST Search. Before proceeding into the core of the

section, we define the Linearly Depended Dissimilarity (LDD) which is used in the definition of our

metrics:

Definition 4.3: The Linearly Depended Dissimilarity (LDD) between two moving objects with initial

distance D moving collinearly with relative speed V during the period 1[,]nt t t∆ = , is given by the

following expression:

() 2

, 0
2

, ,

,
2

V t
t D if D V t

LDD D V t
D

otherwise
V

 ⋅∆ ∆ ⋅ + + ⋅∆ ≥ 
 

∆ =



 (4.14)

The relative speed V is a negative (positive) number when the distance between the two objects

decreases (increases, respectively). To illustrate this definition, consider Figure 4.2 where LDD is

described as the shaded area encompassed by the inclined line representing a distance function between

two objects moving towards each other with relative speed V, with the horizontal lines t1 and tn defining

t∆ . The two cases of LDD definition are illustrated in Figure 4.2(a) and Figure 4.2(b), respectively.

t

tn

t1

LDD

Distance D

V<0

∆t

t

tn

t1

D

V<0

∆t
LDD

Distance

(a) (b)

Figure 4.2: LDD definition

Having defined LDD, we can continue with the definition of the first metric used in our ordering

and pruning strategies:

Definition 4.4: The minimum DISSIM (MINDISSIM) during a period 1[,]nt t t∆ = between a trajectory

indexed by an R-tree-like structure with a line segment lying inside an index node N and a query

trajectory Q, is defined as:

() ()()max, , , , ,MINDISSIM Q N t LDD MINDIST Q N V t∆ = ∆ (4.15)

where Vmax is the sum of (a) the maximum speed of indexed trajectories and (b) the maximum speed of

the query trajectory.

 88

t y O1

t1

tn

Node N

MINDIST

x

t

Node N

MINDIST

tn

t1

Vmax

MINDISSIM

Distance

(a) (b)

Figure 4.3: MINDISSIM definition

This metric can be used for ordering and pruning purposes due to the lemma that follows.

Lemma 4.2: The DISSIM between a trajectory indexed by an R-tree-like structure partially contained

inside an index node N and a query trajectory Q during a period []1, nt t cannot have DISSIM smaller

than the respective MINDISSIM of the node.

Proof: According to Definition 4.4, MINDISSIM corresponds to the DISSIM of a moving object

located inside N for a single time instance and then moved towards the query trajectory with the

maximum possible speed (the area of the shaded region in Figure 4.3). Obviously, any other object

with at least one line segment contained inside N will approach the query trajectory with speed lower or

equal than Vmax, increasing therefore the shaded trapezoid area of Figure 4.3 (i.e. the slope of the

inclined line in Figure 4.3(b) will be greater). Furthermore, if the object remains inside N for more than

one time instance, the inclined line would cover a part of the query interval (and not the whole),

leading to a region with greater area. �

Depending on the presence or absence of index, any algorithm used for MST or similarity range

search will have to calculate the dissimilarity between a query trajectory and several (indexed or not)

trajectories; obviously, at any time instance such an algorithm will have retrieved several parts of

candidate MSTs.

Although we cannot calculate the exact DISSIM of these partially retrieved trajectories from the

query trajectory, we can safely estimate a lower bound for it, called OPTDISSIM. Consider, for

example, Figure 4.4 that illustrates OPTDISSIM of a partially retrieved candidate trajectory T from the

query trajectory Q. OPTDISSIM partially consists of the dissimilarity of the entries already retrieved

from the index (the shaded area during the time intervals [t1,t2] and [t3,t4]). Regarding the period [t4,t5],

the smallest possible dissimilarity is given assuming that the moving object started from its position at

t4 approaching the query object with the maximum possible speed (the inclined line between t4 and t5).

Finally, when dealing with intermediate time intervals such as [t2,t3], one has to calculate the time

instance 2
o

t in which the object stopped its movement towards the query trajectory (the inclined line

between t2 and 2
o

t) and then returned to its known position at the time instance t3 (the inclined line

between 2
o

t and t3). Now we can proceed with the formal definition of OPTDISSIM:

 89

Distance

t
tn=t5

t1

O
P

T
D

IS
S

IM

Vmax

t2

t3

2

o

t

t4 DQ,T

Figure 4.4: OPTDISSIM definition

Definition 4.5: The most optimistic DISSIM (OPTDISSIM) between a query trajectory Q and an

indexed trajectory T with line segments partially retrieved from the index, during a period 1[,]nt t , is

defined as:

()
()
()
()

, 1 max 1

1 , max 1

, max

, 1 max 1

(,) , ;

(), , () , , 1;

(, , ,) (), , () , , 1;

(), , ()

(), , () ,

k k k R

Q T k k k k R

n Q T k k k k R

o

Q T k k k

o

Q T k k k

DISSIM Q T if T S

LDD Dist t V t t if T S k

OPTDISSIM Q T t t LDD Dist t V t t if T S k n

LDD Dist t V t t

LDD Dist t V t t othe

+ +

+

+ +

∈

− − ∉ =

= − − ∉ = −

− − +

−

1

1

n

k

rwise

−

=












∑ (4.16)

where DistQ,T is the function of distance with time between trajectories Q and T, SR is the set of line

segments already retrieved from the index, Vmax is the sum of the maximum speed of indexed

trajectories plus the maximum speed of the query trajectory, and
o

kt is given by the following

expression:

(), 1 ,

1

max

() ()1

2

Q T k Q T ko

k k k

D t D t
t t t

V

+

+

 −
 = + +
 
 

 (4.17)

Recalling Figure 4.4, the value of o

kt is straightforward utilizing the fact that the slope of the two

inclined lines between 2 2[,]o
t t and 2 3[,]o

t t is the same and equal to Vmax. Having defined OPTDISSIM,

we can provide the following lemma, which will also turn out to be useful for pruning purposes:

Lemma 4.3: A trajectory indexed by an R-tree-like structure with line segments partially retrieved

from the index cannot have smaller DISSIM from a query trajectory Q during a period 1[,]nt t than its

respective OPTDISSIM.

Proof: According to the previous definition, OPTDISSIM is the sum of the DISSIM of the trajectory

entries already retrieved from the index (belonging to set SR), a value which is fixed, plus the DISSIM

of an object which approached the query trajectory with the maximum possible speed (Vmax) during the

time intervals not already retrieved from the index, with the additional constraint that the object has to

be found at given positions at the start and/or the end of the interval. Therefore, since the two objects

approach each other with the maximum possible speed during those periods, the distance between them

is minimized; hence minimizing the corresponding integral and consequently their dissimilarity. �

Likewise, by adopting the same scenario where an MST algorithm has only partially retrieved

trajectories, one can estimate an upper bound, for the DISSIM between the query and a partially

 90

retrieved trajectory, named PESDISSIM. As illustrated in Figure 4.5, PESDISSIM works in a fashion

similar to OPTDISSIM with the difference that during time intervals where the movement of the object

is not known, the object is assumed to diverge (and not to approach) the query trajectory with the

maximum possible speed Vmax. In the same way, we formally define PESDISSIM:

Definition 4.6: The most pessimistic DISSIM (PESDISSIM) between a query trajectory Q and an

indexed trajectory T with line segments partially retrieved from the index, during a period 1[,]nt t , is

defined as:

()
()
()
()

, 1 max 1

1 , max 1

, max

, 1 max 1

(,) , ;

(), , () , , 1;

(, , ,) (), , () , , 1;

(), , ()

(), , () ,

k k k R

Q T k k k k R

n Q T k k k k R

p

Q T k k k

p

Q T k k k

DISSIM Q T if T S

LDD D t V t t if T S k

PESDISSIM Q T t t LDD D t V t t if T S k n

LDD D t V t t

LDD D t V t t otherwise

+ +

+

+ +

 ∈

 − ∉ =



= − ∉ = −


− +

− −

1

1

n

k

−

=




∑ (4.18)

where DQ,T, SR and Vmax are as defined in previous definitions, and p

kt is given by the following

expression:

() ()(), , 1

1

max

1

2

Q T k Q T kp

k k k

D t D t
t t t

V

+

+

 −
 = + +
 
 

 (4.19)

The following lemma is directly derived by the definition of PESDISSIM.

Lemma 4.4: A trajectory indexed by an R-tree-like structure with line segments partially retrieved

from the index cannot have DISSIM from a query trajectory Q during a period 1[,]nt t greater than its

respective PESDISSIM.

Proof: According to the previous definition, PESDISSIM is the sum of the DISSIM of the trajectory

entries already retrieved from the index (belonging to set SR), a value which is fixed, plus the DISSIM

of an object which diverged the query trajectory with the maximum possible speed (Vmax) during the

time intervals not already retrieved from the index, with the additional constraint that the object has to

be found in given positions at the start and/or the end of the interval. Therefore, the distance between

the two trajectories during those periods is maximized, hence maximizing their dissimilarity. �

t

P
E

S
D

IS
S
IM

DQ,T

Distance

tn=t5

t1

t2

t3

2

p

t

t4

Vmax

Figure 4.5: PESDISSIM definition

4.3.3. Speed-Independent Metrics

The utilization of the previously defined metrics in an MST search algorithm can significantly enhance

its performance by pruning several candidate trajectories. However, these metrics are relatively loose,

 91

since they are based on the maximum speed Vmax which, theoretically speaking, could be orders of

magnitude higher than the mean object speed. Therefore, we need to define other metrics not

influenced by Vmax, supporting our speed-independent MST search algorithms. These metrics can be

developed when an MST algorithm reports index nodes in incremental order of their MINDIST from

the query trajectory. Obviously, this is a reasonable assumption considering R-tree like structures

where a best-first strategy like the one proposed in [HS99] can be utilized.

Consider, for example, Figure 4.6 that describes the DISSIM of a partially retrieved candidate

trajectory T from the query trajectory Q; According to our previous discussion, the DISSIM between

[t1,t2] and [t3,t4] is accurately defined. In this case however, we can utilize the fact that index nodes are

accessed in incremental order of their MINDIST from the query trajectory. Consequently, any line

segment not yet retrieved from the index, cannot be closer to Q than MINDIST(Q,N) where N is the

next index node in the queue, and the lower bound of DISSIM turns into the shaded area of Figure 6.

Distance

t

tn=t5

t1

O
P

T
D

IS
S

IM
IN

C

t2

t3

t4
DQ,T

MINDIST(Q,N)

Figure 4.6: OPTDISSIMINC definition

More formally, we define OPTDISSIMINC as follows:

Definition 4.7: Assuming that index nodes are reported in incremental order of their MINDIST from

the query trajectory, the most optimistic DISSIM between a query trajectory Q and an indexed

trajectory T during a period [t1,tn] having a line segment inside a tree node N, is given by the following

expression:

()
()
() ()

1

1
1 1

, , ;
, , , ,

, ,

n
k k k R

INC n

k k k

DISSIM Q T if T S
OPTDISSIM Q T N t t

MINDIST N T t t otherwise

−

= +

∈
= 

⋅ −
∑ (4.20)

where SR is the set of line segments already retrieved from the index.

Using the above definition of OPTDISSIMINC, we can also define the minimum DISSIM of an

index node N:

Definition 4.8: Assuming that index nodes are reported in incremental order of their MINDIST from

the query trajectory, the minimum DISSIM between a trajectory T, indexed by an R-tree-like structure

having a line segment inside a node N, and a query trajectory Q during a period [t1,tn], is defined as:

()
() ()

()
1

1

1

,
, , , min

, , , , ,

n

INC n

INC n C

MINDIST Q N t t
MINDISSIM Q N t t

OPTDISSIM Q T N t t T S

⋅ −
= 

∀ ∈
 (4.21)

where SC, is the set of the trajectories with line segments already retrieved from the index but not yet

fully completed inside the period [t1,tn].

 92

Lemma 4.5: Assuming that index nodes are reported in incremental order of their MINDIST from a

query trajectory Q, a trajectory that is partially stored inside a tree node N cannot have smaller

DISSIM from Q during the time period [t1,tn] than the node’s respective MINDISSIMINC.

Proof: Any line segment inside N resides in a trajectory that either belongs to Sc or not. In the former

case, considering that nodes are reported in incremental order, trajectory entries not yet retrieved

cannot be closer to the query object than the MINDIST of the node in which they belong. So, the

minimum dissimilarity of an object of Sc is the sum of the dissimilarity of its entries already retrieved

from the index, plus the dissimilarity of an object being as close as MINDIST to the query trajectory

during the rest of the query time period - a sum which corresponds to OPTDISSIMINC definition. In the

latter case, where the trajectory does not belong to Sc, the line segment cannot belong to an object fully

retrieved from the index because this would lead to duplicate line segments in the index. Hence the line

segment belongs to a moving object with no segments retrieved from the previously accessed nodes

and it cannot be closer to the query trajectory than MINDIST. Thus, in the best case, its distance from

the query object during the query period is equal to MINDIST and its DISSIM is equal

to (,)MINDIST Q N t⋅ ∆ . �

4.3.4. Heuristics

The lemmas provided in previous sections support the following heuristics directly used in the

MST Search algorithms that will be presented in the following Sections.

• Heuristic 1: Every trajectory line segment contained in an R-tree-like node with MINDISSIM

greater than the current most similar (i.e. the one with the smallest calculated DISSIM - or

PESDISSIM if there is not a fully calculated DISSIM) belongs to a moving object which

cannot be more similar to the query trajectory than the current most similar; as such it can be

pruned from the candidates list.

• Heuristic 2: Every trajectory with OPTDISSIM less than the current most similar cannot be

more similar to the query trajectory than the current most similar; as such it can be pruned

from the candidates list.

• Heuristic 3: When leaf and internal nodes are reported in incremental order of their MINDIST

from the query trajectory, every trajectory line segment contained in a node with

MINDISSIMINC greater than the current most similar belongs to a moving object which cannot

be more similar to the query trajectory, hence, the node can be pruned from the candidates list.

Moreover, since any node reported after the one processed will have MINDIST greater or

equal to MINDIST of the current node, according to Definition 4.8 the same will hold for the

respective values of MINDISSIMINC. As a result, all these nodes will have MINDISSIMINC

greater than the current most similar, and the algorithm can be terminated since all the

remaining nodes can be pruned.

4.4. Algorithms for k-Most Similar Trajectory Search

In this section we describe in detail the algorithms answering MST queries using the three heuristics

described in the previous section and, then, we generalize them in order to support k-MST queries. We

 93

provide two alternatives: one depth-first and one best-first where the second assumes that index nodes

are reported in incremental order of their MINDIST.

4.4.1. Depth-First MST Search Algorithm

The first algorithm (DFMSTSearch, illustrated in Figure 4.7) accesses the tree structure in a depth-

first mode, pruning tree nodes not fulfilling the temporal constraint of the query trajectory, as also

shown in subsection 3.4.1.1 regarding trajectory nearest queries. The algorithm starts by interpolating

to produce the part of the query trajectory being entirely inside the query temporal extent. Generally

speaking, the algorithm uses the DISSIM between trajectories as distance metric and not the Euclidean

Distance; at higher levels the MINDISSIM metric is used to sort the branch list and prune it using

heuristic 1 during the algorithm’s backtracking (lines 31-36). At leaf level, the algorithm uses three

hashed in-memory structures: One with the completed trajectories (Completed), one with the partially

completed trajectories (Valid) and one with the partially completed nevertheless already rejected

(Rejected) trajectories. The Completed and Valid in-memory structures store lists each one of them

containing the moving object’s time intervals along with their starting and ending distances, its (partial)

DISSIM the respective calculation error and the OPTDISSIM and PESDISSIM values. The Rejected in-

memory structure contains only trajectory ids.

When a leaf entry is processed, the algorithm checks whether it belongs to a Rejected moving

object (by simply using its id) and rejects it if it does (line 6). In the sequel it checks whether the entry

belongs to a Valid moving object and, if so, retrieves its list L; otherwise, it creates a new list and adds

it to Valid (lines 7-11). The algorithm uses a plane sweep method which scans leaf entries and

trajectory segments in their temporal dimension in a single pass. This requires that the leaf entries are

previously sorted according to their temporal order (line 4), unless the underlying tree structure (such

as the TB-tree) stores them in temporal organization anyway.

When a leaf entry and the query trajectory overlap in the temporal dimension the algorithm adds

the period to the list L (lines 14-15), and calculates DISSIM, OPTDISSIM and PESDISSIM, together

with the respective calculation error (line 16). If the list L is completed, it is removed from Valid and

added to Completed, its DISSIM is checked against the current most similar and, if smaller, takes its

position in MSim (lines 18-19). In the case where L is not yet completed, its PESDISSIM is checked

against the current most similar and, if smaller, takes its position in MSim (lines 21-24); its

OPTDISSIM is also compared with the current most similar and, if greater, the list is moved from Valid

to Rejected applying heuristic 2 (lines 24-26).

 94

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Algorithm DFMSTSearch(node N, trajectory Q, time period Qper, struct

 MSim, Hash Valid, Hash Completed, Hash Rejected)

 Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 IF N is leaf

 Sort(N,TS)

 FOR EACH leaf entry E IN leaf node N

 IF Rejected not contains E.Id

 IF Valid contains E.Id

 retrieve list L

 ELSE

 create list L; Add L in Valid

 ENDIF

 Find next query entry QS with QS.Te<N.TS; QE=QS

 DO UNTIL QE.Ts > E.Te

 Interpolate to produce nE, nQE in period (T1,T2)

 Add (T1,T2) in L

 Calc(DISSIM,PESDISSIM,OPTDISSIM,ERR)

 IF L is completed

 Move L from Valid to Completed

 IF DISSIM<MSim.DISSIM Update MSim with nE.Id,DISSIM

 ELSE

 IF PESDISSIM<MSim.DISSIM

 Update MSim with nE.Id,PESDISSIM

 ENDIF

 IF OPTDISSIM>MSim.DISSIM

 Move L from Valid to Rejected

 ENDIF

 ENDIF

 NEXT query entry QE

 Return QE in the query entry QS

 NEXT

 ELSE

 BranchList=GenTrajectoryBranchList(Q,N)

 SortBranchList(BranchList)

 FOR EACH entry E IN BranchList

 DFMSTSearch E.ChNode, E.Trajectory, MSim

 PruneBranchList(BranchList)

 NEXT

 ENDIF

Figure 4.7: Depth-first most similar trajectory search algorithm (DFMSTSearch algorithm)

4.4.2. Best-First MST Search Algorithm

The second algorithm (BFMSTSearch, illustrated in Figure 4.8) accesses the tree structure in a best-

first mode, calculating the appropriate MINDISTs between the query trajectory and the tree nodes, thus

reporting leaf and internal tree nodes in incremental order of their MINDIST from the query trajectory.

Again, the algorithm starts by interpolating to produce the part of the query trajectory being

entirely inside the query temporal extent. In the sequel, when an internal node is processed (lines 35-

39), the algorithm calculates the MINDIST between the node and the part of the query trajectory Q

being inside the temporal extent of the node utilizing the MinDist_Trajectory_Rectangle metric (also

employed in our trajectory nearest neighbor algorithms) and then is enqueued. When a leaf is processed

(lines 9-30), the algorithm processes entries with exactly the same way as the DFMSTSearch

algorithm does. In both cases where a node (leaf or internal) is processed, the algorithm first checks

whether its MINDISSIMINC is greater than the current most similar and if so, the algorithm terminates

applying heuristic 3, and returns the current most similar as the query reply (lines 5-7). Note that in

order to avoid calculating all the OPTDISSIMINC values involving in the MINDISSIMINC definition (i.e.,

CT S∈ in definition 6), we first check whether the 1(,) ()nMINDIST Q N t t⋅ − value of the node is less

than the current most similar. In such a case, the calculation of the OPTDISSIMINC values is omitted,

 95

since the value of MINDISSIMINC will be less than the current most similar regardless of the

OPTDISSIMINC values.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Algorithm BFMSTSearch (R-tree R, trajectory Q, period Qper)

 Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE))

 EnQueue Queue, R.RootNode, 0, Q

 DO WHILE Queue.Count > 0

 Element = DeQueue(Queue); N=Element.Node; Q=Element.QueryTrajectory

 IF Completed.Count>0

 IF MINDISSIMINC(Q,N)>MSim.DISSIM RETURN MSim

 ELSE

 IF N is leaf node

 Sort(N, TS)

 FOR EACH leaf entry E IN leaf node N

 IF Rejected not contains E.Id

 IF Valid contains E.Id

 retrieve list L

 ELSE

 create list L; Add L in Valid

 ENDIF

 Find next query entry QS in Q with QS.Te<N.TS; QE=QS

 DO UNTIL QE.TS > E.Te

 Interpolate to produce nE, nQE period (T1,T2)

 Add (T1,T2) in L

 Calc DISSIM, PESDISSIM, OPTDISSIM, ERR

 IF L is completed

 Move L from Valid to Completed

 ENDIF
 IF DISSIM<MSim.DISSIM

 Update Msim with nE, DISSIM

 ELSE

 IF PESDISSIM<MSim.DISSIM

 Update MSim with nE, PESDISSIM

 ENDIF

 IF OPTDISSIM>MSim.DISSIM

 Move L from Valid to Rejected

 ENDIF

 ENDIF
 NEXT query entry QE

 ENDIF

 Return QE in the query entry QS

 NEXT

 ELSE

 FOR EACH entry E IN the node Element

 IF (Q.TS,Q.TE) Overlaps (E.TS,E.TE)

 Interpolate to produce nQE in period (T1,T2)

 Dist = MinDist_Trajectory_Rectangle(nQ, E)

 EnQueue Queue, E, Dist, nQ

 ENDIF

 NEXT

 ENDIF

 ENDIF

 LOOP

Figure 4.8. Best-first most similar trajectory search algorithm (BFMSTSearch algorithm)

4.4.3. Extending to k-MST algorithms

In the same fashion as in [RKV95] and our work in nearest neighbor queries presented in the previous

chapter, we generalize the above two algorithms to support the k-most similar trajectory search by

considering the following:

• using a buffer of at most k (current) most similar trajectories sorted by their actual

dissimilarity from the query trajectory;

• either pruning according to the dissimilarity of the more dissimilar object in the buffer, when

extending the DFMSTSearch algorithm, or

 96

• terminating the algorithm execution when processing a node with MINDISSIMINC greater than

the dissimilarity of the more dissimilar object in the buffer, when extending the

BFMSTSearch algorithm.

4.4.4. Error Management

Both algorithms calculate the dissimilarities between query and indexed trajectories using the

approximation introduced in Lemma 4.1 computing at the same time the appropriate approximation

error (denoted as ERR in both Figure 4.7 and Figure 4.8). However, apart from its computation, the

usage of the error is fundamental in order to compute exact and correct results, a task which is not

explicitly described in the two algorithms for sake of clarity. Actually, three modifications must be

introduced in both algorithms so as to incorporate the role of the approximation error:

• A candidate most similar trajectory, not already completed, is compared against the current k-

th most similar by using the value of PESDISSIM-ERR.

• A completed candidate most similar trajectory is compared against the current k-th most

similar using the value DISSIM-ERR.

• Instead of using one k-th most similar, it is required to utilize a buffer of the candidate k-th

most similar trajectories. These will be all the trajectories with DISSIM greater than the k-th

most similar and DISSIM-ERR less than it.

According to the previous discussion, both algorithms may end up with m ¥ k candidate most

similar trajectories; in such cases, a post processing step is required after their execution in order to

determine the definite k most similar trajectories by calculating the actual dissimilarity of each

candidate trajectory against the query trajectory. Although, this is a computational expensive operation,

it only happens when the error buffer contains more than one trajectory, or when the order in which the

trajectories are reported from the k-buffer can be affected by the calculation error of each trajectory’s

similarity.

4.5. Experimental Study

The two previously presented DFMSTSearch and BFMSTSearch algorithms can be implemented in

any R-tree-like structure storing historical moving object information such as the 3D R-tree, the STR-

tree [PJT00], the TB-tree [PJT00] and the TB*-tree proposed in Chapter 2. Among them, we

implemented the algorithms using the 3D R-tree, the TB-tree and TB*-tree.

4.5.1. Experimental Setup

During the experiments, we used a page size of 4KB and a (variable size) buffer fitting the 10% of the

index size, with a maximum capacity of 1000 pages. The experiments were performed in a PC running

Microsoft Windows XP with AMD Athlon 64 3GHz processor, 512 MB RAM and several GB of disk

space.

Regarding the datasets that were employed for the purpose of this study, the real datasets used by

related work on trajectory similarity ([COO05], [VKG02]), are not suitable for our objectives due to

the fact that they are composed by 2D projections of trajectories without any information about the

sampled timestamps; a reasonable fact, bearing in mind that the similarity measured in those papers

 97

only depends on the spatial and not the spatio-temporal trajectory similarity. For this reason we

employed the Trucks dataset (cf. Section 0) using it so as to evaluate the quality of the proposed

similarity measure (section 4.5.2). However, since this dataset is relatively small (273 trajectories and

112203 line segments), it could not expose the actual performance of the algorithms; therefore, the

performance study (section 4.5.3) was conducted using synthetic datasets generated by a custom

generator based on the GSTD data generator [TSN99]. The main purpose of using a custom data

generator and not the widely used GSTD, is that a fundamental parameter influencing the performance

of the proposed algorithms is the relation between the mean and the maximum speed of the moving

objects indexed by the tree, which cannot be controlled by GSTD.

Table 4.2: Summary dataset information

Speed Distribution Index Size (MB)

D
a
ta

se
t

#
 O

b
je

ct
s

M
M

S

#

E
n
tr

ie
s

(x
1
K

)
Type µ σ 3D R- tree TB- tree TB*- tree

Trucks 276 16 112 Real data 3.2 1.8 1.0

S0100,10 100 10 200 Lognormal 1 0.6 10.7 5.2 2.4

S0250,10 250 10 500 Lognormal 1 0.6 25.8 13.1 6.1

S0500,10 500 10 1000 Lognormal 1 0.6 51.0 26.2 12.2

S1000,10 1000 10 2000 Lognormal 1 0.6 99.1 52.4 24.5

S0500,2 500 2 1000 Normal 3 1.0 51.4 26.2 12.2

S0500,5 500 5 1000 Lognormal 1 0.4 51.1 26.2 12.2

S0500,20 500 20 1000 Lognormal 1 0.8 50.3 26.2 12.2

In order to achieve scalability in the volumes of the datasets, we generated synthetic trajectories

of 100, 250, 500 and 1000 moving objects resulting in datasets of 200K, 500K, 1000K, and 2000K

entries, respectively (the position of each object was sampled approximately 2000 times), thus building

indices of up to 100 MB size. The max / mean speed ratio (denoted in the rest of the chapter as MMS)

of those datasets was set to a default of 10, which is a reasonable value considering real world

applications where trajectories represent walking humans or moving vehicles. Nevertheless, in order to

investigate the sensitivity of the algorithms regarding this parameter, we generated 3 additional sets of

500 moving objects setting MMS to 2, 5 and 20, respectively. Regarding the rest parameters of the

generator, the initial distribution and the heading of objects in all cases was random, while their speed

was ruled by a normal or lognormal distribution depending on the desired MMS. Table 4.2 illustrates

summary information about the real and the generated datasets and the corresponding indexes. Note

that each synthetic dataset is denoted by its cardinality and its MMS (e.g. the S0100,10 constitutes from

100 trajectories with MMS equal to 10).

4.5.2. Experiments on the Quality

In order to evaluate the quality of the proposed similarity measure we conducted an extensive set of

experiments using the real Trucks dataset. All trajectories of the dataset were compressed using the

TD-TR algorithm described in [MB04] thus producing artificial trajectories, which were similar (but

not identical) to the ones of the original dataset. Then, we used each compressed trajectory to query the

 98

original dataset, expecting the algorithm to return the corresponding original trajectory as most similar.

We run one set of queries setting k=1 and we counted the number of times the query failed to return the

original trajectory as the most similar. We also scaled the value of the TD-TR parameter p from 0.1%

to 10% of the length of each trajectory, in order to achieve different values of similarity since an

increasing TD-TR parameter produces a compressed trajectory with fewer sampled points and greater

dissimilarity regarding the original trajectory. As an example, Figure 4.9 illustrates (a) an original

trajectory and the trajectories produced using the TD-TR algorithm with (b, c, d) different values of p.

A major observation derived from Figure 4.9 is that while the general sketch of the trajectory remains

unaffected with the evolution of p, the number of vertices outlining the trajectory decreases and the

local details are vanished.

p=0

 (168 Vertices)

p=0.1 %

(65 Vertices)

p=1 %

(29 Vertices)

p=2 %

(22 Vertices)

(a) (b) (c) (d)

Figure 4.9: Different degree of compression on a trajectory

Among the related work we have chosen to run the same experiments using the LCSS [VKG02]

and EDR [COO05] similarity measures. We did not include DTW [BC96] in our experimental study,

since both LCSS and EDR were shown to outperform it [VKG02], [COO05]. We set the value of the

parameter ε for these two measures to be a quarter of the maximum standard deviation of trajectories,

which leads to the best clustering results, according to [COO05]. We also normalized the trajectory

dataset as suggested in the same paper. Furthermore, for a fair comparison, we made an obvious

improvement over LCSS and EDR, by manually adding samples in the under-sampled (query)

trajectory with linear interpolation at the timestamps the checked dataset trajectory was sampled. We

called these improved versions LCSS-I and EDR-I respectively.

The results of the experiments evaluating the quality of the proposed similarity metric are

illustrated in Figure 4.10. Clearly, the proposed dissimilarity measure (DISSIM) outperforms both its

competitors in all settings, regarding also their improved versions. Actually, in the largest part of the

experiments, DISSIM correctly identifies the original trajectory from which the query one has been

produced. On the other hand, it produces false responses only when the value of p exceeds 5%,

verifying that it is a very robust similarity metric. LCSS (and LCSS-I) also achieves good quality

classifying correctly the query trajectory in the majority of the experimental settings; nevertheless, it is

always less accurate than DISSIM. Regarding EDR and EDR-I, it turns out that for p values greater

than 1% they completely fail to describe the similarity between trajectories, since the false responses

exceed 60%.

 99

0

20

40

60

80

100

0.1% 1.0% 2.0% 5.0% 10.0%

TD-TR Parameter

F
a

ls
e

 R
e
s

u
lt

s
 (

%
) DISSIM

LCSS

LCSS-I

EDR

EDR-I

Figure 4.10: False results increasing the value the TD-TR parameter

The reason for the poor performance of EDR similarity measure demonstrated in these

experiments can be explained considering its definition: EDR is the number of insert, delete, or replace

operations that are needed to convert trajectory A into B [COO05]. Thus, supposing that n is the

number of vertices in A and m is the number of vertices in (the compressed) Ac,

(,)cEDR A A n m≥ − since at least n-m vertices are needed to be added into Ac so as to convert it to A.

For an arbitrary dataset trajectory T with k vertices being spatially away from A, it can be easily shown

that EDR between T and Ac is at most max(m, k). Therefore, if a dataset contains a trajectory T with k

vertices and max(,)m k n m≤ − , e.g. a trajectory composed by a small number of vertices, then it also

holds that (,) (,)c cEDR T A EDR A A≤ .

4.5.3. Experiments on the Performance

Both algorithms were evaluated with four sets of 500 queries according to the settings presented in

Table 4.3. As such the effects of cardinality (Q1), MMS (Q2), query length (Q3) and k (Q4) were

evaluated using the 3D R-, the TB- and the TB*-tree.

Table 4.3: Query Settings

Query Set Datasets Query Trajectory (as part of a random data trajectory) k

Q1 S0100,10 … S1000,10 5% 1

Q2 S0500,02 … S0500,20 5% 1

Q3 S0500,10 1% … 100% 1

Q4 S0500,10 5% 1..10

Figure 4.11 illustrates the execution time and the achieved pruned space for the query set Q1

(scaling with the dataset cardinality) evaluating the DFMSTSearch and BFMSTSearch algorithms. It

is clear that, BFMSTSearch outperforms DFMSTSearch algorithm in terms of execution time, while

both demonstrate a very good pruning power (over 80% in all the experiments). The reason for the

slightly worse pruning power of DFMSTSearch algorithm is due to the influence of the parameter

Vmax in the definition of MINDISSIM, OPTDISSIM and PESDISSIM metrics, which leads to relatively

“loose” heuristics. As the number of moving objects increases, Vmax becomes several times greater than

the speed of the majority of moving objects, reducing the efficiency of the above metrics and

consequently the performance of the MST algorithm.

 100

0

500

1000

1500

2000

2500

3000

3500

0 500 1000
Mov ing Objects

E
x
e

c
u
ti

o
n
 t

im
e
 (

m
s

)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

0%

20%

40%

60%

80%

100%

0 500 1000
Mov ing Objects

P
ru

n
in

g
 p

o
w

e
r

(%
)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

(a) (b)

Figure 4.11: Scaling with the dataset cardinality (Q1)

Another observation obtained from Figure 4.11 is that while the DFMSTSearch algorithm

shows good pruning power, its execution time does not follow a similar behavior. This can be

explained by the fact that the pruning in the MST algorithm is mainly due to the OPTDISSIM heuristic,

which requires the algorithm to read leaf entries and reject them without processing them (if their ids

belong to a Rejected moving object). On the other hand, BFMSTSearch algorithm mainly prunes by

the MINDISSIMINC heuristic which directly rejects all tree nodes not yet processed by the time it

realizes.

0

500

1000

1500

2000

2500

3000

0
MMS

E
x
e

c
u
ti

o
n
 t

im
e
 (

m
s

)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

0%

20%

40%

60%

80%

100%

0
MMS

P
ru

n
in

g
 p

o
w

e
r

(%
)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

(a) (b)

Figure 4.12: Scaling with the MMS (Q2)

The influence of the Vmax parameter is highlighted in the second set of experiments with the

query set Q2, scaling with the value of MMS (Figure 4.12). As it can be observed, the execution time of

DFMSTSearch algorithm increases linearly with the value of MMS. The execution time of

BFMSTSearch algorithm remains constant, since it does not utilize objects speed. Again, both

algorithms achieve a very good pruning of the searched space.

Similar conclusions as the above are drawn from for the query set Q3, scaling with the query

length (Figure 4.13). In this case it is worth to point out the “bad” behavior of the TB-tree regarding its

pruning power, as the query length increases. This observation can be explained bearing in mind the

insertion algorithm of TB-tree, which stores in each leaf node segments belonging to the same

trajectory. This has the main drawback that spatially close segments from different trajectories are

stored in different nodes. As such, the TB-tree preserves the temporal order of the positions of the

 101

moving objects, while ignores their spatial allocation. However, as the query temporal extent increases,

the pruning power of the TB-tree deteriorates, since the drawback of the inadequate spatial allocation

of the positions of the moving objects overcomes the gain of having them stored according to their

temporal order. Here, we have to mention the advantage of TB*-tree, which seems to be the overall

winner in all experimental settings. It turns out that the “delete and re-insert” strategy adopted in the

TB*-tree in construunction with the increased fanout of its nodes is adequately effective in the case of

similarity search.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 0.5 1
Query Length

E
x

e
c
u

ti
o
n

 t
im

e
 (

m
s

)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

0%

20%

40%

60%

80%

100%

0 0.5 1
Query Length

P
ru

n
in

g
 p

o
w

e
r

(%
)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

(a) (b)

Figure 4.13: Scaling with the query length (Q3)

Finally, Figure 4.14 illustrates the behavior of the proposed algorithms regarding the number of

most similar trajectories requested. Again BFMSTSearch algorithm achieves high pruning power and

small execution time decreasing its performance with k with a relatively small ratio. On the other hand,

although DFMSTSearch algorithm shows good pruning power – but always worse than that of

BFMSTSearch – its execution time is several times higher the respective execution time of its

competitor, having the same explanation as the previous ones.

Summarizing the results of our experimental study, both algorithms show high pruning power

while the BFMSTSearch always outperforms DFMSTSearch by several orders of magnitude. The

pruning power of the DFMSTSearch depends on the dataset’s MMS, the query length and the number

of k, while that of BFMSTSearch depends only on the query length and (in smaller degree) in the

number of k. Moreover, BFMSTSearch always achieves pruning power above 90%. Regarding

execution time, BFMSTSearch always outperforms DFMSTSearch due to the utilization of the

MINDISSIMINC heuristic which directly rejects all tree nodes not yet processed by the time it realizes.

 102

0

500

1000

1500

2000

2500

3000

0 5 10
k

E
x

e
c
u

ti
o

n
 t

im
e
 (

m
s
)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

0%

20%

40%

60%

80%

100%

0 5 10
k

P
ru

n
in

g
 p

o
w

e
r

(%
)

3D R - DFMST

TB - DFMST

3D R - BFMST

TB - BFMST

TB*-DFMST

TB*-BFMST

(a) (b)

Figure 4.14: Scaling with number of k (Q4)

4.6. Conclusions

Related work on similarity query processing for trajectories is based on the context of time series

analysis or the Longest Common Subsequence (LCSS) model [VKG02] and the recently proposed Edit

Distance on Real Sequence (EDR) [COO05]. However, all these methods have the main drawback that

they either ignore the temporal dimension of the movement therefore calculating the spatial (not the

spatio-temporal) similarity between the trajectories, or assume that the trajectories are of the same

length and have the same sampling rate. What is more, the majority of the proposed approaches exploit

specialized index structures in order to prune the search space and retrieve the most similar to a query

trajectory.

In this thesis we relaxed these assumptions by defining a novel metric, called DISSIM, and then

we presented a complete treatment of historical MST queries over moving object trajectories stored on

R-tree-like structures avoiding the drawbacks of the existing methods. We proposed a set of metrics,

based on simple notions of trajectories, such as the dataset maximum speed, each one followed by a

lemma that support our ordering and pruning strategies. Then, we presented two MST algorithms over

trajectories indexed by R-tree-like structures following the depth-first [RKV95] and best-first [HS99]

paradigm.

Under various synthetic and real trajectory datasets, we illustrated the superiority of the proposed

DISSIM metric against related work [VKG02], [COO05], in terms of quality, while our algorithms

show high pruning ability when processing MST queries, also verified in the case of k-MST queries.

Among the algorithms proposed, the BFMSTSearch following the best-first paradigm [HS99] seems

more promising showing better performance over its depth-first competitor DFMSTSearch; in

particular, it demonstrates linear behavior in terms of execution time and node accesses, while its

pruning power remains above 90% in all settings tested during the experimental study (whereas the

pruning power of DFMSTSearch degrades to very small values as the query length increases).

The proposed algorithms do not require any dedicated index structure and can be directly applied

to any member of the R-tree family used to index trajectories, such as the 3D R-tree, the TB-tree and

the TB*-tree used in our implementation.

 103

5. Managing the Effect of Location Uncertainty

in Trajectory Databases

In this chapter we provide our theoretical model for estimating the effect of uncertainty in spatio-

temporal querying. The chapter is structured as follows. Section 5.1 motivates the work in this chapter.

Section 5.2 discusses related work, while Section 5.3 describes the theoretical analysis on the effect of

uncertainty under several uniformity assumptions. In Section 5.4 the proposed model is extended in

order to support non-uniform distributions over the problem parameters. Section 5.5 evaluates the

accuracy of the model through an extensive experimental study over synthetic and real datasets, while

Section 5.6 discusses the employment of the proposed model in the context of spatial databases.

Finally, Section 5.7 provides the conclusions of the chapter.

5.1. Introduction

A common assumption adopted in spatial and spatio-temporal databases is that the position of objects

is precisely known. However, a variety of reasons, such as GPS and sampling errors, may influence the

accuracy of the recorded locations of trajectories, since location data obtained from measuring devices

are inherently imprecise. Moreover, several recent works [BS03], [CZBP06], [GL05] suggest that the

location privacy of mobile users should be protected by adding a controlled degree of noise in each

object’s measured position. Consequently, all these errors introduce an uncertainty factor into the

answers of traditional queries.

The literature on the management of the location uncertainty of spatio-temporal objects so far,

deals with either uncertainty representation issues [Tra03], [TWHC04], [WSCY99] or probabilistic

algorithms [CKP04] that process queries in the presence of uncertainty, estimating the probability of

each trajectory to be included in the query result. On the other hand, in this thesis we argue that there

are cases where the user would prefer to know the influence of the measurement error in the query

results, without actually executing the query. The challenge thus accepted in this chapter, is to provide

a theoretical framework that estimates the error introduced due to the uncertainty of moving objects’

locations in the results of spatio-temporal queries. Among the spatio-temporal query types, our interest

is focused on timeslice queries, which can be used to retrieve the positions of moving objects at a given

time point in the past and can be seen as a special case of spatio-temporal range queries, with their

temporal extent set to zero [PJT00]. This type of query can also be seen as the combination of a spatial

(i.e., query window W) and a temporal (i.e., timestamp t) component. As it will be discussed in Chapter

 104

7, the extension of the model provided by this work in order to support range queries with non-zero

temporal extent is by no means trivial and is left as future work. To the best of our knowledge, our

work is the first that tackles this problem.

Towards this goal, the model proposed in [TWHC04], [TWZC02] regarding the uncertainty of

trajectory data is initially adopted. In particular [TWHC04] propose that the trajectories of moving

objects should be modeled as 3D cylindrical volumes around the tracked trajectory (recall Figure 1.5);

as such, when executing a timeslice query over the trajectory database, the original trajectory is

transformed to a single point and the cylindrical volume to a disk (Figure 5.1) which is called

uncertainty disk and the actual location of the moving object at this particular timestamp is assumed to

follow a uniform distribution within this disk. Although the model proposed in [TWHC04] (and

consequently, the uniform statistical distribution) may be assumed when artificially injecting

uncertainty into data objects as proposed by [BS03], [CZBP06], [GL05], it is rather unrealistic to

describe the actual measurement and sampling error introduced by various devices (GPS-equipped

smartphones, etc.) and interpolation methods being employed to calculate the position of the moving

object between consecutive time-stamped positions. Therefore, in the sequel, we employ other

statistical distributions [Lei95], [PTJ05] and augmented histograms in order to support more realistic

scenarios of uncertainty distribution.

t y Query Window

Q1

x

y

x

Data point location

(sampled or interpolated)

Uncertainty

circle

Figure 5.1: Problem Setting

The model described in this thesis can be used in MODs so as to estimate the average number of

false hits in query results due to location uncertainty introduced in spatio-temporal data; thus, it could

be utilized in an interactive graphical query builder/analyzer, providing online an approximation of the

percentage of the false hits due to location uncertainty along with other estimations, such as selectivity,

execution time, etc. Moreover, the proposed methodology can be directly employed in existing Spatial

Database Management Systems (SDBMS) in order to cover the same needs; actually, the majority of

the techniques developed in this chapter may be straightforwardly used in the context of traditional

Spatial Databases, since the timeslice of a spatio-temporal database actually produces a snapshot of a

set of static spatial objects (Figure 5.1).

A more vivid example demonstrating the applicability of the proposed model can be obtained

considering the following real-world situation, inspired by the emerging open agoras paradigm [Ioa07]:

let us assume a user who wishes to pose a timeslice query over several distributed subscribe-based

data-sources containing the same trajectories represented at different levels of uncertainty due to the

different measurement methods and, consequently, different errors; though the criterion used to choose

among them is the optimization, i.e., the minimization, of the uncertainty introduced in the final query

 105

results, provided by the data-sources during the negotiation step with their potential customers/users

[Ioa07]. Under such circumstances, only the model proposed in this thesis may provide the user-side

query optimizer with the error introduced in the results of the query for each different data-source.

Additionally, the proposed model can be utilized in order to determine the maximum permitted

(im)precision of the trajectory data that will feed a MOD (and consequently, an SDBMS) given the

required accuracy in the results of timeslice (respectively, range) queries. Then, users can be guided by

the DBMS in the employment of the appropriate, more or less accurate - which also entails a more/less

expensive - positioning method to be used for the data that will feed the system.

Perharps the most prominent application of the developed model is over summary data, which

contain aggregate-only information instead of actual data objects, e.g., the number of distinct

trajectories inside a given spatial region and timestamp (or the number of spatial objects inside a given

spatial region, in the case of simple spatial data). Consider, for example, the case of a Trajectory Data

Warehouse (TDW) [MFN+08], where aggregation may exhibit partial containment relationships

instead of the total containment relationships normally assumed in conventional data warehouses; that

is, a spatial cell may be contained in city A by 30% and in city B by 70%. Given that pre-aggregated

information is only stored at the lowest level of the data warehouse location dimension hierarchy, i.e.,

the cells or base cuboids, a roll-up operation at the city level at a given timestamp, would, among

others, aggregate over the number of partially contained cells. The above situation is illustrated in

Figure 5.2, which presents the bounds between four cities, A, B, C and D, along with a snapshot of a

set of uncertain trajectories (transformed to data points along with their uncertainty disks), and a

regular grid standing for representing the cells containing the pre-aggregated information.

Under this setting, the option of performing probabilistic queries cannot be applied, since they

require the presence of the actual data along with the distribution of their uncertainty. On the other

hand, the model developed in this chapter can still be directly applied utilizing aggregate information,

i.e., the number of objects and the radius of the uncertainty disk or standard deviation of the normal

distribution, producing finally an approximation of the error introduced in the aggregation results. In

particular, given that our model is capable of determining the effect of the location uncertainty in the

Minimum Bounding Rectangle (MBB) of city A considering it as a range query, it can approximate the

effect in the actual spatial object A, involving only the cardinality of each cell, the MBB and the

uncertainty radius.

City A

City C City B

City D

City A MBR

Figure 5.2: Partial containment in Trajectory Data Warehouses

To the best of our knowledge, a theoretical study on modeling the error introduced in spatio-

temporal (or spatial) query results in terms of false hits due to the uncertainty of trajectories (or spatial

 106

objects) is lacking. Outlining the major issues that will be addressed, the main contributions of this

chapter are as follows:

• Two lemmas that estimate the average number of false positives and false negatives when

executing timeslice queries over uniformly distributed uncertain trajectories modelled via the

[TWHC04] proposal, are proved; both errors depend on the radius of the cylindrical volume

and the perimeter of the timeslice query window, rather than its area.

• In order to relax the location uncertainty uniformity assumption (directly derived from the

model of [TWHC04]), we utilize the real-world adapted bivariate normal distribution [Lei95],

[PTJ05], which is efficiently approximated by the uniform difference distribution. The results

are close enough to the ones of the original analysis.

• Novel spatio-temporal and other augmented histograms are employed in order to estimate the

average number of false hits when the uniformity assumption of objects’ distribution in the

data space is relaxed, as well as to support various distributions of the uncertainty radius. The

same methodology is also employed in other forms of summary data, e.g., data warehouses, in

order to describe the effect of uncertainty.

• A comprehensive set of experiments is performed demonstrating the correctness and accuracy

of the analysis.

• Finally, it is shown how the results of the analysis may be applied over spatial datasets: the

solutions proposed in this chapter are implemented on top of a commercial SDBMS, namely,

the PostgreSQL [Post08a] with PostGIS spatial extension [Post08b]. It is worth to note that

off-the-shelf spatial histograms, already used in SDBMS for query selectivity estimation,

support the proposed model without additional requirements.

5.2. Related Work

Wolfson et al. [WSCY99] address the problem of the location imprecision of moving objects by

proposing a set of updating policies of the database that stores the object locations. The basic idea is

that the database is updated whenever the distance between the actual location of an object and the

stored in the database value exceeds a threshold. In this way, an uncertainty factor of every object’s

location is introduced, since objects are within distance of 1 Km from the last recorded locations.

Adopting the utilization of pdfs, they describe an algorithm that processes a probabilistic spatial range

query applied in the above database. The output of this type of query, which returns the set of objects

that are within a region R, consists of pairs of the form (Oi, Pi), where Pi is the probability that object

Oi intersects query region R. Cheng et al. [CKP04] adopt the definition of the probabilistic query

introduced in [WSCY99] and extend it in the case of nearest neighbor (NN) queries.

Pfoser and Jensen [PJ99] propose a representation of location uncertainty due to measurement

and sampling errors. There, the spatial projection of the trajectory of an object is modeled as a 2D

elliptical area, defined by two consecutive tracked positions. They also present the influence of the

location uncertainty in the processing of probabilistic range queries and propose a filter-and-refinement

method to answer them.

 107

Location uncertainty of moving objects is also discussed by Trajcevski et al. [Tra03],

[TWHC04], where a trajectory of an object is modeled as a 3D cylindrical volume around the tracked

trajectory. Furthermore, two categories of operators for querying trajectories with uncertainty are

introduced, concerning spatio-temporal point and range queries, respectively, and efficient algorithms

are presented for their implementation.

Ni et al. [NRB03] propose a probabilistic spatial data model for the positional accuracy of

polygon data. According to this model, each polygon is partitioned into disjoint independent chunks.

Each chunk is a contiguous series of vertices with fully correlated locational uncertainties. Based on

the above model, a probabilistic spatial join algorithm is described, in which the object pairs of the

result are associated with the intersection probability between each pair. A variation of the R-tree,

called probabilistic R-tree, is introduced for the support of the probabilistic filtering of the join

algorithm, in which each MBB approximation is augmented with the probability distribution of MBB’s

boundary.

Cheng et al. [CXP+04] investigated the problem of indexing uncertain data in order to efficiently

answer probabilistic threshold queries, in which the appearance probability of each data point in the

result of the query exceeds a given threshold. Two index structures are proposed. The pruning power of

the first index is based on the utilization of uncertain information augmented to the internal nodes of

the index, while in the second index data points with similar degrees of uncertainty are clustered

together. Recently, Tao et al. [TCX+05] studied a similar type of query, the probabilistic range query,

which retrieves the objects that appear in a rectangular area with probabilities of at least a pre-defined

value. They introduced a fully dynamic index structure on uncertain data. This structure, called U-tree,

maintains “auxiliary information” at all of its levels for the respective indexed objects that can be used

to validate the presence of an object in the results of a probabilistic range query, without calculating its

computationally expensive appearance probability.

Dai et al. [DYM+05] have studied the problem of evaluating spatial queries for existentially

uncertain data; in this case, uncertainty does not refer to the locations of the objects but to their

existence. The authors define two probabilistic query types: the so-called thresholding and ranking

queries in which the output is controlled by either thresholding the results of low probability to occur or

ranking them and selecting the ones with the highest probability respectively. In the sequel,

probabilistic variants of spatial range and NN queries are presented for objects indexed by a 2D index,

such as the R-tree. Finally, in order to improve the efficiency of their proposed algorithms, they

propose an extension of the R-tree, in which the non-leaf entries are augmented with the maximum

existential probability of the objects indexed under them.

Perhaps the most relevant to our work is the study by Yu and Mehrotra [YM03], where the effect

of uncertainty in probabilistic spatial queries, similar to the work presented in [NRB03], is discussed.

By performing a theoretical analysis, they provide a novel technique which can be used in order to set

the data precision in the data collection process, so that a probabilistic guarantee on the uncertainty in

answers of spatial queries can be provided. The first outcome of the analysis are the cardinalities of the

three subsets of a range query result, namely the MUST, MAY and ANS sets: MUST is the set of objects

that “must” be located within the query range, MAY is the set of objects that “may” be located within

 108

the query range, and ANS is the approximate answer set of objects whose recorded locations are in the

query region. The second outcome is a method for determining the largest possible imprecision, i.e.,

the uncertainty radius of our analysis, given that the answer to a random COUNT query should include

an uncertainty δ ≤ δ0, i.e., the cardinality of the MAY set be less than a value, with a probability P ¥ P0.

Comparing the proposed in this thesis model with [YM03], the first remark is that the numbers

EN and EP of false hits that we estimate is actually a refinement, i.e., a subset, of the MAY set estimated

by [YM03], and it is not straightforward to remove the overestimation provided by [YM03] unless our

model is used; this overestimation was clearly shown in the experimental results presented in Section

5.6.2.1. A second remark is that the model presented in [YM03] is based on the uniformity assumption,

whereas our study addresses more realistic requirements.

5.3. Modeling Error due to Location Uncertainty

Consider a dataset P consisting of N trajectories Ti, i = 1, …, N, distributed in the unit spatio-temporal

space S = [0,1] µ [0,1] µ [0,1], that is, all dimensions are normalized in the interval between 0 and 1.

We initially give the notion of uniformly distributed trajectories: a set of trajectories is uniformly

distributer iff the positions of moving objects obtained by a snapshot of P at an arbitrary timestamp tk,

producing a set of points Ti,k, i = 1, …, N, and k=1…now, are uniformly distributed. Moreover, the

product of this snapshot on S is the space Sk = [0,1] µ [0,1].

According to [TWHC04], moving object trajectories should by modelled as cylindrical volumes

of constant radius d around the actual sampled positions of moving objects and the corresponding

interpolated trajectory. As such, a snapshot of a trajectory Ti on timestamp tk produces an uncertainty

disk with center Ti,k and radius d, inside which the actual position †
,i kT of trajectory Ti on timestamp tk,

is uniformly distributed. Let also R be the set of all timeslice queries posed over dataset P, Rk the subset

of R timestamp tk, and Rk,aµb the subset of Rk containing all timeslice queries having sides of length 2a

and 2b along the x- and y- axis, respectively.

Two error types are introduced when executing a timeslice query Wk œ Rk,aµb over the dataset P:

• EN is the set of false negatives, i.e., trajectories qualifying the query window but not retrieved;

formally, { }†
, ,: |N i i k j i k jE T P T W T W= ∈ ∉ ∈ , and

• EP is the set of false positives, i.e., trajectories retrieved while not qualifying the query

window; formally, { }†
, ,: |P i i k j i k jE T P T W T W= ∈ ∈ ∉ .

The problem is to make an as accurate as possible estimation of false negatives and false

positives for a random Wj at timestamp tk, based only on known dataset and query parameters. From the

above problem definition, it is clear that we initially make four main assumptions:

• AI - uncertainty uniformity assumption: the actual position †
,i kT of trajectory Ti at timestamp tk

is uniformly distributed inside the uncertainty disk C(Ti,k,d),

• AII - data uniformity assumption: the trajectories Ti (and consequently, points Ti,k at timestamp

tk), are uniformly distributed in the data space,

 109

• AIII - constant uncertainty radius assumption: the radius d of the cylindrical volume (and

consequently, uncertainty disk) is constant,

and, not directly extracted from the problem definition,

• AIV - uncertainty size assumption: radius d is always less than the half of the length of the

smallest side of query window Wj.

Table 5.1: Table of notations

Notation Description

S, P, N
the unit spatio-temporal data space [0,1]µ[0,1]µ[0,1] the trajectory dataset, and its

cardinality (also, density)

tk, Sk a timestamp and the snapshot of S at timestamp tk

Ti, Ti,k,
†
,i kT , d a trajectory, the (recorded or interpolated) location of Ti at timestamp tk, its actual

location, and the radius of the uncertainty disk

Wj , Wj,c1 - Wj,c4
the window of a timeslice query, and its four corners (clockwise, starting from the

lower-left)

, , , ,, , ,x L x U y L y U

j j j jW W W W
the minimum and maximum coordinates of the timeslice query window Wj along the x-

and y- axis.

R, Rk, Rk,aµb
the set of all timeslice queries over P, its subset invoked at timestamp tk, and its subset

with half-sides a and b along the x- and y- axis, respectively

C(Ti,k,d), Ai,j

the uncertainty disk of the (recorded or interpolated) location of Ti at timestamp tk with

radius d and the portion of its area that lies inside (in the case of false negatives) or

outside (in the case of false positives) Wj

(),
,

i k jT WDist
the minimum Euclidean distance between the (recorded or interpolated) location of Ti

at timestamp tk and the boundary of Wj

rx, ry
the distance of the closest to Ti,k point of the boundary of Wj along the x- and y- axis,

respectively.

1 (,)x x yA r r , 1 (,)y x yA r r the area encompassed by a chord perpendicular to the x- (or y-) axis with rx (or ry,

respectively distance from Ti,k and the respective arc of its uncertainty disk

2(,)x yA r r the overlapping area between the uncertainty disk of Ti,k and a query window corner

being inside the disk, with rx and ry coordinates relatively to Ti,k.
Vi,j, 1 (,)x x yV r r ,

1 (,)y x yV r r , 2 (,)x yV r r

the volumes of the conical segments, equivalent to areas Ai,j, 1 (,)x x yA r r , 1 (,)y x yA r r ,

2(,)x yA r r when following the uncertainty uniformity difference assumption.

AvgPi,P(Rk,aµb),

AvgPi,N(Rk,aµb)

the average probability of a single trajectory Ti to be false positive (or false negative)

with respect to all query windows Wj œ Rk,aµb

(),P k a bE R × , (),N k a bE R ×
the average number of false positives (or false negatives) in the results of a timeslice

query Wj œ Rk,aµb

Regarding the first three assumptions (AI - AIII), they will be relaxed in the model extension to be

presented in Section 5.4. Regarding assumption AIV, we argue that it is a reasonable property of the

involved spatial objects, since typical sizes of query window Wj are usually orders of magnitude larger

than d; for example, trajectories sampled with GPS devices usually introduce an error of a few meters

(usually less than 10m), while query windows in real applications are expected to be at least hundreds

of square meters.

 110

Having described the framework of our work, in the next two sections we prove two lemmas

which are fundamental for our model. Table 5.1 summarizes the notations used in the rest of the

chapter.

5.3.1. Estimating the Number of False Negatives

In this section we prove a lemma which undertakes the calculation of the average number of false

negatives.

Lemma 5.1: The average number EN(Rk,aµb) of false negatives in the results of a timslice query Wj œ

Rk,aµb with half-sides of length a and b at timestamp tk over a trajectory dataset that follows the data

uniformity and uncertainty uniformity assumptions is given by the formula:

() ()
2

,

8

3 2N k a b

d d
E R N a b

π π×

 
= ⋅ + − 

 
 (5.1)

where d is the radius of the uncertainty disk.

Proof: The average number EN(Rk,aµb) of trajectories being false negatives in the results of a timeslice

query Wj œ Rk,aµb, i.e., †
, ,|i k j i k jT W T W∉ ∈ , can be obtained by the average probability AvgPi,N(Rk,aµb) of

an arbitrary trajectory Ti to be false negative regarding an arbitrary query window Wj œ Rk,aµb,

multiplied by the total number N of trajectories:

() (), , ,N k a b i N k a bE R N AvgP R× ×= ⋅ (5.2)

Obviously, our target is to determine AvgPi,N(Rk,aµb). Towards this goal, we formulate the probability

that †
, ,|i k j i k jT W T W∉ ∈ . This probability is given by the ratio or the area Ai,j of the portion of the

uncertainty disk C(Ti,k,d) included inside the query window, over the total area of C(Ti,k,d). However,

Ai,j is zero in cases where C(Ti,k,d) does not overlap the query boundary.

Case 1

Case 3

Case 2

a

b

Wj

Figure 5.3: Snapshot of trajectories contributing to the number of false negatives

Figure 5.3 illustrates a timeslice query window Wj extended by a buffer of width d, over a subset of

uniformly distributed points, corresponding to the snapshot of P near Wj at timestamp tk: trajectories

represented as points with uncertainty disks being inside the query window, i.e., those labeled as “case

1”, cannot incur false negatives because they will be actually retrieved by the query. The same is also

true for points with uncertainty disks located outside the buffer zone, illustrated as “case 2” in Figure

5.3. The single case where Ti,k is not retrieved by the query while †
,i kT may be found inside Wj is when

Ti,k is located inside the buffer zone that surrounds Wj, which is illustrated as “case 3” in Figure 5.3.

The above discussion expresses the fact that a trajectory Ti is a candidate to be false negative if and

only if Ti,k is located outside the query window, while the corresponding uncertainty disk C(Ti,k,d)

intersects the query boundary. Alternatively, Ti,k should be located inside the Minkowski region of Wj

with radius d in order to be candidate to be false negative; this region can be determined by extending

 111

Wj with distance d on all directions [TZPM04]. Minkowski regions are directly derived from the

concept of Minkowski sum [AFH02] between the query window Wj and a disk of radius d, which, in our

case, is composed by a set of line segments and circular arcs, illustrated as the boundary exterior of Wj

in Figure 5.3. Now, the probability of a trajectory Ti to be false negative, regarding a query window Wj,

is:

() (),

,
† ,2

, ,

, ,
|

0,

i k

i j

i k j j
i k j i k j

T W
A

if T W and Dist d
P T W T W d

otherwise

π


∉ ≤
∉ ∈ = 



 (5.3)

The area Ai,j, which is illustrated in Figure 5.4, is determined by taking into account the uncertainty size

assumption by distinguishing between three cases illustrated in Figure 5.4(b) – (d): In the first two

cases, where the distance between Ti,k and each of the four corners of Wj is larger than d, Ai,j is the

portion of the uncertainty disk enclosed by (a) the chord c1c2 formed by the query side and the

uncertainty disk and (b) the respective arc �1 2c c . Thus, it can be computed as the integral of the function

of the chord length D, given as an expression of its distance, ry or rx (depending on which query side is

regarded) from the disk center.

Wj

 b d

 c

d
ry D

Ai,j

Ti,k

Wj

c1 c2

Ai,j

Wj

Ti,k

d

c1

c2

rx

D

d

Ai,j

Ti,k

Wj

c1

c3 c2

(a) (b) (c) (d)

Figure 5.4: The unit space (a) and three details of it (b, c, d)

Let the chord c1c2 be parallel to x axis (Figure 4(b)), it holds that 2 2(,) 2x y yD r r d r= − and

,i jA = 1 (,)y x yA r r = 2 2(,) 2
y y

d d

x y y y y
r r

D r r dr d r dr= −∫ ∫ , resulting in1:

2

2 2 2
, 1 (,) arctan 1i j y x y y y

y

d
A A r r d r d r

r

   = = − − −   
   

 (5.4)

Equivalently, let the chord c1c2 be parallel to y axis (Figure 4(c)), the area Ai,j = A1x(rx, ry) is calculated

by substituting ry with rx in Eq.(5.4). In the third case, where the distance between Ti,k and one of the

four corners of Wj is less than d (Figure 4(d)), Ai,j can be determined in a similar way resulting in:

2 2 2 2 2 2
, 2 2 2 2 2

1
(,) arccot arctan 2

2
y x

i j x y y y x x x y

y x

r r
A A r r d d r d r r d r r r

R r R r

    
 = = − − − − − +   

− −       
(5.5)

The average, with respect to any query window in Rk,axb, probability of a trajectory Ti to be false

negative is calculated by integrating Eq.(5.3) over all possible query windows:

() () ()
,

† †
, , , , , ,| |

j k a b k

i N k a b i k j i k j i k j i k j

W R S

AvgP R P T W T W dW P T W T W dxdy

×

×
∈

= ∉ ∈ = ∉ ∈∫ ∫∫ (5.6)

1 All advanced calculations in this chapter were performed using the Mathematica software [28].

 112

In order to compute the above integral, it is necessary to determine the main zones inside which the

area Ai,j can be expressed as a single function. To facilitate discussion, Figure 5.5(a) illustrates the fact

that the area determined by Dist(Ti,k,Wj)≤d can be divided into three sets of zones inside which point

Ti,k can be found regarding the position of the query window: the first drawn with vertical stripes, the

second drawn with horizontal stripes, and the shaded one, called Z1, Z2 and Z3, respectively. Z1 regions

contain the data points such that the area resulted by the intersection of their uncertainty area with Wj

forms a complete circular segment; alternatively, Z1 regions is the locus of the points in the space such

that they are outside Wj, their distance from Wj is smaller than d and their distance from the four

corners of Wj is greater than d. Z2 regions is the locus of the points in the space such that points are

outside Wj, their distance from Wj is smaller than d and their x or y coordinates are inside the projection

of Wj along the x- or y- axis, respectively; similarly, Z3 regions differ only on that the x and y

coordinates of their points are outside the projection of Wj along the x- or y- axis.

Wj

Z1x

Z2

Z3

Z2

Z3

Z1y

Z1x

Z2

Z1y

Z2

Z2
 Z2

Z2

Z2

Z3

Z3

a

b

a

Ti,k

Wj

Ai,j

Ai,j

Ti,k

Wj

Ti,k
a

Wj
 Ai,j

(a) (b) (c) (d)

Figure 5.5: Zones where area Ai,j contributing in false negatives is expressed as a single function

Zones Z1,j, Z2,j and Z3,j associated with query window Wj are formally defined by the following

expressions:

() (){ }1, , , , ,: , , , 1..4
ij i i k j i k j i k j cZ T P T W Dist T W d Dist T W d i= ∈ ∉ ∧ ≤ ∧ ≥ = (5.7)

() ()
()

, , , ,

2,
, , , ,

, ,

: , , , 1..4

, ,

ii i k j i k j i k j c

j
x x L x U y y L y U

i k j j i k j j

T P T W Dist T W d Dist T W d i
Z

T W W T W W

 ∈ ∉ ∧ ≤ ∧ ≤ = ∧ 
=  

   ∈ ∨ ∈     

 (5.8)

() ()
()

, , , ,

3, , , , ,
, ,

: , , , 1..4

, ,

ii i k j i k j i k j c

j
x x L x U y y L y U

i k j j i k j j

T P T W Dist T W d Dist T W d i
Z

T W W T W W

 ∈ ∉ ∧ ≤ ∧ ≤ = ∧ 
=  

   ∉ ∧ ∉     

 (5.9)

Regarding zones of type Z1, i.e., those labeled Z1x and those labeled Z1y in Figure 5.5(b), area Ai,j can

be computed using Eq.(5.4). When the relative positions of Ti,k and Wj constrain it to be inside a zone

of type Z2, Ai,j can be computed by subtracting the small area at the upper-right corner of the

uncertainty disk (Figure 5.5(c)), which is given by Eq.(5.5), from the overall uncertainty disk area

being above the lower query side (Eq.(5.4)). Finally, for points inside zones of type Z3, as illustrated in

Figure 5.5(d), Ai,j can be computed using Eq.(5.5). Summarizing, Ti,k may be found inside:

• one out of two zones Z1x (top and bottom in Figure 5.5(a)), and two zones Z1y (left and right in

Figure 5.5(a)); in these cases, Ai,j is calculated by A1x and A1y, respectively,

• one out of four zones Z3, one for each query window corner; in these cases, Ai,j=A2,

• one out of four zones Z2, for each query window corner along the x- and another four along

the y- axis; in these cases, (), 1 2i j xA A A= − and (), 1 2i j yA A A= − , respectively,

• elsewhere; in this case, Ai,j is zeroed.

 113

Bearing in mind that (a) Eq.(5.6) integrates ()† 2
, , ,|i k j i k j i jP T W T W A dπ∉ ∈ = over the whole space Sk,

and (b) the value of Ai,j is equal to zero in any other place, expect of the zones Z1, Z2, Z3 where Ai,j is

provided in terms of the relative position between Ti,k and Wj, i.e., rx and ry, Eq.(5.6) can be rewritten

as follows:

()
() ()
1 1 3

2 2

1 1 2

, , 2

1 2 1 2

2 (,) 2 (,) 4 (,)
1

4 (,) (,) 4 (,) (,)

x y
x x y y x y x y y x x y y x

Z Z Z

i N k a b

x x y x y y x y x y x y y x
Z Z

A r r dr dr A r r dr dr A r r dr dr

AvgP R
d A r r A r r dr dr A r r A r r dr drπ×

 + +
 = ⇒ 

− + − 
 

∫∫ ∫∫ ∫∫

∫∫ ∫∫

()

1 2 1 2 3

, ,

1 1 22 2 2

1
2 (,) 2 (,) 4 (,)

x y

i N k a b

x x y y x y x y y x x y y x
Z Z Z Z Z

AvgP R

A r r dr dr A r r dr dr A r r dr dr
dπ

×

+ +

=

 + − 
 ∫∫ ∫∫ ∫∫

 (5.10)

The two 1 22xZ Z+ areas involved in the above integrals may be regarded as the top and down

rectangles of Figure 5.5(a) formed by the Z1x and the two Z2 areas surrounding it, and their size along

the x- and y-axis is 2a and d, respectively. The same also holds regarding the two 1 22yZ Z+ areas, also

having extents d and 2b along the x- and y-axis, respectively. According to this discussion, the above

formula can be rewritten as follows:

()

() () ()
2 2

, ,

2 2

1 1 22 0 0 0 0 0 0

1
2 , 2 , 4 ,

i N k a b

d a b d d d x

x x y x y y x y x y x y x y

AvgP R

A r r dr dr A r r dr dr A r r dr dr
dπ

×

−

=

 
⋅ + − 
 
∫ ∫ ∫ ∫ ∫ ∫

 (5.11)

Substituting ()10
,

d

y x y y
A r r dr∫ = ()10

,
d

x x y x
A r r dr∫ with 32

3
d , and ()

2 2

20 0
,

d d x

x y yA r r dr dr
−

∫ ∫ with 41

8
d in

the above long expression, we result in the simple formula:

() ()
2

, ,

8

3 2i N k a b

d d
AvgP R a b

π π× = + − (5.12)

Substituting Eq.(5.12) into Eq.(5.2) we have proven Lemma 5.1. �

5.3.2. Estimating the Number of False Positives

In the sequel, we prove a similar lemma regarding the average number of false positives:

Lemma 5.2: The average number EP(Rk,aµb) of false positives in the results of a timeslice query Wj œ

Rk,aµb with half-sides of length a and b at timestamp tk over a trajectory dataset that follows the data

uniformity and uncertainty uniformity assumptions is given by the formula:

() ()
2

,

8

3 2P k a b

d d
E R N a b

π π×

 
= ⋅ + − 

 
 (5.13)

where d is the radius of the uncertainty disk.

Proof: The average number EP(Rk,aµb) of trajectories being false positives in the results of a timeslice

query Wj œ Rk,aµb, i.e., †
, ,|i k j i k jT W T W∈ ∉ , can be obtained by the average probability AvgPi,P(Rk,aµb) of

an arbitrary trajectory Ti to be false positive regarding an arbitrary query window Wj œ Rk,aµb,

multiplied by the total number N of trajectories in the data space:

() (), , ,P k a b i P k a bE R N AvgP R× ×= ⋅ (5.14)

Then, following a methodology similar to that followed in the proof of Lemma 1, it is proven that the

probability that †
, ,|i k j i k jT W T W∈ ∉ is:

 114

() (),

,
† ,2

, ,

, ,
|

0,

i k

i j

i k j j
i k j i k j

T W
A

if T W and Dist d
P T W T W d

otherwise

π


∈ ≤

∈ ∉ = 


 (5.15)

and the average, with respect to any query window in Rk,axb, probability of a trajectory Ti to be false

positive is:

() () ()
,

† †
, , , , ,| |

j k a b k

i P a b i k j i k j i k j i k j

W R S

AvgP R P T W T W dW P T W T W dxdy

×

×
∈

= ∈ ∉ = ∈ ∉∫ ∫ (5.16)

The above integral is again computed by determining the zones inside which the area Ai,j is expressed

as a single function. These zones are found within the region formed by the original query window Wj

and the Minkowski difference of Wj with a disk of radius d [TWHC04]. The Minkowski difference, also

called offsetting, is a complementary operation to the Minkowski sum [TWHC04]; it is extensively

studied in the field of computer graphics, while its calculation for convex polygons is a straightforward

operation requiring linear time [TWHC04]. Figure 6(a) illustrates the three sets of such zones, namely

Z1, Z2 and Z3, which can be defined in a way similar to the ones of the false negatives computation.

Formally:

()
()

, ,

1, , , , ,
, ,

: ,

, ,

i i k j i k j

j x x L x U y y L y U

i k j j i k j j

T P T W Dist T W d
Z

T W d W d T W d W d

 ∈ ∈ ∧ ≤ ∧ 
=  

   ∈ + − ∨ ∈ + −     

 (5.17)

() (){ }2, , , 1, , , ,: , , , 1..4
ij i i k j i k j i k j i k j c

Z T P T W T Z Dist T W d Dist T W d i= ∈ ∈ ∧ ∉ ∧ ≤ ∧ ≥ = (5.18)

(){ }3, , , ,: , , 1..4
ij i i k j i k j cZ T P T W Dist T W d i= ∈ ∈ ∧ ≤ = (5.19)

Wj

a

b

Z1y

Z1x

Z1y

Z1x

Z3

Z3

Z3

Z3

Z2

Z2

Z2

Z2

Wj

Ti,k

Ai,j

Ai,j

Ti,k

Wj

Ai,j

Ti,k

Wj

(a) (b) (c) (d)

Figure 5.6: Zones where area Ai,j contributing in false positives is expressed as a single function

Regarding zones Z1x and Z1y, the area Ai,j is computed using Eq.(5.4) (Figure 5.6(b)). When in zone Z2,

Ai,j is determined by summing up Eq.(5.4) along the x and y axes (Figure 5.6(c)). Finally, points

representing trajectories inside Z3 are also computed by summing up Eq.(5.4) along the x and y axes

and subtracting the small area in the lower-right corner of the uncertainty disk (Figure 6(d)), which is

given by Eq.(5.5). Summarizing, Ti,j may be found inside:

• one out of two zones Z1x (top and bottom in Figure 5.6(a)); in these cases, Ai,j is calculated by

A1x,

• one out of two zones Z1y (left and right in Figure 5.6(a)); in these cases, Ai,j is calculated by

A1y,

• one out of four zones Z3, one for each query window corner; in these cases, Ai,j=A1x+A1y,

• one out of four zones Z2, for each query window corner; in these cases, Ai,j=A1x+A1y-A2,

and Eq.(5.16) is reformulated as follows:

 115

()
() ()()

() () ()()
1 1 2

3

, ,

1 1 1 1

2

1 1 2

2 (,) 2 (,) 4 , ,
1

4 , , ,

y x

i P k a b

y x y y x x x y y x x x y y x y y x
Z Z Z

x x y y x y x y y x
Z

AvgP R

A r r dr dr A r r dr dr A r r A r r dr dr

d A r r A r r A r r dr drπ

× =

 + + +
 ⋅ 

+ − 
 

∫∫ ∫∫ ∫∫

∫∫

 (5.20)

which, after the necessary calculations, results in:

() ()
2

, ,

8

3 2i P k a b

d d
AvgP R a b

π π× = + − (5.21)

Substituting Eq.(5.21) into Eq.(5.14) we have proven Lemma 5.2. �

5.3.3. Discussion

Summarizing, the analytical model for the prediction of the number of false positives and false

negatives when executing a timeslice query over uniformly distributed trajectory data, consists of

Lemma 5.1 and Lemma 5.2 proved in the previous subsections. It turns out that the average number of

false negatives and false positives of an arbitrary timeslice query at timestamp tk with known size 2a

and 2b along the x- and y- axes respectively, is a function of a, b, the uncertainty radius d and the

cardinality N of the dataset. Another result is the corollary that, theoretically, the average number of

false negatives is equal to the average number of false positives:

() (), ,N k a b P k a bE R E R× ×= (5.22)

While such a result sounds strange at a first thought, it turns out to be reasonable when we take

into consideration that, on the one hand, the number of trajectories contributing to the number of false

negatives, represented by the shaded area in Figure 5.5(a), is greater than the respective one for false

positives (Figure 5.6(a)) and, on the other hand, the area Ai.j of the uncertainty disk of each trajectory

contributing to the number of false negatives (Figure 5.5(d)) is smaller than the respective one for false

positives (Figure 5.6(d)). Our analytical calculation of EN(Raµb) and EP(Raµb) proves that the above two

complementary factors finally result into two equal values for the number of false positives and false

negatives, thus resulting in Eq.(5.22).

Moreover, it notably arises from Eq.(5.1) and Eq.(5.13) that the average number of false

negatives and false positives of a timeslice query depends on the query perimeter (a+b), rather than the

query area (a b⋅). A last observation is that, when our model is utilized to determine the maximum

permitted (im)precision of the data that will feed a MOD, Eq.(5.1) and Eq.(5.13) can be solved for the

value of the uncertainty radius d, given the values of the required accuracy in terms of false hits and the

query’s typical extent.

Intuitively, the two parts of the multiplier of N in Eq.(5.1) and Eq.(5.13), i.e., ()8

3

d
a b

π
+ and

2

2

d

π
, stand for representing the contribution in the total number of false hits, of the length of the query

perimeter, and the four corners of the query window, respectively. This detail will turn out to be very

useful in the next section when we will relax the data uniformity assumption with the aim of

histograms.

Finally, it must be pointed again, that the above developed formulas, as well as the majority of

the ones presented hereafter, can be straightforwardly applied to simple spatial data without the need

 116

for any modification; this due to the fact that a timeslice query over a set of trajectories can be seen as a

range window query over a snapshot of the trajectories at the timestamp that is determined by the

timeslice query. As such, the average number EN(Raµb) and EP(Raµb) of false negatives and false

positives in the results of range window queries with half-sides a and b over simple spatial data, under

the four assumptions stated in the beginning of this section is:

() () ()
28

3 2N a b P a b

d d
E R E R N a b

π π× ×

 
= = ⋅ + − 

 
 (5.23)

The same argument (and the same result) also stands for all the formulas developed in the next

sections, when relaxing the uniformity assumptions. It will be further, shown in the experimental study

that the applicability of the developed model is also large over commercial SDBMS.

5.4. Relaxing the Uniformity Assumptions

In this section we relax the three assumptions, AI – AIII, made in the problem definition in Section 5.3.

This will be done in a gradually increasing order. We first show how to support real-world, non-

uniform uncertainty distributions thus relaxing AI (Section 5.4.1), we then employ spatio-temporal

histograms in order to relax AII (Section 5.4.2), and, finally, show how such histograms can be

augmented to relax AIII (Section 5.4.3).

5.4.1. Relaxing the Uncertainty Uniformity Assumption

The analysis made in Section 5.3 was based on the uncertainty uniformity assumption, meaning that the

actual position of each trajectory point at a given timestamp is uniformly distributed inside an

uncertainty disk with the point representing the trajectory in the center and a known radius.

Nevertheless, in this section we extend the proposed model towards non-uniform distributions of

location uncertainty. The rationale behind this extension is that if the actual point †
,i kT is located inside

a circular neighbourhood of Ti,k, it is more likely that the probability of a location being the actual

location of †
,i kT decreases as its distance from Ti,k increases. Even more, it is well-known that the error

associated with GPS-tracked positions is normally distributed, i.e., following the bivariate normal

distribution with uncorrelated variables x and y, which is the extension of the normal distribution in 2D

space [Lei95]; given also that the usage of GPS allows for high sampling rates, the total error in such

cases is dominated by the error introduced from the tracking device. As such, the argument that the

uncertainty in real spatio-temporal (and stationary spatial) data tends to be normally distributed is well

established [CC07], [NRB03], [PTJ05].

According to the previous discussion, the goal of this section is to relax the uniformity

assumption in location uncertainty of moving objects and make the proposed model to support the

bivariate normal distribution. The respective probability density function (pdf), when variables x, y are

uncorrelated, is given by the following expression [PTJ05]:

2 2

22
2

1
(,)

2

x y

BNP x y e σ

πσ

+
−

= (5.24)

where σ2 is the variance, along the x- and y- axis; then σ is the corresponding standard deviation.

However, the computation of the respective formulas as done in Section 2 is a hard task since it

involves the integration of several exponential functions.

 117

P(x)

x d

pi
 d

P(x,y)

(a) (b)

Figure 5.7: Uniform difference distribution pdfs in (a) 1D and (b) 2D space

On the other hand, the density function of the bivariate normal distribution can be efficiently

approximated by the two-dimensional uniform difference distribution (2d-UDD), which is the

extension of the uniform difference distribution in 2D space, i.e., the distribution of the difference

between two uniformly distributed variables in [0, d]. The pdf of 2d-UDD is:

()
2 2 2 2

2 2

1
13

,

0
d UDD

x y if x y d
P x y d

d
otherwise

π−

 − + + ≤
= ⋅



 (5.25)

which is the extension in 2D space of the uniform difference distribution with the following pdf :

() 1 1

0
UDD

x
if x d

P x d
d

otherwise


− ≤

= ⋅



 (5.26)

Both distributions are illustrated in Figure 5.7 which exposes the silhouette of their pdfs; in fact, P2d-

UDD forms a conical surface with base radius d and unit volume as illustrated in Figure 7(b).

Towards the reformulation of the proposed model, the uncertainty uniformity assumption must

be replaced by the following uncertainty uniformity difference assumption: the actual position Ti,k of

each trajectory Ti at timestamp tk is handled by P2d-UDD distribution described above. Based on this

assumption, the following lemma is provided:

Lemma 5.3: The average numbers EN(Rk,aµb) and EP(Rk,aµb) of false negatives and false positives,

respectively, in the results of a timeslice query Wj œ Rk,aµb with half-sides of length a and b at

timestamp tk over a trajectory dataset that follows the data uniformity and uncertainty uniformity

difference assumptions are given by the formula:

() () ()
2

, ,

2 3

10N k a b P k a b

d d
E R E R N a b

π π× ×

 
= = ⋅ + − 

 
 (5.27)

where d is the radius of the uncertainty disk.

Proof: EN(Rk,aµb) and EP(Rk,aµb) can be obtained from the average probabilities AvgPi,N(Rk,aµb) and

AvgPi,P(Rk,aµb), respectively, multiplied by the total number N of objects in the data space. The

probability of a trajectory Ti to be false negative or false positive, with respect to a query window Wj, at

timestamp tk is:

() (),, ,†
, ,

, ,
|

0,

i ki j i k j j

i k j i k j

T WV if T W and Dist d
P T W T W

otherwise

 ∉ ≤
∉ ∈ = 


 (5.28)

respectively

() (),, ,†
, ,

, ,
|

0,

i ki j i k j j

i k j i k j

T WV if T W and Dist d
P T W T W

otherwise

 ∈ ≤
∈ ∉ = 


 (5.29)

 118

where Vi,j is the volume of the 2d-UDD pdf P2d-UDD, contained fully inside or outside Wj, respectively.

The volume Vi,j, of the P2d-UDD being inside (outside, respectively) the query window is determined

following the same methodology as in the proof of Lemma 5.1 (Lemma 5.2, respectively), taking also

into account the uncertainty size assumption. In particular, bearing in mind that Figure 5.4(b) – (d)

illustrate also the projection of P2d-UDD in the x-y plane, we can employ them in our discussion: in the

two first cases (Figure 5.4(b) and 4(c)) where the distance between Ti,k and each of the four corners of

Wj is more than d, Vi,j is equal to V1x(rx,ry) (or V1y(rx,ry)) which is the portion of the P2d-UDD being above

(or right of, respectively) the vertical plane passing from c1c2. In the third case, where the distance

between Ti,k and one of the four corners of Wj is less than d (Figure 5.4(d)), Vi,j is equal to V2(rx,ry),

which is the portion of the P2d-UDD being right of the vertical plane passing from c1c2, and above the one

passing from c2c3.

The average, with respect to any query window in Rk,axb, probability of a trajectory Ti to be false

negative (false positive, respectively) at timestamp tk is calculated by integrating Eq.(5.28) (Eq.(5.29),

respectively) over all query positions as in Eq.(5.6) (Eq.(5.16), respectively). The corresponding

integral is computed in the same way as the one followed in the proof of Lemma 5.1 (Lemma 5.2,

respectively) by replacing the values of A1x(rx,ry), A1y(rx,ry) and A2(rx,ry) with V1x(rx,ry), V1y(rx,ry) and

V2(rx,ry) into Eq.(5.10) (Eq.(5.20), respectively). Then, by substituting

()10
,

d

y x y y
V r r dr∫ = ()10

,
d

x x y x
V r r dr∫ =

2

d

π
, and ()

2 2

20 0
,

d d x

x y y x
V r r dr dr

−

∫ ∫ =
23

40

d

π
 into the respective

formulas and performing the necessary calculations we result in:

() ()
2

, ,

2 3

10
i N k a b

d d
AvgP R a b

π π× = + − (5.30)

and

() ()
2

, ,

2 3

10
i N k a b

d d
AvgP R a b

π π× = + − (5.31)

By multiplying the above formulas with N we have proven Lemma 5.3. �

0

0 .4

0. 8

1.2

1 .6

2

2. 4

2.8

3.2

3.6

4

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

1 . 6

1 . 8

2

2 . 2

2 . 4

2 . 6

2 . 8

3

3 . 2

3 . 4

0

0.02

0.0 4

0. 06

0 .08

0. 1

0.1 2

0 .14

0 .16

PBN

X

Y

0

0.5

1

1 .5

2

2. 5

3

3 .5

4

4. 5

5

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

1 . 6

1 . 8

2

2 . 2

2 . 4

2 . 6

2 . 8

3

3 . 2

3 . 4

0

0 .0 2

0 .0 4

0.0 6

0. 08

0 .1

0 .12

0 .1 4

0.1 6

0 .1 8

P2d-UDD

X

Y

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Normal

Uniform Difference

(a) (b) (c)

Figure 5.8: (a) Two-Dimensional UDD, (b) bivariate normal distribution and, (c) best fitting in a

single dimension (c)

Up to this point, given that the distribution of the actual data point follows the uncertainty

uniformity difference assumption, our model constitutes of Eq.(5.27), which is much alike the ones in

Section 5.2 under the uncertainty uniformity assumption. In particular, when Eq.(5.27) is compared

with Eq.(5.1) and Eq.(5.13), the formulas differ only in the weights of the function variables d(a+b)

and d
2. Although the model described above does not directly consider the bivariate normal

 119

distribution, it can be used to efficiently approximate it. Consider, for example, Figure 5.8 that

illustrates the probability function of the bivariate normal distribution with uncorrelated variables

(Figure 5.8(a)), the probability function of the 2d-UDD (Figure 5.8(b)), and the silhouette of the two

distributions in 1D space (Figure 5.8(c)); the two probability functions turn out to be close to each

other. Hence, we can utilize least squares and estimate the radius of the cone which fits best in the

Gaussian “bell” of the bivariate normal distribution.

Formally, the following lemma is provided:

Lemma 5.4: The 2D uniform difference distribution which best approximates the bivariate normal

distribution with uncorrelated variables, is taken when the radius d of the uncertainty disk is:

2.36533d σ≈ × (5.32)

where σ is the standard deviation of the bivariate normal distribution along the x- and y- axis.

Proof: According to the Least Squares Theory, the best approximation of a function f by another

function g in the same domain D is given by minimizing the integral () ()()2

D
f x g x dx−∫∫ of the

square of their difference along D. Subsequently, in order to prove our Lemma, we have to determine

the value of d that minimizes () ()()2

2

2 , ,
d UDD BN

P x y P x y dxdy− −∫∫� . Towards this goal, it holds that:

() ()()2

2

2 , ,
d UDD BN

P x y P x y dxdy− − =∫∫�

() ()() () ()()2

2 2

2 2(0,) (0,)
, , , ,

d UDD BN d UDD BN
C d C d

P x y P x y dxdy P x y P x y dxdy− −−
− + −∫∫ ∫∫�

(5.33)

where C(0,d) is the disk with center (0,0) and radius d. Applying Eq.(5.25) and Eq.(5.24) into Eq.(5.33)

, we get:

2

2 2 2 2

2 2

2

2
2

2 2
2 2

2 2
2 2 2(0,) (0,)

((,) (,))

1 3 1
1 0

2 2

d UDD BN

x y x y

C d C d

P x y P x y dxdy

x y
e dxdy e dxdy

dd
σ σ

πσ π πσ

−

+ +
− −

−

− =

    +    − − + −
       

∫∫

∫∫ ∫∫

�

�

 (5.34)

At this point, we utilize the Cartesian-to-Polar transformation, which transforms (x, y) to (ρ, θ)

according to the following formula:

(),f x y dxdy =∫∫ ()cos , sinf d dρ θ ρ θ ρ ρ θ∫∫ (5.35)

Applying the above transformation to Eq.(5.34), we get:

() ()()2

2 2

2 2

2

2

2 2

2 2
2 2

2 2 20 0 0

, ,

1 3
1

2 2

d UDD BN

d

d

P x y P x y dxdy

e d d e d d
dd

ρ ρ
π π

σ σρ ρ
ρ ρ θ ρ ρ θ

πσ π πσ

−

− −∞

− =

       − − +        

∫∫

∫ ∫ ∫ ∫

�

This results in

() ()()2

3 2 3

2

2 3 2

18 12 2 Erf
2

, ,
4

d UDD BN

d
d d

P x y P x y dxdy
d

σ πσ
σ

πσ−

 
− +  

 − =∫∫�
(5.36)

where Erf[x] is the error function encountered in integrating the normal distribution. In the sequel, we

calculate the first derivative of Eq.(5.36) with respect to d:

() ()()
2

2

2

22

2

4

9 6 9 2 Erf, , 2

d

d UDD BN

d
d de

P x y P x y dxdy

d d

σ π
σ

π

−

−

 
+ −  ∂ −  = −

∂
∫∫�

(5.37)

 120

and by substituting d /σ with a variable a (0a ≠), we result in the following expression:

() ()()
2

2

22

2

3

9 6 9 2 Erf, , 2

a

d UDD BN

a
a ae

P x y P x y dxdy

d ad

π

π

−

−

 
+ −  ∂ −  =

∂
∫∫�

(5.38)

which is zeroed when the numerator becomes zero. Hence, the first derivative of Eq.(5.36) is zeroed

when

2

29 6 9 2 Erf 0
2

a
a

a ae π
−  

+ − = 
 

 (5.39)

After numerically evaluating Eq.(5.39) it turns out that

2.36533a ≈ (5.40)

Recalling that a = d /σ we have proven Lemma 5.4 �

Concluding, the proposed model for normally distributed uncertainty constitutes of Eq.(5.27) and

Eq.(5.32); the value of d provided by Eq.(5.32) can be directly used as input in Eq.(5.27) in order to

approximate the normal distribution quite effectively, as it will be shown later in the experimental

study.

5.4.2. Relaxing the Data Uniformity Assumption

Sections 5.3 and 5.4.1 assumed that trajectories, and consequently, snapshot data points, are uniformly

distributed in the data space. In this section, we relax the data uniformity assumption and apply the

proposed approach to arbitrarily distributed data with the employment of histograms [Ioa93], [IP95].

Histograms have been widely used in query optimization issues, such as spatial and spatio-temporal

selectivity estimation [APR99], [TS96], [CC02], [HKT03], [TSP03], in order to overcome similar

assumptions made when estimating the number of disk page accesses required to answer a query. The

background idea is that when data are included in a small space, they may be considered as uniform

even though the distribution of the entire dataset may differ significantly. The goal therefore when

using histograms, is to break down the space into small regions, called buckets, which can be assumed

to contain uniform data. Among the schemes proposed, we adopt the concept of [APR99], since it can

be modified in a simple way in order to apply it in our requirements.

In particular, Acharya et al. [APR99] present several space partitioning techniques for the

construction of spatial histograms utilized in selectivity estimation of range queries. Among them, the

MinSkew technique has been shown to provide the most accurate selectivity estimates for spatial

queries. MinSkew is a binary space partitioning (BSP) technique employing the spatial skew definition,

also provided in [APR99]. More specifically, the spatial skew of a bucket is the statistical variance of

the spatial densities of all points grouped within this bucket, and the spatial skew of the entire set is the

weighted sum of spatial skews of all buckets. The proposed technique initially uses a uniform grid of

regions and their spatial densities as input; as such it produces a compact approximation on the input

data in place of the original in order to build the histogram (grouping) in memory. Then, the

construction algorithm repeatedly partitions the given set of regions such that the spatial-skew is

minimized at each step until no more buckets are available for the histogram. Since it always partitions

an existing region into two, the result is a BSP partitioning. As a result, the constructed histogram H is

the set of n buckets () (){ }:i i iH B B S B= = ∧ = ∅U I and { }, , , ,, , ,
i i L i U i L i U

B x x y y   =     .The main

 121

advantage of this technique is that the initial cells grouped together within the same bucket have small

spatial skew, i.e., variance. It is therefore expected that the cells contained inside each bucket should

enclose approximately the same number of data points; as a result, it is usually assumed that the data

distribution inside each bucket Bi is uniform. Actually, this assumption, as demonstrated both in

[APR99] and in our experiments, is rather reasonable even in the presence of totally skewed spatial

data, such as the Charminar dataset [APR99].

The main usage of spatial histograms is to provide estimates for the local density of the dataset,

given a spatial region. Towards this goal, the buckets that overlap the spatial query are initially

determined, and then, the local density is calculated by producing the weighted average of the

overlapped buckets densities Ni. This happens by weighting density Ni of each bucket Bi with the

corresponding area Ai that partially covers the given region, normalized by the total area:

1..

1
' ()

4
i i

i n

N N A
ab =

= ⋅∑ (5.41)

In the followings, it is showed how to appropriate modify the MinSkew histogram structure so as

to support spatio-temporal timeslice queries.

5.4.2.1. Spatio-temporal Histograms for Time-slice Queries

The first step towards the construction of a spatio-temporal histogram that supports the estimation of

the selectivity of timeslice queries, is to augment the spatial data space initially used by [APR99] in

order include the temporal dimension. As such, the proposed histogram is

() (){ }:i i iH B B S B= = ∧ = ∅U I and { }, , , , , ,, , , , ,i i L i U i L i U i L i UB x x y y t t     =       . The basic idea that

allows us to use MinSkew partitioning for our purposes is summarized as following: apply a uniform

grid of n intervals on each spatial dimension that forms n
2 spatial regions Gi, repeat it at several

uniformly distributed timestamps tk (k = 1...now – 1), and compute the number of trajectories mi,k found

inside each Gi on every tk, . If a quite large number of tk is used, then the number of trajectories found

inside region Gi at any timestamp during the period [tk, tk+1] can be considered to be equal with mi,k; in

other words, trajectories can be considered stationary between tk and tk+1 if the length of period [tk, tk+1]

is small enough. Then, we can straightforwardly use the construction algorithm of [APR99] applying

the same set of heuristics in order to minimize the spatial skew of the constructed buckets: the goal

again is to group together several grid regions Gi at several timestamps tk having similar values of mi,k,

thus resulting in a grouping with as smaller spatial skew as possible.

Finally, the local density N’ of a timeslice query invoked at timestamp tk is calculated by

producing the weighted average of the overlapped buckets densities Ni being at the same time valid at

this particular timestamp:

, ,:

1
' ()

4
i L k i U

i i

i t t t

N N A
ab ≤ <

= ⋅∑ (5.42)

Eq.(5.42) expresses the fact that the local density N’ is calculated by weighting density Ni of each

bucket Bi with the corresponding area Ai that partially covers the given region, normalized by the total

area.

 122

5.4.2.2. Estimating the Effect of Uncertainty Using Spatio-temporal Histograms

Moving into our core problem, MinSkew spatio-temporal histograms can be utilized in order to apply

our analysis in non-uniform data and estimate the error introduced in the query results without actually

executing the query. Specifically, two alternative approaches are proposed for estimating EP(Rk,axb) and

EN(Rk,axb). The first one is to simply use the estimate of the local density produced by the spatio-

temporal histogram in place of the total density employed in the proposed model; this can be achieved

by evaluating Eq.(5.1), Eq.(5.13) or Eq.(5.27) using the local density N
 ', derived from Eq.(5.42),

instead of the overall space density N.

As an alternative approach, instead of computing a global local density N ' for the total timeslice

query window, we may consider the different contributions of the query window sides and query

window corners in the total number of false hits, as discussed in Section 5.3.3. Therefore, given a

spatio-temporal histogram containing n disjoint spatio-temporal buckets Bi, the estimation of the

number of false positives and false negatives in the results of a timeslice query invoked at timestamp tk

under the uncertainty uniformity assumption, can be determined using the formula:

() ()
, ,

2

, ,

:

2

3 8
i L k i U

P k a b N k a b i i i

i t t t

d d
E R E R N L s

π π× ×
≤ <

  
= = ⋅ − ⋅     

∑ , (5.43)

where Li is the length of the part of the query perimeter that spatially overlaps Bi and si is the number of

timeslice query window corners being inside Bi.

Eq. (5.43) formulates the fact that the total number of false negatives or positives is the

summation of the contributions of the different query components as discussed in Section 2.3. More

specifically, the
2

3
i

d
L

π
 part of Eq.(5.43) is derived from the ()8

3

d
a b

π
+ of Eq.(5.1) and Eq.(5.13),

multiplied by the length of the query perimeter Li that overlaps bucket Bi and divided by the total query

length 4(a+b); in the same manner, the
2

8
i

d
s

π
 part of Eq.(5.43) is the transformation of the

2

2

d

π
 part of

Eq.(5.1) and Eq.(5.13), multiplied by the actual number of query window corners si spatially inside

bucket Bi, divided by their total number, i.e., 4.

W

B1

B2

B4

B3

c1

c1

c3

c4

m1

m2

m3

m4

d

x

y

d

(1,0,0)

(1,1,0)

(1,1,1)

W

(a) (b)

Figure 5.9: (a) A timeslice query window over of a snapshot of a spatio-temporal histogram (b) A

timeslice query window over a snapshot of the augmented 4-D space.

Consider, for example, Figure 5.9(a) that illustrates the snapshot of a timeslice query window W

at timestamp tk, overlapping at this particular timestamp four histogram buckets (B1 … B4). Since false

hits may only be found close to the boundary of W, the number of false positives or negatives on

 123

bucket B1 depends on the length of the query perimeter that overlaps it, that is, the length of lines

1 1 1 2m c c m+ and the number or corners s1=1. It is also worth to note that using the above procedure,

the query window is not dissected across the histogram buckets’ boundaries, as such an approach

would increase the total perimeter and consequently decrease the accuracy of the model. Moreover, in

the 2d-UDD uncertainty distribution case, the formula for estimating the number of false positives and

false negatives is:

() ()
, ,

2

, ,

:

3

2 40
i L k i U

P k a b N k a b i i i

i t t t

d d
E R E R N L s

π π× ×
≤ <

  
= = ⋅ − ⋅     

∑ , (5.44)

The above formula is derived counting the different contributions of the query sides and corners

of Eq.(5.27) in a way similar with the above. In particular, the
2

i

d
L

π
 part of Eq.(5.44) is computed by

multiplying the ()2d
a b

π
+ of Eq.(5.27) by the part of the query perimeter Li that spatially overlaps

bucket Bi, divided by the total query length 4(a+b), while, the
23

40
i

d
s

π
 part of Eq.(5.44) is obtained by

multiplying the
23

10

d

π
 part of Eq. (5.27) by the actual number of query window corners si spatially

inside bucket Bi, divided by their total number, i.e., 4.

The same methodology can be applied to any bucket–based data storage scheme containing

summary information, such as data cubes in trajectory data warehouses (TDW). Since a trajectory data

cube consists of disjoint spatio-temporal buckets, i.e., the base cuboids, along with summary

information, Eq.(5.43) and Eq.(5.44), depending on the type of uncertainty distribution, can be applied

in OLAP operations and produce an estimation for the total number of false positives or false

negatives. For example, when aggregating from the cell to the city level as discussed in the

introduction, i.e., performing a roll-up operation, the MBB of a city can be considered as a query

window and be used to estimate the false hits introduced in the aggregation. Given, however, that the

density between the boundary of the actual city and its MBB can be much different, the Ni involved in

Eq.(5.43) or Eq.(5.44) should be determined by using the actual perimeter of the city polygon in place

of its MBB, and the Li lengths should be weighted accordingly using the MBB and the polygon

perimeter. This approach will be tested in the following sections regarding simple spatial data, and it

will be shown to produce very good estimations.

5.4.3. Relaxing the Constant Uncertainty Radius Assumption

The third extension of the model presented in this thesis in order to support real-world application

scenarios, is to deal with datasets of trajectories having different values of uncertainty radius or

standard deviation for each one of them. Consider, for example, m sets Pj containing Nj trajectories

each, obtained by using different positioning technologies, such as GPS, Wi-Fi positioning, etc. Then,

the union of all sets { }
1... ji m

P P
=

=U contains trajectories having several uncertainty radiuses

depending on each trajectory’s original data source. A straightforward approach in order to determine

 124

the error EP or EN introduced in the results of a timeslice query over P, is to calculate the specific errors

EP,j or EN,j for each one Pj separately and then summarize the resulted errors. More formally,

() (),
1..

P a b P j a b

j m

E R E R× ×
=

= ∑ and () (),
1..

N a b N j a b

j m

E R E R× ×
=

= ∑ (5.45)

Such an approach would reasonably be successful when dealing with uniformly distributed data.

However, when dealing with real-world, usually skewed data, the methodology provided in the

previous section should be applied, meaning that we would have to maintain m different histograms,

one for each different possible value of uncertainty radius. Nevertheless, in this thesis a more

sophisticated solution is provided to the above challenge. Specifically, we may further augment the

spatio-temporal histogram proposed in section 5.4.2.1, with the uncertainty radius considered as the

fourth dimension. In other words, we propose to use the MinSkew histogram in the normalized 4D

space formed by the two spatial dimensions, the temporal one, and the length of the uncertainty radius

d.

More formally, the proposed histogram is () [] (){ }: 0,1i i iH B B S B= = × ∧ = ∅U I and

{ }, , , , , , , ,, , , , , , ,
i i L i U i L i U i L i U i L i U

B x x y y t t d d       =         . It is built by applying a uniform grid in []0,1S ×

and counting the number of data points found inside each cell in the 4D space, and then, recursively

partitioning the data space, minimizing the total spatial skew at each step. Following the respective

discussion of the previous section regarding simple spatial histograms, it is assumed that the data

distribution inside each 4D bucket Bi is uniform. Then, the estimation of the number of false hits can be

easily calculated in the case of the uncertainty uniformity assumption as follows:

() ()
,

, , ,

2

: , ,

2

3 8

i U

i L k i U i L

d

i

P a b N a b i i

i t t t i U i L d

N d d
E R E R L s dd

d d π π× ×
≤ <

   
 = = ⋅ −  

−    
∑ ∫ , (5.46)

where Li is the length of the query perimeter that overlaps bucket Bi in the two spatial dimensions, si is

the number of query window corners being inside bucket Bi, and , ,,i L i Ud d are the lower and upper

values of the third dimension d in Bi, respectively. Eq.(5.46) is directly derived when integrating

Eq.(5.43) over all possible values of d in the data space, bearing also in mind that the actual number of

objects found at each slice of the third dimension is (), ,i i U i LN d d− and (), ,i U i Ld d− is the bucket’s

extent along this dimension. Intuitively, the above two formulas express the fact that the total error is

the summation of the errors encountered on each histogram bucket the query window boundary

overlaps; moreover, in this case, the spatial component of the query window W is also augmented in the

dimension of d, forming a box entirely covering this dimension, as illustrated in Figure 5.9(b). Finally,

Eq.(5.46), after the necessary calculations turns into:

() ()
, ,

2 2
, , , , , ,

, ,

: 3 24
i L k i U

i U i L i U i L i L i U

P k a b N k a b i i i

i t t t

d d d d d d
E R E R N L s

π π× ×
≤ <

  + + +
= = ⋅ −      

∑ , (5.47)

Following a similar approach, the estimation of the number of false hits in the case of the uncertainty

uniformity difference assumption is calculated as:

 125

() ()
, ,

2 2
, , , , , ,

, ,

: 4 40
i L k i U

i U i L i U i L i L i U

P k a b N k a b i i i

i t t t

d d d d d d
E R E R N L s

π π× ×
≤ <

  + + +
= = ⋅ −      

∑ . (5.48)

The proposed approach has two basic advantages regarding the alternative of maintaining

different histograms for the m sets of trajectories; the first is that the space requirements are sufficiently

reduced, especially in the case where the number of different uncertainty radiuses increases

significantly. However, the most important advantage of this proposal is revealed bearing in mind that

data belonging to the same class may have different accuracy; for example the uncertainty due to GPS

depends on a large number of parameters, such as the number of visible satellites, the frequency

interference, and the satellite signal reflection in large glass surfaces inside urban areas, resulting in a

different uncertainty radius for each individual sampled point of each trajectory; the naïve approach

could not fulfil such requirements since we would have to maintain a separate histogram for each

possible value of uncertainty radius. On the other hand, our proposal can absorb these necessities and

handle an unrestrained number of different radiuses without increasing the memory space requirement

of the constructed histogram, producing at the same time a very good estimation.

5.5. Experimental Study: Spatio-temporal Data

In this section several experiments are presented in order to demonstrate the correctness and accuracy

of the previous analysis using synthetic trajectory datasets. In the experimental study that follows we

demonstrate the accuracy of the analytical model under uniform distribution of uncertainty with the aid

of spatio-temporal histograms (Eq.(5.43)), as well as its sensitivity with respect to the involved

parameters, i.e., the uncertainty radius and the length of the query perimeter.

Here it is worth to note that for typical query and uncertainty sizes (e.g., queries of 0.05µ0.05 to

0.30µ0.30 in the unit space, and uncertainty radius set to 0.01), the formulas of the proposed model

produce values of false negatives / positives between 0.0004µN and 0.0025µN, meaning that for 2000

trajectories we expect between 0.8 and 5.0 trajectories as false positives / negatives per query. As such,

it becomes clear that for typical query sizes and uncertainty radiuses, the dataset population should be

quite large in order to produce a significant number of false hits, so as to be counted and compared

against the results of the proposed model. However, since the cardinality of trajectory datasets is

usually small (on the other hand, their actual size may become huge as time evolves), the details of the

developed model using all possible setting combination, will be tested using synthetic and real spatial

datasets in the next section.

5.5.1. Experimental Setup

The experimental study over spatio-temporal data is based on the NG synthetic datasets (section 1.5.3).

Each trajectory was modelled as a cilyndrical volume [TWHC04], following therefore the uniform

distribution of uncertainty assumption. During each experiment the dataset was queried with 1000

randomly distributed square, i.e., with a=b, timeslice queries. Each query initially retrieved the

interpolated position of each trajectory in the dataset at the timestamp determined by it, and then, the

assumption of [TWHC04] was used in order to reveal the actual position of each moving object at this

particular timestamp. As such, a number of false negatives and false positives were generated, since the

query results gathered by the first step were different than the ones determined after the second step.

 126

We used for the estimation of the same number our analytical model expressed by Eq.(5.43), that is,

with the aid of spatio-temporal histograms, as presented in the previous section (thus, relaxing

assumption AII); the MinSkew partitioning of the dataset under consideration was created using a

uniform grid of original grid size set to 0.005µ0.005µ0.005, as discussed in [APR99]. The radius of the

cilyndrical volume (uncertainty radius) was scaled between 0.0005 and 0.02, while each square query

side’s length was scaled between 0.06 and 0.36; elongated query windows reported similar behavior.

We conducted our experiments on a Windows XP workstation with AMD Athlon 64 3GHz processor

CPU, 1 GB of main memory and several GB of disk space.

5.5.2. Experimental Results

Two statistical measures were used so as to demonstrate the behavior of our model. The average

number of false negatives and false positives,
NE and

PE , respectively, and the average absolute

error in the estimation of false negatives and false positives in each individual query,
NES and

PES ,

respectively. Formally, these measures are defined as:

,
1..

1
N N i

i n

E E
n =

= ∑ , ,
1..

1
P P i

i n

E E
n =

= ∑ (5.49)

and,

(), ,
1..

1
N N i N k a b

i n

ES E E R
n

×
=

= −∑ , (), ,
1..

1
P P i P k a b

i n

ES E E R
n

×
=

= −∑ (5.50)

where n is the number of executed queries and EP,i (EN,i) the actual number of false positives (false

negatives, respectively) in the i-th query. We distinguish between, e.g. PE and PES , in order to

uncover the details of the behavior of our model, as will be shown in the following experiments.

In the first series of experiments the synthetic dataset is utilized in order to demonstrate the

accuracy and the behavior of the presented analytical model scaling the two influencing factors: the

radius d of the uncertainty disk and the size (a, b) of the query window. Note that in all figures the

query size is exposed in terms of its side length 2a = 2b, e.g., for query side length 0.30, the size of the

query window is equal to 0.30 µ 0.30 = 0.09 of the unit space.

0

2

4

6

8

10

12

0.05% 0.50% 1.00% 1.50% 2.00%

Uncertainty radius d

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

0

1

2

3

4

5

6

7

0.06 0.12 0.18 0.24 0.30 0.36

Query Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

(a) (b)

Figure 5.10: Average false negatives / positives and their estimations scaling with (a) d and (b) the

query size (synthetic data – uniform distribution of uncertainty).

In particular, in the first experiment the value of d is scaled between 0.05% and 2% of the space

extent along the x- and y- axis, querying the synthetic dataset, with fixed side length 0.18 (i.e., a = b =

 127

0.09 resulting in a query window sized 3.24% of the data space). The results of this experiment are

illustrated in Figure 5.10(a); as a first result, the number of false positives and false negatives turn out

to be almost equal, verifying the correctness of the corollary in Eq.(5.22). Moreover, the estimations

EP(Rk,aµb) and EN(Rk,µb) are very accurate with respect to
PE and

NE , with the error being always

below 6%, whereas the error bars in each graph column, illustrating
PES and

NES , demonstrate low to

medium values. Specifically, the average error in individual queries is around 40% in the vast majority

of the experimental settings while it increases significantly only in the extreme case where the

uncertainty radius d is set to its minimum (d = 0.05%).

Similar results are exposed in the second experiment, illustrated in Figure 5.10(b), where the

query size is scaled. In particular, the uncertainty radius is set to 0.5%, and the length of the query side

is scaled between 0.06 and 0.36, resulting in query sizes covering between 0.36% and 12.96% of the

data space. When comparing the estimation of the number of false negatives and false positives, and

the respective average values
PE and

NE , the reported estimation error is again below 6%, regardless

of the query size, while the error bars in each graph column (i.e., PES and NES) show the same trend

as previous being around 40%; again the only case where they reach high values, occurs when both σ

and the query size were set to their minimum values.

While at a first thought these values of PES and NES may be considered as high ones, it has to

be pointed out that the error of the estimation is lowered significantly as the cardinality of the dataset

increases, a fact that will be demonstrated over simple spatial data in the next section. Finally, in order

to justify the accuracy of the estimations, we have to indicate that the values of PES and NES never

exceed 2 false hits in absolute values (e.g., actual vs. estimated false negatives : 6 vs. 8).

5.6. Experimental Study: Spatial Data

In this section, following the previous experiments on spatio-temporal trajectory data, we present a

series of experiments using synthetic and real spatial data so as reveal all the details of the proposed

model, over datasets with medium cardinality (nevertheless, significantly greater than the one of the

experimental study of spatio-temporal data), as well as the efficiency of the proposed solutions.

Concisely, the objectives of the experimental study that follows are to:

• demonstrate the accuracy of the simple analytical model (Eq.(5.1) and Eq.(5.13)), as well as

its sensitivity with respect to the involved parameters, i.e., the uncertainty radius, or standard

deviation, and the length of the query perimeter.

• show the quality of the approximation of normally distributed location uncertainty by 2d-

UDD utilizing the model supported by Eq.(5.27) and Eq.(5.32)

• present the accuracy of the estimation provided by the analytical models – Eq.(5.43),

Eq.(5.44), Eq.(5.47), and Eq.(5.48) – over real spatial data utilizing histograms and also

demonstrate their advantage to the alternative of utilizing the histogram as a local density

estimator using Eq.(5.41),

 128

• show how the proposal of this chapter can be used in the context of spatial data warehouses,

and,

• reveal the efficiency of the provided solutions implemented on top of a commercial SDBMS.

5.6.1. Experimental Setup

The experimental study of this section over spatial data is based on both synthetic and real point

datasets. Specifically, the employed datasets are as follows: a synthetic dataset (Rnd0) of 100K 2D

points randomly distributed in the unit data space as well as two real datasets, namely, the North East

(NE) and the Digital Chart of the World (DCW) datasets, illustrated in Figure 5.11(a) and (b),

respectively.

(a) (b)

Figure 5.11: Real datasets: (a) North East and (b) Digital Chart of the World

Then, as suggested by [BS03], [CZBP06], [GL05], in each dataset point is added noise in a

controlled way. In particular, the location of each point in all three datasets is modified by adding

noise, either uniformly distributed inside an uncertainty disk of radius d , producing the respective U-d

dataset, or following a bivariate normal distribution with standard deviation σ, producing the respective

N-σ dataset; for each U-d and N-σ dataset, we produced five different datasets that is RndU-d-1, to RndU-

d-5, NEU-d-1 to NEU-d-5, and DCWU-d-1 to DCWU-d-5, and also the same five datasets for each one of the

RndN-σ, NEN-σ, DCWN-σ cases. In order also to test the accuracy of our estimations under the settings of

Section 3.3, we produced the NEN-v0.02 dataset on which we have added noise following the bivariate

normal distribution with σ varying between 0 and 0.02. Unless otherwise indicated, all

experimentations involving spatial queries were performed by running 1000 randomly distributed

square, i.e., with a=b, queries over all five datasets of the respective case; elongated query windows

reported similar behavior. All experiments are conducted on a Windows XP workstation with AMD

Athlon 64 3GHz processor CPU, 1 GB of main memory and several GB of disk space; all evaluated

methods were implemented on both VB.NET and PostgreSQL 8.2 [Post08a] with the PostGIS 1.2.1

[Post08b] extension using the PL/PgSQL language.

5.6.2. Experiments on the Quality

Following from the experimental study over spatio-temporal data, in this section we also utilize the

average number of false negatives and false positives, NE and PE (Eq.(5.49)), as well as the average

absolute error in the estimation of false negatives and false positives in each individual query,
NES

and PES (Eq.(5.50)).

 129

5.6.2.1. Experiments over Synthetic Data Following all three Original Assumptions AI, AII,

AIII

In the first series of experiments the synthetic datasets are utilized in order to demonstrate the accuracy

and the behavior of the analytical model scaling the two influencing factors as already done in the

previous section regarding spatio-temporal data. In the first experiment the value of d was scaled

between 0.05% and 2% of the space extent along the x- and y- axis, querying both Rnd0 and the

respective Rndu-d dataset, with fixed side length 0.18. The results of this experiment are illustrated in

Figure 5.12(a); as a first result, the estimations EP(Raµb) and EN(Raµb) are extremely accurate with

respect to PE and NE , with the error being always below 3%, whereas the error bars in each graph

column, illustrating
PES and

NES , are shown to be relatively low. Specifically, the average error in

individual queries is below 10% in the vast majority of the experimental settings and is up to 29% in a

single extreme case where the uncertainty radius d is set to its minimum (d = 0.05%). It is therefore

confirmed the initial intention of the experimental study over spatial datasets, that is, to demonstrate

that the estimations produced by the proposed analytical model over spatial datasets of medium

cardinality are much better than the ones produced over datasets of small cardinality (as the ones used

in the previous section).

0

50

100

150

200

250

300

350

400

450

500

0.05% 0.50% 1.00% 1.50% 2.00%

Uncertainty radius d

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

MAY set Estimation

0

50

100

150

200

250

300

350

400

0.06 0.12 0.18 0.24 0.30 0.36

Query Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

MAY set Estimation

(a) (b)

Figure 5.12: Average false negatives / positives and their estimations scaling with (a) d and (b) the

query size (synthetic data – uniform distribution of uncertainty).

In the same experiments the methodology provided by [YM03], which estimates the cardinality

of the MAY set, was also included. As already stated, the MAY set is actual a superset containing,

among others, the false hits calculated by our analysis; nevertheless, we evaluate the assumption that

50% of the MAY set are false hits, that is, an object in the MAY set maybe either true or false hit with

the same probability. However, as illustrated in Figure 5.12 by the MAY set estimation curve, the above

assumption does not result in correct estimations. It is worth to note, however, that the goal of the

analysis presented in [YM03] is not to provide the number of false hits the way our analysis does. Our

assumption regarding the portion of the MAY set encountering false hits, i.e., the 50%, is used due to

the lack of any other suggestions on this subject included in [YM03]. Moreover, Figure 5.12(a) could

also lead to the presumption that a simple multiplier on the MAY set estimation, i.e., lowering the

corresponding curve of Figure 5.12, could force it to produce better results. Still, in order to determine

this multiplier, it is the methodology provided in the presented analysis that should be followed.

 130

Similar results are exposed in the second experiment, illustrated in Figure 5.12(b), where the

query size is scaled. In particular, the uncertainty radius is set to 0.5%, and the length of the query side

is scaled between 0.06 and 0.36, resulting in query sizes covering between 0.36% and 12.96% of the

data space. When comparing the estimation of the number of false negatives and false positives, and

the respective average values PE and NE , the reported estimation error is below 1%, regardless of the

query size. Furthermore, the estimation based on the MAY set cardinality, once again could not yield on

comparable results; as such, based on the observation that this estimation systematically overestimates

PE and
NE , it will be excluded from the rest of the experimental study. Regarding the error bars in

each graph column, illustrating the respective PES and NES , they are relatively small in the majority

of the experiments being below 16%; the only case where it reached higher values, i.e., 35%, occurred

when both σ and the query size were set to their minimum values.

5.6.2.2. Experiments over Synthetic Data Relaxing Assumption AI

In order to evaluate the accuracy of the estimation of the number of false positives and false negatives

calculated by Eq.(5.27), and Eq.(5.32), a similar experimentation was performed with the RndN-σ

datasets where σ and the query size were scaled. The results of these experiments are illustrated in

Figure 5.13 and it is clear that the estimation error regarding
PE and

NE is always below 5%.

Moreover, the respective error bars, illustrating
PES and

NES , are shown to be relatively small, being

usually below 12 %, while reaching 36% only in the case where both d and the length of the query side

were set to their minimum values.

0

100

200

300

400

500

600

700

0.05% 0.50% 1.00% 1.50% 2.00%

Standard Deviation σ

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

0

5

10

15

20

25

30

35

0.06 0.12 0.18 0.24 0.30 0.30

Query Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

(a) (b)

Figure 5.13: Average false negatives, positives and estimation scaling (a) with σ and (b) with the query

size (synthetic data - normal distribution of uncertainty).

A more detailed presentation of the average estimation error in each individual query
PES and

NES is illustrated in Figure 5.14(a) and (b), as a percentage of the number of false positives and false

negatives, respectively. Both figures illustrate that PES and NES vary from small values, i.e., less than

10% for high values of σ, to higher ones for very small values of σ. They also depend on the query size,

increasing as the size decreases. In general, it appears that PES and NES are essentially ruled by the

standard deviation σ and, at a smaller extent, on the query size. Furthermore, for small values of σ and

 131

small query sizes, while the estimation is still accurate regarding
PE and

RE (Figure 5.13(a) and (b),

respectively),
PES and

NES increase significantly up to 40%.

0.05%
0.50%1.00%1.50%

2.00%

0.06x0.06

0.18x0.18

0.36x0.36
0%

5%

10%

15%

20%

25%

30%

35%

40%

E
st

im
a

ti
o

n
 E

rr
o

r

σ

Q
uery Size

0.05%
0.50%1.00%1.50%

2.00%

0.06x0.06

0.18x0.18

0.30x0.30
0%

5%

10%

15%

20%

25%

30%

35%

40%

E
st

im
a

ti
o

n
 E

rr
o

r

σ

Q
uery Size

(a) (b)

Figure 5.14: Average estimation error of (a) false positives
PES and (b) false negatives

NES , in each

query, scaling with d and the query size (synthetic data – normal distribution of uncertainty).

5.6.2.3. Experiments over Real Data Relaxing Assumption AII

In order to support real, arbitrarily distributed spatial data by employing histograms, the NE dataset

along with the respective NEN-σ datasets were employed. Subsequently, the MinSkew partitioning of

each modified dataset was created using a uniform grid of original grid size set to 0.001µ0.001, as

discussed in [APR99]. The experiments over the NEU-d datasets, i.e., with uniform uncertainty

distribution, reported similar behavior and thus are omitted. In particular, in order to evaluate the

accuracy of the analysis of section 5.4.2, i.e., the estimation of false negatives and false positives using

Eq.(5.44), the NE and NEN-σ datasets were used for experimentation, first scaling σ with query size

fixed to 0.18µ0.18, and then, scaling the query size with σ fixed to 0.5%.

Figure 5.15 illustrates the actual and estimated values of false negatives and false positives using

the above experimental settings. Clearly, the estimations are accurate with the reported error being

always lower than 6%. Additionally, the average absolute error of the estimation in each individual

query
PES and

NES , which is illustrated in the error bars of Figure 5.15 and, in more detail, in Figure

5.16(a) and (b), respectively, is considerably small being below 12% in the majority of the

experimental settings. It is also clear that as the query size increases,
PES and

NES decrease to values

lower than 11%. On the other hand, small query sizes lead to increased
PES and

NES values, between

12% and 24% regarding query sizes of 0.06µ0.06, nevertheless with smaller error peak than the ones

reported for random data without the usage of histograms, e.g., the reported 36% in Figure 5.14 vs.

24% in Figure 5.16. The above observation can be explained by the fact that histograms provide a

locally more accurate value of the estimated error, than the global formula does over synthetic data,

since they help the model absorb the local density changes of real, arbitrarily distributed, spatial data.

Here, is worth to note that the settings of this particular experiment make it directly comparable with

the one of Section 5.5, i.e., both use histograms in order to achieve better estimations; it becomes

 132

therefore clearer that the functionality of the proposed analytical model over datasets of (at least)

medium cardinality is much better than the ones produced over datasets of small cardinality.

0

200

400

600

800

1000

1200

0.05% 0.50% 1.00% 1.50% 2.00%

Standard Deviation σ

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

0

100

200

300

400

500

600

0.06 0.12 0.18 0.24 0.30 0.36

Query Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

(a) (b)

Figure 5.15: Average false negatives / positives and their estimations scaling with (a) σ and (b) the

query size (real data – bivariate normal distribution of uncertainty).

The impact of the analysis in real datasets with the aid of histograms is demonstrated by

performing a set of experiments over the NE and NEΝ-σ datasets, computing our model by two different

approaches: (a) producing the local density via Eq.(5.42) and then using it in Eq.(5.27), and, (b)

directly utilizing Eq.(5.44). In this experiment is set σ = 0.5% and the side of the query window is

scaled from 0.06 to 0.36. The respective results are illustrated in Figure 5.17(a), which demonstrates

that although approach (a), labeled as Estimation – Area in Figure 5.17(a), provides an accurate

average estimation, the obtained values for
PES and

NES are higher than those produced by approach

(b), labeled as Estimation in Figure 5.17(a). This confirms that the appropriate use of histograms in our

model is according to the analysis in Section 5.4.2 by directly employing Eq.(5.44).

0.05%
0.50%1.00%1.50%

2.00%

0.06x0.06

0.18x0.18

0.30x0.30
0%

5%

10%

15%

20%

25%

E
st

im
a

ti
o

n
 E

rr
o

r

σ

Q
uery Side 0.05%

0.50%1.00%1.50%
2.00%

0.06x0.06

0.18x0.18

0.30x0.30
0%

5%

10%

15%

20%

25%

E
st

im
a

ti
o

n
 E

r
ro

r

σ

Q
uery Size

(a) (b)

Figure 5.16: Average estimation error of (a) false positives PES and (b) false negatives NES , in each

query, scaling with σ and the query size (real data – bivariate normal distribution of uncertainty).

5.6.2.4. Experiments over Real Data Relaxing Assumption AIII

In order to demonstrate the high quality estimations obtained when using the augmented histogram

methodology of Section 5.4.3 (adapted to support spatial datasets), an experiment is performed by

employing the NE and NEN-v0.02 datasets; as already mentioned, the NEN-v0.02 contain data with variable

known size of standard deviation σ varying between 0 and 0.02. We then scaled the side of the query

 133

window from 0.06 to 0.36. The respective results, illustrated in Figure 5.17(b), show that there is no

significant difference between this case and the one where σ was set to a constant value (Figure

5.15(b)) and the estimations of
PE ,

NE are again very accurate. Moreover, the obtained values for

PES and
NES , i.e., the error bars, vary between 7% and 14%, while in the case of Figure 5.15(b) the

respective error varied between 6% and 13%. It is therefore clear that the analysis of Section 5.4.3

regarding variable uncertainty radiuses is verified to be at least as accurate as the respective analysis of

Section 5.4.2, which assumes constant uncertainty radius.

0

100

200

300

400

500

600

700

800

0.06 0.12 0.18 0.24 0.30 0.36
Query Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /

 N
e
g
a
ti
v
e

s
(h

it
s
) False negativ es

False positiv es

Estimation - Area

Estimation

0

200

400

600

800

1000

1200

0.06 0.12 0.18 0.24 0.3 0.36

Query Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

(a) (b)

Figure 5.17: (a) Average false negatives / positives and estimation error in each individual query using

different model approaches (real data – normal distribution of uncertainty). (b) Average false negatives

/ positives and their estimations scaling with the query size (real data – bivariate normal distribution of

uncertainty).

5.6.2.5. Experiments over Real Data Warehouses

In order to demonstrate the application of the proposed model in a data cube operation, the DCW and

DCWN-0,5 datasets were used; the added Gaussian noise in the location of each point has σ equal to

0.5% of the space extent along the x-axis, since the size of the space is different along the x- and y-

axis. Then, a uniform 60µ30 grid is applied along the x- and y- axis, as illustrated in Figure 5.11(b),

forming 1800 buckets overlaying the USA map and counted the number of objects contained inside

each cell. Subsequently a roll-up operation at the state level is performed, as discussed in Section 0. In

particular, the estimation of false positives and false negatives were calculated by the MBBs of US

states as range queries as discussed in Section 5.4.2. Finally, the original datasets were used in order to

determine the actual number of false positives and false negatives.

The error between the estimated and the actual number of false hits obtained as the sum of false

negatives and false positives is illustrated in Figure 5.18(a). Clearly, the error in the majority of the US

States, is below 25% while the actual weighted average is 16%. Regarding the four outliers, labeled

with the name of the state in Figure 5.18(a), the high error presented is due to either the tiny size of the

query polygon, i.e., the Delaware case, verifying the result of a previous experiment that the error

increases as the query size decreases, or the irregular shape of the query polygon that is not well

approximated by its MBB, i.e., the California, Florida and Michigan cases, with their shapes illustrated

in Figure Figure 5.18(b).

 134

Florida

Delaware

California
Michigan

Florida

0%

25%

50%

75%

100%

USA States

e
rr

o
r

(%
)

California

Michigan

(a) (b)

Figure 5.18: (a) Error between the actual number of false hits and their estimation in the roll-up

operation from the cell to state level in the USA map, (b) a bad approximation of a state by its MBB

5.6.3. Experiments on the Efficiency

The last experimentation performed on the subject involved the performance of the proposed solutions

using an implementation of the proposed model in the PostgreSQL [Post08a] DBMS along with the

PostGIS [Post08b] spatial extension. Since the selected DBMS does not natively support MinSkew

[APR99] spatial histograms, we have extended it towards this direction; moreover, we have included in

our implementation the augmented histogram proposed in Section 3.3. All methods were implemented

as functions of the spatial DBMS in the PL/pgSQL language; the developed software is ported in a

template database.

Table 5.2: Histogram statistics

 Dataset # Objects grid size # grid cells # buckets
Construction

Execution time (sec)

Histogram NEN-0.01-1 123K 0.001µ0.001 920K 1K 21

Augmented

Histogram
NEN-v0.02 123K

0.005µ0.005µ

0.0001
7078K 1K 29

In the first experiment the NEN-0.01-1 and NEN-v0.02 datasets were utilized and the time required to

construct the MinSkew and the augmented MinSkew histograms, respectively, was counted; the results

are shown in Table 5.2. Clearly, the processing time is reasonable given the fact that this is an off-line

operation, executed only once; then, the constructed histogram buckets are permanently stored in a

relational table. Here, it is worth to note that since the MinSkew construction algorithm initially

overlays a regular grid on top of the dataset, being subsequently used instead of the original dataset, the

time required for constructing a MinSkew histogram does not depend on the dataset size; this is also

confirmed in the respective experimental study of [APR99]. Therefore, the execution times illustrated

in Table 5.2 can be considered as representatives, given also the other histogram parameters, i.e., the

number of buckets and the number of the overlaid grid cells.

In the second experiment the NEN-0.01-1 dataset and 1000 randomly distributed rectangular queries

were employed in order to evaluate the average execution time of the function that implements the

proposed model; the query size was also scaled in a way similar to that in Section 5.6.2 from 0.06µ0.06

 135

to 0.36µ0.36. The respective results showed that regardless of the query size, the execution time

required by the DBMS to estimate the false hits introduced in a query was approximately 16 ms, while

the time required to process the actual query was 120 ms. Clearly, the proposal of this thesis can be

employed as an estimator, since its execution time is restrained to a few milliseconds, given also that

the execution of the actual query typically needs one order of magnitude more time. Moreover, it is

revealed the expected result that the overhead introduced by the estimator is independent from the

query size.

5.7. Conclusions

In this chapter, we presented a theoretical model that estimates the error introduced by each object’s

location uncertainty in the results of timeslice spatio-temporal queries, as well as, over simple range

queries over stationary spatial data. We provided a closed formula of the average number of false hits,

classified as false positives and false negatives, under three assumptions: uniform location uncertainty

(following the model proposed by [TWHC04] in order to describe the uncertain position of

trajectories), uniformly distributed data and constant radius of uncertainty disk. Then, we relaxed these

assumptions towards more realistic settings, using the bivariate normal distribution over location

uncertainty and MinSkew histograms for data and radius distributions.

The accuracy of the proposed model over spatio-temporal trajectory data, as well as over

stationary spatial data, was evaluated through extensive experimentation using various synthetic and

real spatio-temporal and spatial datasets. Our model shows high accuracy with an average error on PE

and
NE never exceeding 6% for either random synthetic or real spatio-temporal and stationary spatial

data; regarding trajectory data, the model showed values of
PES and

NES near 40%. However, we

have to stress again that for typical query and uncertainty sizes the formulas of the proposed model

produce values of false negatives / positives between 0.0004µN and 0.0025µN. It becomes therefore

clear that the dataset cardinality should be quite large in order to produce a significant number of false

hits, and this significantly affects the quality of the model’s output.

Then again, in cases where the cardinality reaches appropriate, i.e, high values, and the random

dataset case, the estimation of the number of false hits is accurate regardless of the value of the query

size and the radius d of the uncertainty disk, or σ in the case of data with normally distributed

uncertainty. Moreover, it has been shown that simple modifications in the single work that is very close

to the one presented in this thesis [YM03], could not yield to an accurate estimation of the average

number of false hits. The experiments over real spatial data demonstrate accuracy even higher than the

one reported for synthetic data, with very low
PES and

NES errors, indicating the advantage

introduced by the employment of histograms, even in the case of variable σ. Furthermore, it is verified

that in the presence of histograms it is much more appropriate to use the model expressed by Eq.(5.43)

and Eq.(5.44) than using the local density estimated by the histogram via traditional operations, i.e., via

Eq.(5.41). The results on the application of the proposed model in spatial data cubes and spatial OLAP

operations are also very promising. Finally, the implementation of the proposed solutions in real-world

 136

environments has shown the efficiency of this proposal when employed as an estimator, since its

execution time is typically only a few milliseconds.

The applications of our proposal include query optimization under the open agoras scenario

[Ioa07], interactive database querying, imprecision settings and data warehouse operations, as

extensively discussed. The proposed model can be directly employed in spatial database systems in

order to provide users with the accuracy of spatial query results based only on known dataset and query

features, while off-the-self histograms already employed in spatial databases for query optimization

purposes, can serve our model without the need for any additional adjustments.

 137

6. Managing the Effect of Trajectory

Compression in Spatio-temporal Querying

The purpose of this chapter is to provide an analysis on the effect of trajectory compression in spatio-

temporal querying. The chapter is structured as follows. Section 6.1 introduces basic notions on

trajectory compression. Related work is discussed in Section 6.2. Section 6.3 constitutes the core of the

chapter presenting our theoretical analysis. Section 6.4 presents the results of our experimental study,

while Section 6.5 provides the conclusions of the chapter.

6.1. Introduction

Existing work in Moving Object Databases (MOD), repeatedly addresses that the ever-present

positioning devices will eventually start to generate an unprecedented data stream of time-stamped

positions. During the last decade the database community continuously contributes on developing

novel indexing schemes [AG05], [PJT00], [TP01] and dedicated query processing techniques, in order

to handle this excessive amount of data produced by the ubiquitous location-aware devices. However,

sooner or later, such enormous volumes of data will lead to storage and computation challenges. Hence

the need for trajectory compression techniques arises.

The objectives for trajectory compression are [MB04]: to obtain a lasting reduction in data size,

to obtain a data series that still allows various computations at acceptable (low) complexity, and finally,

to obtain a data series with known, small margins of error, which are preferably parametrically

adjustable. As a consequence, our interest is in lossy compression techniques which eliminate some

redundant or unnecessary information under well-defined error bounds. However, existing work in this

domain [CWT03], [MB04], [PPS06], [PPS06a], [PPS07] is mainly guided by advances in the field of

line simplification, cartographic generalization and time series compression.

Especially on the subject of the error introduced on the produced data by such compression

techniques, the single related work [MB04] provides a formula for estimating the mean error of the

approximated trajectory in terms of distance from the original data stream. On the other hand, in this

chapter, we argue that instead of providing a user of a MOD with the mean error in the position of each

(compressed) object at each timestamp (which can be also seen as the data (im)precision), he/she

would rather prefer to be informed about the mean error introduced in query results over compressed

data. The challenge thus accepted in this chapter is to provide a theoretical model that estimates the

 138

error due to compression in the results of spatio-temporal queries. To the best of our knowledge, this is

the first analytical model on the effect of compression in query results over trajectory databases.

Outlining the major issues that will be addressed in this chapter, our main contributions are

summarized as follows:

• We describe two types of errors (namely, false negatives and false positives) when executing

timeslice queries over compressed trajectories, and we prove a lemma that estimates the

average number of the above error types. It is proved that the average number of the false hits

of both error types depends on the Synchronous Euclidean Distance [CWT03], [MB04],

[PPS06] along the x- and y- axes between the original and the compressed trajectory, and the

perimeter (rather than the area) of the query window.

• We show how the cost of evaluating the developed formula can be reduced to a small

overhead over the employed compression algorithm, while we discuss how the developed

analytical model helps to provide more effective compression algorithms.

• Finally, we conduct a comprehensive set of experiments over synthetic and real trajectory

datasets demonstrating the applicability, correctness and accuracy of our analysis.

The model described in this chapter can be employed in MODs so as to estimate the average

number of false hits in query results when trajectory data are compressed. For example, it could be

utilized right after the compression of a trajectory dataset in order to provide the user with the average

error introduced in the results of spatio-temporal queries of several sizes; it could be therefore exploited

as an additional criterion for the user in order to decide whether compressed data are suitable for

his/her needs, and possibly decide on different compression rates, and so on. Moreover, it could be

utilized as to improve the efficiency of the proposed trajectory compression algorithms; given that a

model of this kind would expose the actual measures on which the error is depended, it could

subsequently provide intuitive directions towards the employment of more sophisticated / efficient

solutions.

6.2. Background

In this section we firstly deal with the techniques introduced for compressing trajectories during the last

few years, while, we subsequently examine the related work in the field of estimating and handling the

error introduced by such compression techniques.

6.2.1. Compressing Trajectories

As already mentioned, existing work in trajectory compression is mainly guided by related work in the

field of line simplification and time series compression. Meratnia and By [MB04] exploit existing

algorithms used in the line generalization field, presenting one top-down and one opening window

algorithm, which can be directly applied to spatio-temporal trajectories. The top-down algorithm,

named TD-TR, is based on the well known Douglas-Peucker [DP73] algorithm (Figure 6.1) introduced

by geographers in cartography. This algorithm calculates the perpendicular distance of each internal

point from the line connecting the first and the last point of the polyline (line AB in Figure 6.1) and

finds the point with the greatest perpendicular distance (point C). Then, it creates lines AC and CB and,

recursively, checks these new lines against the remaining points with the same method, and so on.

 139

When the distance of all remaining points from the currently examined line is less than a given

threshold (e.g., all the points following C against line BC in Figure 6.1) the algorithm stops and returns

this line segment as part of the new - compressed - polyline. Being aware of the fact that trajectories

are polylines evolving in time, the algorithm presented in [MB04] replaces the perpendicular distance

used in the DP algorithm with the so-called Synchronous Euclidean Distance (SED), also discussed in

[CWT03], [PPS06], which is the distance between the currently examined point (Pi in Figure 6.2) and

the point of the line (Ps, Pe) where the moving object would lie, supposed it was moving on this line, at

time instance ti determined by the point under examination (Pi' in Figure 6.2).

A

B

C

Figure 6.1: Top-down Douglas-Peucker algorithm used for trajectory Compression. Original data

points are represented by closed circles [MB04]

Ps(xs,ys,ts)

Pe(xe,ye,te)

Pi(xi,yi,ti)

Pi’(xi’,yi’,ti)

Figure 6.2: The Synchronous Euclidean Distance (SED): The distance is calculated between the point

under examination (Pi) and the point Pi’ which is determined as the point on the line (Ps, Pe) the time

instance ti [MB04]

The time complexity of the original Douglas-Peucker algorithm (which the TD-TR algorithm is

based on) is O(N2), with N being the number of the original data points, while it can be reduced to

O(NlogN) by applying the proposal presented in [HS92]. Although the experimental study presented in

[MB04] shows that the TD-TR algorithm is significantly better than the opening window (presented

later in this section) in terms of both quality and compression (since it globally optimizes the

compression process), the TD-TR algorithm has the disadvantage that it is not an on-line algorithm

and, therefore, it is not applicable to newcoming trajectory portions as soon as they feed a MOD. On

the contrary, it requires the a priori knowledge of the entire moving object trajectory.

On the other hand, under the previously described conditions of on-line operation, the opening

window (OW) class of algorithms can be easily applied. These algorithms start by anchoring the first

trajectory point, and attempt to approximate the subsequent data points with one gradually longer

segment (Figure 6.3). As long as all distances of the subsequent data points from the segment are below

the distance threshold, an attempt is made to move the segment's end point one position up in the data

series. When the threshold is going to exceed, two strategies can be applied: either the point causing the

violation (Normal Opening Window, NOPW) or the point just before it (Before Opening Window,

 140

BOPW) becomes the end point of the current segment, as well as the anchor of the next segment. If the

threshold is not exceeded, the float is moved one position up in the data series (i.e., the window opens

further) and the algorithm continues until the last point of the trajectory is found; then the whole

trajectory is transformed into a linear approximation. While in the original OW class of algorithms

each distance is calculated from the point perpendicularly to the segment under examination, in the

OPW-TR algorithm presented in [MB04] the SED is evaluated. Although OW algorithms are

computationally expensive - since their time complexity is O(N2) - they turned out to be very popular.

This is because, they work online, and they can work reasonably well in presence of noise (though only

for relatively short data series).

A

B

C

Figure 6.3: Opening Window algorithm used for trajectory Compression. Original data points are

represented by closed circles [MB04]

Recently, Potamias et al. [PPS06] proposed several techniques based on uniform and spatio-

temporal sampling to compress trajectory streams, under different memory availability settings: fixed

memory, logarithmically or linearly increasing memory, or memory not known in advance. Their major

contributions are two compression algorithms, namely, the STTrace and Thresholds. The STTrace

algorithm, utilizes a constant, for each trajectory, amount of memory M. It starts by inserting in the

allocated memory the first M recorded positions, along with each position's SED with respect to its

predecessor and successor in the sample. As soon as the allocated memory gets exhausted and a new

point is examined for possible insertion, the sample is searched for the item with the lowest SED,

which represents the least possible loss of information in case it gets discarded. In the sequel, the

algorithm checks whether the inserted point has SED larger than the minimum one found already in the

sample and, if yes, the currently processed point is inserted into the sample at the expense of the point

with the lowest SED. Finally, the SED attributes of the neighboring points of the removed one are

recalculated, whereas a search is triggered in the sample for the new minimum SED. The proposed

algorithm may be easily applied in the multiple trajectory case, by simply calculating a global

minimum SED of all the trajectories stored inside the allocated memory.

It notably arises from the previous discussion that the vast majority of the proposed trajectory

compression algorithms base their decision on whether keeping or discarding a point of the original

trajectory on the value of SED between the original and the compressed trajectory at this particular

timestamp. Consequently, a method for calculating the effect of compression in spatio-temporal

querying based on the value of SED along the original trajectory data points, would not introduce a

considerable overhead in the compression algorithm, since it would require only performing additional

operations inside the same algorithm.

 141

6.2.2. Related Work on Error Estimation

To the best of our knowledge, a theoretical study on modeling the error introduced in spatio-temporal

query results due to the compression of trajectories is lacking; our work is the first on this topic

covering the case of the spatio-temporal timeslice queries. Nevertheless, there are two related subjects:

The first is the determination of the error introduced directly in each trajectory by the compression

[MB04], being the average value of the SED between a trajectory p and its approximation q (also

termed as synchronous error E(q, p)). [MB04] provide a method for calculating this average value as a

function of the distance between p and q along each sampled point. The outcome of this analysis turns

to a costly formula, which provides the average error (i.e., mean distance between p and q along their

lifetime); however, there is no obvious way on how to use it in order to determine the error introduced

in query results.

The second related subject is the work conducted on the context of trajectory uncertainty

management, such as [CKP04], [PJ99], [Tra03], [TWHC04]. This is due to the fact that the error

introduced by compression can also be seen as uncertainty, and thus related techniques may be applied

in the resulted dataset (e.g., probabilistic queries); as such the work presented in the previous chapter

could be employed towards our goal. However, such methodology cannot be directly used in the

presence of compressed trajectory data, since the task of determining the statistical distribution of the

location of the compressed trajectory using information from the original one, is by itself a very

complex task.

On the other hand, our approach is based only on the fact that the compression algorithm exploits

the SED in each original trajectory data point and thus, introduces a very small overhead on the

compression algorithm.

6.3. Analysis

The core of our analysis is a lemma that provides the formula used to estimate the average number of

false hits per query when executed over a compressed trajectory dataset. In this chapter, we also focus

on timeslice queries, which can be used to retrieve the positions of moving objects at a given time point

in the past and can be seen as a special case of spatio-temporal range queries, with their temporal extent

set to zero. This type of query can also be seen as the combination of a spatial (i.e., query window W)

and a temporal (i.e., timestamp t) component. As it will be discussed in Chapter 7, the extension of our

model to support range queries with non-zero temporal extent is by no means trivial and is left as future

work.

It is important to mention that our model supports arbitrarily distributed trajectory data without

concerning about their characteristics (e.g., sampling rate, velocity, heading, agility). Therefore, it can

be directly employed in MODs without further modifications. The single assumption we make is that

timeslice query windows are uniformly distributed inside the data space. Should this assumption be

relaxed, one should mathematically model the query distribution using a probability distribution and

modify the following analysis, accordingly. Table 6.1 summarizes the notations used in the rest of the

chapter.

 142

Table 6.1: Table of notations

Notation Description

S, †
T ,T The unit space, a trajectory dataset and its compressed counterpart.
†

iT , Ti an original trajectory and its compressed counterpart.

R, Raµb, Wj
the set of all timeslice queries over S, its subset with sides of length a and b across the

x- and y- axes, and a timeslice query window.

n, mi
the cardinality of dataset T and the number of sampled points inside trajectory †

iT .

SEDi(t),

δxi(t), δyi(t)

the function of the Synchronous Euclidean Distance (SED) between trajectory †
iT and

its compressed counterpart Ti, and its projections along the x- and y- axes.

ti,k, SEDi,k,

 δxi,k , δyi,k

the k-th timestamp on which trajectory †
iT sampled its position, its Synchronous

Euclidean Distance from its compressed counterpart Ti at the same timestamp, and its

projection along the x- and y- axes

Ai,j
the area inside which the lower-left corner of Wj has to be found at timestamp tj in

order for it to retrieve trajectory Ti as false negative (or false positive).

AvgPi,N(Raµb),

AvgPi,P(Raµb)

the average probability of all timeslice queries Wj œ Raµb, to retrieve Ti as false

negative (or false positives).

EN(Raµb), EP(Raµb)
the average number of false negatives (or false positives) in the results of a query Wj œ

Raµb.

Let us consider the unit 3D (i.e., 2D spatial and 1D temporal) space S containing a set †
T of n

trajectories †
iT and a set T with their compressed counterparts Ti. Let also R be the set of all timeslice

queries posed against datasets †
T and T, and Raµb be the subset of R containing all timeslice queries

having sides of length a and b along the x- and y- axis respectively. Two types of errors are introduced

when executing a timeslice query WjœR over a dataset with the previously described settings:

• false negatives are the trajectories which originally qualified the query but their compressed

counterparts were not retrieved; formally, the set of false negatives
NT T⊆ is defined as

{ }†: |N i i j i jT T T T W T W= ∈ ∉ ∈ ;

• false positives are the compressed trajectories retrieved by the query while their original

counterparts are not qualifying it; formally, the set of false positives PT T⊆ is defined as

{ }†: |P i i j i jT T T T W T W= ∈ ∈ ∉ .

 t
y

x

T2

 †
2T

 †
1T

T1

†
3T

W

Figure 6.4: Problem setting

Consider for example Figure 6.4 illustrating a set of n uncompressed trajectories †
iT , along with

their compressed counterparts Ti. Each uncompressed trajectory †
iT is composed by a set of mi time-

 143

stamped points, applying linear interpolation in-between them. Figure 6.4 also illustrates a timeslice

query W; though W retrieves the compressed trajectory T1, its original counterpart †
1T does not intersect

the query window, encountering a false positive. Conversely, though the original trajectory †
2T

intersects W, its compressed counterpart T2 is not present in the query results, forming a false negative.

Having described the framework of our work, we state the following lemma

Lemma 6.1: The average number of false negatives EN(Raµb) and false positives EP(Raµb) in the results

of a timeslice query Wj œ Raµb with sides of length a and b along the x- and y- axis, respectively, over a

compressed trajectory dataset is given by the following formula:

() ()
() () ()1

, , 1 , , 1, 1 ,

1 1 (1) (1) 2 2 6

imn
i k i k i k i ki k i k

N a b P a b

i k

b x x a y yt t e
E R E R

a b

δ δ δ δ−
+ ++

× ×
= =

 + +−
 = = ⋅ + −
 + ⋅ +
 

∑∑ (6.1)

where n is the cardinality of the dataset, mi the number of sampled points inside trajectory Ti, δxi,k and

δyi,k the projection of the synchronous euclidean distance vector between the original trajectory Ti and

its compressed counterpart at timestamp tk along the x- and y- axes, and , ,2 i k i ke x yδ δ= +

, 1 , 1 , , 1 , 1 ,2 i k i k i k i k i k i kx y x y x yδ δ δ δ δ δ+ + + ++ + .

Eq.(6.1) formulates the fact that the average error in the results of a timeslice query over

compressed trajectory data is directly related to the weighted average SED along the x- and y- axis

(i.e., (), 1 ,i k i kt t+ − multiplied by , , 1i k i kx xδ δ ++ or , , 1i k i ky yδ δ ++) multiplied by the respective

opposite query dimension (i.e., (), , 1i k i kb x xδ δ ++ and (), , 1i k i ka y yδ δ ++), while e is a sum of minor

importance, since it is the sum of the products between pairs of , , 1 , , 1, , ,i k i k i k i kx x y yδ δ δ δ+ + .

6.3.1. Proof of Lemma 6.1

The average number EN(Raµb) of trajectories being false negatives in the results of a timeslice query Wj

œ Raµb, can be obtained by summing up the probabilities ()†|i j i jP T W T W∉ ∈ of all dataset trajectories

Ti (i=1,…,n) to be false negative regarding an arbitrary timeslice query window Wj œ Raµb:

() (),
1

n

N a b i N a b

i

E R AvgP R× ×
=

=∑ (6.2)

Similarly, the average number EP(Raµb) of trajectories being false positives can be calculated by the

following formula:

() (),
1

n

P a b i P a b

i

E R AvgP R× ×
=

=∑ (6.3)

Hence, our target is to determine AvgPi,N(Raµb) and AvgPi,P(Raµb). Towards this goal, we formulate the

probability of a random trajectory being false negative (or false positive), regarding an arbitrary

timeslice query window Wj œ Raµb invoked at timestamp tj (i.e., †|i j i jT W T W∉ ∈ , and †|i j i jT W T W∈ ∉ ,

respectively). As also illustrated in Figure 6.5(b), the intersection of trajectories Ti,
†

iT with the plane

determined by the temporal component of Wj (i.e., timestamp tj) will be demonstrated as two points

(points pi,j and †
,i jp , respectively, in Figure 6.5(b)) having in-between them, distance δxi,j and δyi,j along

the x- and y- axis, respectively.

 144

 t y

x

Ti

 †

iT

Query Window

Wj

a

b

 †
,i jp pi,j

δyi(tj)

δxi(tj)

x

y
t=tj

(a) (b)

Figure 6.5: The intersection of a trajectory †
iT and its compressed counterpart Ti, with the plane of a

timeslice query at timestamp tj.

In order to calculate the quantity of timeslice query windows that would retrieve trajectory Ti as a false

negative (false positive) at timestamp tj, we need to distinguish among four cases regarding the signs of

δxi,j and δyi,j as demonstrated in Figure 6.6 (Figure 6.7, respectively). The shaded (with sided stripes)

region in all four cases illustrate the area inside which the lower-left query window corner has to be

found in order for it to retrieve trajectory Ti as false negative (or false positive, respectively). However,

as can be easily derived from these figures, the area of the shaded region in all four cases, is equal for

both false negatives and false positives, and can be calculated by the following equation:

() (), , ,i j i j i j
A a b a x b yδ δ= ⋅ − − ⋅ − (6.4)

Wj

δyi,j>0

δxi,j<0

N

Ai,j

Wj

δyi,j<0

δxi,j>0

N

Ai,j

Wj
δyi,j>0

δxi,j>0

N

Ai,j

Wj

δyi,j<0

δxi,j<0

N

Ai,j

(a) , ,0 0i j i jx yδ δ< ∧ > (b) , ,0 0i j i jx yδ δ> ∧ < (c) , ,0 0i j i jx yδ δ> ∧ > (d) , ,0 0i j i jx yδ δ< ∧ <

Figure 6.6: Regions inside which the lower-left query window corner has to be found in order to

retrieve trajectory Ti as false negative

Wj

δyi,j>0

δxi,j<0

N

Ai,j

Wj

δyi,j<0

δxi,j>0

N

Ai,j

Wj

δyi,j>0

δxi,j>0

N

Ai,j

Wj
δyi,j<0

δxi,j<0

N

Ai,j

(a) , ,0 0i j i jx yδ δ< ∧ > (b) , ,0 0i j i jx yδ δ> ∧ < (c) , ,0 0i j i jx yδ δ> ∧ > (d) , ,0 0i j i jx yδ δ< ∧ <

Figure 6.7: Regions inside which the lower-left query window corner has to be found in order to

retrieve trajectory Ti as false positive

Given that Wj is valid when it is (either partially or totally) found inside the unit space, the lower-left

query window corner must be found inside a space region of area equal to () ()1 1a b+ ⋅ + . Then, the

probability of trajectory Ti to be retrieved as a false negative or false positive at timestamp tj is:

 145

() () () (), ,,† †| |
(1) (1) (1) (1)

i j i ji j

i j i j i j i j

a b a x b yA
P T W T W P T W T W

a b a b

δ δ⋅ − − ⋅ −
∉ ∈ = ∈ ∉ = =

+ ⋅ + + ⋅ +
 (6.5)

Given also our assumption regarding the distribution of query windows, the average probability of a

trajectory Ti to be false negative regarding an arbitrary query window Wj œ Raµb at any timestamp can

be obtained by integrating Eq.(6.5) over all timestamps inside the unit space.

Since ()†|i j i jP T W T W∉ ∈ = ()†|i j i jP T W T W∈ ∉ , it follows that:

() () () ()
1 1

† †
, ,

0 0

| |i N a b i P a b i j i j i j i jAvgP R AvgP R P T W T W dt P T W T W dt× ×= = ∉ ∈ = ∈ ∉∫ ∫ (6.6)

However, given that each original trajectory Ti is a set of mi sampled points applying linear

interpolation in between them, Eq.(6.6) is transformed as follows:

() ()

() ()
1 1

, ,

1 1
† †

1 1, 1 , , 1 ,

1 1
| |

k ki i

k k

i N a b i P a b

t tm m

i j i j i j i j

k ki k i k i k i kt t

AvgP R AvgP R

P T W T W dt P T W T W dt
t t t t

+ +

× ×

− −

= =+ +

= =

∉ ∈ = ∈ ∉
− −∑ ∑∫ ∫

 (6.7)

and δxi,j and δyi,j can be trivially formulated as single functions of t when , , 1i k i kt t t +≤ ≤ , between

sampled points:

() , 1 ,
, ,

, 1 ,

() , andi k i k

i i k i k

i k i k

x x
x t x t t

t t

δ δ
δ δ +

+

−
= + − ⋅

−
 (6.8)

() , 1 ,
, ,

, 1 ,

() i k i k

i i k i k

i k i k

y y
y t y t t

t t

δ δ
δ δ +

+

−
= + − ⋅

−
 (6.9)

Substituting Eq.(6.8), Eq.(6.9) and Eq.(6.5) into Eq.(6.7) and performing the necessary calculations we

result in the following formula:

() ()

()
() ()

, ,

, , 1 , , 1

1
, 1 ,

1
, , , 1 , 1 , , 1 , 1 ,

2 2
(1) (1) 2 2

6

i

i N a b i P a b

i k i k i k i k

m
i k i k

k
i k i k i k i k i k i k i k i k

AvgP R AvgP R

b x x a y y

t t

a b x y x y x y x y

δ δ δ δ

δ δ δ δ δ δ δ δ

× ×

+ +
−

+

= + + + +

= =

 + +
 + −−  ⋅ + ⋅ + + + + 
 
 

∑
 (6.10)

Finally, by substituting Eq.(6.10) into Eq.(6.2) and defining

, ,2 i k i ke x yδ δ= + , 1 , 1 , , 12 i k i k i k i kx y x yδ δ δ δ+ + ++ + , 1 ,i k i kx yδ δ++ (6.11)

we haven proven Lemma 6.1. �

6.3.2. Discussion on Lemma 6.1

Eq.(6.1), the main result of Lemma 6.1, can be straightforwardly used to estimate the average number

of false negatives and false positives for timeslice query windows with known size along the x- and y-

axes (a and b, respectively). It notably arises from this formula that the average number of false

negatives in the results of a timeslice query is equal to the respective average number of false positives,

while their values depend mainly on the perimeter of the query window (a+b), rather than its area

(a b⋅). However, it should be explicitly mentioned that Lemma 6.1 holds in the case of uniformly

distributed query windows only; as such, the estimated average number of false negatives and false

positives serves as a metric estimating data loss due to compression, rather than providing an accurate

result regarding individual queries.

 146

Another interesting result is that the error introduced in query results due to trajectory

compression depends on the absolute values of ,i kxδ and ,i kyδ rather than their squares, i.e., 2
,i kxδ

and 2
,i kyδ . This is not an expected result; as such, it gives rise to the following discussion. In

particular, Eq.(6.1) states that the minimization of the error introduced in timeslice query results over

compressed trajectories occurs when minimizing , ,i k i kx yδ δ+ , instead of the Synchronous Euclidean

Distance (SED), which is considered as the optimization criterion in the majority of the existing

trajectory compression algorithms. It is therefore expected that the employment of , ,i k i kx yδ δ+

instead of SED as the minimization criterion in the trajectory compression algorithms, will lead to

simplified trajectories that result in smaller values of error introduced in timeslice query results.

Obviously, the evaluation of Eq.(6.1) is a costly operation; given that it involves a double sum,

its time complexity is O(nÿm) where n is the number of trajectories and m is the (average) number of

sampled points per trajectory. In other words, since Eq.(6.1) includes the calculation of δxi,k, δyi,k,

between each tuple of the initial and compressed trajectories on each timestamp the trajectory was

originally sampled, it requires to process the entire original dataset along with its compressed

counterpart. On the other hand, as already mentioned in Section 6.2, the vast majority of the proposed

trajectory compression algorithms base their decision about the point of the original trajectory data to

eliminate, on the value of the SED; however, since () () ()2 2

i i i
SED t x t y tδ δ= + , the respective

algorithm should first evaluate ()ix tδ and ()iy tδ at timestamps ti,k producing thus, ,i kxδ and ,i kyδ ,

respectively. Consequently, any trajectory compression algorithm using SED as the criterion to decide

which trajectory points to eliminate, also calculates ,i kxδ and ,i kyδ . As such, Eq.(6.1) can be calculated

during the algorithm’s execution, adding very small overhead in the original algorithm; the above

observation is further confirmed in our experimental study presented in the next section.

Moreover, since Eq.(6.1) involves the query dimensions a and b, it follows that different values

of a and b will lead to different calculations for the average error. However, such an approach (i.e.,

evaluating Eq.(6.1) from the beginning for every different query size), would lead to high computation

cost since it would also require O(nÿm) time. In order to overcome this drawback, Eq.(6.1) can be

rewritten as follows:

() ()
(1) (1)N a b P a b

A a B b C
E R E R

a b
× ×

⋅ + ⋅ +
= =

+ ⋅ +
 (6.12)

where

()
1

, , 1

, 1 ,
1 1 2

imn
i k i k

i k i k

i k

y y
A t t

δ δ−
+

+
= =

+
= − ⋅∑∑ , ()

1
, , 1

, 1 ,
1 1 2

imn
i k i k

i k i k

i k

x x
B t t

δ δ−
+

+
= =

+
= − ⋅∑∑ and

C = ()
1

, 1 ,
1 1 6

imn

i k i k

i k

e
t t

−

+
= =

− − ⋅∑∑ .

Therefore, in the case where the average error needs to be determined for a variety of query sizes (i.e.,

different sizes of a and b), rather than directly calculating Eq.(6.1) for each different query size, the

 147

three factors A, B and C could be calculated first, and be subsequently employed in Eq.(6.12); an

approach which dramatically reduces the computation cost to O(1) time.

6.4. Experimental Study

In this section, we present several sets of experiments using synthetic and real trajectory datasets. The

goal of our experimental study is two-fold:

• first, to present the overhead introduced in the execution of a compression algorithm when

calculating during its execution the values of A, B and C factors introduced in Eq.(6.12), and,

• second, to present the accuracy of the estimation provided by our analytical model regarding

the number of false negatives and false positives over synthetic and real trajectory datasets.

6.4.1. Experimental Setup

Once more, we experimented with the real-world datasets used for experimentation purposes in this

thesis, the fleet of trucks (cf. section 0). We have also used the synthetic dataset NG 2000 (cf. section

1.5.3). All the datasets where normalized in [0,1] space. In order to test the accuracy of our model and

produce compressed datasets, we implemented the TD-TR algorithm proposed by [MB04]. Then we

executed it over all the above datasets, varying its threshold between 0.001 and 0.02 of the total space,

thus producing the respective compressed datasets. Finally, we used the original and compressed

datasets and created several 3D R-trees [TVS96] in order to accelerate the querying process used when

performing experiments on the quality. Table 6.2 illustrates summary information about the (original

and compressed) datasets used. The experiments were performed in a PC running Microsoft Windows

XP with AMD Athlon 64 3GHz processor, 1 GB RAM and several GB of disk size.

Table 6.2: Summary Dataset Information

Original Datasets Compressed Datasets (#entries)

TD-TR threshold value
#trajectories # entries

0.001 0.005 0.010 0.015 0.020

Trucks 273 112,203 62,067 20,935 12,636 9,274 7,571

Synthetic 2,000 800,000 229,167 120,437 88,565 74,638 65,410

6.4.2. Experiments on the Performance

In order to demonstrate the applicability of our proposal in trajectory data and estimate the overhead

introduced in a trajectory compression algorithm when calculating the values of A, B and C factors

introduced in Eq.(6.12), we first ran the TD-TR compression algorithm over the real data and measured

the average execution time required for each trajectory, scaling also the threshold of the algorithm. We

then modified the algorithm in order to calculate the model parameters (i.e., the values of A, B and C in

Eq.(6.12) within its execution and also ran it against the same dataset with the same parameters. The

respective results are illustrated in Figure 6.8.

In particular, Figure 6.8(a) and Figure 6.8(b) illustrate the execution time of the TD-TR

algorithm per compressed trajectory (in milliseconds), with and without the evaluation of the model

parameters, against the trucks, and the synthetic datasets, respectively. A first conclusion is that the

execution time of the algorithm is reduced as the value of the TD-TR threshold increases; this is an

 148

expected result, since typically, the number of the algorithm iterations increase, as the value of the

threshold degreases. However, the main result gathered from Figure 6.8 is that the overhead introduced

is typically small (i.e., the difference between the two bars). In all cases, the overhead introduced in the

algorithm is between 7% and 19% of the originally required execution time; furthermore, in absolute

times, the overhead introduced never exceeds 0.2 milliseconds per trajectory. As a consequence, the

discussion presented in Section 3.2 is further confirmed, and our model can be evaluated as an

extension of the compression algorithm’s execution, introducing a small, perhaps negligible, overhead.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

E
xe

cu
tio

n
tim

e
(m

se
c)

Model calculations included

Model calculations excluded

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

E
x

ec
u

ti
o

n
 t

im
e

(m
se

c)

Model calculations included

Model calculations excluded

(a) (b)

Figure 6.8: Execution time for the TD-TR algorithm with and without the calculation of the model

parameters over (a) the trucks, and, (b) the synthetic datasets, scaling the value of the TD-TR threshold.

6.4.3. Experiments on the Quality

The statistical measure employed in order to demonstrate the quality of our estimation, are the reported

average number of false negatives and false positives, NE and PE , respectively. Formally, these

measures are defined as:

,
1..

1
N N i

i n

E E
n =

= ∑ , ,
1..

1
P P i

i n

E E
n =

= ∑

where n is the number of executed queries and EN,i (EP,i) the actual number of false negatives (false

positives, respectively) in the i-th query. In the next experiments, n is set to 10000 timeslice queries.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

A
v

er
ag

e
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 0.005 0.01 0.015 0.02
TD-TR threshold

A
v

er
ag

e
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

(a) (b)

Figure 6.9: Accuracy of the model scaling the value of the TD-TR threshold over (a) the trucks, and,

(b) the synthetic datasets

 149

Our first set of experiments was performed over both the real and the synthetic datasets.

Specifically, we executed 10,000 square timeslice queries of 0.10µ0.10 size (i.e., covering 1% of unit

space) randomly distributed inside the unit space, over both the original and the compressed datasets,

and then, utilizing the results of each particular query over the two datasets, we counted the actual

number of false negatives and false positives, EN,i and EP,i, respectively. Figure 6.9 that follows

illustrates the results of this experiment scaling the value of the compression threshold over the trucks

and the synthetic dataset. A first conclusion is that the average number of false hits (negatives and

positives) is linear with the value of the TD-TR compression threshold. Moreover, the

estimations,
NE and

PE , of our model are very close to the actual values of average false negatives and

false positives reported by the experiments, regardless of the value of the compression threshold. In

particular, the average error in the estimation for the synthetic dataset is around 6%, varying between

0.2% and 14%; regarding the trucks dataset, the average error raises up to 10.6%, mainly due to the

error introduced in small values of TD-TR threshold.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.05 0.1 0.15 0.2 0.25 0.3
Query size (a = b)

A
v

er
ag

e
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.1 0.15 0.2 0.25 0.3
Query size (a = b)

A
v

er
ag

e
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

(a) (b)

Figure 6.10: Accuracy of the model scaling the rectangular query size over (a) the trucks, and, (b) the

synthetic datasets

In our second experiment we used the same experimental settings (i.e., datasets, number of

queries), but we fixed the TD-TR threshold to 0.01 and scaled the size of the timeslice query window

between 0.05µ0.05 and 0.30µ0.30 (resulting in 0.25% and 9% of unit space, respectively). The

corresponding results are illustrated in Figure 6.10(a) and Figure 6.10(b) against the trucks and the

synthetic datasets, respectively. Again, it is clear that our model is highly accurate, producing estimates

NE and
PE with errors for the synthetic dataset between 0.2% and 8.7% and the average being around

2.9% (while the respective average error for the trucks dataset is 7.5%.) Another notable conclusion is

that the average number of false positives and false negatives are sub-linear with the query size; an

expected result gathered directly from the way that Eq.(6.12) involves the lengths a and b of the query

sides.

In the last experiment we verified the effect of using non-square timeslice queries (i.e., a∫b) over

the synthetic datasets (while the experiments with the trucks dataset produced similar results).

Specifically, we used timeslice query windows with sizes varying from 0.05µ0.30 (where a<<b) to

0.30µ0.30 (where a=b); we also scaled the query size towards the other direction (from 0.30µ0.05 to

 150

0.30µ0.30). The results of this experiment, illustrated in Figure 6.11(a) and (b) respectively, resulted in

similar outcomes as the ones presented in the previous paragraph regarding square (i.e, a=b) timeslice

queries. Specifically, our model is once again very accurate, producing estimates with error between

0.6% and 7.2%, while the average error is 3.5%.

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.1 0.15 0.2 0.25 0.3
Query size a (b=0.30)

A
v

er
ag

e
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.3 0.3 0.3 0.3 0.3
Query size b (a=0.30)

A
v

er
ag

e
F

al
se

 H
it

s

False Negatives

False Positives

Estimation

(a) (b)

Figure 6.11: Accuracy of the model scaling the non-rectangular query size towards (a) the x- axis, and

(b) the y- axis, against the synthetic datasets.

6.5. Conclusions

Related work on the subject of trajectory compression has focused on the development of compression

algorithms, also emphasizing on the error introduced in the position of each object from the

compression. In this work, acknowledging that users are more likely concerned about the error

introduced by the compression in spatio-temporal query results, we presented the first theoretical

model that estimates this error in the results of timeslice queries. We provided a closed formula of the

average number of false hits (false negatives and false positives) covering the case of arbitrarily

distributed trajectory data with various speeds, headings etc. Under various synthetic and real trajectory

datasets, we first illustrated the applicability of our model under real-life requirements – it turns out

that the estimation of the model parameters introduce only a small overhead in the trajectory

compression algorithm - and then presented the accuracy of our estimations, with an average error

being around 6%.

 151

7. Epilogue

7.1. Conclusions

In this thesis we have presented several techniques to support the efficient management of Trajectory

Databases. Specifically, we provided effective mechanisms that allow Moving Object Databases to

efficiently store and query historical trajectories, advancing the fields of indexing, query processing,

supporting of uncertainty and trajectory compression. Next, we discuss the specific contributions of

this thesis.

In Chapter 2, we provided two novel indexing techniques; among them, the first advances an

existing solution while the second exploits network-constrained movement so as to outperform general

solutions. Specifically, on the case where objects move freely in the space, acknowledging the basic

advantages of the TB-tree [PJT00], we proceed one step beyond by proposing a novel index, called

TB*-tree. The proposed index overcomes the main disadvantages of its predecessor while at the same

time preserving all of its ‘desired’ properties: it supports trajectory insertions and deletions, trajectory

compression, while querying is performed by employing the same algorithms provided in [PJT00]. In

the second case of network-constrained objects, we provide the Fixed Network R-tree, which is forest

of several 1D (1D) R-trees [Gut84] on top of a single 2D (2D) R-tree [Gut84]. The 2D R-tree is used

to index the spatial data of the network graph, while the 1D R-trees are used to index the time interval

of each object’s movement on a given segment of the network. Additionally, the leaf nodes of all the

1D R-trees are indexed by another 1D R-tree used to answer queries with no spatial extent. We

experimentally compared the FNR-tree with the TB*-tree and the traditional 3D R-tree [TVS96] and

TB-tree [PJT00]. Under various datasets and range queries, the FNR-tree was shown to outperform all

its competitors in the vast majority of settings. The FNR-tree has high space utilization, smaller size

per moving object and supports range queries much more efficiently. In general, we argue that the

FNR-tree is an access method ideal for fleet management applications. However, the FNR-tree may

only be used under the network-constrained scenario; when objects are moving freely in the space, the

TB*-tree is shown to outperform the original TB-tree in the vast majority of settings, regarding

insertion and querying operations. Moreover, the TB*-tree is more compact than its competitors,

behaves well in non-chronological trajectory insertions that appear in real-world environments, and

supports trajectory deletions and trajectory compression efficiently.

In Chapter 3, we studied the problem of performing nearest neighbor queries over historical

trajectories. Related work on this subject so far, mainly deals with either stationary or moving query

 152

points over static datasets or future (predicted) locations over a set of continuously moving points. In

contrast, in this thesis, we presented the first complete treatment of historical NN queries over moving

object trajectories stored on R-tree-like structures; as such, the presented solutions may be applied to a

variety of indexes, such as the 3D R-tree [TVS96], the TB-tree [PJT00], as well as the novel TB*-tree.

We provide a set of novel metrics, and advance existing work in the calculation of the well-known

MINDIST metric between line segments and rectangles. The metrics support our ordering and pruning

strategies which are subsequently employed in a set of algorithms answering nearest neighbor and

historical continuous nearest neighbor queries for stationary or moving query points. The presented

algorithms, following both depth-first [RKV95] and best-first [HS99] paradigms, are then generalized

to search for the k nearest neighbors. In order to measure the performance of the introduced algorithms

we conducted an extensive experimental study based on synthetic and real datasets. Regarding the

historical non-continuous algorithms, it has been shown that while the incremental (best-first) approach

is always less expensive than the non-incremental (depth-first) in terms of node accesses, its actual

execution time heavily depends on the used queue length. In general, the best first approach

outperforms its competitor only for point NN queries under small temporal extent (less than 2-4%

depending on the index used and under any k), while in all other cases the depth first approach takes

less time to be executed. This drawback of the incremental algorithms is mainly due to the queue

length which may become huge, especially in the case of the TB-tree and the TB*-tree. Moreover, we

demonstrated that our improvement over the MINDIST computation can sufficiently increase the

performance of the proposed algorithms. Finally, the experimental study shows that the majority of the

presented algorithms are linear or sub-linear with the main parameters of our experimental study (in

terms of node accesses): the dataset cardinality, the query temporal extent and the number of k.

In Chapter 4, based on our work on NN search, we examined the problem of most similar

trajectory (MST) search. More specifically, existing related work on similarity query processing either

ignores the temporal dimension of trajectories, or considers trajectories with the same sampling rate.

Then again, in this thesis we relaxed these assumptions by defining a novel metric based on the average

Euclidean distance between trajectories, called DISSIM, while we subsequently presented a complete

treatment of historical MST queries over moving object trajectories stored on R-tree like structures

avoiding the drawbacks of the existing methods. We proposed a set of metrics, based on simple notions

of trajectories, such as the dataset maximum speed, each one followed by a lemma that support our

ordering and pruning strategies; then we presented two MST algorithms. Under various synthetic and

real trajectory datasets, we illustrated the superiority of the proposed DISSIM metric against related

work [VKG02], [COO05], in terms of quality, while our algorithms show high pruning ability when

processing MST queries, also verified in the case of k-MST queries. Among the algorithms proposed,

the BFMSTSearch following the best-first paradigm [HS99] seems more promising since it shows

better performance over its competitor DFMSTSearch; in particular, it demonstrates linear behaviour

in terms of execution time and node accesses, while its pruning power remains above 90% in all

settings tested during the experimental study (whereas the pruning power of DFMSTSearch degrades

to very small values as the query length increases).

 153

Here, we have to point out that all the proposed algorithms on nearest neighbor and similarity

queries do not require any dedicated index structure and can be directly applied to any member of the

R-tree family used to index trajectories, such as the 3D R-tree [TVS96], the TB-tree [PJT00] and the

TB*-tree proposed in this thesis. To the best of our knowledge, the application of the proposals of this

thesis enables for the first time a spatio-temporal index to support classical range, topological, nearest

neighbor and similarity based queries. Moreover, a number of the proposed, in this thesis, techniques

have been implemented in the ORACLE Object – Relational DBMS and integrated into the HERMES

engine [PFGT08]. In particular, the HERMES engine, so far, has been extended so as to include the

TB-tree [PJT00], along with the point and trajectory nearest neighbor algorithms presented in Chapter

3.

Regarding the management of the location uncertainty of spatio-temporal trajectories, in Chapter

5 we argued that there are cases where the user would prefer to know the influence of the objects’

uncertainty in the query results, without actually executing the query. Such cases include interactive

database querying, imprecision settings, data warehouse operations and querying under the open agoras

scenario [Ioa07] as extensively discussed in this chapter. Towards this goal, we provided a theoretical

model that estimates the error introduced by each object’s location uncertainty in the results of

timeslice spatio-temporal queries, as well as, over simple range queries over stationary spatial data. The

model proposed consists of a closed formula that calculates the average number of false hits, classified

as false positives and false negatives, under three initial assumptions: uniform location uncertainty

(following the model proposed by [TWHC04] in order to describe the uncertain position of

trajectories), uniformly distributed data, and, constant value of the uncertainty threshold [TWHC04]

(radius of uncertainty circle). Then, we relaxed these assumptions towards more realistic settings, using

the bivariate normal distribution for describing the location uncertainty and MinSkew histograms so as

to support arbitrary data and uncertainty radiuses distributions. The accuracy of the proposed model

over spatio-temporal trajectory data was evaluated through experimentation using various synthetic

spatio-temporal datasets. In particular, our model is shown to provide high accuracy with an average

error on
PE and

NE never exceeding 6% for spatio-temporal and stationary spatial data. Regarding

the application of our model over trajectory data, the model showed values of
PES and

NES , i.e.,

average absolute error in each individual query, near 40%. While at a first prospect this error seems to

be high, in reality, it is due to the small number of individual trajectories used (according to the

formulas, for typical query sizes and uncertainty radiuses we expect 0.0004µN and 0.0025µN as false

positives / negatives per query). Bearing these values in mind, it becomes clear that for typical query

sizes and uncertainty radiuses, the dataset population should be quite large in order to produce a

significant number of false hits, suitable to be counted and compared against the results of the proposed

model. Therefore, the details of the developed model using a variety of settings were further

investigated using synthetic and real spatial datasets of appropriate cardinality. Regarding the

applicability of the model in stationary synthetic (random) spatial datasets, the estimation of the

number of false hits is accurate regardless of the value of the query size and the radius d of the

uncertainty circle, or σ in the case of data with normally distributed uncertainty. The experiments over

real spatial data demonstrate accuracy even higher than the one reported for synthetic data, with very

 154

low
PES and

NES errors, indicating the advantage introduced by the employment of histograms, even

in the case of variable σ. The results on the application of the proposed model in spatial data cubes and

spatial OLAP operations are also very promising. Finally, the implementation of the proposed solutions

in real-world environments (PostgreSQL [Post08a] with PostGIS spatial extension [Post08b]) has

shown the efficiency of this proposal when employed as an estimator, since its execution time is

typically only a few milliseconds. The proposed model, apart from its application in MODs, can be

directly employed in existing SDBMS in order to provide users with the accuracy of spatial query

results based only on known dataset and query features, while off-the-self histograms already

employed in spatial databases for query optimization purposes, can serve our model without the need

for any additional adjustments.

The last subject of this thesis is the management of the effect of trajectory compression

algorithms in spatio-temporal querying. Related work on this domain so far, has focused on the

development of compression algorithms also emphasizing on the error introduced in the position of

each object from the compression. On the other hand, in Chapter 6, acknowledging that users are more

likely concerned about the error introduced by the compression in spatio-temporal query results, we

presented the first theoretical model that estimates this error in the results of timeslice queries. We

provided a closed formula of the average number of false hits (false negatives and false positives)

covering the case of arbitrarily distributed trajectory data with various speeds, headings etc. It turns out

that the error is depended on the summation of the absolute values of ,i kxδ and ,i kyδ (i.e., the difference

between the compressed and the original trajectory, along the x- and y- axis, respectively) at every

timestamp tk the original trajectory sampled its position. Moreover, exploiting the developed formula,

in that chapter we provide the intuition for a novel approach that may improve the efficiency of

existing trajectory compression algorithms. Given that according to the model, the error is depended on

the absolute values of ,i kyδ and ,i kxδ , its minimization should involve the minimization of

, ,i k i kx yδ δ+ , instead of the minimization of () 2 2
, ,i k i k i kSED t x yδ δ= + which is considered as the

optimization criterion in the majority of the existing trajectory compression algorithms. Under various

synthetic and real trajectory datasets, we first illustrated the applicability of our model under real-life

requirements – it turns out that the estimation of the model parameters introduce only a small overhead

in the trajectory compression algorithm - and then presented the accuracy of our estimations, with an

average error being around 6%. It has been therefore shown that our model can be utilized right after

the compression of a trajectory dataset in order to provide the user with the average error introduced in

the results of spatio-temporal queries of several sizes (bringing in only a small overhead). Then the user

could use it as an additional criterion so as to decide whether compressed data are suitable for his/her

needs, and possibly choose on different compression rates, and so on.

7.2. Open Issues

Several research fields are remained open in the field of trajectory data management. In the next

paragraphs we describe the future research work directly fountain by the advances of this thesis.

 155

On the subject of trajectory indexing, database technology has been advanced during the years,

proposing indexes that overcome the efficiency of our proposals. Both TB*- and FNR-tree were

introduced in the early stages of this thesis; meanwhile, other structures have been proposed in the

literature and proved to be more efficient. Currently, the state-of-the-art regarding the indexing of

objects moving in unrestricted and network-constrained space is considered the PA-tree [NR07]and the

MON-tree [AG05], respectively. On the other hand, according to the results of our respective

experimental study, as well as corresponding results published in [AG05], structures exploiting the

network-constrained movement are much more efficient than those indexing objects in the unrestricted

space; actually, the former usually outperform the lalter by orders of magnitude. However, none of the

proposed network-constrained index structures is designed to preserve trajectories: both FNR- and

MON-tree by definition lack a mechanism to retrieve trajectories and only care about the processing of

coordinate-based queries. Even SETI [CEP03], which is one of the most efficient indexing schemas in

unrestricted space regarding coordinate-based queries, suffers from the same drawback. However, as

mentioned in Chapter 2, the trajectory preservation is prerequisite to process trajectory-based queries.

As such, the first research direction arising on the subject of trajectory indexing is the development of

access methods that efficiently support trajectory-based querying under both unrestricted and network-

constrained space.

Regarding advanced query processing, our proposal enables R-tree-like structures to efficiently

support NN and MST queries; on the other hand, none of the proposed spatio-temporal indexes, apart

from R-tree-like structures, consider NN or MST search algorithms. However, for some of them (e.g.,

FNR-tree), NN querying can be probably supported. A first idea on this subject is that since in the

FNR-tree the underlying network is indexed by a conventional R-tree, the best first-algorithm

described in [HS99] can be employed in order to find the spatial nearest neighbor; then, given that the

network line segments (e.g., the spatial elements of the trajectory segments) are reported in incremental

order of their distance from the query object, the algorithm would have to report such nearest segments

until retrieving the first overlapping the query in the temporal dimension; a similar approach can be

also employed in MON-tree.

Future work on advanced query processing also includes the development of algorithms to

support distance join queries (“find pairs of objects passed nearest to each other (or within distance d

from each other) during a certain time interval and/or under a certain space constraint”), and Time-

Relaxed MST queries over trajectories using the proposed DISSIM metric. This type of query calculates

the minimum dissimilarity between trajectories regardless of the time instance in which the query

object starts. The algorithms should consider trajectories indexed by R-tree-like structures, which are

the most popular trajectory indexes. Yet, the most promising future work is considering the

employment of the DISSIM metric together with the ordering and pruning techniques developed in this

thesis, so as to support efficient similarity range search, a query type having great applications in the

data mining domain. In particular, since the application of the generic density-based clustering

algorithm OPTICS [ABKS99] according to the DISSM metric [NP06] requires finding for each

trajectory in the dataset, the number of trajectories being closer (i.e., more similar) than a given value

of distance (similarity) the exhaustive scan that is used in the implementation of [NP06] turns to be a

 156

very expensive operation. However, under such circumstances, an R-tree based method for trajectory

similarity range queries, would significantly improve performance over alternative indexing and

querying strategies.

Finally, future work on advanced query processing should include the development of cost

models for NN [TZPM04] and MST queries on historical trajectories. On the same manner, selectivity

estimation formulae for query optimization purposes should be developed investing on the work

presented in [TSP03] for predictive spatio-temporal queries.

A side advance of this thesis, presented in Section 5.4.2 is the development of a spatio-temporal

histogram, based on existing approaches of spatial databases [APR99], for supporting the selectivity

estimation of timeslice queries. On the other hand, the estimation of the number of distinct trajectories,

for general range queries (i.e., with temporal extent ∫ 0), is not a trivial task, since it involves the well

known distinct-counting problem [TKC+04]. The distinct-counting problem stands when an object

samples its position in several timestamps inside a given query window, resulting to be counted

multiple times in the query result. [TKC+04] provide a solution to the aforementioned problem by

integrating spatio-temporal indexes with sketches, traditionally used for approximate query processing.

However, their proposal reduces the space requirements only a few times (typically about the 40% of

the original database size), while the corresponding index structure is maintained on the disk. Clearly,

such an approach cannot be utilized instead of histograms (having a typical size of a few kilobytes

[APR99]), since it introduces a sizeable overhead in terms of both memory space and processing time

requirements.

In the same fashion, a spatio-temporal histogram concerning about the number of distinct

trajectories, would have to partition the space into several spatio-temporal buckets, counting the

number of distinct trajectories inside each bucket. However, when trying to produce an estimation of

the selectivity of a query window which contains more than one bucket, this estimation cannot be

computed as the sum of the cardinality of two buckets since trajectories may be counted several times

depending on the number of buckets they overlap. Figure 7.1 exemplifies this problem, illustrating four

histogram buckets (B1, B2, B3, B4) along with their respective selectivity Sel(Bi); the total selectivity

reported by all four buckets () 3iSel B =U is far from being the sum of per bucket selectivities

() 7iSel B =∑ because trajectories T1, T2, T3 will be counted as many times as the buckets each of

them overlaps. Moreover, the same problem arises during the histogram construction following the

methodology introduced in [APR99] for simple spatial histograms: the construction algorithm initially

calculates the number of distinct objects inside each cell produced by a dense spatial grid, and then, in

each iteration it aggregates groups of cells to form more wide buckets based on the MinSkew heuristic.

However, during this aggregation, the number of trajectories inside each resulted bucket has to be

calculated, clearly, not as the sum of the trajectories contained inside each fundamental cell.

 157

B4

Sel(B4)=1

B3

Sel(B3)=2

B1

Sel(B1)=3

B2

Sel(B2)=2

T1

T2

T3

x

y

Figure 7.1. The distinct-counting problem in trajectory histograms

Regarding the subject of uncertainty management, there are numerous interesting research

directions arising from the work presented in this thesis, including the application of our model in data

spaces of higher dimensionality and its extension in order to support general spatio-temporal range

queries (i.e., with temporal extent ∫ 0), non-point datasets, non-rectangular query windows as well as

nearest neighbor queries. The majority of the aforementioned research directions require significant

effort. Among them, the first that must be examined in the context of spatio-temporal databases is its

extension in the case of general range queries. This is not a trivial task; nevertheless, we subsequently

provide hints towards this direction. Consider, for example, Figure 7.2 illustrating trajectories of three

moving objects along with their uncertainty regions (i.e., the dotted areas) in the x-t space, along with a

range query (Due to simplicity reasons all trajectories are illustrated as line segments without loss of

generality). Trajectories T1 and T2 can not ever encounter a false hit regarding the query window due to

the fact that for at least one time instance their uncertainty region was entirely located inside it. On the

other hand, trajectory T3 may encounter a false hit because it is not inside the query window;

nevertheless, its uncertainty region crosses it. Generalizing the above observation, we can state that

only objects whose uncertainty area crosses the query window without being entirely inside it at any

time instance, may contribute to the number of false hits in the results of the query.

t

x

Range query

T1

T2
T3

Figure 7.2. The effect of uncertainty in general range queries

The last subject considered in this thesis, i.e., trajectory compression, gives also rise to numerous

interesting research directions, including the development of the presented model’s counterparts for

nearest neighbor queries, or even more, general spatio-temporal range queries. More specifically, the

extension of our approach towards the second direction, would require to determine the shape of the

spatio-temporal space inside which the lower left range query corner (i.e., the minimum point of the

range query) has to be found in order for the compressed trajectory to be retrieved as a false hit

 158

(negative of positive), in accordance with Figure 6.6, Figure 6.7, and subsequently to determine its

volume in accordance with Eq.(6.4). Although this volume can be calculated when δxi and δyi are

expressed as single functions (i.e., between consecutive timestamps), in the general case where δxi and

δyi are expressed as multi-functions (i.e., different functions in different original trajectory line

segments), the respective volume is very hard to be determined. Nevertheless, it remains as a great

challenge for future work.

Finally, it would be interesting for one to apply our intuition regarding the appropriate

minimization criterion of trajectory compression algorithms, so as to provide a novel approach that

improves the efficiency of existing solutions. This efficiently would be measured in terms of

compression rates vs. number of false hits introduced in spatio-temporal queries due to compression,

contrary to existing approaches which measure it in terms of the average error introduced in the

position of each trajectory [MB04].

 159

8. References

[ABKS99] Ankerst, M., Breunig, M., Kriegel, H.,P., and Sander, J.: OPTICS: Ordering Points To

Identify the Clustering Structure. Proceedings of ACM SIGMOD, 1999

[ACNV99] Arcieri, F., Cammino, C., Nardelli, E., and Venza, A. The Italian Cadastral Information

System: a Real-Life Spatio-Temporal DBMS. Proceedings of STDM 1999

[AFH02] Agarwal, P. K., Flato, E., Halperin, D., Polygon decomposition for efficient construction of

Minkowski sums, Computational Geometry, 21(1-2): 39-61 (2002)

[AFS93] Agrawal, R., Faloutsos, C., and Swami, A., Efficient Similarity Search in Sequence

Databases. Proceedings of FODO, 1993.

[AG05] Guting, R., H., Almeida, V., T., Indexing the Trajectories of Moving Objects in Networks.

GeoInformatica 9(1):33-60, 2005.

[AGB06] Almeida, V., T., Guting, R., H., and Behr, T. Querying Moving Objects in SECONDO.

Proceedings of MDM, 2006

[APR99] Acharya, S., Poosala, V., and Ramaswamy, S., Selectivity Estimation in Spatial Databases.

Proceedings of ACM SIGMOD, 1999.

[BC96] Berndt, J. and Clifford, J., Finding patterns in time series: A dynamic programming

approach. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G., and Saltenis, S., Nearest Neighbor and Reverse

Nearest Neighbor Queries for Moving Objects. Proceedings of IDEAS, 2002.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., and Seeger, B. The R*-tree: An Efficient and

Robust Access Method for Points and Rectangles. Proceedings of ACM SIGMOD, 1990.

[BS03] Beresford, A. R., and Stajano, F. Location Privacy in Pervasive Computing. IEEE

Pervasive Computing, 2(1):46-55, 2003.

[Bri02] Brinkhoff, T.: A Framework for Generating Network-Based Moving Objects,

Geoinformatica, 6(2):153-180, 2002

[BW01] Babu, S., and Widom, J., Continuous Queries over Data Streams, SIGMOD Record,

30(3):109-120, 2001.

[CC02] Choi, Y.-J., and Chung, C.-W., Selectivity estimation for spatio-temporal queries to

moving objects. Proceedings of ACM SIGMOD, 2002

[CC07] Chen, J. and Cheng, R., Efficient Evaluation of Imprecise Location-Dependent Queries.

Proceedings of IEEE ICDE, 2007

 160

[CEP03] Chakka, V.P., Everspaugh, A. and Patel, J., Indexing Large Trajectory Data Sets with

SETI. Proceedings of CIDR, 2003.

[CF98] Cheung, K.L., and Fu, A.,W., Enhanced Nearest Neighbour Search on the R-tree. SIGMOD

Record, 27(3):16-21, 1998

[CF99] Chan, K.P., and Fu, A.W-C., Efficient time series matching by Wavelets. Proceedings of

ICDE, 1999.

[CKP04] Cheng, R., Kalashnikov, D., and Prabhakar, S., Querying Imprecise Data in Moving Object

Environments. IEEE TKDE 16(9):1112-1127, 2004.

[CN04] Cai, Y., and Ng, R., Indexing spatio-temporal trajectories with Chebyshev polynomials.

Proceedings of ACM SIGMOD, 2004.

[COO05] Chen, L., Tamer Özsu, M., and Oria, V., Robust and Fast Similarity Search for Moving

Object Trajectories. Proceedings of ACM SIGMOD, 2005.

[CPZ97] Ciaccia, P., Patella, M., and Zezula, P. M-tree: An efficient access method for similarity

search in metric spaces. Proceedings of VLDB, 1997

[CR99] Chomicki, J. and Revesz, P., A Geometric Framework for Specifying Spatio-temporal

Objects. Proceedings of TIME, 1999.

[CWT03] Cao, H., Wolfson, O., and Trajcevski, G., Spatio-temporal Data Reduction with

Deterministic Error Bounds. Proceedings of DIALM–POMC, 2003.

[CXP+04] Cheng, R., Xia, Y., Prabhakar, S., Shah, R., and Vitter, J.S., Efficient Indexing Methods for

Probabilistic Threshold Queries over Uncertain Data. Proceedings of VLDB, 2004

[CZBP06] Cheng, R., Zhang, Y., Bertino, E., and Prabhakar, S. Preserving user location privacy in

mobile data management infrastructures. Proceedings of the 6th Workshop on Privacy

Enhancing Technologies, 2006.

[DP73] Douglas, D. H., Peucker, T. K., Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. The Canadian Cartographer 10

(1973) 112–122.

[DYM+05] Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., and Vaitis, M., Probabilistic Spatial Queries on

Existentially Uncertain Data. Proceedings of SSTD, 2005.

[EGSV99] Erwig, M. Güting, R. H., Schneider, M., and Varzigiannis, M., Spatio-Temporal Data

Types: An Approach to Modeling and Querying Moving Objects in Databases.

GeoInformatica 3(3): 265-291, 1999

[FGNS00] L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider, A Data Model and Data Structures

for Moving Objects Databases. Proceedings of ACM SIGMOD, 2000.

[FGPT05] Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y., Nearest Neighbor Search on

Moving Object Trajectories. Proceedings of SSTD, 2005.

[FGPT07] Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y., Algorithms for Nearest

Neighbor Search on Moving Object Trajectories. Geoinformatica 11(2): 159-193 (2007)

[FGT07] Frentzos, E., Gratsias, K., and Thedoridis, Y., Index-based Most Similar Trajectory Search.

Proceedings of ICDE, 2007

 161

[FGT08] Frentzos, E., Gratsias, K., and Thedoridis, Y., On the Effect of Uncertainty in Spatial

Querying, IEEE TKDE, accepted, 2008

[Fre02] Frentzos, E., Spatio-temporal Indexing Techniques. MSc thesis, National Technical

Univesity of Athens, 2003. Available at http://isl.cs.unipi.gr/db/people/efrentzo (in greek).

[Fre03] Frentzos, E., Indexing objects moving on fixed networks. Proceedings of SSTD, 2003.

[FT06] Frentzos, E. and Theodoridis, Y., The TB*-tree: Indexing Moving Object Trajectories in

Real-World Environments. UNIPI-ISL-TR-2006-02, Technical Report Series, University of

Piraeus, 2006. Available at http://isl.cs.unipi.gr/db/people/efrentzo.

[FT07] Frentzos, E., and Theodoridis, Y., On the Effect of Trajectory Compression in Spatio-

temporal Querying. Proceedings of ADBIS, 2007.

[GBE+00] Guting, R., H., Bohlen, M., H., Erwig, M., Jensen, C., S., Lorentzos, N., A., Schneider, M.,

and Vazirgiannis, M., A Foundation for Representing and Querying Moving Objects. ACM

TODS, 25(1): 1-42, 2000.

[GL05] Gedik, B., and Liu, L. A customizable k-anonymity model for protecting location privacy.

Proceedings of ICDCS, 2005.

[GS05] Güting, R.H., and Schneider, M., Moving Objects Databases. Morgan Kaufmann

Publishers, 2005.

[Gut84] Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Indexing. Proceedings of

ACM SIGMOD, 1984.

[HKT03] Hadjieleftheriou, M., Kollios, G., and Tsotras, V., Performance Evaluation of Spatio-

temporal Selectivity Estimation Techniques. Proceedings of SSDBM, 2003

[HKTG02] Hadjieleftheriou, M., Kollios, G., Tsotras, V. J., and Gunopulos, D., Efficient Indexing of

Spatio-temporal Objects. Proceedings of EDBT, 2002.

[HKTG06] M., Hadjieleftheriou, G., Kollios, V., Tsotras, and D., Gunopulos, Indexing Spatio-

temporal Archives. The VLDB Journal, to appear

[HS92] Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification

algorithm. Proceeedings of SDH, 1992.

[HS99] Hjaltason, G., and Samet, H., Distance Browsing in Spatial Databases, ACM TODS, 24(2):

265-318, 1999.

[HXL05] Hu, H., Xu, J., and Lee, D.L., A Generic Framework for Monitoring Continuous Spatial

Queries over Moving Objects. Proceedings of ACM SIGMOD, 2005.

[Ioa93] Ioannidis, Y., Universality of Serial Histograms. Proceedings of VLDB, 1993.

[Ioa07] Ioannidis, Y., Emerging Open Agoras of Data and Information. Proceedings of ICDE,

2007

[IP95] Ioannidis, Y. and Poosala, V., Balancing histogram optimality and practicality for query

result size estimation. Proceedings of ACM SIGMOD, 1995.

[ISS03] Iwerks, G.S., Samet, H., and Smith, K., Continuous K-Nearest Neighbor Queries for

Continuously Moving Points with Updates. Proceedings of VLDB, 2003.

[Keo02] Keogh, E., Exact indexing of dynamic time warping. Proceedings of VLDB, 2002.

[KF93] Kamel, I., and Faloutsos, C.: On Packing R-trees. Proceedings of CIKM, 1993.

 162

[KGT99] Kollios, G., Gunopulos, D., and Tsotras, V. On Indexing Mobile Objects. Proceedings of

ACM PODS, 1999.

[KWX+06] Keogh, E., Wei, L., Xi, X., Lee, S.H., and Vlachos, M., LB_Keogh Supports Exact

Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance

Measures. Proceedings of VLDB, 2006.

[Lei95] A. Leick, GPS satellite surveying, John Wiley and Sons, New York, 1995.

[LS05] Lin, B., and Su, J., Shapes Based Trajectory Queries for Moving Objects. Proceedings of

ACM-GIS, 2005.

[MB04] Meratnia, N., By, R., Spatio-temporal Compression Techniques for Moving Point Objects.

Proceedings of EDBT, 2004.

[MFN+08] Marketos, G., Frentzos, E., Ntoutsi, I., Pelekis, N., Raffaeta, A., and Theodoridis, Y.,

Building Real-World Trajectory Warehouses. Proceedings of MobiDE, 2008

[MHP05] Mouratidis K., Hadjieleftheriou M., Papadias, D., Conceptual Partitioning: An Efficient

Method for Continuous Nearest Neighbor Monitoring. Proceedings of ACM SIGMOD,

2005.

[MNPT05] Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., and Theodoridis, Y., R-trees:

Theory and Applications. Springer-Verlag, 2005

[MXA04] Mokbel, M.F., Xiong, X., and Aref, W.G., SINA: Scalable Incremental Processing of

Continuous Queries in Spatio-temporal Databases. Proceedings of ACM SIGMOD, 2004.

[NP06] Nanni, M., and Pedreschi, D., Time-focused density-based clustering of trajectories of

moving objects. Journal of Intelligent Information Systems, 27(3):267–289, 2006.

[NR07] Ni, Y., and Ravishankar, C., Indexing Spatio-temporal Trajectories with Efficient

Polynomial Approximations, IEEE TKDE, 19(5): 663-678, 2007.

[NRB03] Ni, J., Ravishankar, C.V., and Bhanu, B., Probabilistic Spatial Database Operations.

Proceedings of SSTD, 2003.

[NST99] Nascimento, M., Silva, J.R.O., and Theodoridis, Y. Evaluation of Access Structures for

Discretely Moving Points. Proceedings of STDM, 1999

[PFGT08] Pelekis, N., Frentzos, E., Giatrakos, N. and Theodoridis, Y., Aggregative LBS via a

Trajectory DB Engine. Proceedings of ACM SIGMOD, 2008 (to appear)

[Pfo02] Pfoser, D, Indexing the Trajectories of Moving Objects. IEEE DE Bulletin, 25(2):2-9,

2002.

[PKM+07] Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., and Theodoridis, Y.,

Similarity Search in Trajectory Databases. Proceedings of TIME, 2007

[PJ99] Pfoser, D. and Jensen, C.S., Capturing the Uncertainty of Moving-Object Representations,

Proceedings of SSD, 1999

[PJ01] Pfoser, D., and Jensen, C.S., Querying the trajectories of on-line mobile objects.

Proceedings of MobiDE, 2001

[PJ03] Pfoser, D., and Jensen, C.S., Indexing of network constrained moving objects. Proceedings

of ACM-GIS, 2003

 163

[PJT00] Pfoser D., Jensen C. S., and Theodoridis, Y., Novel Approaches to the Indexing of Moving

Object Trajectories. Proceedings of VLDB, 2000.

[Post08a] PostGIS, URL: http://postgis.refractions.net (accessed 15 May 2008)

[Post08b] PostgreSQL, URL: http://www.postgresql.org (accessed 15 May 2008)

[PPS06] Potamias, M., Patroumpas, K. and Sellis, T., Sampling Trajectory Streams with Spatio-

temporal Criteria. Proceedings of SSDBM, 2006.

[PPS06a] Potamias, M., Patroumpas, K. and Sellis, T., Amnesic Online Synopses for Moving

Objects. Proceedings of CIKM, 2006.

[PPS07] Potamias, M., Patroumpas, K. and Sellis, T., Online Amnesic Summarization of Streaming

Locations. Proceedings of SSTD, 2007.

[PT06] Pelekis N., Theodoridis Y. Boosting Location-Based Services with a Moving Object

Database Engine. Proceedings of MobiDE, 2006.

[PTJ05] Pfoser, D., Tryfona, N., and Jensen, C.S., Indeterminacy and Spatio-temporal Data: Basic

Definitions and Case Study, GeoInformatica 9(3): 211-236, 2005.

[PTKZ02] Papadias, D., Tao, Y., Kalnis., P., and Zhang, J.: Indexing Spatio-Temporal Data

Warehouses. Proceedings ICDE, 2002.

[PTVP06] Pelekis N., Theodoridis Y., Vosinakis S., and Panayiotopoulos T.. Hermes - A Framework

for Location-Based Data Management. Proceedings of EDBT, 2006.

[RKV95] Roussopoulos, N., Kelley, S., and Vincent, F., Nearest Neighbor Queries. Proceedings of

ACM SIGMOD, 1995.

[SJ02] Saltenis, S. and Jensen, C. S., Indexing of Moving Objects for Location-Based Services.

Proceedings of ICDE, 2002.

[SJLL00] Saltenis, S., Jensen, C. S., Leutenegger, S. and Lopez, M., Indexing the Positions of

Continuously Moving Objects. Proceedings of ACM SIGMOD, 2000.

[SKS03] Shahabi, C., Kolahdouzan, M., and Sharifzadeh, M., A Road Network Embedding

Technique for K-Nearest Neighbor Search in Moving Object Databases, GeoInformatica,

7(3): 255-273, 2003.

[SR01] Song, Z., and Roussopoulos, N., K-Nearest Neighbor Search for Moving Query Point.

Proceedings of SSTD, 2001.

[SYF05] Sakurai, Y., Yoshikawa, M., and Faloutsos, C., FTW: Fast Similarity Search under the

Time Warping Distance. Proceedings of PODS, 2005.

[TCX+05] Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., and Prahbakar, S., Indexing Multi-

Dimensional Uncertain Data with Arbitrary Probability Density Functions. Proceedings of

VLDB, 2005.

[The03] Theodoridis, Y., Ten Benchmark Database Queries for Location-based Services. The

Computer Journal 46(6): 713-725, 2003.

[TKC+04] Tao, Y., Kollios, G., Considine, J., Li, F., and Papadias, D., Spatio-Temporal Aggregation

Using Sketches. Proceedings of ICDE, 2004

[TP01] Tao, Y., and Papadias, D., MV3R-Tree: A Spatio-Temporal Access Method for Timestamp

and Interval Queries. Proceedings of VLDB, 2001

 164

[TP02] Tao, Y., and Papadias, D., Time Parameterized Queries in Spatio-Temporal Databases,

Proceedings of ACM SIGMOD, 2002.

[TPS02] Tao, Y., Papadias, D., and Shen, Q., Continuous Nearest Neighbor Search. Proceedings of

VLDB, 2002.

[TPS03] Tao, Y., Papadias, D., and Sun, J., An optimized Spatio-temporal Access Method for

Predictive Queries. Proceedings of VLDB, 2003

[Tra03] Trajcevski, G., Probabilistic Range Queries in Moving Objects Databases with

Uncertainty. Proceedings of MobiDE, 2003.

[TS96] Theodoridis, Y., and Sellis, T., A Model for the Prediction of R-tree Performance.

Proceedings of ACM PODS, 1996.

[TSN99] Theodoridis, Y., Silva, J. R. O., and Nascimento, M. A., On the Generation of Spatio-

temporal Datasets. Proceedings of SSD, 1999.

[TSP03] Tao, Y., Sun, J., and Papadias, D., Analysis of predictive spatio-temporal queries. ACM

TODS, 28(4):295-336, 2003

[TVS96] Theodoridis, Y., Vazirgiannis, M., and Sellis, T., Spatio-temporal Indexing for Large

Multimedia Applications. Proceedings of ICMCS, 1996.

[TWZC02] Trajcevski, G., Wolfson, O., Zhang, F., and Chamberlain, S., The geometry of uncertainty

in moving objects databases. Proceedings of EDBT, 2002.

[TWHC04] Trajcevski, G., Wolfson, O., Hinrichs, K. and Chamberlain, S. Managing uncertainty in

moving objects databases, ACM Trans., Database Systems, 29(3), 463-507, 2004.

[TZPM04] Tao, Y., Zhang, J., Papadias, D., and Mamoulis, N., An Efficient Cost Model for

Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces, IEEE

TKDE 16(10):1169-1184, 2004

[VGD04] Vlachos, M., Gunopulos, D., and Das, G., Rotation Invariant Distance Measures for

Trajectories. Proceedings of SIGKDD, 2004.

[VKG02] Vlachos, M., Kollios, G., and Gunopulos, D., Discovering Similar Multidimensional

Trajectories. Proceedings of ICDE, 2002.

[WD04] Worboys, M., and Duckham, K., GIS: A Computing Perspective. CRC Press, 2004

[WSCY99] Wolfson, O., Sistla, P.A., Chamberlain, S., and Yesha, Y., Updating and Querying

Databases that Track Mobile Units. Distributed and Parallel Databases, 7(3):257-387,

1999.

[XMA05] Xiong, X., Mokbel, M., and Aref, W., SEA-CNN: Scalable Processing of Continuous K-

Nearest Neighbor Queries in Spatio-temporal Databases. Proceedings of ICDE, 2005.

[XP03] Yuni Xia, Sunil Prabhakar: Q+Rtree: Efficient Indexing for Moving Object Database.

Proceedings of DASFAA, 2003

[YAS03] Yanagisawa, Y., Akahani, J., and Satoh, T., Shape-Based Similarity Query for Trajectory

of mobile Objects. Proceedings of MDM, 2003.

[YM03] Yu, X., and Mehrotra, S., Capturing Uncertainty in Spatial Queries over Imprecise Data.

Proceedings of DEXA, 2003

 165

[YPK05] Yu, X., Pu, K., and Koudas, N., Monitoring k-Nearest Neighbor Queries Over Moving

Objects. Proceedings of ICDE, 2005.

[ZG02] J. Zhang and M. Goodchild. Uncertainty in Geographical Information. Taylor & Francis,

2002.

[ZSI02] Zhu, J, Su, J. and Ibarra, O., Trajectory queries and octagons in moving object databases.

Proceedings of CIKM, 2002.

