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Preface 

The domain of Moving Object Databases (MODs) is an important research area that has received a lot 

of attention during the last decade. The objective of moving object databases is to extend database 

technology to support the representation and querying of moving objects and their trajectory. MODs 

have become an emerging technological field due to the development of the ubiquitous location-aware 

devices, such as PDAs, mobile phones etc., as well as the variety of the information that can be 

extracted from such databases. However, the development of mechanisms that enable MODs to 

efficiently support trajectory data involves several physical aspects of the database technology, such as 

indexing, advanced query processing and query optimization.  

The challenge accepted in this thesis is to provide mechanisms that enable MODs to manage 

trajectory data efficiently. Towards this goal, we develop a series of access methods, and dedicated 

query processing techniques which are subsequently implemented in prototypes in order to demonstrate 

their efficiency. Following the proposals of our thesis, existing moving object indexing techniques are 

enabled to support a wide range of standard and advanced queries. Beyond that, by applying the 

suggestions of related work we develop a model for the prediction of the effect of uncertainty in spatio-

temporal querying. The results of our research may be directly employed in the context of spatial and 

spatio-temporal databases and warehouses, as well as, for query optimization purposes over distributed 

data with uncertainty. Finally, we provide a model that estimates the effect of trajectory compression in 

spatio-temporal querying. Our model expose interesting details regarding the error distribution of 

compressed trajectories which may lead to a new generation of more efficient compression algorithms, 

while it can be used as an additional criterion in order for a user to decide whether the compressed data 

are suitable for his / her needs. 

 

July 2008 Elias Frentzos 
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1. Intoduction 

This chapter highlights the background of the thesis and outlines its structure. In Section 1.1 we 

introduce some basic knowledge about trajectories and motivate the thesis. Section 1.2 presents the 

notion of trajectories, which are the general subject of this work. In Section 1.3 we set the problems 

that we will cope with, and Section 1.4 sketches the contributions of this thesis. In Section 1.5 the 

datasets used throughout the thesis are introduced and finally, Section 1.6 outlines the rest of the thesis. 

1.1. Moving Object Databases 

The domain of Moving Object Databases (MODs) is an important research area that has received a lot 

of interest during the last decade. The objective of moving object databases is to extend database 

technology to support the representation and querying of moving objects and their trajectory. MODs 

have become an emerging technological field due to the development of the ubiquitous location-aware 

devices, such as PDAs, mobile phones etc., as well as the variety of the information that can be 

extracted from such databases. Currently, a number of decision support tasks can exploit the presence 

of MODs, such as traffic estimation and prediction, analysis of traffic congestion conditions, fleet 

management systems, battlefield and animal immigration habits analysis [GS05]. 

Traditionally, the following taxonomy exists in the spatio-temporal database literature: (a) work 

on the present and future positions of moving objects, such as [SJLL00], [BJKS02], [MXA04] and (b) 

work on the past positions of objects, asking historical queries, such as [TVS96], [PJT00]. The latter 

category, can be also classified into two other categories: (a) approaches that model and treat spatial 

data changing discretely over time, with examples including management of multimedia data [TVS96], 

simple spatial [NST99] and more comlex, spatial referenced data, such as cadastral data [ACNV99], 

and, (b) approaches that deal with data changing continuously their position with time [GBE+00], 

[PJT00]; the latter is the category into which this thesis belongs. 

Moving objects are geometries, which may be points, lines, areas or volumes, changing over 

time, while a trajectory is the description of the movement of those objects. As the geographical space 

per se is continuous, the physical movement is described by a continuous change of position, i.e., a 

function from time to geographical space. Movement also implies a temporal dimension as we can only 

perceive movement through comparison at two different instants. Therefore, a trajectory can be 

equivalently defined as the recording of a time-varying spatial phenomenon.  

According to the previous discussion, a historical trajectory can be quite simply defined as a 

function from time to geographical space; on the other hand, its description, representation and 
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manipulation are much more complex. Indeed, from an application point of view, a trajectory is the 

recording of the movement of some object i.e., the recording of the positions of the object at specific 

moments in time. Thus, while we naturally think of a well-shaped curve representing the trajectory of 

the object, in reality the trajectory has to be built from a set of sample points, i.e., the sampled positions 

of the object; then the trajectory curve is obtained by applying interpolation methods on the set of 

sample points. However, whichever interpolation method is being employed, the resulting curve will 

only be a guess of the actual trajectory; a guess that is even worse when considering the possible 

measurement errors that inevitably happen when recording the original sampled points. There is thus an 

inherent uncertainty associated with trajectories. In order to model and manage adequately uncertainty, 

different modelling concepts have been proposed in the literature [TWHC04], [TWZC02], [PJ99].  

Moreover, given that trajectories have to be a first-class modeling construct, rather than 

computable derived data, their concept was introduced in some early papers [CR99], [EGSV99], 

[FGNS00], which addressed the need for capturing and modeling the complete history of objects’ 

movement. Assessing the fact that location data may change over time, the respective database must 

contain the whole history of this development; and the Database Management System (DBMS) should 

be allowed to go back in time at any particular timestamp, and retrieve the state of the database at that 

time.  

Specifically, according to [GBE+00] moving points (mpoints) and moving regions (mregions) 

are described as 3D (2D space + time) or higher-dimensional entities whose structure and behaviour is 

captured by modeling them as abstract data types. Such types and their operations for spatial values 

changing over time can be integrated as base (attribute) data types into an extensible DBMS. 

[GBE+00] introduced a type constructor τ which transforms any given atomic data type a into a type 

τ(a) with semantics τ(a) = time Ø a. In this way, the two aforementioned basic types, namely mpoint 

and mregion, may be also represented as τ(point) and τ(region), respectively. [GBE+00] also provided 

an algebra with data types (such as moving point, moving region, moving real, etc.) together with a 

comprehensive set of operations, supporting a variety of queries over spatio-temporal trajectory data. 

The realization of such data models proposed in the literature, as well as packaging corresponding 

functionality to specific technical solutions results in moving object database engines. In the literature, 

one can find at least two MOD engines developed to realize the model proposed by Gutting et al. 

[GBE+00], namely the SECONDO prototype [AGB06] and the HERMES engine [PT06], [PTVP06].  

Then again, the development of such engines involves physical aspects of database technology, 

such as indexing, and dedicated query processing and query optimization techniques. The challenge 

thus accepted in this thesis is to provide efficient mechanisms that allow MOD Engines to efficiently 

store and query trajectories. Towards this goal, a number of access methods and dedicated advanced 

query processing techniques are developed in this thesis and are subsequently implemented and shown 

to be efficient. All these methods are initially implemented as prototypes in independent development 

environments, while their porting in commercial DBMS is left as future work; nevertheless, a number 

of the proposed techniques have been already implemented in the HERMES engine [PFGT08] and the 

PostgreSQL [Post08b] together with the PostGIS spatial extension [Post08a].  
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Briefly outlining the main topics that we will cope with in this thesis, which are physical subjects 

of a MOD engine, they include indexing techniques for moving object trajectories, dedicated query 

processing techniques, models for querying under the presence of uncertainty, and, finally, issues on 

trajectory compression.  

1.2. Basic Concepts of Trajectories 

Generally speaking, spatio-temporal trajectories can be classified into two major categories, according 

to the nature of the underlying spatial object: (i) objects without area represented as moving points, and 

(ii) objects with area, represented as moving regions; in this case the region extent may also change 

with time. Among the above two categories, the former has attracted the main part of the research 

interest, since the majority of the real-world applications involving spatio-temporal trajectories 

consider objects represented as points, e.g., fleet management systems monitoring cars in road 

networks. It is therefore the former type on which this thesis is focused; as such, in the followings our 

discussion is restricted to trajectories of moving points. 

Under this perspective, a trajectory can be straightforwardly defined as a function from the 

temporal I ⊆ �  domain to the geographical space 2
� , i.e., the 2D plane. Formally, a trajectory T is a 

continuous mapping from the temporal I ⊆ �  to the spatial domain ( 2
� , the 2D plane): 

( ) ( ) ( )( )2 : ,x yI t a t a t a t⊆ → =� � a , (1.1) 

and, 

( ) ( )( ){ } 2, , |
x y

T a t a t t t I= ∈ ⊂ ×� �  (1.2) 

On the other hand, from an application point of view, a trajectory is the recording of an object’s 

motion, i.e., the recording of the positions of an object at specific timestamps; while the actual 

trajectory consists of a curve, real-world requirements imply that the trajectory has to be built upon a 

set of sample points, i.e., the time-stamped positions of the object. Thus, trajectories of moving points 

are often defined as sequences of (x, y, t) triples: 

( ) ( ) ( ){ }1 1 1 2 2 2, , , , , ,..., , ,n n nT x y t x y t x y t= , (1.3) 

where , ,i i ix y t ∈� , and t1 < t2 < .. < tn , and the actual trajectory curve is approximated by applying 

spatio-temporal interpolation methods on the set of sample points (Figure 1.1).  
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t5 
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t 

 

Figure 1.1: The spatio-temporal trajectory of a moving point: dots represent sampled positions and 

lines in between represent alternative interpolation techniques (linear vs. arc interpolation). Unknown 

type of motion can be also found in a trajectory (see [t3, t4) time interval) 
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The first and foremost restriction posed by such spatio-temporal interpolation methods, is that a 

trajectory connected to a data sample should contain the sample points. i.e., for all points ( ), ,i i ix y t  in 

the sample it holds that ( ) ( ) ( )( ), , , ,i i i x i y i ix y t a t a t t= . Secondly, given a data sample, there is an 

infinite number of trajectories connected to that data sample, which implies that the trajectory is by no 

means unique. Finding a suitable curve connecting the sample points, is called interpolation. 

Interpolation brings along its own problems; we wish it to be fast, easily manageable, flexible and 

accurate. Unfortunately improving one property doesn't necessarily improve another. Linear 

interpolation is the fastest and easiest of them all (Figure 1.2). The idea is to connect the sample points 

with straight lines; the linearity is expressed in the fact that equal jumps in time (between the same 

sample points) lead to equal jumps in space. For example, the segment between the points ( ), ,i i ix y t  

and ( )1 1 1, ,i i ix y t+ + +  is given by  

( ) ( ) ( )1 1 1

1

, , , , , ,i

i i i i i i i i i

i i

t t
x y t x y t x x y y t t

t t
+ + +

+

−
= + − − −

−
, and 1i it t t +≤ ≤ , (1.4) 

which is a straight line segment in 2 ×� �  parameterized by t œ [ti, ti+1]. Finally, the trajectory consists 

of the concatenation of all these segments. Therefore, a trajectory may be also regarded as a collection 

of n-1 3D-line segments { }1 2 1, ,..., nT L L L −= with ( ) ( ){ }1 1 1, , , , ,i i i i i i iL x y t x y t+ + += .  

 

y 

x 

t 

(xi-1, yi-1, ti-1) 
 

(xi, yi, ti) 
 

(xi+1, yi+1, ti+1) 
 

 

Figure 1.2: Linear interpolation 

Linear interpolation in this manner is not so innocent; along the way some assumptions have 

been made. The first one is that the moving object keeps constant speed and direction between the 

sample points. Moreover, this speed is the average speed needed to cover the distance between ( ),i ix y  

and ( )1 1,i ix y+ +  in time 1i it t+ − . Secondly, changes in speed and direction at sample points are often 

abrupt and discontinuous, due to the sharp corners of the trajectory at the sample points. On the other 

hand, linear interpolation is fast to construct and to handle, and this is the main reason why it has been 

widely adopted in the trajectory database literature.  Hereafter in this thesis, the term ‘trajectories’ will 

be used to describe such sets of triplets as in Eq.(1.3), applying linear interpolation in-between them as 

determined by Eq.(1.4). 
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1.3. Research Problems and Challenges in Trajectory Databases 

Among the variety of technologies involved in the development of MODs for supporting historical 

trajectories of moving points, in this thesis we focus on a number of physical aspects, namely, 

indexing, advanced query processing, uncertainty support, and finally, trajectory compression. In the 

next sections, we briefly present the main research problems and challenges on trajectory databases that 

we will cope with in this thesis. 

1.3.1. Indexing 

Querying in MODs could be very expensive due to the nature of the underlying data and the 

complexity of the query processing algorithms. Given also the ubiquitousness of location-aware 

devices, trajectory databases will, sooner or later, face enormous volumes of data. It consequently 

arises that performance in the presence of vast data sizes, will be a significant problem for trajectory 

databases and the only way to deal with such enormous sizes is the exploitation of specialized access 

methods used for spatio-temporal indexing purposes.  

The domain of spatio-temporal indexing is dominated by the presence of the R-tree [Gut84], 

along with its variations and extensions; this is actually an expected phenomenon given the popularity 

of the R-tree in spatial databases. The variations and extensions of the R-tree in the spatio-temporal 

domain include, among others, 3D R-trees [TVS96], TB-trees and STR-trees [PJT00], PA-trees 

[NR07], MON-trees [AG05], while SETI [CEP03] is a hybrid R-tree-based and partition-based 

technique. Since our interest in this thesis focuses on historical MODs, we restrict our discussion to 

indexing techniques recording past locations. The reader interested in indexing current locations and 

motion vectors can find very interesting work in [SJ02], [SJLL00], [TPS03], and [XP03].  

However, as pointed out in [PJT00], the vast majority of the proposed spatio-temporal indexes 

overlook the challenges posed by the nature of trajectory data, and they just index collections of line 

segments in the spatio-temporal space, only concerning about the processing of traditional coordinate-

based queries ignoring at the same time other useful types, such as topological and navigational 

queries, which are trajectory-based. Moreover, existing spatio-temporal indexes not preserving moving 

object trajectories and dealing with the spatio-temporal data as collection of line segments in the 2+1 

dimensional space (such as SETI [CEP03] and 3D R-tree [TVS96]), overlook the need for deletion 

operations; albeit the deletion of a line segment from trajectory database may sound meaningless, the 

deletion of an entire trajectory is a very useful operation which has to be supported by any real-world 

trajectory index. The same need for trajectory preservation arises when dealing with compression 

mechanisms, which as we will see in the next chapter, by definition requires treating each trajectory as 

a single object. 

Two index structures presented in [PJT00], namely the Spatio-Temporal R-tree (STR-tree) and 

the Trajectory Bundle tree (TB-tree), try to fulfill these needs and to efficiently support trajectory-

based operations. The outcome of this work was that the TB-tree could support non-traditional queries 

much more efficiently than the traditional 3D R-tree and the STR-tree. Unfortunately, in spite of its 

clear advantages in trajectory-based query processing, the TB-tree has a crucial drawback due to its 

insertion strategy: new trajectory data are always inserted at the right ‘end’ of the tree, leading its 

performance to heavily depend on the data insertion ordering. However, in real-world applications, this 
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assumption is not guaranteed to be always true. For example, consider an application with the need to 

support real-time insertions, and a situation where the moving object enters an area where the position 

transmission system does not function; then its trajectory could be stored locally in the object and be 

transmitted to the central server – where the index operates – at a later time. Meanwhile, other moving 

objects could have transmitted their positions, violating the above TB-tree assumption. Furthermore, 

the structure of the TB-tree is not suitable for supporting deletion and compression operations; a 

trajectory deletion would leave ‘holes’ in the nodes, and trajectory compression as we will discuss in 

the sequel, requires the index to handle data inserted in non-chronological order.  

Another interesting approach regarding the indexing of spatio-temporal trajectories, arise 

acknowledging that trajectories are more likely to be network – constraint. As pointed in [KGT99], the 

existence of restrictions in the space in which moving objects realize their movement is a condition that 

can be used to improve the performance of spatio-temporal indexes. Actually, this is the case in most 

real-world applications: planes fly in air-paths, cars and pedestrians move on road networks, while 

trains have fixed trajectories on railway networks. These kinds of special conditions (moving 

restrictions) have been the subject of research interest [KGT99], [PTKZ02].  

More specifically, according to Kollios et al. [KGT99], the domain of the object’s trajectories 

moving on a network is not the 2+1 dimensional space, rather than, a space with 1.5 dimensions, as line 

segments comprising the network can be stored in a conventional index of spatial data (such as the R-

tree). Then, indexing of objects moving in a network is reduced to a one-dimensional indexing 

problem. In [KGT99], the problem of network-constraint trajectory indexing is studied under a more 

theoretical view rather than actually proposing an access method that could be used in real-world 

applications. On the other hand, following the directions provided by [KGT99], in this thesis, we show 

how this intuition can be realized by developing novel access methods for indexing network-constraint 

trajectory data. 
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Figure 1.3: Querying trajectory databases 

1.3.2. Advanced Query Processing  

Advanced query processing over MODs storing historical trajectory information aims at developing 

specialized query processing techniques suitable for executing advanced queries, which may (or may 

not) exploit existing index structures being present to support more traditional queries. Here we have to 

point out that, queries of the form “find all objects located within a given area during a certain time 

interval”, i.e., range queries (Q2 in Figure 1.3), are regarded as traditional queries, and they are by 
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definition supported by any index; in the same category fall also the queries of the form “find all 

objects' locations within a given area at a certain time instance”, which are called timeslice queries, 

and constitute a specialization of simple range queries having their lifespan set to zero (Q1 in Figure 

1.3) . The execution of range queries is usually a straightforward task; for example, the execution of a 

range query over R-tree-like (such as, the 3D R-tree [TVS96], the TB- and STR-trees [PJT00] and the 

TB*-tree) structures storing historical trajectory information is a straightforward extension of the 

FindLeaf algorithm, originally proposed in [Gut84], in the 3D space formed by the two spatial and the 

one temporal dimension.  

On the other hand, there is a variety of spatio-temporal operators, which require more 

sophisticated query processing techniques in order to be efficiently processed; often these operators are 

extensions of the respective spatial ones. Among them, an important class of queries that has been 

introduced in the MOD directly from the spatial domain is the so-called k nearest neighbor (k-NN) 

search, where one is interested in finding the k closest trajectories to a predefined query object Q. To 

the best of our knowledge, the database literature regarding such queries primarily deal with either 

static ([RKV95], [CF98], [HS99]) or continuously moving query points ([SR01], [TPS02]) over 

stationary datasets, or queries about the future or current positions of a set of continuously moving 

points ([BJKS02], [TP02], [ISS03], [YPK05], [XMA05], [MHP05]). Apparently, these types of queries 

do not cover NN search on historical trajectories. Thus, one of the challenges being present in the 

domain of trajectory databases is to develop mechanisms to perform k-NN search on MODs exploiting 

spatio-temporal indexes storing historical information.  

Moreover, the complexity of the underlying data makes the possible nearest neighbor operators 

over MODs storing historical trajectory data to be classified as follows: (a) according to the nature of 

the query object, which may be either a stationary or a moving point, i.e., another trajectory not 

contained in the MOD and, (b) according to the requested output of the operator, i.e., between the 

nearest to the query object during the query lifespan, and the nearest(s) at any time instance during the 

query lifespan; the latter are called historical continuous nearest neighbor queries. 

To make the previous taxonomy more intelligible, recall Figure 1.3 illustrating a trajectory 

database containing four trajectories {T1, T2, T3, T4}, and several queries posed against it. Query Q3 

asks for the nearest trajectory to the query object (which is a stationary point) during the time period 

[t1, t4]; this is the simple case, and the answer to the query is trajectory T3. Similarly, Q4 is equivalent 

with Q3, with the single difference that the query object is another trajectory, not contained in the 

database; in this case, the answer is trajectory T4. Now, consider query Q5 which is a historical 

continuous nearest neighbor query; in this case the query output should be a list of tuples containing the 

nearest trajectories along with the time period during which they were the nearest trajectory, i.e., {(T4, 

[t1,t3)), [T3, [t3, t4])}.  

Another interesting query type that is useful in MOD search is the so-called trajectory similarity 

problem, which aims to find ‘similar’ trajectories of moving objects. To handle such queries efficiently, 

MOD systems should include methods for answering the so-called Most-Similar-Trajectory (MST) 

search also discussed in [The03]; an example of an MST query is Q6 in Figure 1.3, which retrieves 

trajectory T1 as its most similar. Trajectory similarity search is a relatively new topic in the literature; 
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the majority of the methods proposed so far are based on either the context of time series analysis or 

the Longest Common Subsequence (LCSS) model [VKG02] and the recently proposed Edit Distance 

on Real Sequence (EDR) [COO05].  

 

T 

Q 

 

Figure 1.4: Trajectories with different sampling rates 

However, the majority of the proposed methods either ignore the time dimension of the 

movement, therefore calculating the spatial (and not the spatio-temporal) similarity between the 

trajectories, or assume that the trajectories have the same sampling rate. To exemplify the problem 

derived when different sampling rates are present, consider Figure 1.4 illustrating trajectories T and Q 

with their position being sampled in different rates; while these two trajectories are obviously similar, 

methods based on the LCSS or the EDR model cannot detect this kind of similarity since they try to 

match trajectory sampled positions one by one, which clearly does not happen in the above (real world) 

example. What is more, the majority of the proposed approaches exploit specialized index structures in 

order to prune the search space and retrieve the most similar to a query trajectory. Thus, one of the 

challenges being present in the domain of trajectory databases is to develop mechanisms to perform k-

MST search on MODs exploiting existing spatio-temporal indexes that support other type of queries as 

well. 

1.3.3. Supporting Uncertainty 

In the literature, uncertainty has been defined as the measure of the difference between the actual 

contents of a database, and the contents that the current user or application would have created by 

direct and perfectly accurate observation of reality [ZG02]. Sources of uncertainty may be one of the 

followings: 

• Imperfect observation of the real world, 

• Incomplete representation language, 

• Ignorance, laziness or inefficiency. 

Pfoser and Jensen [PJ99] propose a representation of location uncertainty due to measurement and 

sampling errors, which fall into the first and the third of the above error sources, respectively. 

According to [PJ99] the spatial projection of the trajectory of an object can be modeled as a 2D 

elliptical area, defined by the two consecutive tracked positions. On the other hand, a model that 

simultaneously captures both kinds of uncertainty is described by [TWHC04], [TWZC02]. In this 

model an uncertainty threshold is introduced, denoting the maximal distance of the object to the 

assumed location on the trajectory. Specifically, given the sampled points, after applying linear 

interpolation between them, this model assigns to each point on the trajectory a disc, parallel to the XY-

plane, of radius equal to the threshold. Taking all those discs together in the 3D space-time, they finally 

result in a tube around the polyline connecting the sample points (Figure 1.5). This threshold 
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incorporates interpolation uncertainty and measurement errors all at once, and it does not discriminate 

sample points from interpolated points.  

 

Figure 1.5: Modeling of Moving Object Uncertainty [TWHC04] 

The literature on the management of the location uncertainty of spatio-temporal objects so far, 

apart from uncertainty representation issues [Tra03], [TWHC04], [WSCY99], also deals with 

probabilistic algorithms [TWHC04], [TWZC02], [CKP04] that process queries in the presence of 

uncertainty, estimating the probability of each trajectory to be included in the query result. On the other 

hand, there are cases where the user would prefer to know the influence of the measurement error in the 

query results, without actually executing the query.  Consider for example the following real-world 

situation, inspired by the emerging open agoras paradigm [Ioa07]: let us assume a user who wishes to 

pose a query over several distributed subscribe-based data-sources containing the same spatio-temporal 

objects (i.e., trajectories) represented at different levels of uncertainty due to different measurement 

methods and, consequently, different uncertainty thresholds associated; though the criterion used to 

choose among them is the optimization, i.e., the minimization, of the uncertainty introduced in the final 

query results, the data-sources provide during the negotiation step [Ioa07] their potential customers-

users with aggregate-only data. The only way thus to decide on the uncertainty of the results is the 

presence of a model that serves for this purpose, based on the aggregate-only information provided by 

the providers. 

Another challenging problem, related to the one previously presented, is to determine the 

maximum permitted (im)precision of the trajectory data that will feed a MOD given the required 

accuracy in the results of timeslice queries. Then, users can be guided by the DBMS in the employment 

of the appropriate, more or less accurate - which also entails a more/less expensive - positioning 

method to be used for the data that will feed the system.  

Both previous requirements could be fulfilled by a model that predicts the error introduced in 

query results based on known dataset (such as the uncertainty threshold) and query properties, without 

actually executing the query; moreover, such a model could be also utilized in an interactive query 
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builder / optmizer, informing the user about the effect of uncertainty in the query results, along with 

other interesting measures such as the query selectivity, estimated execution time etc.. To the best of 

our knowledge, a theoretical study on modeling the error introduced in spatio-temporal query results 

due to the uncertainty of trajectories is lacking; thus, it remains an open research problem in the 

domain of spatio-temporal databases. 

1.3.4. Compressing Trajectories 

As addressed in [MB04], it is expected that all the ubiquitous positioning devices will eventually 

generate an unprecedented data stream of time-stamped positions. Sooner or later, such enormous 

volumes of data will lead to storage, transmission, computation, and display challenges. Hence the 

need for compression techniques arises. However, existing work in this domain is relatively limited 

[CWT03], [MB04], [PPS06], [PPS06a], [PPS07], and mainly guided by advances in the field of line 

simplification, cartographic generalization and data series compression.  According to [MB04], the 

objectives for trajectory data compression are: 

• to obtain a lasting reduction in data size; 

• to obtain a data series that still allows various computations at an acceptable (low) 

complexity; 

• to obtain a data series with known, small margins of error, which are preferably parametrically 

adjustable. 

As a consequence, we are interest in lossy compression techniques, which eliminate some redundant or 

unnecessary information under well-defined error bounds.  

Especially on the subject of the error introduced on the produced data by such compression 

techniques, the single related work [MB04] provides a formula that estimates the mean error of the 

approximated trajectory in terms of distance from the original data stream. On the other hand, there are 

other kinds of errors that could help a user of a MOD to decide on the quality of the compressed data. 

For example, it is much more meaningful to provide the user with information about the mean error 

introduced in query results over the compressed data. Therefore, the need for an analytical model that 

estimates the error due to compression in the results of spatio-temporal queries arises.  

Such a model could be utilized right after the compression of a trajectory dataset in order to 

provide the user with the average error introduced in the results of spatio-temporal queries of several 

sizes; it could be therefore exploited as an additional criterion for the user in order to decide whether 

compressed data are suitable for his/her needs, and possibly decide on different compression rates, and 

so on.  Moreover, it could be used so as to improve the efficiency of the proposed solutions regarding 

trajectory compression; given that a model of this kind would expose the actual measures on which the 

error is depended, it could subsequently provide intuitive directions towards the employment of more 

sophisticated / efficient solutions. The challenge thus being present regarding trajectory compression is 

to provide a theoretical model that estimates the error due to compression in the results of spatio-

temporal queries, and also adapt it in the context of MODs.  

1.4. Thesis Contribution 

This thesis presents several works being necessary for the efficient Management of Trajectory Data.  
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The uttermost goal of the conducted research is to provide effective mechanisms that allow Moving 

Object Databases to efficiently store and query historical trajectories; as such, the research deals with 

indexing, advanced query processing, supporting of uncertainty and issues on trajectory compression. 

Next, we discuss the contributions of this thesis, grouped by the respective issue. Here, we have 

to point out, that the novelty of our approach is established in each different chapter, by appropriately 

presenting the respective related work. This approach is selected, instead of providing the related work 

in a single chapter, due to the variety of the issues so as to facilitate the reading of the thesis. 

 

Indexing. In order to deal with the indexing requirements earlier presented, in this thesis we introduce 

two novel indexes, namely, the TB*-tree and the FNR-tree. The TB*-tree is an extension of the TB-tree 

which enables it to support non-chronological insertions; it is more compact, it advances its 

performance in terms of construction time, while, it outperforms its predecessor in the majority of the 

querying settings. Apart from the construction and query processing algorithms, the TB*-tree supports 

trajectory deletions, while its structure makes it capable of supporting trajectory compression 

algorithms as well, two of the properties not supported by the original TB-tree . It is essential however 

to clarify that the proposed TB*-tree, does not exploit the special conditions that objects have when 

moving on fixed networks; quite the opposite, it indexes objects moving freely in the 2D space.  

On the other hand, under the network-constraint scenario this thesis provides a novel index, 

called Fixed Network R-tree (FNR-tree) which is an extension of the well-known R-tree [Gut84]. The 

general ideas on which the FNR-tree is based are roughly presented in [Fre02], nevertheless, without 

giving any implementation or experimental evaluation of the proposed method. The FNR-tree can be 

briefly portrayed as a forest of 1D (1D) R-trees on top of a 2D (2D) R-tree. The 2D R-tree is used to 

index the spatial data of the network graph (i.e., roads consisting of line segments), while the 1D R-

trees are used to index the time interval of each object’s movement on a given segment of the network. 

As it will be shown experimentally, the proposed FNR-tree outperforms all of its competitors in 

general coordinate-based queries, something that comes for the cost of lacking a mechanism which 

preserves trajectories.  

Our results in the aforementioned topics are presented in Chapter 2. Preliminary results have 

been already published in [Fre03], [FT06]. 

 
Advanced Query Processing: Nearest Neighbor Search. In order to efficiently support nearest neighbor 

search on moving object trajectories we first propose a set of novel metrics being necessary for the 

ordering and pruning strategies followed by the proposed algorithms. More specifically, the definition 

of the minimum distance metric MINDIST between points and rectangles, initially proposed in 

[RKV95] and extended in [TPS02], is further extended in order for our algorithms to calculate the 

minimum distance between trajectories and rectangles efficiently. We then propose query processing 

algorithms to perform NN search over spatio-temporal indexes storing historical information of moving 

objects. Among the candidate spatio-temporal indexes, we exploit on the most commonly found 

indexes which are the ones supporting unconstrained movement, i.e., R-tree-like structures as the 3D 

R-tree [TVS96], the TB-tree [PJT00] and the TB*-tree proposed in this thesis. The description of our 
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algorithms for different queries depends on the type of the query object (point or trajectory) as well as 

on whether the query itself is continuous or not. In particular, we present efficient depth-first and best-

first algorithms for historical NN queries as well as depth-first algorithms for their continuous 

counterparts. All the proposed algorithms are generalized to find the k nearest neighbors. Finally, we 

conduct a comprehensive set of experiments over large synthetic and real datasets demonstrating that 

the algorithms are highly scalable and efficient in terms of node accesses, execution time and pruned 

space. 

Our results in the aforementioned topics are presented in Chapter 3. Preliminary results have 

been already published in [FGPT05], [FGPT07], [PFGT08]. 

 

Advanced Query Processing: Similarity Search. The issues mentioned on the subject of trajectory 

similarity search are addressed in this thesis, by efficiently supporting the k-MST search in MODs 

storing historical trajectory information, indexed by R-tree-like structures. More specifically, we 

support k-MST search by defining a dissimilarity metric (DISSIM) for the measurement of the spatio-

temporal dissimilarity between two trajectories; this metric is also employed in [NP06] and can be seen 

as the average distance between the two trajectories in time. We subsequently propose an efficient 

approximation method to overcome its costly calculation, while, in the sequel, we develop a set of 

novel metrics along with several associated lemmas, which are employed for ordering and pruning 

purposes by the proposed most similar trajectory search algorithms. More specifically, using these 

metrics, we propose a depth-first and best-first query processing algorithm to perform k-MST search on 

R-tree-like structures storing historical trajectory information. We close this subject by conducting a 

comprehensive set of experiments over large synthetic and real datasets demonstrating that the 

algorithms are highly scalable and efficient in terms of node accesses, execution time and pruned 

space. We further demonstrate that the proposed similarity metric efficiently retrieves spatio-

temporally similar trajectories in cases where related work fails. Finally, we describe how this work 

can be adjusted so as to support density-based trajectory clustering. 

We have to point out that all the proposed algorithms do not require any dedicated index 

structure and can be directly applied to any member of the R-tree family used to index trajectories, 

such as the 3D R-tree [TVS96], the TB-tree [PJT00] and the TB*-tree proposed in this thesis. To the 

best of our knowledge, the proposal of this thesis is the first that provides techniques for a spatio-

temporal index to support classical range, topological, nearest neighbor and similarity based queries.  

Our results in the aforementioned topics are presented in Chapter 4. Preliminary results have 

been already published in [FGT07]. 

 

Supporting Uncertainty: The problems regarding the management of uncertainty highlighted in the 

previous section are initially covered by proving two lemmas that estimate the average number of false 

positives and false negatives when executing timeslice queries over uniformly distributed uncertain 

trajectories modelled via the [TWHC04], proposal; both errors depend on the radius of the cylindrical 

volume (i.e., the uncertainty threshold) and the perimeter of the timeslice query window, rather than its 

area.  Then, in order to relax the location uncertainty uniformity assumption (directly derived from the 
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model of [TWHC04]) and to utilize the real-world adapted bivariate normal distribution [Lei95] 

[PTJ05], it is efficiently approximated with the uniform difference distribution. The results are close 

enough to the ones of the original analysis. The extension of the model towards supporting arbitrarily 

distributed trajectories and various distributions of the uncertainty radiuses is covered by employing 

novel spatio-temporal and other augmented histograms. We then perform a comprehensive set of 

experiments demonstrating the correctness and accuracy of the analysis. Finally, it is shown how the 

results of the analysis may be applied over spatial datasets: the solutions proposed are implemented on 

top of a commercial Spatial Database Management Systems (SDBMS), namely, the PostgreSQL 

[Post08b] with PostGIS spatial extension [Post08a]. Here, it is worth to note that off-the-shelf spatial 

histograms, already used in SDBMS for query selectivity estimation, support the proposed model 

without additional requirements. 

Our results in the aforementioned topics are presented in Chapter 5. Preliminary results have 

been already published in [FGT08]. 

 
Compressing Trajectories: In order to cover the issues raised by the previous discussion regarding 

trajectory compression, we first describe two types of errors (namely, false negatives and false 

positives) when executing timeslice queries over compressed trajectories, and we prove a lemma that 

estimates the average number of the above error types. It is proven that the average number of the false 

hits of both error types depends on the Synchronous Euclidean Distance [CWT03], [MB04], [PPS06], 

[PPS06a] along the x- and y- axes between the original and the compressed trajectory, and the 

perimeter (rather than the area) of the query window. We subsequently show how the cost of evaluating 

the developed formula can be reduced to a small overhead over the employed compression algorithm, 

while we discuss how the developed analytical model helps to provide more effective compression 

algorithms. Finally, we conduct a comprehensive set of experiments over synthetic and real trajectory 

datasets demonstrating the applicability, correctness and accuracy of our analysis. It is worth to note 

that the most prominent application of the proposed model is based on the intruition it provides towards 

the development of more effective compression algorithms than the ones already present in the 

database literature. 

Our results in the aforementioned topics are presented in Chapter 6. Preliminary results have 

been already published in [FT07]. 

In summary, the main contributions of our research are: 

• The development of two novel spatio-temporal indexes, called TB*-tree and FNR-tree 

respectively, with the former enhancing the well known TB-tree towards the supporting of 

more realistic operation scenarios, and the latter exploiting the network-constraint assumption, 

outperforming all other compared indexes. 

• The proposal of several scalable and efficient algorithms for nearest neighbor search over R-

tree-like structures storing historical trajectory information. 

• The development of two algorithms for Most Similar Trajectory search over R-tree-like 

structures storing historical trajectory information. Here, it is worth to note that using the 
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proposed NN and MST search algorithms, enables R-tree-like structures to support a wide 

range of spatio-temporal queries.  

• The proposition of an analytical model that estimates the effect of uncertainty in timeslice 

queries over trajectory data, along with its extension to support arbitrarily distributed 

trajectories with the aim of histograms; the same model demonstrates great applications over 

stationary spatial data, while it can be directly employed in existing SDBMS. 

• The development of an analytical model that estimates the effect of trajectory compression in 

spatio-temporal querying.  

1.5. Trajectory Datasets Overview 

Throughout this thesis we have experimented with a variety of real and synthetic trajectory datasets. 

Specifically, we have used two real trajectory datasets and also synthetic datasets generated by the 

GSTD data generator [TSN99], the network-based data generator of [Bri02] and a custom trajectory 

generator developed to fulfill specific purposes [FGT07]. The details of the employed datasets are 

given in Table 1.1. 

Table 1.1: Summary dataset information about GSTD synthetic datasets 

Dataset # trajectories # entries 

Real Data (Trucks) 276 112K 

Real Data (Buses) 145 66K 

GSTD 100 100 485K 

GSTD 250 250 1213K 

GSTD 500 500 2426K 

GSTD 1000 1000 4850K 

GSTD 2000 2000 9701K 

NG 200 200 106K 

NG 400 400 213K 

NG 800 800 417K 

NG 1200 1200 626K 

NG 1600 1600 831K 

NG 2000 2000 1043K 

 

1.5.1. Real trajectories 

The origin of the two employed real datasets, was a fleet of trucks (dataset Trucks) and a fleet of school 

buses (dataset Buses), illustrated in Figure 1.6(a) and (b), respectively.  The two real datasets consist of 

276 (112203) and 145 (66096) trajectories (entries), respectively.  Both datasets are available at 

http://www.rtreeportal.org. 

1.5.2. Synthetic Trajectories Simulating Uncostrained Movement 

In order to produce trajectories moving in the unconstrained space, we have used the GSTD data 

generator [TSN99]. A snapshot of the generated data using GSTD is illustrated in Figure 1.6(c). The 

synthetic trajectories generated by GSTD correspond to 100, 250, 500, 1000 and 2000 moving objects 

resulting in datasets of 500K, 1250K, 2500K, 5000K, and 10000K entries (the position of each object 
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was sampled approximately 5000 times), thus building indices of up to 500 Mbytes size (the case of 3D 

R-tree index for the GSTD 2000 dataset). Regarding the rest parameters of the GSTD generator, the 

initial distribution of points was Gaussian while their movement was ruled by a random distribution.  

  

(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data 

Figure 1.6: Snapshots of real and synthetic spatio-temporal data 

1.5.3. Synthetic Trajectories Simulating Road-network Costrained Movement 

Regarding the case of network-constrained moving objects, our experiments were based upon synthetic 

datasets created using a network-based data generator [Bri02] and the real-world road network of San 

Joaquin (Figure 1.7). We produced the NG trajectory datasets constituting of 200, 400, 800, 1200, 1600 

and 2000 moving objects, where each object’s position was sampled 400 times. While the output of the 

generator was of the form (id, t, x, y), in our experiments we wanted to utilize those data only if (x, y) 

are the coordinates of a node of the network. Therefore, the generator was modified in order to produce 

records of the form (id, t, x, y) each time a moving object was passing through each node of the 

network. The maximum volume of line segments produced by the network-based generator was 

approximately 1M entries and that came up for 2000 moving objects.  

 

Figure 1.7: Real-world network of San Joaquin, with a snapshot of the generated data 

1.6. Thesis Outline 

The outline of the thesis is as follows: In Chapter 2 we propose and evaluate two novel indexes for 

spatio-temporal trajectories for unconstraint (the TB*-tree) and network-constraint movement (the 

FNR-tree), respectively. Chapters 3 and 4 propose solutions for efficient support of nearest neighbor 

and similarity search, respectively, over historical trajectory information. Chapters 5 and 6 propose two 

models, the former for the prediction of the effect of uncertainty in spatio-temporal queries, and the 



 16 

latter, for the estimation of the effect of trajectory compression in spatio-temporal queries. Finally, 

Chapter 7 closes the thesis by summarizing the conclusions and discussing interesting open issues. 
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2. Trajectory Indexing  

In this chapter we focus on the indexing problem regarding trajectory databases, and we present our 

two proposals, the TB*-tree and the FNR-tree. The outline of the chapter is as follows: Section 2.1 

introduces the issues being related to the indexing of spatio-temporal trajectories while, Section 2.2 

examines the related work. Section 2.3 presents the structure and the algorithms for maintaining and 

searching the TB*-tree, while section 2.4 stands for the structure and the algorithms of the FNR-tree. 

Sections 2.5 and 2.5.4 present the experimental study in unrestricted, and network-constraint space, 

respectively, and finally, Section 2.6.4 closes the chapter providing the conclusions. 

2.1. Introduction 

Like in traditional databases, querying in MODs could be very expensive due to the nature of data and 

the complexity of query processing algorithms. Given also that location-aware devices are almost 

ubiquitous nowadays, trajectory databases will, sooner or later, face enormous volumes of data. It 

consequently arises that performance in the presence of vast data sizes, will be a significant problem 

for trajectory databases. Since ordering is far from the nature of the geographic (multi-dimensional) 

data, traditional indexes like B-trees are not useful in spatial (and consequently in spatio-temporal) 

databases. In the domain of spatial databases, the R-tree proposed by Guttman [Gut84] is “almost 

ubiquitous”, with applications ranging from Geographical Information Systems (GIS) and Computer 

Aided Design (CAD) to Image and Multimedia Management Systems [MNPT05].  
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Figure 2.1: An example of spatial data, their Minimum Bounding Boxes (MBBs), a range query and 

the corresponding R-tree [MNPT05]. 

The R-tree can be considered as an extension of the B-tree in n-dimensional spaces. Similar to 

the B-tree, R-tree is a height-balanced tree with the index records in its leaf nodes containing pointers 
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to the actual data objects. Leaf node entries are of the form <id, MBB>, where id is an identifier that 

points to the actual object and MBB (Minimum Bounding Box) is an n-dimensional interval. Non-leaf 

node entries are of the form <ptr, MBB>, where ptr is a pointer to a child node, and MBB the bounding 

box that covers all child nodes. A node in the tree corresponds to a physical disk page (or disk block, 

which is the fundamental element on which the actual disk storage is organized) and contains between 

m and M entries (M is the node capacity and m is a tuning parameter - usually m is set to M/2 which 

guarantees that the space utilization is at least 50%). Contrary to the B-tree, node MBBs belonging to 

the same tree level are allowed to overlap. Figure 2.1 illustrates a set of spatial objects and the 

corresponding R-tree. 

In the domain of spatio-temporal indexing, R-tree variations and extensions include, among 

others, 3D R-trees [TVS96], TB-trees and STR-trees [PJT00], Octagon-Prism trees OP-tree [ZSI02], 

PA-trees [NR07], MON-trees [AG05], while SETI [CEP03] is a hybrid R-tree-based and partition-

based technique. We will thoroughly examine them in the next sections. Moreover, since our interest in 

this thesis focuses on historical MODs, we restrict our discussion to indexing techniques recording past 

locations. The reader interested in indexing current locations and motion vectors can find very 

interesting work in [SJ02], [SJLL00], [TPS03], and [XP03].  

Table 2.1: Classification of spatio-temporal queries (extracted from [Pfo02]) 

Query Type Operation 

Coordinate-Based Queries 
overlap, inside, nearest 

neighbor, etc. 

Topological 

Queries 
enter, leave, cross, bypass, etc. 

Trajectory-Based Queries 
Navigational 

Queries 

traveled distance, covered area, 

speed, heading, parked, etc. 

 

2.1.1. Specifications for Trajectory Indexing 

As pointed out in [PJT00], the vast majority of the proposed spatio-temporal indexes overlook the 

challenges posed by the nature of trajectory data, and they just index collections of line segments in the 

spatio-temporal space, only concerning about the processing of traditional coordinate-based queries 

(such as range and timeslice queries), ignoring at the same time other useful queries, such as 

topological and navigational queries, which are trajectory-based. In particular, queries of the form 

“find all objects located within a given area during a certain time interval” generalize the spatial range 

query of the form “find all objects within a given area” and do not take the notion of trajectory into 

consideration; thus, called coordinate-based [PJT00]. Queries of the form “find all objects’ locations 

within a given area at a certain time instance”, called timeslice queries, constitute a special type of 

range queries where the temporal extent is set to zero. Another straightforward extension of pure 

spatial queries in the domain of spatio-temporal applications includes nearest neighbor queries of the 

form “find the nearest moving object to a query object during a certain time interval”. Moreover, in the 

case of spatio-temporal nearest neighbor queries, the query object could be a 2D point or another 

moving object trajectory, while the query would return the nearest to the query object at any time 
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during a time interval, or, in every time instance of the query time interval (historical continuous 

queries).  

Furthermore, [PJT00] propose to call trajectory-based the queries which require the knowledge 

of the complete – or at least of a subset of the – object’s trajectory in order to be processed. Such 

queries are those considering topological relations (enter, leave, etc.) and those providing derived 

information about an object’s navigation (average speed, traveled distance etc.). Table 2.1 summarizes 

the above two query types. 

The combination of range and topological queries produces another type of queries called 

combined queries. As an example [PJT00], consider the following query “What were the trajectories of 

objects after they left Tucson street between 7 a.m. and 8 a.m. today, in the next hour”, which firstly 

locates the trajectories contained in an inner range query window (Tucson street, between 7 a.m. and 8 

a.m. today, Qin in Figure 2.2) and then retrieve those parts of objects’ trajectories contained in an outer 

query window (in the next hour, Qout in Figure 2.2). 

 

Qout 

Qin 

 

Figure 2.2: Combined search queries 

In another line of research, [MB04] recently address the need for efficient trajectory compression 

mechanisms; according to that work, it is expected that all the ubiquitous positioning devices will 

eventually start to generate an unprecedented data stream of time-stamped positions. Sooner or later, 

such enormous volumes of data will lead to storage, transmission, computation, and display challenges. 

Hence the need for compression techniques arises. However, existing spatio-temporal indexes not 

preserving moving object trajectories and dealing with the spatio-temporal data as collection of line 

segments in the 2+1 dimensional space (such as SETI [CEP03] and 3D R-tree [TVS96]), overlook the 

need for compression, which by definition requires treating each trajectory as a single object. The same 

need for trajectory preservation arises when dealing with deletion operations; albeit the deletion of a 

line segment from trajectory database may sound meaningless, the deletion of an entire trajectory is a 

very useful operation which has to be supported by any real-world trajectory index. 

Two index structures presented in [PJT00], namely the Spatio-Temporal R-tree (STR-tree) and 

the Trajectory Bundle tree (TB-tree), try to fulfill these needs and to efficiently support trajectory-

based operations such as topological query processing. The outcome of this work was that the TB-tree 

could support non-traditional queries much more efficiently than the traditional 3D R-tree and the 

STR-tree. Unfortunately, in spite of its clear advantages on trajectory-based query processing, the TB-

tree has a crucial drawback: because of its insertion strategy, new trajectory data are always inserted at 

the right ‘end’ of the tree, leading its performance to heavily depend by the order of data insertion. 

However, in real-world applications, this assumption is not guaranteed to be always true. For example, 

in an application where insertions occur in real-time, if the moving object enters an area where the 
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position transmission system does not function, its trajectory could be stored locally in the object and 

be transmitted to the central server – where the index operates – at a later time; meanwhile, other 

moving objects could have transmitted their positions, violating the above TB-tree assumption. 

Furthermore, the structure of the TB-tree is not suitable for supporting deletion and compression 

operations; a trajectory deletion would leave ‘holes’ in the nodes, and trajectory compression as we 

will discuss in the sequel, requires the index to handle data inserted in non-chronological order.  

Another interesting approach regarding the indexing of spatio-temporal trajectories arises by 

acknowledging that trajectories are more likely to be network–constrained. As pointed out in [KGT99], 

the existence of restrictions in the space in which moving objects realize their movement is a condition 

that can be used to improve the performance of spatio-temporal indexes. Actually, this is the case in 

most real-world applications: planes fly in air-paths, cars and pedestrians move on road networks, 

while trains have fixed trajectories on railway networks. These kinds of special conditions (moving 

restrictions) have been the subject of research interest [KGT99], [PTKZ02]. More specifically, 

according to Kollios et al. [KGT99], the domain of the trajectories of objects moving on a network is 

not the 2+1 dimensional space, rather than, a space with 1.5 dimensions, as line segments comprising 

the network can be stored in a conventional index of spatial data (such as the R-tree). Then, indexing of 

objects moving in such a network is reduced to a one-dimensional indexing problem. In [KGT99], the 

problem of network-constraint trajectory indexing is studied under a more theoretical view rather than 

actually proposing an access method that could be used in real-world applications. On the other hand, 

following the directions provided by [KGT99], in the next sections, we show how the intuition of 

[KGT99] can be realized by developing novel access methods for indexing network-constraint 

trajectory data. 

2.1.2. What is proposed 

In order to deal with the above requirements, in this work, two novel indexes are independently 

proposed, namely, the TB*-tree and the FNR-tree. In particular, the TB*-tree is an extension of the TB-

tree that overcomes the drawback of its predecessor, that is, the need for trajectory preservation and 

the need for non-chronological insertions, preserving at the same time all of its ‘desired’ properties. 

Moreover, apart from the construction and query processing algorithms, the TB*-tree supports 

trajectory deletions, while its structure makes it capable of supporting trajectory compression 

algorithms as well. The TB*-tree structure and algorithms will be demonstrated in the next sections, 

followed by an experimental study which reveals the positive and negative aspects of the proposed 

index. It is essential however to clarify that the proposed TB*-tree, does not exploit the special 

conditions that objects have when moving on fixed networks; quite the opposite, it indexes objects 

moving freely in the 2D space.  

On the other hand, under the network-constraint scenario this thesis provides a novel index, 

called Fixed Network R-tree (FNR-tree) which is an extension of the well-known R-tree [Gut84]. The 

general idea that describes the FNR-tree is that of a forest of 1D (1D) R-trees on top of a 2D (2D) R-

tree. The 2D R-tree is used to index the spatial data of the network graph (e.g., roads consisting of line 

segments), while the 1D R-trees are used to index the time interval of each object’s movement on a 

given segment of the network. As it will be shown experimentally in the next sections, the proposed 
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FNR-tree outperforms the TB-, the TB*- and the 3D R-tree in general coordinate-based queries; 

however the demonstrated efficiency of the FNR-tree in coordinate-based queries comes for the cost of 

lacking a mechanism which preserves trajectories, making it therefore unable to support trajectory-

based queries.  

2.2. Related Work 

In the sequel, the related work in the field of indexing historical trajectories of moving objects is briefly 

examined. It is essential to note that we do not include all these structures in our experimental study 

since their majority was proposed during the elaboration of this thesis; nevertheless, some of the 

examined related work cites, and is compared with, a preliminary version of the FNR-tree presented in 

[Fre03], while the others are also evaluated against the original 3D R-tree [TVS96] and TB-tree 

[PJT00]. We fist discus structures indexing objects moving in unconstrained space, while in the sequel, 

we present some of the network-constraint approaches. 

2.2.1. Indexing the Trajectories of Objects Moving in Unconstrained Space 

A first enhancement of the TB-tree was proposed by Zhu et al. [ZSI02], which extend the work of 

[PJT00] by proposing the Octagon-Prism tree (OP-tree); OP-trees use octagon approximations instead 

of MBBs. Based on the conducted experiments, OP-trees are shown to outperform the original TB-tree 

on both range and trajectory based queries. Here, it is important to note that the TB* modifications 

regarding the original TB-tree (i.e., replacement of 3D line segments by 3D points and the altered 

insertion strategy) may be directly applied in the context of the OP-tree by simply replacing MBB 

approximations with octagons. 

 

R*-tree 

Data File 

Data Space 

 

Figure 2.3: The SETI [CEP03] structure 

The Scalable and Efficient Trajectory Index (SETI) presented in [CEP03] is a hybrid structure 

that indexes trajectories at two levels in order to disjoint the spatial from temporal indexing. 

Acknowledging that trajectory data sets continually expand the temporal dimension while the spatial 

boundaries remain static or at least rarely change, SETI partitions the 2D space into disjoint hexagon 

cells which remain static during the structure's lifetime; other adaptive spatial partitioning strategies 

can also be used. Each cell logically contains only those trajectory segments that are completely within 

the cell, while in the case of a trajectory segment that crosses the cell boundary, it is split and 

subsequently inserted into both cells. In physical level, trajectory segments are inserted into a data file; 

each page of the data file contains segments from only one cell. Then, a temporal index (i.e., a 1D R-
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tree) indexing the time intervals of each particular cell in the data file, is assigned to the corresponding 

cell. Figure 2.3 summarizes the SETI structure. 

The insertion and searching algorithms follow a multi-step approach composed of spatial 

filtering, temporal filtering and refinement. In particular, during each insertion, the algorithm locates 

the cell into which the segment has to be inserted (considering also possible splits between cells), and 

then inserts it in the corresponding page of the data file, updating at the same time the corresponding 

entry of the 1D R-tree (if this is necessary). Although as presented in the experimental study of 

[CEP03], SETI clearly outperforms the 3D R-tree and the TB-tree in time-interval and time-slice 

queries, it cannot be used to process trajectory-based queries. This is due to the fact that trajectory line 

segments are organized inside the index based only on their spatial and temporal relations; as such, 

successive line segments of the same trajectory may be placed in different disk pages. Therefore, in the 

worst case scenario the retrieval of a single trajectory would require to read one disk page for each 

trajectory line segment. Moreover, the work of [CEP03] do not provide any nearest neighbor query 

processing algorithm, while the development of an efficient one is not a straightforward task. 

Pfoser et al. [PJ01] use the restrictions placed in the movement of objects by the existing 

infrastructure in order to improve the performance of spatio-temporal queries executed against a spatio-

temporal index. The strategy followed does not affect the structure of the index itself. Instead,  [PJ01] 

adopt an additional pre-processing step before the execution of each query. In particular, provided that 

the infrastructure is rarely updated, it can be indexed by a conventional spatial index such as the R-tree. 

On the other hand, a general-purpose spatio-temporal index, such as the TB-tree [PJT00] or the 3D R-

tree [TVS96] can be used to index trajectories of moving objects. Then, a pre-processing step of the 

query, divides the initial query window in a number of smaller windows, from which the regions 

covered by the infrastructure have been excluded (Figure 2.4). Each one of the smaller queries is 

executed against the (general-purpose spatio-temporal) index returning a set of candidate objects, 

which are finally refined with respect to the initial query window. 
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Figure 2.4: The initial query window Q (a) is decomposed into a number of smaller query windows 

Q1, Q2,.. (b) with respect to infrastructure elements (drawn in black). 

In the same paper [PJ01], an algorithm is provided for the implementation of the query pre-

processing step, based on the work presented in [KF93]. According to [KF93], the number of node 

accesses required by an R-tree-based index to answer a window query, depends not only on the 
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window area but also on its extent per dimension. Consequently, what concerns is not only the 

minimization of the area of the query window (which is achieved by removing the section containing 

the infrastructure from the initial window) but also the minimization of its perimeter. In the 

corresponding evaluation, the performance of two spatio-temporal indexes (TB- and 3D R-tree) was 

compared, either using the described query pre-processing step (i.e., dividing the initial window in 

smaller windows) or not, and it was shown that the query performance was improved for both indexes 

when this step was used.  

Recently, work has been also done on how to optimally split trajectories for the purpose of 

improving range query performance [HKTG02], [HKTG06]. Hadjieleftheriou et al. [HKTG02] use a 

partially persistent structure, the PPR-tree, trying to confront the problem of the dead space generated 

by MBB approximations of moving object trajectories. Dead space is termed as the amount of space in 

an MBB approximation which does not actually covers any object contained inside it. [HKTG02] 

introduce “artificial object updates” partitioning the trajectories into smaller elements, thus reducing 

the dead space; they use non-linear functions to describe the moving objects' trajectories, which are 

initially indexed by the PPR-tree. This work is extended in [HKTG06] where a Multi-Version R-tree, 

such as the one proposed in [TPS03] is used instead of the PPR-tree, leading to an indexing schema 

with improved performance. Moreover, the proposed algorithms for handling the problem of the dead 

space introduced in MBBs can be used in combination with any spatio-temporal data archive, such as 

the R-tree and its variants. 

However, the most promising approach regarding the indexing of moving object trajectories in 

unconstrained space is the one presented in [NR07]; according to [NR07], MBBs are not able to 

capture the smoothness of actual trajectory data, they propose that trajectories should be approximated 

as a sequence of movement functions with single continuous polynomial. They subsequently introduce 

the PA-tree, a parametric index that indexes the resulted polynomials; PA-trees resemble R-trees, with 

the main difference that entries consists of polynomial coefficients, rather than MBBs. According to 

the experimental study presented, PA-tree outperforms both MVR-tree [HKTG06] and SETI [CEP03] 

in the majority of the experimental settings. 

2.2.2. Indexing the Trajectories of Objects Moving in Fixed Networks 

The first proposal considering network-constrained moving objects was the work by Papadias et al. in 

[PTKZ02] which adopted this assumption, in order to create a structure that answers spatio-temporal 

aggregate queries of the form "find the total number of objects in the regions intersecting some window 

qs during a time interval qt". Same as the FNR-tree, the proposed aggregate R-B-tree (aRB-tree) 

follows the intuition of [KGT99] and provides a combination of R- and B-trees based on the following 

idea: the lines of the network are stored only once and indexed by an R-tree. Then, in each internal and 

leaf node of the R-tree, a pointer to a B-tree is placed, which stores historical aggregate data about the 

particular spatial object (e.g. the MBB of the node).  

In particular, this approach is based on two types of indexes: a host index, which manages the 

region extents and associates to these regions an aggregate information over all the timestamps in the 

base relation and some measure indexes (one for each entry of the host index), which are aggregate 

temporal structures storing the values of measures during the history, complete the proposed structure. 
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For a set of static regions, the authors define the aRB-tree, which adopts an R-tree with summarized 

information as host index, and a B-tree containing time-varying aggregate data, as measure index. 

As already stated, the aRB-tree is well suited for the efficient processing of a window aggregate 

query, i.e., for the computation of the aggregated measure of the regions which intersect a given 

window. Indeed, for nodes that are totally enclosed within the window query, the summarized measure 

is already available thus avoiding descending these nodes. As a consequence, the aggregate processing 

is made faster. For instance, let us compute the number of phone calls inside the shaded area in Figure 

2.5(a) during the time interval [T1,T3] using the aRB-tree of Figure 2.5(b). Since R5 is completely 

included in the window query there is no need to analyze R1 and R2 hence one accesses the B-tree for 

R5. The first entry of the root of this B-tree contains the measure for the interval [T1, T3] which is the 

value we are interested in. Instead, in order to obtain the sum of phone calls in the interval [T1, T3] for 

R3 one has to visit both an entry of the root of the B-tree for R3 and also one leaf (the colored nodes). 

Figure 2.5 illustrates an example of the aRB-tree structure  

 

(a) (b) 

Figure 2.5: (a) Example data and (b) the corresponding aRB-tree [PTKZ02]  

 Exploiting the same property of a spatial network, a variation of the FNR-tree, called Moving 

Objects in Networks tree (MON-tree), has been proposed in [AG05]. Instead of using one 1D R-tree for 

every leaf node of the 2D R-tree, the MON-tree utilizes a 2D R-tree for every polyline of the spatial 

network. The MON-tree is shown to significantly outperform the 3D R-tree and the FNR-tree, in time-

interval and time-slice queries, and is currently considered the state-of-the-art. However, it also shows 

the same disadvantage with the previously described schemes, being unable to efficiently process 

trajectory-based queries. 

Another interesting methodology on the same subject (i.e., indexing of objects moving on 

networks) is presented in [PJ03]. This approach suggests the mapping of the underlying network from 

two to one dimension by sorting the network edges according to their Hilbert values. Hilbert values is 

an approach for ordering the 2D space; they are determined by applying a Hilbert curve covering the 

2D space, mapping each 2D to a 1D point [WD04]. Then, the problem of indexing three (i.e., 2 spatial 

+ 1 temporal) dimensions is reduced to the problem of indexing two (i.e., 1 spatial + 1 temporal) 

dimensions, which can be efficiently handled by employing any existing simple spatial index as the 

well known R-tree which is supported by existing DBMS. After that, each range query has to be 

mapped accordingly to the reduced one-dimensional space, producing thus a number of two-
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dimensional (spatial and temporal) rectangles, which are subsequently posed against the R-tree. The 

technique also uses an R-tree to index the underlying network so as to speed up the query mapping 

process. The experimental study presented in [PJ03] shows that the proposed method clearly 

outperforms the three-dimensional approach (e.g., 3D R-tree, treating time as an extra spatial 

dimension) as the query size increases; the respective experimental study includes neither FNR nor 

MON-tree. Moreover, there is no obvious way on how this approach [PJ03] can process trajectory 

based queries. 

2.3. Indexing the Trajectories of Objects Moving in Unconstrained Space 

Before describing in detail the structure and algorithms of the TB*-tree, it is essential to briefly 

introduce the original TB-tree on which the former is based.  

2.3.1. The TB-tree 

Practically, the first index proposed to support trajectory-based queries was the Trajectory Bundle tree 

(TB-tree) [PJT00], which is fundamentally different from other spatio-temporal access methods mainly 

because of its insertion and split strategy. Similar to the original R-tree, the TB-tree is a height-

balanced tree with the index records in its leaf nodes; leaf nodes contain entries of the same 

trajectories, and are of the form <MBB, Orientation>, where MBB is the 3D bounding box of the 3D 

line segment belonging to an object’s trajectory (handling time as the third dimension) and Orientation 

is a flag used to reconstruct the actual 3D line segment inside the MBB among four different 

alternatives that exist (see Figure 2.6). Since each leaf node contains entries of the same trajectory, 

object id can be stored once in the leaf node header.  

 

Figure 2.6: Alternative ways that a 3D line segment can be contained inside a MBB 
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Figure 2.7: The TB-tree structure 

However, contrary to the majority of the R-tree variations, its insertion algorithm is not based 

upon the spatial and temporal relations of moving objects but it relies only on the moving object 
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identifier (id). When new line segments are inserted, the algorithm searches for the leaf node 

containing the last entry of the same trajectory, and simply inserts the new entry in it, thus forming leaf 

nodes that contain line segments from a single trajectory. If the leaf node is full, then a new one is 

created and is inserted at the right-end of the tree. For each trajectory, a double linked list connects the 

leaf nodes that contain its portions together (Figure 2.7), resulting in a structure that can efficiently 

answer trajectory-based queries. 

On the other hand, the TB-tree performs modestly on range queries as shown in [PJT00] because 

its data organization does not consider keeping together entries that lie close in 2D space.  A second, 

perhaps more crucial, drawback is that its construction algorithm makes a consideration that positions 

of moving objects are most probably inserted in a chronological fashion, thus it does not favor the 

insertion of a position at time ti when the latest position of any object already inserted in the index, 

corresponds to timestamp tj > ti. However, in real-world applications, this assumption is not guaranteed 

to be true. As already mentioned, if we assume that an object enters an area where the position 

transmission system does not function, its trajectory could be stored locally in the object and be 

transmitted at a later time; meanwhile other moving objects could have transmitted their positions, 

violating the above TB-tree assumption.  

In the next section, acknowledging the basic advantages of the TB-tree on trajectory 

preservation, we develop a novel index, called TB*-tree, which overcomes the drawbacks of its 

predecessor while preserving all of its ‘desired’ properties. 

2.3.2. The TB
*
-tree 

The need for an index that supports insertions of object positions independently, the need for deletion 

support, the trajectory preservation and the efficiency for both coordinate-based and trajectory-based 

queries are the main requirements for the new index. In the following, we present the structure of the 

TB*-tree as well as algorithms for inserting, deleting, compressing, and querying object trajectories. 

It is important to notice that, contrary to the original TB-tree, the TB*-tree does not care whether 

or not entries are inserted in chronological order. There is still an assumption on the trajectory itself 

(that also holds for TB-tree): entries belonging in the same trajectory are inserted in chronological 

order, i.e., the index does not permit the insertion of a position at time ti when the latest position 

already inserted in the index for the same object, was at tj > ti. Even this can be easily relaxed, as will 

be sketched in section 2.3.2.2.1. 

2.3.2.1. The TB
*
-tree Structure 

In the original TB-tree, every time a moving object updates its position, a new 3D line segment is 

inserted in it using the insertion algorithm described in [PJT00]. This fact leads to storing each 3D 

point of the moving object’s trajectory twice: once as an ending point and once as a starting point. 

While this would be necessary for a structure storing entries from different trajectories in its leaf nodes 

(e.g. the 3D R-tree [TVS96] and the STR-tree [PJT00]), it is waste of space in the TB-tree: by 

definition, line segments stored in the same leaf node belong to the same trajectory.  

Instead of 3D line segments, TB*-tree leaf nodes store 3D points forming together a 3D polyline 

that represents a part of the exact trajectory of the object. Moreover, since the object id is stored once in 



 27 

the header of the leaf node, TB*-tree leaf node entries consist of 3D points only (the Orientation flag is 

redundant). The single 3D points that appear twice are the ones at the end of a leaf node and at the start 

of its consecutive node (Figure 2.8). While these happen at the leaf level, the structure of non-leaf 

nodes remains the same as in the original TB-tree. 

Formally, TB*-tree leaf nodes are of the form 〈header, {Pi}〉, where each Pi = 〈ti, xi, yi〉 and 

header = 〈id, #entries, ptr〉 (in other words, the object identifier, the number of node entries and a 

pointer to the parent node). On the other hand, non-leaf nodes are of the form 〈header, {Ei}〉, where 

each Ei = 〈MBBi, ptri〉 with MBBi be the enclosing 3D box of the child node pointed by ptri a pointer to 

it, and header = 〈#entries, ptr〉 simply stores the number of node entries and a pointer to the parent 

node. Furthermore, similar to SETI [CEP03] and in order to support high insertion rates, the TB*-tree 

uses an in-memory hashed front-line structure, which maintains tuples of the form 〈id, Pcurr, Ncurr〉 with 

the object identifier id, its latest position Pcurr = 〈tcurr, xcurr, ycurr〉  and a pointer Ncurr to the leaf node 

containing Pcurr.  
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Figure 2.8: The single points appearing twice in the TB*-tree are the starting and ending ones at each 

leaf. 

2.3.2.2. The TB
*
-tree Algorithms 

In the sequel, we provide algorithms for maintaining the index by inserting a new position, deleting a 

trajectory, and compressing the index. As for query processing regarding the algorithms for range, 

trajectory based and combined query processing, they are identical to those presented in [PJT00] for 

the original TB-tree. Furthermore, the algorithms used for advanced query processing, such as nearest 

neighbor and most similar trajectory, will be examined in the next chapters. Nevertheless, for the sake 

of completeness, we include the range search algorithm in our discussion, which is essentially the 

FindLeaf algorithm originally proposed in [Gut84] for the original R-tree. 

2.3.2.2.1. Inserting new Trajectory Segments 

The insertion algorithm of the TB*-tree is executed every time a moving object id transmits its (new) 

position Pcurr, thus making, with the help of the front-line structure, a new entry to be inserted in the 

tree rooted by Root. The Insert algorithm is illustrated in pseudo-code in Figure 2.9. The presented 

pseudo-code includes comments that explain each step of the algorithm. Just note that it is one entry, 

Pcurr, which is inserted in the index except the case of a full node where the algorithm results to the 

creation of a new node with two entries, the latest already indexed, Pprev, and the new position, Pcurr. 
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Also, by adding the front-line structure, finding the appropriate leaf node turns out to be a simple 

procedure (in contrast to the expensive FindNode algorithm for the TB-tree described in [PJT00]). 
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Algorithm Insert(node Root, int Id, 3D Point Pcurr) 

   // Algorithm TB*-tree Insert 

   // Find leaf node NN containing previous segment 

   NN = FrontLine(Id).LastNode 

   Pprev = FrontLine(Id).Pcurr 

   // If NN exists and has space, insert Pcurr in it and propagate  

   // changes upwards using Guttman’s AdjustTree 

   IF NN exists 

      IF NN has space 

         Insert Pcurr in node NN 

         AdjustTree (NN) 

         // If, after the insertion of Pcurr, node NN becomes full,  

         // delete and reinsert its entry in parent node using  

         // Guttman’s delete and insert algorithms 

         IF NN is full 

            PN = NN.Parent 

            PE = PN.Entry_pointing_to(NN) 

            Delete (Root, PE) 

            Insert (Root, PE)  

         ENDIF 

      ELSE 

         // Otherwise, create a new node, insert Pprev and Pcurr in  

         // the new node and update the front-line 

         NNode=InsertInNewNode(Root,Pprev,Pcurr) 

         FrontLine(Id).LastNode = NNode 

      ENDIF 

   ELSE 

      NNode = InsertInNewNode(Root,Pprev,Pcurr) 

      FrontLine(Id).LastNode = NNode 

   ENDIF 

   FrontLine(Id).Pcurr = Pcurr 
 

Figure 2.9: The TB*-tree Insert Algorithm 
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Figure 2.10: The strategy followed when a leaf node becomes full: (a) The leaf node n becomes full 

(b) Entry en is deleted from the tree, and (c) Entry en is re-inserted in the tree 

A major modification in comparison with the original TB-tree takes place when a leaf node 

becomes full (Figure 2.10). Then, the algorithm locates the leaf node’s parent entry and deletes it from 

the tree using Guttman’s classic R-tree Delete algorithm [Gut84]. Then, the entry is re-inserted in the 
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tree, using Guttman’s Insert algorithm, but it is placed higher in the tree (at the level above the leaf 

level), so that the (leaf) node that the entry brings together is located at the same level with the rest 

leaves – a technique also used in the original R-tree Delete algorithm. With this technique, when a 

leaf node gets full it is placed in a ‘better’ position, in terms of spatial neighborhood, since Guttman’s 

Insert algorithm uses the least enlargement criterion in order to find the node in which to place the 

entry. This “delete and re-insert” technique, originally used in the R*-tree [BKSS90], is the reason for 

calling this novel index, TB*-tree. 

Another major difference from the original TB-tree concerns the creation of new leaf nodes and 

the choice of the location where the new leaf nodes are placed. For this purpose, a new algorithm called 

InsertInNewNode is developed (pseudo-code in Figure 2.11), which uses Guttman’s 

ChooseLeaf and AdjustTree algorithms [Gut84]. As already discussed, the algorithm initially 

places two points, Pprev and Pcurr, in the new leaf (cf. Figure 2.8).  

Differently from the TB-tree construction, InsertInNewNode algorithm of the TB*-tree finds 

the leaf node next to which the new leaf should be placed using the least enlargement criterion 

(Guttman’s ChooseLeaf algorithm). Then, Guttman’s AdjustTree algorithm is invoked passing 

both leaf nodes – the one returned by ChooseLeaf and the newly created one – such as it would 

happen if the node returned by the ChooseLeaf was previously split. Finally, if the procedure causes 

the root node to split, then the tree grows taller by creating a new root whose children are the two 

resulted nodes. 
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Algorithm InsertInNewNode(node Root, 3D Point Pprev, 3D Point Pcurr) 

   // Algorithm TB*-tree InsertInNewNode 

   Create New Leaf Node NNode 

   Insert Pprev in node NNode 

   Insert Pcurr in node NNode 

   // Find Position for the new Node using Guttman’s ChooseLeaf  

   L = ChooseLeaf (Root, (Pprev,Pcurr)) 

   // Propagate changes upward 

   AdjustTree (L, NNode) 

   // Grow tree taller 

   IF AdjustTree caused the Root to split 

      Create a new Root NRoot 

      Insert first resulted node in NRoot  

      Insert second resulted node in NRoot  

   ENDIF 

   // Return the new Node 

   RETURN NNode 
 

Figure 2.11: The InsertInNewNode algorithm 

With reference to the assumption of the TB*-tree that entries belonging to the same trajectory are 

inserted in chronological order, this only happens in order to keep the insertion procedure simple (a 

new position is inserted either in the ‘current’ node – as indicated by the front-line structure – or in a 

new node, updating accordingly the in-memory front-line). Should this assumption be relaxed, a 

backward search in the double-linked list of nodes is required (starting from the ‘current’ node), the 

new (‘outdated’) entry is to be inserted in the appropriate node and, since all nodes before the ‘current’ 

node in the list are by definition full, an entry is to be moved from each node to its next node in the 

chain starting from the node the entry was inserted and ending at the ‘current’ node. 
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Finally, a buffering technique can be used to optimize the insertion process in terms of touched 

disk pages. In particular, further than using a traditional buffering mechanism (such as LRU), the TB*-

tree structure can utilize an additional buffer, hereafter called Last Page (LP) Buffer, which would hold 

all leaf nodes not yet filled. Since each leaf node is expected to be completely filled with leaf entries, 

the LP buffer can be used in order to hold those leaves not yet completed; then when each leaf node is 

completely filled, it is saved on the disk just once, and the next (new) leaf node of the same trajectory 

takes its place on the LP buffer. Therefore, the size of the LP buffer will always be equal with the 

number of trajectories currently indexed by the TB*-tree. As it will also be shown in the experiments, 

the LP buffer dramatically reduces the number of disk page accesses required for insertions. 
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Figure 2.12: The TB*-tree structure 

The general picture of the TB*-tree is illustrated in Figure 2.12. Compared with the TB-tree (cf. 

Figure 2.7), it is clear that leaf nodes belonging to the same trajectory are no longer placed in 

increasing time order (e.g. from left to right), but are placed in locations determined by the least 

enlargement criterion. 

2.3.2.2.2. Deleting Trajectories 

Deletions are often neglected when proposing indexing methods for moving object trajectories, with 

the main argument that deleting a 3D line segment from an object’s trajectory is meaningless. Although 

this might be assumed to be conceptually correct (transmitted positions are recorded, thus exist), 

deleting an entire object’s trajectory is meaningful (trajectories of objects being no more useful could 

be deleted from the index). Therefore, we provide an efficient algorithm to support deletions of object 

trajectories. The input of the algorithm is the id of the trajectory to be deleted. 

The DeleteTrajectory algorithm, illustrated in Figure 2.13, can be used in the TB*-tree in 

order to delete a moving object’s trajectory. The algorithm initially locates the ‘current’ leaf node N. 

Then, it removes N’s parent entry from its parent node executing Guttman’s R-tree Delete algorithm 

[Gut84] and follows the chain backwards to nodes containing parts of the same trajectory, deleting one 

after the other. If necessary, according to Delete algorithm, nodes are rearranged, e.g. if the number 

of entries falls under the m=M/2 threshold, or even the tree may be forced to condense.  
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Algorithm DeleteTrajectory(int Id) 

   // Algorithm TB*-tree DeleteTrajectory 

   // Find latest trajectory leaf node N  

   N = FrontLine(Id).LastNode 

   // Delete leaf node N’s parent entry using Guttman’s Delete  

   // Algorithm and follow the pointers to the trajectory’s previous  

   // leaf nodes deleting also their parent entries  

   DO UNTIL N Is NULL 

      PN = N.Parent 

      PE = PN.Entry_pointing_to(N) 

      Delete (Root, PE) 

      N = N.PreviousLeaf 

   LOOP 

 

Figure 2.13: The DeleteTrajectory Algorithm 

The structure of the TB*-tree looks ideal for providing such an algorithm: having located just one 

line segment belonging to an object’s trajectory, one could follow the double-linked lists in order to 

retrieve the entire trajectory and delete leaf nodes that compose it. On the other hand, the original TB-

tree cannot easily support trajectory deletions: node deletions result in deletions of entries in non-leaf 

nodes which either require condense techniques to be handled (such as the CondenseTree algorithm 

[Gut84]) or leave holes in the nodes. In any case, the ‘desired’ TB-tree properties (all leaf nodes but the 

‘current’ ones are full; a chronological order of leaf nodes exists, etc.) are not prevented.  

As for other index structures (such as the 3D R-tree [TVS96], the STR-tree [PJT00], the SETI 

[CEP03]), they by definition lack a mechanism to efficiently retrieve an object’s entire trajectory; thus, 

in order to support trajectory deletions they have to answer sequential range queries such as described 

in [PJT00] for the combined search of the 3D R-tree and the STR-tree – a very expensive approach as 

shown in [PJT00]. 

2.3.2.2.3. Compressing the Index 

While the original TB-tree satisfies the trajectory preservation requirement in order to utilize the TD-

TR trajectory compression algorithm [MB04], such an algorithm would have to read each indexed 

trajectory one-by-one, compress it, and finally feed a new TB-tree with the compressed trajectory. 

However, since the TB-tree places new entries always at the right ‘end’ of the tree, such an approach 

would place entire trajectories on this side of the tree without considering their temporal ordering, thus 

leading to a tree with high temporal overlap decreasing its performance. Therefore, in order to 

overcome this drawback, we would have to utilize intermediate steps processing all trajectories indexed 

by the TB-tree, producing the new compressed ones, sorting them according to their temporal order and 

finally feed the new TB-tree. Nevertheless, such a technique would require processing the entire index 

in the main memory, or developing specialized algorithms to handle it efficiently. Moreover, the 

opening window spatio-temporal algorithm presented in [MB04] would be a solution; then again, such 

an approach would lead to utilize a less efficient compression algorithm in terms of both quality and 

compression. 

On the contrary, the proposed TB*-tree does not show any of these disadvantages. Its insertion 

algorithm supports trajectory additions in non-chronological order. As such, in Figure 2.14 we present 

a simple algorithm which compresses a TB*-tree by utilizing the TD-TR algorithm [MB04]. The 

algorithm starts by creating a new TB*-tree, and then, using the hashed structure, it accesses the last 
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node of every trajectory. Then, following the pointers to the previous leaves, it retrieves the entire 

trajectory on which the TD-TR algorithm [MB04] is applied with the given threshold. Finally, the 

algorithm feeds the new TB*-tree with the compressed trajectory and repeats the same procedure for 

the remaining trajectories until all have been accessed. 
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Algorithm CompressIndex(double Threshold, TB*-tree TB) 

   // Algorithm TB*-tree CompressIndex 

   // Create a new TB*-tree 

   NTB = New TB*-Tree 

   FOR EACH Id IN TB.Trajectories 

   // Find latest trajectory leaf node N  

      N = FrontLine(Id).LastNode 

      // Create a new Trajectory retrieve all of its entries 

      Traj = New Trajectory 

      DO UNTIL N Is NULL 

         Traj.Add N.Segments 

         N = N.PreviousLeaf 

      LOOP 

      // Apply the top-down spatiotemporal compression algorithm  

      // TD-TR in the Trajectory with the given threshold 

      TD-TR (Traj, Threshold) 

      // Insert in the new TB*-tree each point P of the compressed  

      // trajectory 

      FOR EACH P IN Traj 

         Insert NTB.Root, Id, P 

      NEXT 

   NEXT  

Figure 2.14: The CompressIndex Algorithm 

2.3.2.2.4. Querying the TB
*
-tree 

As already mentioned, since both the TB- and TB*-tree are based on the well known R-tree, the 

respective range search algorithms follows the FindLeaf algorithm originally presented in [Gut84]. 

This algorithm recursively visits tree nodes, rejecting node MBBs that does not overlap the query 

window, while following the pointers from overlapping MBBs to their respective child nodes until all 

candidate leaf nodes have been found. Following the example illustrated in Figure 2.1 for spatial 

objects, consider a range query Q executed against the 2D R-tree. The algorithm starts by visiting the 

tree root, checking whether the MBBs of the root entries overlap Q. If a node entry MBB overlaps Q, 

the algorithm follows the pointer to the corresponding child node (entries A and B in our example), 

where it repeats recursively the same task. If the algorithm reaches a leaf node, leaf entries are 

examined against Q and if their MBB overlap, the algorithm reports their ids (objects F and G when the 

algorithm visits leaf node A, and object H when in node B). The extension of the above algorithm in the 

spatio-temporal domain is a straightforward task, where each 2D MBB is simply replaced by the 

respective 3D MBB of actual objects, nodes or queries. 

2.4. Indexing the Trajectories of Objects Moving in Fixed Networks  

As already mentioned, following the suggestions of [KGT99], in this thesis we propose the FNR-tree, 

an extension of the well-known R-tree [Gut84], designed to index objects moving on fixed networks. 

The FNR-tree can be considered as a forest of several 1D R-trees on top of a single 2D R-tree. The 2D 

R-tree is used to index the spatial data of the network (i.e., roads consisting of line segments), while 

each one of the (temporal) 1D R-trees, hereafter called “Children 1D R-trees”, corresponds to a leaf 
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node of the 2D R-tree and indexes the time intervals during which moving objects moved on network 

links that fall into the Minimum Bounding Box (MBB) of the corresponding 2D R-tree leaf node. As 

such, the (spatial) 2D R-tree remains static during the lifetime of the FNR-tree – as long as there are no 

changes in the network. An additional (temporal) 1D R-tree hereafter, called “Parent 1D R-tree” is 

used to index the leaf nodes of all the children 1D R-trees with respect to their lifetime. Hence, the time 

interval of each 1D R-tree’s leaf node is inserted along with a pointer to the actual node as a new entry 

in the parent 1D R-tree. The overall structure of the FNR-tree is outlined in Figure 2.15, while Figure 

2.16 (b) demonstrates an example for the configuration of objects illustrated in Figure 2.16 (a). 
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Figure 2.15: The FNR-tree structure 
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Figure 2.16: An FNR-tree example: (a) trajectories of three objects on a road network and (b) the 

corresponding FNR-tree components 

2.4.1. The FNR-tree Structure 

As already mentioned, the FNR-tree can be considerer as a 2D R-tree indexing the network line 

segments, along with a forest of 1D R-trees indexing time intervals. Following the standard R-tree 

structure, non-leaf nodes of the 2D R-tree are of the form 〈header, {ptri, MBBi}〉, where each MBBi = 

〈xmin-i, ymin-i, xmax-i, ymax-i〉 and header = 〈id, #entries, ptr〉. On the other hand, the structure of the 2D R-

tree leaf nodes is slightly modified regarding the conventional R-tree; formally, leaf nodes are of the 

form 〈header, {linki, MBBi, orientation}〉 and header = 〈id, #entries, ptr, ptrchild-R-tree〉. According to this 

form, the pointer normally located inside each leaf node entry has been replaced by an ‘orientation’ 

flag (0/1) that describes the exact geometry of the line segment inside the MBB (Figure 2.17(a)). A 
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similar approach was followed in [PJT00] to represent segments of trajectories in 3D R-tree [TVS96]. 

Moreover, each 2D R-tree leaf node contains a pointer (ptrchild-R-tree) that points to the root of the 

corresponding child 1D R-tree. 
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Figure 2.17: (a) The ‘orientation’ flag in 2D R-tree entries; (b) the ‘direction’ flag in 1D R-tree entries 

Regarding the 1D R-trees, non-leaf nodes are of the form 〈header, {ptri, MBBi}〉, while leafs are 

slightly different: 〈header, {Object-idi, Link-idi, MBBi, direction}〉, and MBBi=〈tin, tout〉 is the time 

interval during which object with id Object-idi moved on the line segment with id Link-idi, which is 

included in the MBB of the corresponding leaf of the 2D R-tree. Direction is another flag (0/1) that 

describes the heading of the moving object (Figure 2.17 (b)). Specifically, direction is set to 0 (1) when 

the moving object entered the line segment from the left-most (right-most) node. In the special case 

where the line segment is vertical, direction is set to 0 (1) for objects entered the line segment from the 

bottom-most (top-most) node. Finally, leaf node headers are of the form header = 〈id, #entries, ptr, 

ptrparent-R-tree-node〉 where ptrparent-R-tree-node stands for pointing directly from each 1D R-tree leaf node to 

the corresponding 2D R-tree leaf node. 

Similar to the above is the structure of the parent 1D R-tree. Although the internal nodes remain 

identical with the former ones, leaf nodes differ to some extent: they are of the form 〈header, {ptrchild-R-

tree-node, MBBi}〉 with MBBi=〈tmin, tmax〉, and ptrchild-R-tree-node pointing to the corresponding leaf node in the 

forest of the children 1D R-trees (cf. Figure 2.15).  

2.4.2. The FNR-tree Algorithms 

In the sequel, we provide algorithms for inserting a new entry in the FNR-tree (subsection 2.4.2.1) and 

searching the FNR-tree with respect to a query window (subsection 2.4.2.2).  

2.4.2.1. Inserting new Trajectory Segments 

The insertion algorithm of the FNR-tree is executed each time a moving object with Object-idi leaves a 

line segment of the network, represented by its MBB (xstart, ystart, xend, yend) and the direction flag. The 

list of arguments also includes the time interval (tin, tout) during which Object-idi was moving on the 

line segment. The insertion algorithm is illustrated in Figure 2.18. 

In this algorithm, R_tree_insert, R_tree_delete and R_tree_search are Guttman’s 

classic algorithms described in [Gut84] to maintain and search an (1D or 2D) R-tree. On the other 

hand, for the insertion done in line 11 (considering the children 1D R-trees of the FNR-tree), we notice 

that the 1D time intervals are inserted in the tree in increasing order for the reason that time is 

monotonic. This fact leads us to the following modification of Guttman’s R-tree-insert algorithm, 
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hereafter called Insert_most_recent, also illustrated in Figure 2.19. Every new entry is simply 

inserted in the most recent (right-most) leaf of the 1D R-tree. In case this leaf node is full, a new node 

is created and the entry is inserted in it. The new leaf node is inserted in the structure as a sibling node 

of the (previously) most recent leaf. As such, it could cause propagates upwards using Guttman’s 

AdjustTree algorithm, also described in [Gut84]. This insertion technique results to 1D R-trees with 

almost full leaves and very small overlapping.  
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Algorithm FNR_tree_Insert(object_id, xstart, ystart, xend, 

yend, tin, tout) 

   // Search the line segment with Link_id in the 2D R-tree 

   // that object_id leaves 

   Link_id = 2D_R_tree_search(xstart, ystart, xend, yend) 

   // follow the pointer from leaf node that contains link_id  

   // to the corresponding 1D R-tree, RT 

   RT=link_id.Child_R_tree 

   // Insert the time interval into the 1D R-tree 

   // Let ND be the leaf node where the input was inserted 

   RT.Insert_most_recent(tin, tout, object_id, link_id, ND)  

   // If necessary, update the Parent 1D R-tree by inserting or 

   // updating the MBB of node ND 

   IF ND is a new node caused by the insertion  

      Parent_1D_R_tree_insert(ND.MBB, ND.ptr) 

   ELSEIF the ND.MBB was modified 

      Parent_1D_R_tree_delete(ND.MBB, ND.ptr) 

      Parent_1D_R_tree_insert(ND.MBB, ND.ptr) 

   ENDIF 
 

Figure 2.18: FNR-tree Insertion Algorithm 

 

 

Figure 2.19: New entries are always inserted in the right-most node of each 1D R-tree when insertions 

are performed in chronological order 

Nevertheless, given the discussion of section 2.3.2, the strategy of Insert_most_recent 

can be considered as a drawback in several application domains where new trajectory segments 

insertions do not necessarily follow the timeline. In order to deal with this requirement of non-

chronological insertions, the FNR-tree can be also implemented employing the simple 

R_tree_insert [Gut84] algorithm in line 11, an approach which enables the index to efficiently 

handle line segments inserted in arbitrary time-order. Concluding, depending on the application, the 

FNR-tree may or may not efficiently support non-chronological insertions by simply modifying line 

10. Finally, the insertion and deletion algorithms used in lines 14-18 are the conventional R-tree 

algorithms [Gut84] mainly due to updates required (deletions and re-insertions). 

As illustrated in Figure 2.20, the insertion algorithm is executed when the moving object reaches 

a node (Node j) of the network. The first step (line 4) requires a spatial search in the 2D R-tree (with 
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the coordinates of Nodes i and j as arguments) in order to find link k, enclosed by the MBB of the 2D 

R-tree leaf node N. Next, we follow the pointer to the corresponding 1D R-tree, in which we insert a 

new entry (tin, tout, object-id, link-id). Depending on the insertion policy, the newly inserted entry is 

placed in the right-most 1D R-tree leaf node M (or in the node determined by the R_tree_insert 

algorithm). Eventual modifications in the structure due to this insertion (the MBB of that leaf node may 

be updated, a new leaf node may be created), are propagated upwards. Such a modification also causes 

updates in the Parent 1D R-tree; an updated MBB in the 1D R-tree causes a deletion and re-insertion of 

the corresponding entry in the Parent R-tree, while a creation of a new node in the 1D R-tree causes an 

insertion of a new entry in the Parent R-tree. 
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tin 
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Figure 2.20: Insertion of a new entry in the FNR-tree 

2.4.2.2. Querying the FNR-tree 

The structure of the FNR-tree offers the flexibility to use two different search algorithms for different 

types of queries. The comparative advantages will be presented through examples and the performance 

study that will follow. 

Search-from-2D-R-tree: The first algorithm, illustrated in Figure 2.21, starts from the 2D R-

tree root, locates the 2D R-tree entries which satisfy the spatial constraints of the query and then, 

following the pointer(s) to the corresponding 1D R-tree(s), checks in those trees whether there are 

entries satisfying the query temporal constraint as well. Finally, a refinement step ensures that the 

algorithm returns only the entries satisfying both spatial and temporal criteria.  
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Algorithm FNR_tree_Search_from_2D(xmin, xmax, ymin, ymax, tmin, tmax) 

   // Search in the 2D R-tree with the 2D interval  

   // (xmin, xmax, ymin, ymax) retrieving the Links contained in it 

   Links = 2D_R_tree_search(xmin, xmax, ymin, ymax) 

   // follow the pointers from leaf nodes ND containing the Links  

   // to the corresponding 1D R-trees, RT 

   FOR EACH ND containing any of Links 

      RT=ND.Child_R_tree 

      // Search each one of the corresponding 1D R-trees 

      Candidates=RT.R_tree_search(tmin, tmax)  

      // Refinement 

      // If ND2 is completely contained inside (xmin, ymin, xmax, 

      // ymax) all entries of ND2 are also inside 

      IF ND2.MBB is inside (xmin, ymin, xmax, ymax) 

         RETURN all entries in Candidates 

      ELSE // ND2 is partially inside (xmin, ymin, xmax, ymax) 

         FOR EACH Entry IN Candidates 

            IF Links(Entry.Link_id).MBB is inside (xmin, xmax, ymin, ymax) 

               RETURN the Entry 

            ENDIF 

         NEXT 

      ENDIF 

   NEXT 

 

Figure 2.21: FNR-tree Search-from-2D-R-tree Algorithm 

Search-from-Parent-1D-R-tree: The second search algorithm of the FNR-tree utilizes the 

Parent 1D R-tree and is illustrated in Figure 2.22. It starts from the Parent 1D R-tree root and locates 

the entries satisfying the temporal constraints of the query. Then, following the pointers, it finds the 

children 1D R-tree leaf nodes containing the entries satisfying the temporal constraints of the query and 

the corresponding 2D R-tree leaf nodes. Finally, a refinement step guarantees that the algorithm returns 

only the entries satisfying both temporal and spatial criteria. 
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Algorithm FNR_tree_Search_from_Parent_1D(xmin, xmax, ymin, ymax, tmin, tmax) 

   // Search in the Parent 1D R-tree with the 1D interval  

   // (tmin, tmax) retrieving the entries overlapping it 

   PEntries = Parent_1D_R_tree_search(xmin, xmax, ymin, ymax) 

   // follow the pointer to the children 1D R-tree Leaf Nodes ND1 

   FOR EACH PEntry IN PEntries 

      ND1=Pentry.Child_1D_R_Tree_Leaf 

      // follow the pointer to the parent 2D R-tree Leaf Node  

      // ND2 to get spatial extent 

      ND2=ND1.Parent_2D_R_Tree_Leaf 

      // Refinement 

      IF ND2.MBB is outside (xmin, xmax, ymin, ymax)  

         Reject ND2 

      ELSEIF ND2.MBB is inside (xmin, xmax, ymin, ymax)  

         RETURN all entries of ND1 

      ELSE // ND2 is partially inside (xmin, ymin, xmax, ymax) 

         FOR EACH Entry IN ND1 

          IF ND2.Links(Entry.Link_id).MBB is inside(xmin, xmax, ymin, ymax)         

               RETURN the Entry 

          ENDIF 

         NEXT 

      ENDIF 

   NEXT 

 

Figure 2.22: FNR-tree Search-from-Parent-1D-R-tree Algorithm 

Suppose we would search the FNR-tree with a spatio-temporal query window (x1, y1, x2, y2, t1, t2) 

using the first search algorithm, Search-from-2D-R-tree (Figure 2.23). The first step requires a 
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spatial search (for (x1, y1, x2, y2)) in the 2D R-tree in order to locate the line segments and the 

corresponding 2D R-tree leaves (in our example, leaf node N) which are covered by the spatial query 

window. Next, a search (for (t1, t2)) is executed in each one of the 1D R-trees that correspond to the leaf 

nodes of the first step. In our example, the search directs to the 1D R-tree leaf nodes T1 and T2 that 

contain (among others) links k, l and o. At the final step, we retrieve from the main memory the 

coordinates of each link selected in the second step and – for the reason that the 2D R-tree leaf node N 

overlaps the spatial query window – we check and reject those, which are outside the spatial query 

window (in our example, link o). 
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Figure 2.23: Searching the FNR-tree using Search-from-2D-R-tree Algorithm 

In order to demonstrate the second search algorithm (Search-from-Parent-1D-R-tree), 

we again assume a spatio-temporal query window (x1, y1, x2, y2, t1, t2) (Figure 2.24). The first step of 

the algorithm requires a search in the parent 1D R-tree with (t1, t2) as argument in order to locate its 

leaf entries which overlap with this interval. Then, following the pointers to the children 1D R-tree leaf 

nodes, we locate the nodes containing the 1D R-tree entries that satisfy the temporal constraints of the 

query (leaf nodes T1, T2). These nodes belong to different children 1D R-trees, corresponding to 

different 2D R-tree leaf nodes, which are traced by following the pointers to them (leaf nodes N1, N2). 

Finally, we check whether the entries contained in the nodes N1 and N2 satisfy the spatial query 

constraint (x1, y1, x2, y2). 
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Figure 2.24: Searching the FNR-tree using Search-from-Parent-1D-R-tree Algorithm 
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A criticism to the second search algorithm is that it only cares about the temporal location of the 

data and applies a spatial filtering only at the last step. On the other hand, we expect this algorithm to 

be efficient in cases where only the temporal query constraints matter. We illustrate this behavior in the 

experimental section that follows. 

At this point, it is worth to note that the FNR-tree would also be functional without the presence 

of the parent 1D R-tree. In this case, the single modification of the FRN-tree insertion algorithm would 

be the absence of lines 11-18 (cf.  Figure 2.18). Moreover, the first search algorithm (cf. Figure 2.21) 

would be executed ‘as-it-is’. As such, the construction and the operation of the FNR-tree would be 

possible without the presence of the Parent 1D R-tree.  
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Algorithm FNR_tree_Parent_1D_R_Tree_Construction 

   Create a new 1D R-tree 

   // Access the 2D R-tree. Use the 2D R-tree structure and locate  

   // every leaf node named ND2 

   FOR EACH Leaf Node ND2 IN 2D R-tree 

      // Follow the pointer to the child 1D R-tree RT  

      ND1=ND2.Child_1D_R_Tree_Leaf 

      // Access all the child 1D R-tree and insert the leaf  

      // nodes in the Parent 1D R-tree  

      FOR EACH Leaf Node ND1 IN RT 

         // Execute R-tree-insert algorithm in the Parent // 1D R-tree 

         // and insert ND1 as a new entry 

         Parent_1D_R_tree_insert(ND.MBB, ND.ptr) 

      NEXT 

   NEXT 

 

Figure 2.25: FNR-tree Parent-1D-R-Tree-Construction Algorithm 

However, the function of the second search algorithm (cf. Figure 2.22) requires the existence of 

the parent 1D R-tree. This structure can be constructed at any time instance of the FNR-tree lifetime 

using the construction algorithm illustrated in Figure 2.25; this algorithm accesses the complete FNR-

tree structure and simply inserts the temporal extents of all children 1D R-trees leaf nodes as entries in 

the Parent 1D R-tree. 

2.5. Experimental Study: Unrestricted Movement  

In order to evaluate the performance of the TB*-tree, we implemented its structure and algorithms 

proposed in this chapter and made a comparison of the proposed index with the original TB-tree 

[PJT00], as well as the traditional 3D R-tree [TVS96].  

2.5.1. Experimental Setup 

We have chosen the page size for all trees to be 4 KB resulting in a fanout - maximum capacity (M) for 

the TB*-tree of 338 and 145, for the leaf and non-leaf nodes, respectively. Further from the LP buffer 

introduced, we used a (variable size) LRU buffer fitting the 10% of the index size, with a maximum 

capacity of 1000 pages. The experiments were performed in a PC running Microsoft Windows XP with 

AMD Athlon 64 3GHz processor, 1 GB RAM and several GB of disk space. 

In order to achieve scalability in the cardinality of the datasets and study the behavior of the 

index structures under several settings we have employed the synthetic GSTD datasets introduced in 

section 1.5.2 (the real datasets of section 0 are not suitable for our study, since have constant, rather 

limitted size). Furthermore, we used two different strategies to insert the datasets into the three 
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structures. The first strategy requires the dataset to be ordered by time. This is the usual case in online 

spatio-temporal applications, where, due to time monotonicity, we expect the trajectory data to be 

collected and inserted in the index in ascending order of time (hence, ‘time’ organization in the 

experiments to follow). The second strategy does not make this assumption, provided that the trajectory 

data of a single moving object are inserted in chronological order. This is the case where moving 

objects record their position and do not maintain online communication with the central server that 

maintains the index; on the contrary, objects send their location(s) as soon as it is possible (e.g. when 

they are in range of the device used for the transmission), or at scheduled timestamps. This is also the 

case where the index is built after the compression of another existing index or any other file 

containing trajectory information. Thus, in order to simulate both previous situations, trajectory data 

are inserted into the index in ascending moving object id / time order (hence, ‘id/time’ organization in 

the experiments to follow). 

Table 2.2: Results on tree size (GSTD synthetic datasets) 

index size in pages (of 4 KB each) 
Dataset 

3D R-tree TB-tree TB*-tree 

GSTD 100 6253 3054 1522 

GSTD 250 15471 7649 3808 

GSTD 500 30937 15301 7597 

GSTD 1000 61864 30588 15156 

GSTD 2000 122703 61170 30557 

 

2.5.2. Results on Tree Size and Insertion Cost 

The sizes of the built index structures are illustrated in Table 2.2. It is clear that the size of the TB*-tree 

is almost half of the size of the TB-tree, and almost the 15% of the size of the standard 3D R-tree. 

Moreover, the space utilization for both the TB- and the TB*-tree is as high as expected: about 99% and 

96%, respectively, whereas the respective value of the 3D R-tree is 56%, which is a typical value for R-

trees. It is therefore proven that the TB*-tree is a very compact index structure, outperforming both of 

its competitors. 

Table 2.3: Index size, space utilization and node accesses per insertion on the GSTD2000 dataset 

 3D R-tree TB-tree TB*-tree 

Index size (KB per object) 99.6 30.6 15.2 

Space utilization 56% 99% 96% 

Node Accesses per Insertion (average) 2.3 4.0 (1.2)  1.4 
 

The results on node accesses per insertion for all datasets are illustrated in Table 2.3. Each 

insertion of a new trajectory line segment in the TB*-tree requires an average of 1.4 node accesses. The 

reason for this first-rate performance are the usage of the in-memory front-line structure, which points 

directly to the node wherein the new line entry must be inserted, and the presence of the LP buffer. On 

the contrary, the TB-tree and the 3D R-tree require larger number of nodes per insertion, 4.0 and 2.3, 

respectively; this is due to the TB-tree FindNode algorithm, which follows a multi-way path (and not a 
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one-way as the ChooseLeaf algorithm of the R-tree does) to find the appropriate node where to place 

the new entry.  

Here, we have to point out, that the original TB-tree insertion algorithm can be modified using 

the front-line structure introduced in the TB*-tree and simply replace the FindNode algorithm step by 

following the pointer to the moving object’s ‘current’ leaf node. The original TB-tree can also employ 

the LP buffer which, on the contrary, cannot be used in the case of other non-trajectory oriented 

indexes (such as the 3D R-tree), because such a strategy would require the LP buffer to hold all the leaf 

nodes. Thus, in order to demonstrate the influence of those improvements (front-line and LP buffer) in 

the behavior of the simple TB-tree we employed them in the conducted experiments, resulting in the 

second number (1.2) in Table 2.3. As it can be seen, these techniques drastically improve the insertion 

performance, making therefore the simple TB-tree also able to support high insertion rates. 

2.5.3. Results on Search Cost 

Range, timeslice, and combined queries were used in order to evaluate the performance of the TB*-tree. 

In particular, we used the following set of five queries (Q1 – Q5): 

• Q1–Q3: three sets of 500 cubic query windows with a range of 0.01%, 0.1% and 1% of the 

total space, respectively, over the synthetic data increasing the number of moving objects 

(GSTD100 – GSTD2000 datasets).  

• Q4: one set of 500 timeslice query windows with the 100% of the extent in the spatial 

dimensions and zero temporal extent, over the synthetic data increasing the number of moving 

objects (GSTD100 – GSTD2000 datasets). 

• Q5: one set of 500 combined queries with inner window 0.01% and outer 1% of the total 

space, over the synthetic data increasing the number of moving objects (GSTD100 – 

GSTD2000 datasets). 
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Figure 2.26: Queries Q1 – Q3 with the synthetic data inserted organized by time  

2.5.3.1. Results on Range Queries 

Figure 2.26 illustrates the average number of node accesses per query for various ranges and datasets. 

In particular, Figure 2.26 shows the average number of node accesses for range queries with a cubic 

window of 0.01%, 0.1% and 1% of the total space over the synthetic data inserted in the structures 

organized by chronological order irrespective of id (‘time’), while Figure 2.27 shows the average 

number of node accesses for the same range queries over the same data organized by id and then 

chronological order (‘id/time’). It is clear that the TB*-tree has superior range query performance over 

both its competitors regarding the query with sizes of 0.1% (Q2) and 1% (Q3) of the total space for both 
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different insertion organizations. Regarding the queries with smaller size (0.01% of the total space, Q1) 

and the trajectory data organized by chronological order, the TB*-tree performance is only marginally 

better than the original TB-tree, a difference which is more clear as the dataset cardinality grows. 

Another conclusion that arises from the comparison between Figure 2.26 and Figure 2.27 is that, 

while the TB*-tree and the 3D R-tree show approximately the same behavior following the two 

different insertion strategies (the slope of the TB*-tree and the 3D R-tree lines is approximately the 

same in Figure 2.26 and Figure 2.27), the behavior of the original TB-tree is significantly affected, 

resulting in the second case in a tree with drastically decreased performance. This behavior of the TB-

tree is expectable since the basic assumption which the efficiency of the tree in range queries is based 

on, i.e. the insertion of new entries in chronological order, does not hold any more.  
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Figure 2.27: Queries Q1 – Q3 with the synthetic data inserted organized by id/time  
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Figure 2.28: Queries Q4 with the synthetic data organized by (a) time, (b) id/time  

2.5.3.2. Results on Timeslice Queries 

Figure 2.28(a) presents the average number of node accesses for timeslice queries with 100% in each 

spatial dimension (e.g. find all objects in a certain timestamp) when inserting the trajectory data 

organized in purely chronological order. As shown, in the first case, the original TB-tree only 

marginally outperforms the TB*-tree, which is an expected behavior, since the original TB-tree takes 

full advantage of the monotonicity of time and stores object’s trajectories considering only the order in 

which they are inserted in the index. However, this turns out to be a drawback when data are not 

inserted in purely chronological order (Figure 2.28(b)); in this case, the TB*-tree shows better 

performance, a behavior that is similar to the one showed by this structure when data were inserted in 

strictly chronological order. 
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As a conclusion, the TB*-tree performance in timeslice queries is reduced compared with its 

performance in range queries, although it still outperforms the TB-tree when the trajectory data inserted 

in the structures are organized by ‘id/time’.  

2.5.3.3. Results on Combined Queries 

Figure 2.29 shows the average number of node accesses required by the TB- the TB*- and the 3D R-

tree in order to answer combined queries. In both figures the TB*-tree outperforms both TB- and 3D R-

tree regardless of the dataset cardinality. Moreover, in accordance with all the previous experiments, 

the difference in the performance between the TB- and the TB*-tree increases in favor of the TB*-tree 

with the dataset cardinality. Furthermore, in the second case (Figure 2.29(b)) where that data inserted 

in the trees with ‘id/time’ organization, the TB*-tree shows even better performance over its 

predecessor. 
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Figure 2.29: Combined queries, (Q5) with the synthetic data organized by (a) time, (b) id/time  

2.5.4. Summary of the Experiments 

The experiments conducted in order to evaluate the performance of the proposed TB*-tree against the 

original TB-tree and the 3D R-tree showed that the proposed index supports range queries efficiently. 

More specifically, when dealing with relative large query extents (0.1% and 1% of the entire space) the 

TB*-tree always outperforms the TB-tree and the 3D R-tree, while in smaller query extents (0.01% of 

the total space) it is marginally better than its competitors, a benefit which becomes clearer as the 

dataset cardinality increases. On the contrary, in timeslice queries the TB*-tree appears to have reduced 

performance, requiring a few more page accesses in order to process a timeslice query.; in this case the 

“winner” is the 3D R-tree. Finally, regarding the combined queries the new index shows superior 

performance over the original TB-tree in all settings. Moreover, the superiority of the proposed index is 

established in the general case where the indexes are built inserting the trajectory data not in purely 

chronological order (‘id/time’ organization), a case which is expected in real-world applications and 

when the index is built after a dataset compression. Under such conditions, the TB*-tree is always 

much more efficient than the TB-tree. On the subject of the size of the TB*-tree, its space utilization, 

like the original TB-tree, reaches up to 96%, and the average size per moving object is the half than 

that of the TB-tree. Moreover, the TB*-tree supports high insertion rates since its insertion algorithm is 

proved to be very fast,  is more compact than its competitors, behaves well in non-chronological 

trajectory insertions that appear in real-world environments, and supports trajectory deletions and 

trajectory compression efficiently. 
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2.6. Experimental Study: Network-Constrained Movement  

In order to determine the conditions under which the FNR-tree is efficient, we compared it with other 

spatio-temporal access methods, namely the 3D R-, the TB- and the TB*-tree.  

2.6.1. Experimental Setup 

In order to evaluate the performance of the FNR-tree, we implemented its structure in main memory, 

simulating its behaviour. We have chosen the page size for all trees to be 4096 bytes, acquiring the 

following fanout settings for the FNR-tree: (a) for the 2D R-tree a fanout of 193 and 202, for leaf and 

non-leaf nodes, respectively; (b) for the children 1D R-trees a fanout of 290 and 339, for leaf and non-

leaf nodes, respectively; (c) for the Parent 1D R-tree, a fanout of 339 for both leaf and non-leaf nodes. 

Compared with the fanout of its competitors, the FNR-tree is as compact as the TB*-tree 

(outperforming the other two index structures). We also used a (variable size) LRU buffer fitting the 

10% of the index size, with a maximum capacity of 1000 pages. The experiments were performed in a 

PC running Microsoft Windows XP with AMD Athlon 64 3GHz processor and 1 GB RAM. In order to 

achieve scalability in the cardinality of the datasets and study the behavior of the index structures under 

several settings we have employed the synthetic NG datasets introduced in section 1.5.3 (again, the real 

datasets of section 0 are not suitable for our study since they have constant, rather limited size). 

Table 2.4: Results on tree size (NG synthetic datasets) 

index size in pages (of 4 KB each) 
Dataset 

FNR-tree 3D R-tree TB-tree TB*-tree 

NG 200 769 1204 770 424 

NG 400 1139 2397 1533 848 

NG 800 1850 4603 3040 1669 

NG 1200 2575 7001 4499 2495 

NG 1600 3281 9234 5972 3310 

NG 2000 4030 11636 7455 4158 
 

2.6.2. Results on Tree Size and Insertion Cost 

The size of the built index structures is illustrated in Table 2.4. As listed there, the FNR-tree is much 

smaller than the 3D R-tree and the TB-tree. The ratio between the index size of FNR and 3D R-tree 

varies between 0.30 and 0.45 for large number of moving objects. For example, the size of the FNR-

tree for 2000 moving objects is about 16 MB, while the size of the respective 3D R-tree is 48 MB. It is 

only the TB*-tree that appears to have a comparable size with the FNR-tree.  

Table 2.5: Index size, space utilization and node accesses per insertion on the NG 2000 dataset 

 FNR-tree 3D R-tree TB-tree TB*-tree 

Index size (KB per object) 8.1 24.0 14.9 8.3 

Space utilization 92% 64% 86% 75% 

Node Accesses per Insertion (average) 2.0 2.1 4.0 1.04 
 

Similar results are exposed regarding the space utilization. As shown in Table 2.5, the space 

utilization of the 3D R-tree is about the typical 65%, remaining steady regardless of the number of 
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moving objects. Likewise, the space utilization for the TB- and TB*-tree is respectively about 86% and 

75%, respectively, percentages that are not affected by the number of moving objects. Nevertheless, we 

have to point that the space utilization of TB- and TB*-tree is mainly affected by the number of each 

trajectory’s time-stamped positions, which is rather low, around 500 vertices per trajectory; bearing in 

mind that each leaf node contains approximately 300 entries, it becomes clear that each trajectory 

should occupy 2 leaf nodes, the first being completely filled, and the other being half-full. On the 

contrary, the space utilization of the FNR-tree grows with the dataset cardinality. Thus, the space 

utilization of the FNR-tree with 200 moving objects is 65 %, while, for 1200 and over it reaches 92%.  

Regarding the results on node accesses per insertion, each insertion of a 3D line segment in the 

FNR-tree requires an average cost of 2.0 node accesses, while an insertion in the 3D R-tree requires an 

average of 2.1 node accesses. It is clear, that the pre-searching in the 2D R-tree in order to find the 1D 

R-tree to place the newly inserted line segment does not add significant additional overhead, mainly 

due to the effect of the employed LRU buffer. Regarding the TB- and TB*-tree, they still demonstrate 

the same behavior observed in the previous experiments in unrestricted space, being able to support 

high insertion rates. 

2.6.3. Results on Search Cost 

Range and timeslice queries were used in order to evaluate the performance of the FNR-tree. Both were 

executed against the FNR-, the 3D R-, the TB- and the TB*-tree indexing the NG datasets. In particular, 

we used sets of 500 queries with the following query windows:  

• Q1–Q3: three sets of 500 cubic query windows with a range of 0.01%, 0.1% and 1% of the 

total space, respectively, increasing the number of moving objects. 

• Q4–Q6: three timeslice query windows with a range of 1%, 10% and 100% extent in each 

spatial dimension and zero temporal extent. 

We used the Search-from-2D-R-tree (cf. Figure 2.21) FNR-tree algorithm against all the 

above queries and additionally, we tested Search-from-Parent-1D-R-tree (cf. Figure 2.22) 

against Q6 i.e., those with 100% extent in each spatial dimension. 

2.6.3.1. Results on Range Queries 

Figure 2.30 illustrates the average number of node accesses per query for various ranges and datasets. 

In particular, Figure 2.30 (a), (b) and (c), show the average number of node accesses for range queries 

with a window of 0.01%, 0.1% and 1% of the total space. As it is clearly illustrated, the FNR-tree has 

superior range query performance over all of its competitors for dataset cardinality above a threshold, 

in all query sizes. The break-even point after which the FNR-tree outperforms the rest depends on the 

query size. Specifically the break-even point is at about 400 moving objects for small query sizes 

(0.01%), while greater query sizes result in smaller break-even point, abound 200 moving objects. 

Regarding the rest structures, the 3D R-tree performs always much better than the TB- and the TB*-tree 

two when using the data moving on the networks; note that the diagrams may not contain all the curves 

of the four indexes, due to the fact that they are not contained inside the given display scale (i.e., they 

have values greater than the ones displayed in the diagram’s y- axis). We have to point however, that 

the observation regarding the performance of 3D R-, TB- and TB*-tree can not be generalized. 
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Specifically, the poor performance that TB- and TB*-tree demonstrate in the experiments, is mainly 

due to the small number of time-stamped positions in each trajectory, which forces each trajectory to be 

divided between two tree nodes only. It is expected (as also the previous experiments showed) that as 

the temporal extent of trajectories grows and more time-stamped positions are added into each 

individual trajectory, the performance of TB- and TB*-tree will tend to have more “normal” values as 

the ones demonstrated in the experiments on unrestricted space. Nevertheless, the tool provided by 

[Bri02] and used to produce the synthetic trajectories on netowrks, can not generate longer trajectories; 

therefore we can not employ larger (elongated in the temporal dimension) datasets. 
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Figure 2.30: Queries Q1 – Q3  

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s

e
s

TB

TB*

3D R

FNR

 

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e

s
s
e

s

TB

TB*

3D R

FNR

 

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000
Moving Objects

N
o

d
e

 a
c

c
e
s

s
e

s

TB
TB*

3D R
FNR
FNRT

 
(a) (b) (c) 

Figure 2.31: Queries Q4 – Q6  

2.6.3.2. Results on Timeslice Queries 

The FNR-tree performance in timeslice queries is reduced compared with its performance in range 

queries, although it still outperforms its competitors in most cases. Figure 2.30 shows the average 

number of node accesses for timeslice queries with several datasets and spatial extents. In particular, 

the FNR-tree shows better performance over its competitors for a number of moving objects and above; 

the break-even point depends on the query size and is about 1600 for 1%, 1200 for 10% and 1000 for 

100% query size in each spatial dimension. The other two competitors (TB- and TB*-tree) still show 

the same disadvantages that demonstrated in the previous experiment regarding general range queries. 

Furthermore, the line marked as FNRT in Figure 2.31(c) represents the performance of the FNR-

tree using the second search algorithm, which in this special type of queries outperforms the first. 

Specifically, using the second algorithm shifts the break-even point from which the FNR-tree is better 

than the 3D R-tree from 1000 to 800 moving objects. For a direct comparison between the two FNR-

tree search algorithms, we also present Figure 2.32. There, it is clearly illustrated that the average 
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number of node accesses of the second search algorithm – for 2000 objects – remains stable regardless 

of the query spatial extent, while the cost of the first search algorithm grows sublinearly with the 

spatial extent. 
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Figure 2.32: Timeslice queries with incremental spatial extent in the FNR-tree with 2000 moving 

objects 

2.6.4. Summary of the Experiments 

The experiments that we conducted in order to evaluate the performance of the FNR-tree showed that it 

supports range and timeslice queries much more efficiently than its three competitors. Especially for 

the latter case of timeslice queries, the FNR-tree only conditionaly outperforms the 3D R-tree; this 

happens after the cardinality of the dataset exceeds 1000 trajectories. Besides, we establish the 

conditions under which the second search algorithm is more efficient than the first; it is shown that 

timeslice queries with spatial extent greater than the 50% of the total spatial space are more efficiently 

supported by the Search-from-Parent-1D-R-tree algorithm. On the subject of the size of the 

FNR-tree, its space utilization may reach 92%; the average size per moving object is comparable with 

the one of the TB*-tree, and it may become 3 times smaller than the respective size of the 3D R-tree. 

Finaly, the average node accesses per insertion in the FNR-tree is better then the one of the original 

TB-tree and in the same order of magnitude with the simple 3D R-tree. 

2.7. Conclusions 

The domain of indexing spatio-temporal data has been very active during the last decade. While the 

vast majority of real-world spatio-temporal applications concerns objects producing trajectory data, a 

great part of the developed indexes overlook the challenges posed by the nature of the these data, and 

they just index collections of line segments in the spatio-temporal space, handling only traditional 

coordinate-based queries. Moreover, since a great number of such applications assumes that the space 

on which objects move is network-constrained (fleet management systems, and so on), spatio-temporal 

indexes should exploit this property in order to become more efficient as suggested in [KGT99]. 

The first in the literature index proposed to efficiently support trajectory-based queries, the TB-

tree [PJT00], was fundamentally different from other spatio-temporal access methods since it proposed 

grouping of line segments in the same leaf nodes, based not on their spatial or temporal proximity but 

on the trajectory in which they belong. However, the TB-tree turns out to have some drawbacks with 

the major one being its dependence on the order in which trajectory data are inserted into the index. 

Moreover, while motion restrictions have been a subject of research [KGT99], [PTKZ02], [Pfo02], 
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[PJ01], until recently, there was no proposal for a spatio-temporal access method suitable for objects 

moving on fixed networks. 

In this chapter, state-of-the-art is advanced towards two independent directions: 

• In the first case, where objects move freely in the space, acknowledging the basic advantages 

of the TB-tree, we propose an extension of it, called TB*-tree. The proposed index overcomes 

the main disadvantages of its predecessor while at the same time preserving all of its ‘desired’ 

properties. In particular, it supports trajectory insertions, deletions and compression, while 

querying is performed by employing the same algorithms provided in [PJT00]. 

• In the second case of network-constrained objects, a novel indexing technique, called Fixed 

Network R-tree (FNR-tree) is proposed. The general idea that describes the FNR-tree is that of 

a forest of several 1D R-trees [Gut84] on top of a single 2D R-tree. The 2D R-tree is used to 

index the spatial data of the network (i.e., roads consisting of line segments), while the 1D R-

trees are used to index the time interval of each object’s movement on a given segment of the 

network. Additionally, the leaf nodes of all the 1D R-trees are indexed by another 1D R-tree 

used to answer queries with no spatial extent. 

The experiments conducted in order to evaluate the performance of the proposed TB*-tree 

against the original TB-tree and the 3D R-tree showed that the proposed index supports range and 

combined queries efficiently. Its superiority is established in the general case where the indexes are 

built inserting the trajectory data not in purely chronological order (‘id/time’ organization), a case 

which is expected in real-world applications and when the index is built after a dataset compression. 

The TB*-tree, is more compact than the original TB-tree, it supports high insertion rates, behaves well 

in non-chronological trajectory insertions that appear in real-world environments, and supports 

trajectory deletions and trajectory compression efficiently. 

We also experimentally compared the FNR-tree with the TB*-tree and the traditional 3D R-tree 

[TVS96] and TB-tree [PJT00]. Under various datasets and range queries, the FNR-tree was shown to 

outperform all its competitors in the vast majority of settings. The FNR-tree has high space utilization, 

smaller size per moving object and supports range queries much more efficiently. In general, we argue 

that the FNR-tree is an access method ideal for fleet management applications; however, it may only be 

used under the network-constrained scenario. 
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3. Advanced Trajectory Query Processing: 

Nearest Neighbor Search 

In this chapter we provide a set of algorithms for performing nearest neighbor search on moving object 

trajectories, by employing R-tree-like structures storing historical trajectory information. The chapter is 

organized as follows. Section 3.1 provides an introduction to the core subject of this chapter. Related 

work is discussed in Section 3.2, while Section 3.3 introduces, at an abstract level, the set of k-NN 

algorithms over moving object trajectories, as well as the metrics that support our search ordering and 

pruning strategies. Sections 3.4 and 3.5 constitute the core of the chapter describing in detail the query 

processing algorithms to perform NN search over historical trajectory information together with their 

continuous counterparts; the algorithms presented are based on the depth-first and best-first paradigm, 

on R-tree-like structures. Section 3.6 presents the results of our experimental study and Section 3.6.5 

provides our conclusions. 

3.1. Introduction 

Research in the field of advanced query processing in historical spatio-temporal trajectory databases is 

guided by related work performed in the domain of (stationary) spatial databases. For example, queries 

of the form “find all objects located within a given area during a certain time interval” generalize the 

respective spatial range query of the form “find all objects within a given area”. Such queries are 

considered as basic ones, since the proposed indexes by definition should support them; for that reason, 

they are not further examined hereafter.  On the other hand, other spatial operators, such as nearest 

neighbor [RKV95] and distance join  [HS99], are considered as advanced, since they require more 

sophisticated query processing techniques in order to be efficiently processed. Moreover, such 

advanced techniques may or may not consider the presence of a spatio-temporal index. Then again, in 

MODs we typically have to deal with huge volumes of historical data which correspond to a large 

number of mobile and stationary objects. As a consequence, querying functionality embedded in an 

extensible DBMS that supports moving objects has to present robust behavior in the above mentioned 

issues. Hence, in this thesis, we restrict our discussion on advanced query processing techniques under 

the perspective of the former case, that is, assuming the operation of some kind of spatio-temporal 

index. 

An important class of queries that is definitely useful for MOD processing is the so-called k 

nearest neighbor (k-NN) queries, where one is interested in finding the k closest trajectories to a 
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predefined query object Q. To our knowledge, in the literature such queries primarily deal with either 

static ([RKV95], [CF98], [HS99]) or continuously moving query points ([SR01], [TPS02]) over 

stationary datasets, or queries about the future or current positions of a set of continuously moving 

points ([BJKS02], [TP02], [ISS03], [YPK05], [XMA05], [MHP05]). Apparently, these types of queries 

do not cover NN search on historical trajectories. 

Thus, one of the challenges accepted in this thesis is to describe diverse mechanisms to perform 

k-NN search on MODs exploiting spatio-temporal indexes storing historical information. To illustrate 

the problem, consider an application tracking the positions of rare species of wild animals. Such an 

application is composed of a MOD storing the location dependent data, together with a spatio-temporal 

index for searching and answering k-NN queries in an efficient manner. Experts in the field would be 

advantaged if they could pose a query like “find the nearest trajectories of animals to some stationary 

point (lab, source of food or other non-emigrational species) from which this species passed during 

March”. Now imagine that the expert’s wish is to pose the same query with the difference that the 

query object Q is not a stationary point but a moving animal moving from location P1 to P2 during a 

period of time. This query gives us rise to deduce a more generic query where the expert may wish to 

set another trajectory of the same or relative class of species as the query object Q. It is self-evident 

that by these types of queries an expert may figure out motion habits and patterns of wild species or 

deviations from natural emigration, which could be interrelated with environmental and/or ecological 

changes or destructions. Having in mind that MOD users are usually interested in continuous types of 

queries, the two previously discussed queries are extended to their continuous counterparts. In their 

continuous variation, each query returns a time-varying number (denoting the nearest distance, which 

depends on time) along with a collection of trajectory ids and the appropriate time intervals for which 

each moving object is valid {O1[t1, t2), O2[t2, t3), …}.  
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Figure 3.1: NN queries over moving objects trajectories 

Posing the problem in a more human-centric context, consider an application analyzing the 

dynamics of urban and regional systems. The intention here is to assist the development of spatio-

temporal decision support systems (STDSS) aimed at the planning profession. Such a case requires 

similar methodologies for comprehending, in space and time, the interrelations of the life courses of 

individuals. The life courses of most individuals are built around two interlocking successions of 

events: a residential trajectory and an occupational career. These patterns of events became more 
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complex during last decades, creating new challenges for urban and regional planners. We believe that 

an expert may take advantage of the features provided by our nearest neighbor query processing 

algorithms and utilize them for analyzing human life courses. 

To make the previous examples more intelligible, consider Figure 3.1 illustrating the trajectories 

of six moving animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1 and Q2) 

representing two sources of food. Now, consider the following queries also demonstrated in Figure 3.1 

(Queries 2 and 4 are the continuous counterparts of Queries 1 and 3, respectively):  

• Query 1. “Find which animal was nearest to the stationary food source Q1 during the time 

period [t1,t4]”, resulting to animal O1. 

• Query 2. “Find which animal was nearest to the stationary food source Q2 at any time 

instance of the time period [t1,t4]”, resulting to a list of objects: O2 for the interval [t1,t3); O1 

for the interval [t3,t4]. 

• Query 3. “Find which animal was nearest to animal O3 during the time period [t2,t6]”, 

resulting to O2. 

• Query 4. “Find which animal was nearest to animal O6 at any time instance of the time period 

[t2,t6]”, resulting to a list of objects: O5 for the interval [t2,t5); O4 for the interval [t5,t6]. 

Unlike traditional databases, MODs have the characteristic that several spatio-temporal queries 

are by nature continuous. In contrast to snapshot queries, which are invoked only once, continuous 

queries require continuous evaluation as the query result becomes invalid after a short period of time. 

Putting the previous discussion under the perspective of historical trajectories, although queries 2 and 4 

are continuous in nature (at any time instance) they cannot be characterized as pure continuous queries; 

with respect to the database engine, a continuous query is one that is submitted to the database only 

once and remains active, continuously updating the query result with the evolution of time, until its 

completion is declared by either a user’s message or a predetermined query lifetime [BW01], [HXL05], 

[MXA04]. In this sense, queries 2 and 4 are snapshot queries. However, in order to differentiate them 

from queries 1 and 3 and also from pure continuous queries, hereafter we will call them Historical 

Continuous NN queries (HCNN). 

Summarizing the previous discussion, the main contributions of the current chapter are outlined 

as follows: 

• We propose novel metrics to support our search ordering and pruning strategies. More 

specifically, the definition of the minimum distance metric MINDIST between points and 

rectangles, initially proposed in [RKV95] and extended in [TPS02], is further extended in 

order for our algorithms to calculate the minimum distance between trajectories and rectangles 

efficiently. 

• We propose query processing algorithms to perform NN search on spatio-temporal indexes 

storing historical information of moving objects. We exploit on the most commonly founded 

spatio-temporal indexes, supporting unconstrained movement, i.e., R-tree-like structures such 

as the 3D R-tree [TVS96], the TB-tree [PJT00] and the TB*-tree proposed in this thesis. The 

description of our algorithms for different queries depends on the type of the query object 

(point or trajectory) as well as on whether the query itself is continuous or not. In particular, 
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we present efficient depth-first and best-first (incremental) algorithms for historical NN 

queries as well as depth-first algorithms for their continuous counterparts. All the proposed 

algorithms are generalized to find the k nearest neighbors.  

• We conduct a comprehensive set of experiments over large synthetic and real datasets 

demonstrating that the algorithms are highly scalable and efficient in terms of node accesses, 

execution time and pruned space. 

We have to point out that the proposed algorithms do not require any dedicated index structure 

and can be directly applied to any member of the R-tree family used to index trajectories, such as the 

ones presented in the previous chapter. 

3.2. Related Work  

In the last decade, NN queries have motivated the spatial and spatio-temporal database community with 

a series of interesting noteworthy research issues. An affluence of methods for the efficient processing 

of NN queries for static query points already exist, the most influential probably being the branch-and-

bound R-tree traversal algorithm proposed by Roussopoulos et al. [RKV95] for finding the nearest 

neighbor of a single stationary point. The algorithm utilizes two metrics, MINDIST and MINMAXDIST, 

in order to implement tree pruning and ordering. Specifically, starting from the root of the tree, the 

algorithm identifies the entry with the minimum distance from the query point (with the use of the 

above metrics). The process is recursively repeated until the leaf level is reached, where the first 

candidate nearest neighbor is found. Returning from this recursion, only the entries with a minimum 

distance less than the distance of the nearest neighbor already found are visited. The above process was 

generalized to support k-NN queries. Later, Cheung and Fu [CF98] proved that, given the MINDIST-

based ordering, the pruning obtained by [RKV95] can be preserved without the use of MINMAXDIST 

metric (the calculation of which is computationally expensive). 

Hjaltason and Samet [HS99] presented a general incremental NN algorithm, which employs a 

best-first traversal of the R-tree structure. When deciding what node of the tree to traverse next, the 

proposed algorithm picks the node with the least distance in the set of all nodes that have yet to be 

visited. In order to achieve this, the algorithm utilizes a priority queue where the tree nodes are stored 

in increasing order of their distance from the query object. This best-first algorithm outperforms 

Roussopoulos et al. algorithm in terms of pruned space. Additionally, once the nearest neighbor has 

been found, the k-NN can be retrieved with virtually no additional work, since the algorithm is 

incremental. The basic drawback of this best-first algorithm is that its performance depends on the size 

of the priority queue. In case the priority queue becomes very large, the execution time of the algorithm 

increases rapidly.  

The first algorithm for k-NN search over a moving query point was proposed in [SR01]. The 

algorithm assumes that sites (landmark points) are static and their locations (known in advance) are 

stored in an R-tree-like structure. A discrete time dimension is assumed, thus a periodical sampling 

technique is applied on the trace of the moving query point. The location of the query point that lies 

between two consecutive sampled locations is estimated using linear or polynomial splines. Executing 

a Point Nearest Neighbor (PNN) query for every sample point of the query trace is highly inefficient, 
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so the proposed algorithm adopts a progressive approach, based on the observation that when two 

query points are close, the results of the k-NN search at these locations have to be related.  Therefore, 

when computing the result set for a sample location, the algorithm tries to exploit information provided 

by the result sets of the previous samples. The basic drawback of this approach is that the accuracy of 

the results depends on the sampling rate. Moreover, there is a significant computational overhead. 

A technique that avoids the drawbacks of sampling relies on the concept of time-parameterized 

(TP) queries [TP02]. TP queries retrieve the current result at the time the query is issued, the validity 

period of the result and the change (i.e. the set of objects) that causes the expiration of the result. Given 

the current result and the set of objects that affect its validity, the next result can be incrementally 

computed. The significance of TP queries is two-fold: i) as stand-alone methods, they are suitable for 

applications involving dynamic environments, where any result is valid for a certain period of time, and 

ii) they lie at the core of more complex query mechanisms, such as the Continuous NN (CNN) queries. 

The main disadvantage of using TP queries for the processing of a CNN query is that several NN 

queries are required to be performed. Thus, the cost of the method is prohibitive for large datasets.  

Using the TPR-tree (Time Parameterized Tree) structure [SJLL00], Benetis et al. [BJKS02] 

presented efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for moving objects. 

(An RNN query returns all the objects that the query object is the nearest neighbor of.) The proposed 

algorithm was the first to address continuous RNN queries, since previous existing RNN algorithms 

were developed under the assumption that the query point is stationary. The algorithms for both NN 

and RNN queries in [BJKS02] refer to future (estimated) locations of the query and data points, which 

are assumed to be continuously moving on the plane. In the same paper, an algorithm for answering 

CNN queries is also proposed. 

Tao et al. [TPS02] also studied CNN queries and proposed an R-tree based algorithm  (for 

moving query points and static data points) that avoids the pitfalls of previous ones (false misses and 

high processing cost). The proposed tree pruning heuristics exploit the MINDIST metric presented in 

[RKV95]. At each leaf entry, the algorithm focuses on the accurate calculation of the split points (the 

points of the query segment that demonstrate a change of neighborhood). A theoretical analysis of the 

optimal performance for CNN algorithms was presented and cost models for node accesses were 

proposed. Furthermore, the CNN algorithm was extended for the case of k neighbors and trajectory 

inputs.  

Based on the TP queries presented in [TP02], Iwerks et al. [ISS03] described a technique that 

focuses on the maintenance of CNN queries (for future predicted locations) in the presence of updates 

on moving points, where the motion of the points is represented as a function of time. A new approach 

was also presented, which filters the number of objects to be taken into account when maintaining a 

future CNN query.  

Recently, under the same field, Xiong et al. [XMA05], proposed a method for scalable 

processing of CNN queries in spatio-temporal databases. They propose a general framework for 

processing large numbers of simultaneous k-CNN queries with static or moving queries over static or 

(currently) moving datasets without making any assumptions about the object trajectories. Unlike other 

proposals, their solution in order to support high update rates is not based on the R-tree but on a simple 
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grid structure maintained on the disk. A similar method was also proposed by Yu et al. [YPK05] for 

monitoring k-CNN queries over (currently) moving objects without making any assumptions about the 

object trajectories. The method also uses (main memory) grid indices indexing moving objects and 

queries and is shown to outperform R-tree-based solutions. Mouratidis et al. [MHP05] also relax the 

assumption that moving object’s trajectories are fully predictable by their motion parameters, and 

propose a comprehensive technique for the efficient monitoring of continuous NN queries. The 

proposed method, named conceptual partitioning monitoring method (CPM), uses also a grid structure 

and achieves low running time by handling moving object’s location updates only from objects falling 

in the vicinity of some query. The experimental results presented in [MHP05] show that the CPM 

method outperforms the techniques presented in [XMA05] and [YPK05]. 

Shahabi et al. [SKS03] presented the first algorithm for processing the k-NN queries for moving 

objects in road networks. Their proposed algorithm, which utilizes the network distance between two 

locations instead of the Euclidean, is based on transforming the road network into a higher dimensional 

space, in which simpler distance functions can be applied. Using this embedding space, efficient 

techniques are proposed for finding the shortest path between two points in the road network. The 

above procedure, which is utilized in the case of static query points, is slightly modified in order to 

support the case of moving query points. 

Acknowledging the advantages of the above fundamental techniques, in this thesis we present 

the first complete treatment of historical NN queries over moving object trajectories indexed by 

specialized and general-purpose indexes, handling both stationary and moving query objects. 

3.3. Problem Statement and Metrics for Nearest Neighbor Search 

We first define the NN queries that are considered in this thesis. Subsequently, we present the 

heuristics utilized by our algorithms and the metrics required to formulate our ordering and pruning 

strategy. Finally, an analytical method is provided in order to formulate the function of distance with 

time between two objects moving synchronously with constant speed and direction, i.e., between two 

consecutively sampled points, as well as its minimum value; both analysis outcomes are essential for 

the algorithms provided in the next section. The notation used is summarized in Table 3.1. 

Table 3.1: Table of notations 

Notation Description  

D a trajectory database 

Oi A moving object identifier 

Ti an indexed trajectory 

Ti,k the k-th line segment of Ti  

xi,k, yi,k, ti,k the coordinates of trajectory Ti  a timestamp tk 

Qp, QT, Qper A query point, a query trajectory and a query period [tstart, tend] 

 

3.3.1. Problem Statement 

Let D be a database of N moving objects with objects ids {O1, O2, …, ON} and trajectories {T1, T2, …, 

TN}. We have already stated that NN queries search for the closest trajectories to a query object Q. In 

our case, we distinguish two types of query objects: Qp, a point (x, y) that remains stationary during the 



 55 

time period of the query Qper[tstart, tend], and QΤ,  a moving object with trajectory T. Having in mind the 

previous discussion, we define the following two types of NN queries:  

• NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that remains 

stationary during a time period Qper, and returns the closest to Qp point pc from which a 

moving object Oi passed during the time period Qper, as well as the implied minimum distance. 

• NN_QT (D, QT, Qper) query is similar to the previous with the difference being upon the query 

object Q which in the current case is a moving object with trajectory T. 

The extensions of the above queries to their historical continuous counterparts vary in the output 

of the algorithms. In the continuous case, each query returns a time-varying real number, as the nearest 

distance depends on time. We introduce the following two types of historical CNN queries: 

• HCNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time period 

Qper returns a list of triplets consisting of the time-varying real value Ri along with a moving 

object Oi (belonging in database D) and the corresponding time period [ti-start, ti-end) for which 

the nearest distance between Qp and Oi stands. These time-varying real values Ri are, at any 

time instance of their lifetime, smaller or equal to the distance between any moving object Oj 

in D and the query point Qp. The time periods [ti-start, ti-end) are mutually disjoint and their 

union forms Qper.  

• Similarly, HCNN_QT (D, QT, Qper) differs, compared to the previous, upon the query object Q 

which in the current case is a moving object with trajectory T. The corresponding time-

varying real values Ri are, at any time instance of their lifetime, smaller or equal to the 

distance between any moving object Oj and the query trajectory QT. The respective time 

periods [ti-start, ti-end) are mutually disjoint and their union forms Qper. 

The above four queries are generalized to produce the corresponding k-NN queries. The 

generalization of the first two queries is straightforward by simply requesting the 1st, 2nd, …, k-th 

nearest point – with respect to a query point or a query trajectory – from which a moving object Oi 

passed during the time period Qper, excluding at the same time points belonging to a moving object 

already marked as the j-th nearest (1 ≤ j < k). The historical continuous queries are generalized to 

produce k-HCNN requesting to provide with k lists of {Ri, [ti-start, ti-end), Oi} triplets. Then, for any time 

during the time period Qper, the i-th list (1 ≤ i ≤ k) will contain the i-order NN moving object (with 

respect to the query point or the query trajectory) at this time instance.  

To exemplify the proposed k-NN extensions, let us recall Figure 3.1. Searching for the 2-NN 

versions of the four queries (Query 1, 2, 3 and 4) presented in Section 3.1, we will have the following 

results: 

• Query 1 (historical non-continuous): O1 (1
st NN) and O2 (2

nd NN) 

• Query 2 (historical continuous): 1-NN list includes O2 for the interval [t1,t3) and O1 for the 

interval [t3,t4]; 2-NN list includes O1 for the interval [t1,t3) and O2 for the interval [t3,t4] 

• Query 3 (historical non-continuous): O2 (1
st NN) and O4 (2

nd NN) 

• Query 4 (historical continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for the 

interval [t5,t6]; 2-NN list includes O4 for the interval [t2,t5) and O5 for the interval [t5,t6]. 
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3.3.2. Metrics  

We exploit on the definition of the minimum distance metric (MINDIST) presented in [RKV95] 

between points and rectangles, in order to calculate the minimum distance between line segments and 

rectangles and the minimum distance between trajectories and rectangles, both of which are needed to 

implement the above discussed algorithms. 

Initially, in [RKV95], Roussopoulos et al. defined the Minimum Distance (MINDIST) between a 

point P and a rectangle R in the n-dimensional space as the square of the Euclidean distance between P 

and the nearest edge of R, if P is outside R (or zero, if P is inside R). Then, Tao et al. [TPS02] proposed 

a method to calculate the MINDIST between a 2D line segment L and a rectangle M (Figure 3.2).  
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Figure 3.2:  Calculating MINDIST between a line segment and a rectangle [TPS02] 

MINDIST calculation method in [TPS02] initially determines whether L intersects M; if so, 

MINDIST is set to zero. Otherwise, the shortest among six distances is chosen, namely the four 

distances between each corner point of M and L (d1, d2, d3, d4) and the two minimum distances from the 

start and end point of L to M (d5, d6). Therefore, the calculation of MINDIST between a line segment 

and a rectangle involves an intersection check, four segment-to-point MINDIST calculations and two 

point-to-rectangle MINDIST calculations. 
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Figure 3.3: The proposed calculation method of MINDIST between a line segment and a rectangle 

In this thesis, we propose a more efficient method to calculate MINDIST between a line segment 

L and a rectangle M (Figure 3.3). As before, if L intersects M, then MINDIST is obviously zero. 

Otherwise, we decompose the space in four quadrants using the two axes passing through the center of 

M and we determine the quadrants Qs and Qe in which the start (L.start) and the end (L.end) point of L 

lie in, respectively.  

Then, MINDIST is the minimum among:  

• Case 1 (the two end points of the line segment belong to the same quadrant (Qs)): (i) 

MINDIST between the corner of M in Qs and L, (ii) MINDIST between L.start and M, and (iii) 

MINDIST between L.end and M. 
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• Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (i) MINDIST 

between the corner of M in Qs and L, (ii) MINDIST between the corner of M in Qe and L, (iii) 

MINDIST between L.start and M, and (iv) MINDIST between L.end and M.  

• Case 3 (L.start and L.end belong to non adjacent quadrants Qs and Qe, respectively): two 

MINDIST between the two corners of M, that do not belong in either Qs or Qe, and L.  
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Figure 3.4: The proposed calculation method of MINDIST between a route (projection of a trajectory 

on the plane) and a rectangle 

This method utilizes a smaller number of (point-to-segment and point-to-rectangle) distance 

calculations compared to the corresponding algorithm in [TPS02]. The worst-case scenario of the 

proposed MINDIST calculation includes the determination of the quadrant in which the starting and 

ending points of the line segment belong, and two point-to-segment and two point-to-rectangle distance 

calculations, while the corresponding algorithm of [TPS02] employs four point-to-segment and two 

point-to-rectangle calculations. Therefore, the proposed MINDIST calculation, in its worst case, 

determines the quadrant of the starting and ending point instead of performing two additional point-to-

segment distance calculations.The efficiency of the proposed improvement over the MINDIST 

computation for line segments and trajectories will be shown in the experimental section. 

Finally, we extend the above algorithm in order to calculate MINDIST metric between the 

projection of a trajectory T on the plane (usually called route) and a rectangle M (Figure 3.4), and 

provide the MINDIST_Trajectory_Rectangle metric. Since a route can be viewed as a collection of 2D 

line segments, the MINDIST_Trajectory_Rectangle between a route of a trajectory and a rectangle can 

be computed as the minimum of all MINDIST between the rectangle and each line segment composing 

the route. The efficiency of this calculation can be enhanced by simply not computing twice, with 

respect to the query rectangle, the quadrant and the MINDIST of the end and the start of adjacent line 

segments.  

 

3.3.3. Determining the Function of Distance between two Synchronously Moving 

Trajectories 

Before proceeding into the core of this chapter describing the respective algorithms, it is essential to 

point out that any algorithm that queries a trajectory database in order to retrieve the nearest to a query 

trajectory (i.e., the NN_QT(D, QT, Qper) case following the notation of section 0), should calculate the 

minimum distance between two concurrently moving trajectories; moreover, given that the historical 

continuous nearest neighbor search HCNN_QT(D, QT, Qper) retrieves time-varying real values Ri 

describing the distance between the query trajectory and the nearest database trajectories at any time 

instance of the query period Qper, it naturally results that these time varying real values should be 
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functions of distance with time between the corresponding trajectories. Then again, given that moving 

object trajectories are modeled as strings of consecutive 3D line segments (i.e., 3D polylines), this 

minimum distance may be translated to the minimum distance between two 3D line segments. 
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Figure 3.5: Minimum Synchronous Euclidean distance (i.e., “horizontal”) between two trajectories 

The function of the Synchronous Euclidean distance (i.e., “horizontal”, illustrated in Figure 3.1) 

between two 3D line segments, ( ) ( )( )1 1 1 2 2 2, , , , ,
x y x y

P P P t P P t and ( ) ( )( )1 1 1 2 2 2, , , , ,
x y x y

Q Q Q t Q Q t  is: 

( ) ( ) ( )( ) ( ) ( )( )22

x x y y
t t t t tDist Q P Q P+= − −  (3.1) 

Replacing ( ) ( )1 2 1x x xt
x

Q Q Q Q t= + − ⋅∆ , ( ) ( )1 2 1y y y
t

y
Q Q Q Q t= + − ⋅∆ , ( ) ( )1 2 1x x x xtP P P P t= + − ⋅∆ , 

( ) ( )1 2 1y y y ytP P P P t= + − ⋅∆ , in  (3.1), we get 

( ) ( ) ( )( ) ( ) ( )( )22

1 2 1 1 2 1 1 2 1 1 2 1x x x x x x y y y y y y
tDist Q Q Q t P P P t Q Q Q t P P P t= + − ⋅∆ − − − ⋅∆ + + − ⋅∆ − − − ⋅∆  

In the sequel, we use the square of the Euclidean distance for sake of readiness. 

( ) ( ) ( )( ) ( ) ( )( )222
1 2 1 1 2 1 1 2 1 1 2 1x x x x x x y y y y y ytDist Q Q Q t P P P t Q Q Q t P P P t= + − ⋅∆ − − − ⋅∆ + + − ⋅∆ − − − ⋅∆ =

( ) ( )( )
( )( ) ( )( )( ) ( ) ( )

2

2 1 2 1 2 1 2 1

2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1

2 2

22
2

x x x x y y y y

x x x x x x y y y y y y x x y y

Q Q P P Q Q P P t

Q Q P P Q P Q Q P P Q P t Q P Q P− − − − − + −

= − − + + − − + ⋅∆ +

+ − + + − + ⋅∆ +
 

Setting 

( ) ( )2

2 1 2 1 2 1 2 1

2
x x x x y y y y

A Q Q P P Q Q P P= − − + + − − +  (3.2) 

( )( ) ( )( )( )2 1 2 1 1 1 2 1 2 1 1 12 x x x x x x y y y y y yB Q Q P P Q P Q Q P P Q P− − − −= − + + − +  (3.3) 

( ) ( )1 1 1 1

22
x x y y

C Q P Q P− + −=  (3.4) 

and replacing ∆t according to the following formula 1

2 1

t t
t

t t
−∆ = − , the Synchronous Euclidean 

“horizontal” distance function of two 3D line segments is computed as follows: 

( )
( ) ( ) ( )

2
2 2 1 1 1

2 1 2 12 1 2 1 2 1
2 2 2

2( )t
A B A t A t B t

Dist t t C
t t t tt t t t t t

⋅ ⋅ ⋅= + − + − +− −− − −
,                                          (3.5) 

where A, B, C are defined by formulas (3.2), (3.3), and (3.4), respectively.  
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According to equation (3.5), the square of the Synchronous Euclidean “horizontal” distance 

function between two 3D line segments has the quadratic form ( ) 2
Dist t a t b t c= ⋅ + ⋅ + , which is 

minimized at 
2

min 4

b
Dist c

a
= −  for

2

b
t

a
= − . Thus, in our case 

( )

( )

( )

1

2 2 1 2 12 1 1
min

2 12 1

2 1

2

2

2

2

2

4

B A t
t t t tA t B t

Dist C
t t At t

t t

 
 
 
 

⋅−
− −⋅ ⋅= − + −−−

−

 (3.6) 

for  

( )

( )

1

2 12 1

2 1

2

2

2

2

A t B
t tt t

t
A

t t

−
⋅

−−
=

−

 (3.7) 

where A, B, C are defined by formulas (3.2), (3.3), and (3.4), respectively. 

We have to note that formula (3.6) can be used in case where t calculated by formula (3.7) is 

inside the query time period Qper[tstart, tend]. Otherwise, we distinguish between the following two cases:  

• if t ≤  tstart, then the minimum synchronous Euclidean “horizontal” distance is provided by 

formula (3.5) by setting t = tstart 

• if t ≥  tend, then the minimum synchronous Euclidean “horizontal” distance is provided by 

formula (3.5) by setting t = tend. 

3.4. Algorithms for Nearest Neighbor Queries over Trajectories 

In this section several algorithms, answering the first two (historical non-continuous) types of NN 

queries presented in Section 0 are thoroughly introduced and, then, generalized in order to support the 

respective k-NN queries. Both approaches traditionally used to process nearest neighbor queries over 

spatial data, are followed, namely the Depth-First [RKV95] and the Best-First [HS99] approach. As 

such, depth-first algorithms are first presented, followed by their best-first counterparts. 

3.4.1. Non-incremental (Depth-First) NN Algorithms over Trajectories 

Hereafter are presented non-incremental algorithms answering the first two (historical non-continuous) 

types of NN queries presented in Section 0, also generalized in order to support the respective k-NN 

queries. 

3.4.1.1. Non-incremental NN Algorithm for Stationary Query Objects 

The non-incremental NN algorithm for stationary query objects (PointNNSearch algorithm 

illustrated in Figure 3.6), provides the ability to answer NN queries for a static query object Qp, during 

a certain query time period Qper[tstart, tend]. The algorithm uses the same heuristics as in [RKV95] and 

[CF98], pruning the search space according to Qper. 

The algorithm accesses the tree structure (which indexes the trajectories of the moving objects) 

in a depth-first way pruning the tree nodes according to Qper rejecting those being fully outside it. At 

the leaf level, the algorithm iterates through the leaf entries checking whether the lifetime of an entry 

overlaps Qper (Line 7); if the temporal component of the entry is fully inside Qper, the algorithm 

calculates the actual Euclidean distance between Q and the (spatial component of the) entry; otherwise, 
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if the temporal component of the entry is only partially inside Qper, a linear interpolation is applied so 

as to compute the entry’s portion being inside Qper (Line 9) and calculate the Euclidean distance 

between Q and the portion of that entry. When a candidate nearest is selected, the algorithm, 

backtracking to the upper level, prunes the nodes in the active branch list (Line 27) applying the 

MINDIST heuristic [RKV95] [CF98]. 
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Algorithm PointNNSearch(node N, point Q, period Qper, struct Nearest) 

   IF N Is Leaf 

   // Iterate through leaf entries computing Euclidean  

   //distance from point Q 

      FOR EACH Entry E IN N 

         // If entry is (fully or partially) inside the period 

         IF Qper Overlaps (E.TS, E.TE) 

            // Compute entry’s spatial extent inside the period 

            nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 

            // Compute Entry’s actual distance from Q.  

            // Update Nearest if necessary 

            Dist = Euclidean_Dist_2D(Q, nE) 

            IF Dist < Nearest.Dist Update Nearest with nE, Dist  

         ENDIF 

      NEXT 

   ELSE 

      // Generate Node’s branch list with entries overlapping  

      // the query period 

      BranchList = GenBranchList(Q, N, Qper) 

      // Sort active branch List by MinDist 

      SortBranchList(BranchList) 

      // Iterate through active branch List  

      FOR EACH Entry E IN BranchList 

         // Visit Child Nodes 

         PointNNSearch(E.ChildNode, Q, Qper, Nearest) 

         // Apply MinDist heuristic to do pruning  

         PruneBranchList(BranchList) 

      NEXT 

   ENDIF 

 

Figure 3.6: Historical NN search algorithm for stationary query points  

3.4.1.2. Non-incremental NN Algorithm for Moving Query Objects  

PointNNSearch algorithm can be modified in order to support the second type of NN query where 

the query object is a trajectory of a moving point (TrajectoryNNSearch algorithm, illustrated in 

Figure 3.7). At the leaf level, the algorithm calculates the minimum Euclidean distance between each 

leaf entry and each query trajectory segment by using the Min_Horizontal_Dist function (Line 

10), which computes the minimum Synchronous Euclidean distance between two 3D line segments, 

applying equations (3.6) or (3.5), according to the corresponding discussion. In addition, for each query 

trajectory segment QE and before calculating its distance from the current leaf entry we first interpolate 

in order to produce a tuple of entry - query segment with identical temporal extent (Lines 8, 9). In order 

to decrease the number of temporal overlap evaluations between leaf entries and trajectory segments, 

our algorithm utilizes a plane sweep method, which scans leaf entries and trajectory segments in their 

temporal dimension in a single pass (Lines 5, 6, 7). This requires that the leaf entries are previously 

sorted according to their temporal extent (Line 4), unless the underlying tree structure (such as the TB-

tree) stores them in temporal order anyway.  
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Algorithm TrajectoryNNSearch(node N, trajectory Q, period Qper,  

                             struct Nearest) 

   Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

   IF N Is Leaf 

      Sort(N, TS) // Sort A-Z Entries in Node N by their Tstart 

      FOR EACH Entry E IN N 

         Find next query trajectory entry QS with QS.Te<N.TS; QE=QS 

         DO UNTIL QE.Ts > E.Te 

            nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

            nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

            Dist = Min_Horizontal_Dist(nQE, nE) 

            IF Dist < Nearest.Dist Update Nearest with nE, Dist  

         NEXT query entry QE 

         Return QE in the query entry QS 

      NEXT 

   ELSE 

      BranchList = GenTrajectoryBranchList(Q, N) 

      SortBranchList(BranchList) 

      FOR EACH Entry E IN BranchList 

         TrajectoryNNSearch(E.ChildNode, E.Trajectory, Nearest) 

         PruneBranchList(BranchList) 

      NEXT 

   ENDIF 

 

Figure 3.7: Historical NN search algorithm for moving query points  

At the non-leaf levels, the algorithm utilizes the GenTrajectoryBranchList function 

(pseudo-code in Figure 3.8) instead of GenBranchList. The GenTrajectoryBranchList 

function utilizes the MinDist_Trajectory_Rectangle metric introduced in Section 3.3.2 in order to 

calculate MINDIST between the query trajectory and the rectangle of each entry of node N. Here, we 

have to point out that we do not need to calculate MinDist_Trajectory_Rectangle against the actual 

query trajectory Q, but only against the part of Q being inside the temporal extent of the bounding 

rectangle of N, and in order to do this (if it is necessary) we interpolate to produce the new query 

trajectory nQ (Line 6). The interpolated trajectory nQ is also stored inside the Branchlist along with the 

respective node entry and the calculated distance (Line 8). Since all the nodes in the sub-tree of N are 

spatially and temporally contained inside N, the interpolated trajectory nQ can be used as the query 

trajectory for the nodes of the next level inside the sub-tree, allowing us to avoid unnecessary 

calculations.  
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Algorithm genTrajectoryBranchList(node N, trajectory Q) 

   FOR EACH Entry E IN N 

      // If entry is partially inside the trajectory lifetime 

      IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)  

         // Compute trajectory’s spatial extent inside E’s lifetime 

         nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE)) 

         // Compute MinDist between the trajectory and the rectangle 

         Dist=MinDist_Trajectory_Rectangle(nQ, E) 

         // Add the rectangle along with its calculated distance and 

         // the interpolated trajectory in the list 

         List.Add(E, Dist, nQ) 

      ENDIF 

   NEXT 

   RETURN List 

 

Figure 3.8: Generating Branch List of Node N against Trajectory Q 
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3.4.1.3. Extending to non-incremental k-NN Algorithms 

In the same fashion as in [RKV95], we generalize the above two algorithms to searching the k-nearest 

neighbors by considering the following: 

• Using a buffer of at most k (current) nearest objects sorted by their actual distance from the 

query object (point or trajectory) 

• Pruning according to the distance of the (currently) furthest nearest object in the buffer. 

• Updating the distance of each moving object inside the buffer when visiting a node that 

contains an entry of the same object closer to the query object. 

3.4.2. Incremental (Best-First) NN Algorithms over Trajectories 

Following from the previous section, we now present the best-first counterparts of the previously 

presented algorithms and, then, we generalize them in order to support the respective k-NN queries. 

3.4.2.1. Incremental NN Algorithm for Stationary Query Objects 

The proposed algorithm, which is based on the NN algorithm for static objects presented in [HS99], 

traverses the tree structure in a best-first way. The algorithm uses a priority queue, in which the entries 

of the tree nodes are stored in increasing order of their distance from the query object.  
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Algorithm IncPointNNSearch(R-tree R, 2D point Q, time period Qper) 

   EnQueue Queue, R.RootNode, 0 

   DO WHILE Queue.Count > 0 

      Element = DeQueue(Queue) 

      IF Element Is MovingObjectEntry 

         RETURN Element as the next nearest object 

      ELSEIF Element Is Leaf   

         // Iterate through leaf entries computing Euclidean  

         // distance from Q 

         FOR EACH Entry E IN leaf node Element 

            // If entry is (fully or partially) inside the period 

            IF Qper Overlaps (E.TS, E.TE) 

               // Compute entry’s spatial extent inside the period 

               nE = Interpolate(E,Max(Qper.TS E.TS),Min(Qper.TE,E.TE)) 

               // Compute Entry’s actual distance from Q.  

               Dist = Euclidean_Dist_2D(Q, nE) 

               EnQueue Queue, nE, Dist 

            ENDIF  

         NEXT 

      ELSE // Element is a non leaf node  

         // Iterate through node entries computing their  

         // minimum distance from Q 

         FOR EACH Entry E IN node Element 

            // If entry is (fully or partially) inside the period 

            IF Qper Overlaps (E.TS, E.TE) 

               // Compute Entry’s MinDist from Q.  

               Dist = MinDist(Q, E) 

               EnQueue Queue, E, Dist 

            ENDIF  

         NEXT 

      ENDIF 

   LOOP 
 

Figure 3.9: Historical Incremental NN search algorithm for stationary query points  

Figure 3.9 illustrates the IncPointNNSearch algorithm. In Line 1, the priority queue is 

initialized. In Line 6, the next nearest object is reported. As in the respective depth-first algorithm 

described in Section 3.4.1.1, at the leaf level the algorithm iterates through the leaf entries checking 
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whether the lifetime of an entry overlaps the time period of the query Qper (Line 10); if the temporal 

component of the entry is fully inside Qper, the algorithm calculates the actual Euclidean distance 

between Q and the (spatial component of the) entry; otherwise, if the temporal component of the entry 

is only partially inside Qper, a linear interpolation is applied so as to compute the entry’s portion being 

inside Qper (Line 14) and calculate the Euclidean distance between Q and the portion of that entry (Line 

16). In Line 17, the leaf entry is enqueued along with its real distance from the query object. At the non 

leaf levels (Lines 23-30), the algorithm simply calculates MINDIST between the query object and each 

node’s entry overlapping the query period Qper, and in the sequel enqueues this entry along with its 

MINDIST value.  

3.4.2.2. Incremental NN Algorithm for Moving Query Objects 

The IncPointNNSearch algorithm proposed above can be slightly modified in order to support the 

second type of NN query where the query object is a trajectory of a moving point, thus resulting in 

IncTrajectoryNNSearch algorithm, illustrated in Figure 3.10. The changes to be made are the 

following three: firstly, as in the respective depth-first algorithm (Section 3.4.1.1), at the leaf level, the 

algorithm calculates the minimum “horizontal” Euclidean distance between each leaf entry and each 

segment of the query trajectory Q, using the Min_Horizontal_Dist function (Line 15) exploiting 

equation (3.6). We also utilize the same plane sweep algorithm, so as to determine which leaf entries 

and segments of Q overlap in their temporal dimension, and then we calculate the distance between 

those who do overlap (Lines 10-12).  
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Algorithm IncTrajectoryNNSearch(R-tree R,trajectory Q, period Qper) 

   Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

   EnQueue Queue, R.RootNode, Q, 0 

   DO WHILE Queue.Count > 0 

      DeQueue(Queue, Element, Q) 

      IF Element Is MovingObjectEntry 

         RETURN Element as the next nearest object 

      ELSEIF Element Is Leaf   

         Sort(Element, TS)// Sort A-Z Entries in Node by their Tstart 

         FOR EACH Entry E IN leaf node Element 

            Find next query trajectory entry QS with QS.Te<N.TS; QE=QS 

            DO UNTIL QE.Ts > E.Te 

               nE = Interpolate(E,Max(QE.TS, E.TS),Min(QE.TE, E.TE)) 

               nQE = Interpolate(QE,Max(QE.TS, E.TS),Min(QE.TE, E.TE)) 

               Dist = Min_Horizontal_Dist(nQE, nE) 

               EnQueue Queue, nE, Dist 

            NEXT query entry QE 

            Return QE in the query entry QS 

         NEXT 

      ELSE  

         FOR EACH Entry E IN node Element 

            IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE) 

               nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE)) 

               Dist = MinDist_Trajectory_Rectangle(nQ, E) 

               EnQueue Queue, E, Dist, nQ 

            ENDIF     

         NEXT 

      ENDIF 

   LOOP  

 

Figure 3.10: Historical Incremental NN search algorithm for moving query points  
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At the non-leaf levels, the algorithm utilizes the MinDist_Trajectory_Rectangle metric in order 

to calculate the MINDIST between the query trajectory and the rectangle of each entry of the node 

(Line 24). Just like TrajectoryNNSearch algorithm, if necessary, we interpolate in order to 

produce nQ, which is the part of Q being inside the temporal extent of the bounding rectangle of each 

node’s entry (Line 23), and then we store it inside the Queue along with the respective node entry and 

the calculated distance (Line 25). Since all the nodes in the N’s sub-tree are spatially and temporally 

contained inside N, then, the interpolated trajectory nQ can be further used as the query trajectory for 

the nodes of the next level inside the sub-tree, allowing us to avoid unnecessary calculations.  

3.4.2.3. Extending to Incremental k-NN Algorithms 

The algorithms described in Sections 3.4.2.1 and 3.4.2.2 are incremental in the sense that the k-th NN 

can be obtained with very little additional work once the (k-1)-th NN has been found. Recall for 

example IncTrajectoryNNSearch illustrated in Figure 3.10; after having found the 1st NN, the 

next time the condition of Line 4 is true, the 2nd NN will have been found, and so on. 

Here, we have to point out that the two different strategies used for the historical non-continuous 

NN algorithms appear to have both advantages and drawbacks. As already mentioned, while the best-

first approach results always in fewer actually visited nodes, and fewer distance evaluations, its 

performance heavily depends on the size of the priority queue; as it will be clearly shown in the 

experiments, this drawback can cause the incremental algorithms to perform worse than the depth-first 

algorithms in terms of execution time, even though they require fewer nodes to be visited and less 

distances to be evaluated. On the other hand, the incremental algorithms have a serious advantage over 

the depth-first ones, which is the ability of retrieving each of the k nearest neighbors incrementally, 

while the depth-first approach requires the prior knowledge of the parameter k. 

3.5. Algorithms for Historical Continuous Nearest Neighbor Queries over 

Trajectories 

In this section we describe the historical continuous counterparts of the algorithms of Section 3.4. In 

particular, we will address the third type of NN query (searching for NN with respect to a stationary 

query point at any time during a given time period) and the fourth type of NN query (where the query 

object is the trajectory of a moving point) and then we will extend them towards k-NN search.  

3.5.1. HCNN Algorithm for Stationary Query Objects  

We begin the description of the algorithms with the third type of NN query, which searches for the 

nearest moving objects to a stationary query point at any time during a given time period, The 

HContPointNNSearch algorithm proposed for this type of query is illustrated in Figure 3.11. 

All the historical continuous algorithms use a MovingDist structure (Figure 3.11, Line 6), storing 

the parameters of the distance function (calculated using the coefficients of Eq.(3.5)), along with the 

entry’s temporal extent and the associated minimum and maximum of the function during its lifetime. 

We also store the actual entry inside the structure in order to be able to return it as the query result. The 

ConstructMovingDistance function simply calculates this structure (e.g. the parameters of the 
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distance function a, b, c, and the minimum Dmin and maximum Dmax of the function inside the lifetime 

of the entry, also applying the discussion of Section 3.3.3). 
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Algorithm HContPointNNSearch(node N, 2D point Q, Period Qper, List  

                             Nearests, Roof) 

   IF N Is Leaf 

      FOR EACH Entry E IN N 

         IF Qper Overlaps (E.TS, E.TE) 

            nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE,E.TE)) 

            MovingDist = ConstructMovingDistance(nE, Q) 

            IF MovingDist.Dmin < Roof  

               UpdateNearests(Nearests,MovingDist,Roof) 

            ENDIF 

         ENDIF 

      NEXT 

   ELSE 

      BranchList = GenBranchList(Q, N, Qper) 

      SortBranchList(BranchList) 

      PruneHContBranchList(BranchList, Nearests, Roof) 

      FOR EACH Entry E IN BranchList 

         HContPointNNSearch(E.ChildNode, Q, Qper, Nearests, Roof) 

         PruneHContBranchList(BranchList, Nearests, Roof) 

      NEXT 

   ENDIF 

 

Figure 3.11: Historical CNN search algorithm for stationary query points  

An interesting point of the algorithm is exposed in Line 6, where the Nearests structure is 

introduced. Nearests is a list of adjacent “Moving Distances” temporally covering the period Qper. 

Roof  is the maximum of all moving distances stored inside the Nearests list and is used as a 

threshold to quickly reject those entries (and prune those branches at the non-leaf level) having their 

minimum distance greater than Roof  (consequently, greater than all moving distances stored inside the 

Nearests list). Section 3.5.3, is comprehensively presents the maintenance of the Nearests list.  

When at non-leaf levels, the HContPointNNSearch algorithm in its backtracking applies the 

pruning algorithm PruneHContBranchList (Line 18), which prunes the branch list using the 

MINDIST heuristic: First, it compares the MINDIST of each entry with Roof and then it calculates the 

maximum distance inside the Nearests list during the entry’s lifetime. Then, it prunes all entries 

having MINDIST greater than the one calculated. 

3.5.2. HCNN Algorithm for Moving Query Objects 

The fourth type of NN query is the historical continuous version of the NN query where the query 

object is the trajectory of a moving point. The HContTrajNNSearch algorithm, used to process this 

type of query is illustrated in Figure 3.12.  

HContTrajNNSearch differs from HContPointNNSearch at only two points: The first is 

that, at the leaf level, the ConstructMovingDistance function calculates the “moving distance” 

between two moving points, instead of one moving and one stationary (Line 10). Secondly, at the non-

leaf levels, GenBranchList is replaced by the GenTrajectoryBranchList function 

introduced in the description of the TrajectoryNNSearch algorithm (Line 18). Moreover, as in 

TrajectoryNNSearch, for each query trajectory segment QE and before calculating the moving 

distance from the current leaf entry we first interpolate in order to produce a tuple of entry - query 

segment with identical temporal extent (Lines 8, 9). We also use the same plane sweep method, in 
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order to reduce the number of distance calculations between the segments of Q and the leaf entries 

(Lines 5-7).  
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Algorithm HContTrajNNSearch (node N, Trajectory Q, period Qper, List  

                             Nearests, Roof) 

   Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

   IF N Is Leaf 

      Sort(N, TS) 

      FOR EACH Entry E IN N 

         FIND next query trajectory entry QS with QS.Te<N.TS; QE=QS 

         DO UNTIL QE.Ts > E.Te 

            nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

            nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

            MovingDist = ConstructMovingDistance(nE, nQE) 

            IF MovingDist.Dmin<Roof  

               UpdateNearests(Nearests,MovingDist,Roof) 

            ENDIF 

         NEXT query entry QE 

         Return QE in the query entry QS 

      NEXT 

   ELSE 

      BranchList = GenTrajectoryBranchList(Q, N)  

      SortBranchList(BranchList) 

      PruneHContBranchList(BranchList, Nearests, Roof) 

      FOR EACH Entry E IN BranchList 

         HContTrajNNSearch(E.ChildNode,E.Trajectory,Nearests, Roof) 

         PruneHContBranchList(BranchList, Nearests, Roof) 

      NEXT 

   ENDIF 
 

Figure 3.12: Historical CNN search algorithm for moving query points 

3.5.3. Maintaining the Nearests List 

The pseudo-code of the UpdateNearests function, which is responsible for the maintenance of the 

Nearests list, is presented in Figure 3.13. In particular, the algorithm iterates through the elements of 

the active Nearests list searching for those elements temporally overlapping the checked entry (CM). 

When such an element is found, the algorithm applies linear interpolation in both entries (the checked 

and the one already on the list) producing two new entries having the same temporal extent (M and T). 

Then, it compares the two distance functions in order to determine whether the entry already on the list 

is to be replaced or not.  

Figure 3.14 graphically explains all the possible comparisons between the parabolas of two 

“Moving Distance” functions. In particular, Figure 3.14(a) corresponds to line 6 of the algorithm 

presented in Figure 3.13, where the maximum distance of M is smaller than the minimum of T, leading 

to the replacement of T with M. Otherwise, after computing the discriminant of the difference between 

the distance functions of M and T, we have to distinguish among three different cases: 

• Case 1: The discriminant is less than zero, meaning that the two functions M and T are 

asymptotic and they do not intersect (Line 10); we only have to check their minimum in order 

to determine which is the global minimum (see Figure 3.14(b))  

• Case 2: The discriminant is equal to zero, meaning that the two functions osculate in their 

common minimum (Line 12); we only have to check their maximum in order to determine the 

global minimum (see Figure 3.14(c)) 
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Algorithm UpdateNearests (List Nearests, struct CM, Roof) 

   FOR EACH T IN Nearests 

      IF (T.TS, T.TE)Overlaps(CM.TS, CM.TE) 

         M=Interpolate(CM, Max(CM.TS, T.TS), Min(CM.TE, T.TE)) 

         T=Interpolate(T, Max(CM.TS, T.TS), Min(CM.TE, T.TE)) 

         IF M.DMax < T.DMin 

            Nearests.Replace T with M  

         ELSEIF M.DMax < T.DMax 

            D = Discriminant(M-T) 

            IF D < 0 

               IF T.DMin > M.DMin THEN Nearests.Replace T with M 

            ELSEIF D=0 

               IF T.DMax > M.DMax THEN Nearests.Replace T with M 
            ELSE  

               RR1=Solution1(T - M); RR2=Solution2(T - M)  

               R1=Min(RR1,RR2); R2=Max(RR1,RR2) 

               IF R2<T.TS OR R1>T.TE 

                  IF T.DMax > M.DMax THEN Nearests.Replace T with M 
               ELSEIF R2<T.TE AND R1>T.TS  

                  IF M.Dmin < T.Dmin 

                     M1=Part(M,,R1); M2=Part(M,R2); T1=Part(T,R1,R2) 

                     Nearests.Replace T with (M1,T1,M2) 

                  ELSE 

                     T1=Part(T,,R1); T2=Part(T,R2); M1=Part(M,R1,R2) 

                     Nearests.Replace T with (T1,T2,M1) 

                  ENDIF 

               ELSE 

                  IF M(R1 - 1)<T(R1 – 1) 

                     M1=Part(M,,R1); T1=Part(T,R1) 

                     Nearests.Replace T with (M1,T1) 

                  ELSE 

                     T1=Part(T,,R1); M1=Part(M,R1) 

                     Nearests.Replace T with (T1,M1) 

                  ENDIF 

               ENDIF 

            ENDIF 

         ENDIF 

      ENDIF 

      Roof=max(Roof,T.Dmax) 

   NEXT 
 

Figure 3.13: UpdateNearests Algorithm 

 

Figure 3.14: Graphical illustration of UpdateNearests Algorithm Comparisons 
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• Case 3: The discriminant is greater than zero, meaning that the two functions intersect in two 

points (Line 14). In this case, we have to determine whether these time instances are inside the 

entry’s lifetime. Hence, we further distinguish among three sub-cases: 

• Case 3a: Both solutions are outside the temporal extent of M (and T) (Line 

17). We only have to check their maximum in order to determine which is the 

globally minimum inside the current temporal interval (see Figure 3.14(d)) 

• Case 3b: Both solutions are inside the temporal extent of M (and T) (Line 19). 

We must break apart the entry into 3 different entries (see Figure 3.14(e)) and 

determine the part of T to be replaced by M. 

• Case 3c: Only one solution is found inside the temporal extent of M (Line 27). 

We must break apart the entry into two different entries (see Figure 3.14(f)) 

and determine the part of T to be replaced by M. 

3.5.4. Extending to k-HCNN algorithms 

The two historical continuous algorithms proposed above can be also generalized to searching the k- 

nearest neighbors by considering the following: 

• Using a buffer of at most k current Nearests lists; 

• Pruning according to the distance of the furthest Nearests lists in the buffer – therefore Roof is 

calculated as the maximum distance of the furthest Nearests list; 

• Processing each entry against the i-th list (with i increasing, from 1 to k) checking whether it 

qualifies to be in a list; 

• When a moving distance is replaced by a new entry in the i-th list, testing it against the (i+1)-

th list to find whether it qualifies to be in that list. 

3.6. Experimental Study 

The above illustrated algorithms can be implemented in any R-tree-like structure storing historical 

moving object information such as the 3D R-tree, the STR-tree [PJT00] the TB-tree [PJT00] and the 

TB*-tree.  

3.6.1. Experimental Setup 

All algorithms were implemented on top of our implementation of R-tree-like structures used in the 

previous chapter, employing the development environment of Microsoft Visual Basic. The experiments 

were performed in a PC running Microsoft Windows XP with AMD Athlon 64 3GHz processor, 512 

MB RAM and several GB of disk space, a page size of 4 KB and a (variable size) buffer fitting the 

10% of the index size, with a maximum capacity of 1000 pages. Finally, in our experimentation we 

employed the real and synthetic trajectory datasets introduced in sections 0 and 1.5.2, respectively.  

3.6.2. Results on the Calculation of the MINDIST Metric 

In order to demonstrate the efficiency of the proposed MINDIST calculation over the one presented in 

[TPS02], we conducted a set of experiments executing 500 queries over the GSTD datasets indexed by 

the TB-tree using the TrajectoryNNSearch algorithm; nevertheless, similar results gathered when 

employing the other two alternatives, namely, the 3D R- and the TB*-tree. The queries were initially 
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executed with the proposed MINDIST calculation, forming the Qa query set, and then with the 

MINDIST calculation proposed in [TPS02], forming the Qb query set. The set of 500 query objects 

(trajectories) were produced using GSTD also employing a Gaussian initial distribution and a random 

movement distribution. Then, a random 1% part of each trajectory was used as the query trajectory. 

Each query performance was measured in terms of execution time and actual distance evaluations 

between point and point, point and line, and point and MBB. 

Figure 3.15(a) illustrates the average execution time for query sets Qa and Qb. Clearly, the 

TrajectoryNNSearch algorithm with the proposed improvement over the MINDIST computation 

is always superior over the corresponding computation as proposed in [TPS02], in all datasets. The 

improvement over the execution time varies between 8% (in the GSTD 100 dataset) and 17% (in the 

GSTD 250 dataset). The efficiency of the proposed improvement over the MINDIST computation can 

be further established by Figure 3.15(b), illustrating the actual distance evaluations made from each 

alternative computation; Figure 3.15(b) shows that the proposed MINDIST computation requires in all 

settings almost half of the distance evaluations made by the analogous computation proposed in 

[TPS02]. 
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Figure 3.15: (a) Execution Time and (b) actual Distance Evaluations for query sets Qa and Qb 

increasing the number of moving objects 

3.6.3. Results on the Search Cost of the Historical Non-continuous Algorithms 

The performance of the proposed algorithms was measured in terms of node accesses and execution 

time. Several queries were used in order to evaluate the performance of the proposed algorithms over 

the synthetic and real data sets. In particular, we have used the following query sets: 

• Q1: the PointNNSearch and the IncPointNNSearch algorithms were evaluated with 

one set of 500 NN queries increasing the number of moving objects over the GSTD datasets 

indexed by TB-, TB*- and 3D R-tree. The queries used a random point in the 2D space and a 

time period of 1% of the temporal dimension for Q1. 

• Q2: the TrajectoryNNSearch and the IncPointNNSearch algorithms were evaluated 

with one set of 500 NN queries increasing the number of moving objects over the GSTD 

datasets indexed by TB-, TB*- and 3D R-tree. The set of 500 query objects (trajectories) was 

produced using GSTD employing also a Gaussian initial distribution and a random movement 

distribution. Then, in Q2 we used a random 1% part of each trajectory as the query trajectory.  
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• Q3, Q4: two sets of 500 k-NN queries over the real Trucks dataset increasing the number of k 

with fixed time and increasing the size of the time interval (with fixed k=1) respectively. For 

the PointNNSearch algorithm we used a random point in the 2D space with a 1% of time 

as query period, while for TrajectoryNNSearch algorithm we used a random part of a 

random trajectory belonging to the Buses dataset, temporally covering 1% of the time. 

Figure 3.16 illustrates the results for the Q1 query set evaluating PointNNSearch and 

IncPointNNSearch algorithms over the 3D R-tree, in terms of (a) average number of node 

accesses and (b) average execution time per query. As it is clearly illustrated, the performance of both 

algorithms depends sub-linearly on the dataset cardinality, downgrading (more pages are accessed) as 

the cardinality grows. Another conclusion drawn from the same charts is that IncPointNNSearch 

algorithm outperforms the PointNNSearch algorithm in all datasets, in terms of both node accesses 

and execution time. Figure 3.16(c) illustrates the average length (in nodes) of the queue utilized by the 

IncPointNNSearch in order to answer the queries, increasing linearly with the cardinality of the 

dataset.  
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Figure 3.16: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing 

point NN search over the 3D R-tree indexing the GSTD datasets  
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Figure 3.17: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing 

point NN search over the TB-tree indexing the GSTD datasets  

The Q1 query set evaluating PointNNSearch and IncPointNNSearch was also executed 

against the TB-tree and the TB*-tree, leading to the results presented in Figure 3.17 and Figure 3.18, 

respectively. Although, just as reported for the 3D R-tree, the IncPointNNSearch outperforms 

PointNNSearch in terms of average node accesses per query in all datasets (Figure 3.17(a) and 
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Figure 3.18(a)), the actual average time required for each query execution (Figure 3.17(b) and Figure 

3.18(b)) by the IncPointNNSearch, increases faster than the respective execution time of the 

PointNNSearch, leading to a superiority of the non-incremental algorithm as the cardinality of the 

dataset grows.  
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Figure 3.18: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q1 executing 

point NN search over the TB*-tree indexing the GSTD datasets  

Exactly the same trend as the one presented for the execution time of the IncPointNNSearch 

is presented in Figure 3.17(c) and Figure 3.18(c) illustrating the length of the queue utilized by the 

respective algorithm. More specifically, PointNNSearch outperforms its incremental counterpart 

when the average length of the respective queue exceeds a certain number of nodes (approximately 400 

nodes in the GSTD 500 dataset). The above conclusion can be also verified from the results of the 3D 

R-tree, where the length of the queue is always less than 400, leading to a superiority of the 

incremental algorithm. Regarding the comparison between the performance of the TB, the TB* and the 

3D R-tree, the latter outperforms the other two as the dataset cardinality grows, like what was reported 

in [PJT00] regarding simple range queries of small extent; then again, the original TB-tree seems to 

marginally outperform the developed in this thesis TB*-tree. 

Figure 3.19 illustrates the results for the Q2 query set evaluating TrajectoryNNSearch and 

IncTrajectoryNNSearch algorithms over the 3D R-tree, in terms of average number of node 

accesses (a) and average execution time per query (b). The performance of both algorithms depends 

linearly on the dataset cardinality, downgrading as the dataset cardinality grows. Although 

IncTrajectoryNNSearch outperforms TrajectoryNNSearch in all datasets in terms of node 

accesses, the average execution time of the incremental algorithm becomes greater than the respective 

time of the non-incremental one, as the dataset cardinality grows. The average queue length utilized by 

the IncTrajectoryNNSearch, is also illustrated in Figure 3.19(c); following the results for the 

execution time of the incremental algorithm, the queue length increases linearly with the cardinality of 

the dataset. This enlargement of the queue length is also responsible for the behavior showed regarding 

the comparison of the execution time between the TrajectoryNNSearch and the 

IncTrajectoryNNSearch algorithm; as the queue length increases, each update becomes a more 

expensive operation leading to the downgrade of the performance of the respective algorithm.  
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Figure 3.19: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing 

trajectory NN search over the 3D R-tree indexing the GSTD datasets  

Regarding a comparison of the performance of the incremental algorithms illustrated in Figure 

3.16 and Figure 3.19 leads to the observation that while in the first case, fewer node accesses lead to 

smaller execution time (than the non-incremental one), in the second case the execution time of the 

incremental algorithm becomes higher than the respective of its non incremental counterpart. This fact 

can be explained by observing the respective queue lengths: in the first case the queue length in not 

more than 200 objects (i.e., less than a typical BranchList), while in the second case, the queue length 

includes 1000’s of objects resulting in a decrease of the algorithm’s performance. 
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Figure 3.20: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing 

trajectory NN search over the TB-tree indexing the GSTD datasets  

The results of the Q2 query set over the TB-tree and the TB*-tree are presented in Figure 3.20 

and Figure 3.21, respectively. While IncTrajectoryNNSearch always outperforms 

TrajectoryNNSearch in terms of average node accesses (Figure 3.20(a) and Figure 3.21(a)), their 

disparity is not as significant as it was reported for the 3D R-tree. Moreover, the actual execution time 

of the incremental algorithm (Figure 3.20(b) and Figure 3.21(b)) is always by far longer than the 

respective execution time of the non-incremental one. These results can be explained by two reasons. 

The first is that the actual execution time of the incremental algorithm depends heavily on the 

respective queue length which, as shown in Figure 3.20(c) and Figure 3.21(c), exceeds 1000 nodes for 

the GSTD 250 dataset reaching 9000 nodes in the GSTD 2000 dataset indexed by the TB-tree, while in 

the case of the TB*-tree the queue cardinality grows to even higher values (14000). The second is that 

TB-tree and TB*-tree group entries belonging to the same trajectory together, exploiting only the 
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temporal order in which the entry insertion occurs ignoring at the same time any spatial proximity. This 

insertion strategy leads to nodes with high spatial (and low temporal) overlap, meaning that internal 

nodes will often cross the query trajectory, and the respective MINDIST will be equal to zero. Then, the 

internal nodes need to be visited since their MINDIST equals to zero and they are leading inside the 

queue, resulting to the loss of the advantage of the incremental algorithm.  
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Figure 3.21: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q2 executing 

trajectory NN search over the TB*-tree indexing the GSTD datasets  

The same reasons also affect the comparison of the performance between the TB-, the TB*- and 

the 3D R-tree, where the latter outperforms the other two as the dataset cardinality grows. Moreover, 

the advantage of the original TB-tree against the TB*-tree that has been revealed in point NN queries, 

becomes clearer here, where the latter always perform worse than the former. It becomes therefore 

obvious that the structure of the TB*-tree is not suitable for NN queries. This is mainly due to the fact 

that the TB*-tree contains wider MBBs (since its leaf capacity is almost the double of the original TB-

tree), leading to higher node overlap and lower spatial discrimination; the same tendency has been also 

detected in the original work of [PJT00] regarding the TB-tree, in the case of range queries of small 

extent (1% along each dimension, i.e., 0.0001% of the total space), where the high space utilization of 

TB-tree becomes a drawback that affects its performance. This similarity between small range and 

nearest neighbor queries can be actually justified considering the work of [TZPM04], where the cost of 

executing NN queries over multidimensional data is estimated by approximating the vicinity circle C(q, 

R), i.e., the circle inside which the search is performed with center the query point q and radius R its 

distance from the k-th nearest neighbor, with a vicinity rectangle of equal area. As such, the more 

objects in the index, the smaller the radius of the k-th NN, and the smaller the respective vicinity 

rectangle; finally, the equivalent of a NN query turns to be a range query with small extent (and total 

area equal to the area of C(q, R)). Due to the aforementioned reasons, as well as for the sake of the 

clarity of the presentation, the TB*-tree will not be further included in the experimental study on 

historical non-continuous NN queries. Nevertheless, the rest of the conducted experiments verify the 

observed trend so far, and show that the TB*-tree performs always worse than its other two 

competitors. 

The performance of the historical non-continuous point NN algorithms increasing the query 

temporal extent, in terms of average node access and average execution time per query, is shown in 

Figure 3.22 against the 3D R-tree and the TB-tree, both indexing the Trucks dataset. Clearly, under 

both indexes, the number of node accesses needed for the processing of a NN query, increases linearly 
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with the query temporal extent, with the IncPointNNSearch being always below the 

PointNNSearch. In terms of execution time, both indexes show the same behavior having a 

breakeven point where the superlinearly increasing execution time of the IncPointNNSearch (a 

consequence of the increasing queue length illustrated in Figure 3.22 (c)) becomes even with the 

linearly increasing execution time of the PointNNSearch algorithm. Regarding the TB-tree, the 

breakeven point is around the 1.5% of the temporal extent while in the 3D R-tree increases around 

3.5%.  
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Figure 3.22: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q3 executing 

point NN search over the 3D R- and the TB-tree indexing the Trucks dataset  

Figure 3.23 illustrates the average number of node accesses and execution time per historical 

non-continuous point query increasing the number of k against the Trucks dataset indexed by the 3D R-

tree and TB-tree. Under both indexes it is clear that the incremental algorithm outperforms the 

PointNNSearch in terms of both average node accesses and execution time. Using the 3D R-tree, 

the performance of both algorithms decreases linearly with the number of k, whereas when using the 

TB-tree the reduction is sub-linear.  
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Figure 3.23: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q3 executing 

point NN search over the 3D R- and the TB-tree indexing the Trucks dataset  

The results for the historical non-continuous trajectory NN algorithms increasing the query 

temporal extent against the 3D R-tree and TB-tree indexing the Trucks dataset are illustrated in Figure 

3.24. Once again, the number of node accesses required for the processing of a NN query with both 

algorithms under both indexes, increases linearly with the query temporal extent. However, regarding 

the execution time, the performance of the incremental algorithm grows superlinearly with the 

temporal extent as a consequence of the excessive queue length (Figure 3.24(c)).  
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Figure 3.24: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q4 executing 

trajectory NN search over the 3D R- and the TB-tree indexing the Trucks dataset  

The performance of the historical non-continuous trajectory query increasing the number of k 

against the Trucks dataset is shown in Figure 3.25 where the TrajectoryNNSearch algorithm 

outperforms its incremental counterpart in terms of execution time, with the respective queue 

containing in any case more than 1000 nodes.  
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Figure 3.25: (a) Node Accesses, (b) Execution Time and (c) Queue Length in queries Q4 executing 

trajectory NN search over the 3D R-tree indexing the Trucks dataset  

3.6.4. Results on the Search Cost of the Historical Continuous Algorithms 

In coincidence with the experiments conducted for the historical non-continuous algorithms, the 

historical continuous NN search algorithms were evaluated, also in terms of node accesses and 

execution time, with the following query sets: 

• Q5: the HContPointNNSearch algorithm was evaluated with one set of 500 NN queries 

increasing the number of moving objects over the GSTD datasets indexed by TB-, TB* and 3D 

R-tree like what was done for query set Q1. 

• Q6: the HContTrajectoryNNSearch algorithm was evaluated with one set of 500 NN 

queries increasing the number of moving objects over the GSTD datasets indexed by TB-, TB* 

and 3D R-tree like what was done for query set Q2. 

• Q7, Q8: two sets of 500 k-NN queries over the real Buses dataset increasing the number of k 

with fixed time and increasing the size of the time interval (with fixed k = 1), respectively. For 

the HContPointNNSearch algorithm we used a random point in the 2D space with a 1% 

of time as query period, while for HContTrajectoryNNSearch algorithm we used a 
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random part of a random trajectory belonging to the Trucks dataset, temporally covering 1% 

of the time. 
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Figure 3.26: Node Accesses and Execution Time in queries Q5 (a, b) and Q6 (c, d) over the 3D R-tree, 

the TB-tree and the TB*-tree increasing the number of moving objects 

Figure 3.26(a) and (b) illustrates the results of the HContPointNNSearch algorithm over the 

GSTD datasets by increasing the number of moving objects in terms of (a) average node accesses and 

(b) average execution time per query. As in its historical non-continuous counterpart, the performance 

of the algorithm depends linearly on the dataset cardinality downgrading as the cardinality grows, 

while the average execution time for both indexes follows the same trend as the average number of 

visited nodes. Another result gathered is that, as the cardinality grows, the 3D R-tree outperforms the 

TB-tree and the TB*-tree, following the same trend illustrated in [PJT00] for simple range queries of 

small extent. Similar results are illustrated in Figure 3.26(c) and (d) where the 

HContTrajectoryNNSearch algorithm is executed against the GSTD datasets. 

A comparison between the historical non-continuous NN algorithms with their continuous 

counterpart (i.e., Figure 3.16 and Figure 3.17 vs. Figure 3.26(a) and (b), and Figure 3.19 and Figure 

3.20 vs. Figure 3.26(c) and (d)), shows that the historical continuous algorithms are much more 

expensive than the non-continuous ones. This conclusion was expected since the historical continuous 

algorithms do not utilize a single distance to prune the search space; instead they use a list of moving 

distances, which in general stores greater distances than the minimum. Actually, the historical non-

continuous algorithms prune the search space with the minimum possible distance stored inside the 

Nearests list, therefore performing pruning much more efficiently than their continuous counterpart. 
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Figure 3.27: Node Accesses and Execution Time in queries Q7 (a, b) and Q8 (c, d) over the 3D R-tree, 

the TB-tree and the TB*-tree indexes increasing the query temporal extent 
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Figure 3.28: Node Accesses and Execution Time in queries Q7 (a, b) and Q8 (c, d) over the 3D R-tree, 

the TB-tree and the TB*-tree indexes increasing the number of k  

The scaling of the historical continuous algorithms with the query temporal extent is presented in 

Figure 3.27. Both algorithms (HContPointNNSearch and HContTrajectoryNNSearch) were 

executed over the real Buses dataset indexed by the TB-, the TB*- and the 3D R-tree. From Figure 
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3.27(a) and (c) it is clear that the performance of both algorithms in terms of node accesses is sub-

linear with respect to the query temporal extent. Nevertheless, the actual execution time needed by each 

query increases superlinearly with the query extent, as a consequence of the increasing length of the 

query output (the Nearests list). The performance of the historical continuous NN algorithms 

increasing the number of k against the Buses dataset indexed by the TB, the TB*- and the 3D R-tree is 

illustrated in Figure 3.28. As drawn from Figure 3.28(a) and (c), the average number of node accesses 

required for the processing of a k-HCNN point or trajectory query increases sub-linearly with k. 

However, the actual execution time presented in Figure 3.28(b) and (d) increases superlinearly with the 

k, similarly with the temporal extent, as a consequence of the increasing size of the query output (the k 

Nearests lists).   

3.6.5. Summary of the Experiments 

Most of the presented algorithms, in terms of node accesses, are linear or sub-linear with the main 

parameters of our experimental study: the dataset cardinality, the query temporal extent and the number 

of k. However, the execution time of the IncPointNNSearch and IncTrajectoryNNSearch 

algorithms seems to grow super-linearly with the query temporal extent as a result of the increasing 

queue length, similarly with the execution time of HContPointNNSearch and 

HContTrajectoryNNSearch, which have the same trend with respect to the temporal extend and 

the number of k, as a consequence of the increasing Nearests list length. 

Table 3.2: Actual indexed space accessed by each NN algorithm for the GSTD 2000 dataset 

Algorithm 3D R-tree TB-tree TB*-tree 

PointNNSearch 0.006% 0.022% 0.070% 

IncPointNNSearch 0.003% 0.010% 0.044% 

TrajectoryNNSearch 0.014% 0.148% 0.963% 

IncTrajectoryNNSearch 0.008% 0.134% 0.868% 

HContPointNNSearch 0.016% 0.042% 0.124% 

HContTrajectoryNNSearch 0.053% 0.259% 1.248% 
 

Table 3.2 summarizes the pruning power of our algorithms presenting the percentage of the 

indexed space accessed in order to execute all the proposed algorithms with k=1 and temporal extent 

the 1% of the indexed time. As it can be concluded our algorithms show high pruning ability, well 

bounding the space to be searched in order to answer NN and HCNN queries, except of the case of the 

TB*-tree which, overall, seems that is not a good choice when dealing with NN queries. 

3.7. Conclusions  

NN queries have been in the core of spatial and spatio-temporal database research during the last 

decade. The majority of the algorithms processing such queries so far mainly deals with either 

stationary or moving query points over static datasets or future (predicted) locations over a set of 

continuously moving points. In this work, acknowledging the contribution of related work, we 

presented the first complete treatment of historical NN queries over moving object trajectories stored 

on R-tree-like structures.  
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Based on our proposed novel metrics (i.e., MINDIST_Trajectory_Rectangle), which support our 

ordering and pruning strategies, we presented algorithms answering the NN and HCNN queries for 

stationary query points or trajectories and generalized them to search for the k nearest neighbors. The 

algorithms are applicable to R-tree variations for trajectory data, among which for our performance 

study we used the 3D R-tree, the TB-tree and the TB*-tree. Appart from the implementation of the 

proposed algorithms over R-tree-like structures used during the experimental study, the 

IncPointNNSearch and IncTrajectoryNNSearch, algorithms have been implemented in the 

ORACLE Object – Relational DBMS and integrated into the HERMES engine [PFGT08], which has 

been also extended so as to include the TB-tree [PJT00]. 

In order to measure the performance of our algorithms we conducted an extensive experimental 

study based on synthetic and real datasets. At first, we demonstrated that our improvement over the 

MINDIST computation can sufficiently increase the performance of the proposed algorithms. 

Regarding the historical non-continuous algorithms, it has been shown that while the incremental (best-

first) approach is always less expensive than the non-incremental (depth-first) in terms of node 

accesses, its actual execution time heavily depends on the used queue length. In general, the best-first 

approach outperforms its competitor only for point NN queries under small temporal extent (less than 

2-4% depending on the index used and under any k), while in all other cases the depth first approach 

takes less time to be executed. This drawback of the incremental algorithms is mainly due to the queue 

length which may become huge, especially in the case of the TB-tree ant the TB*-tree. Regarding a 

comparison between the used indexes, the 3D R-tree outperforms the TB-tree in terms of both node 

accesses and execution time, while the TB*-tree proposed in Chapter 3 is shown that it is not a suitable 

choice when dealing with NN queries.   
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4. Advanced Trajectory Query Processing: 

Similarity Search 

The purpose of this chapter is to demonstrate the algorithms for similarity search on R-tree-like 

structures storing historical trajectories of moving objects. Its structure is as follows: Section 4.1 

motivates the chapter and provides the initial ideas. Related work is discussed in Section 4.2. Section 

4.3 formally introduces the main purpose of this chapter and thoroughly examines the metrics 

employed for Most Similar Trajectory (MST) search, as well as the ones used to support our search 

ordering and pruning strategies. Section and 4.4 constitutes the core of the chapter describing in detail 

the query processing algorithms to perform MST search over historical trajectory information; the 

algorithms presented are based on the depth-first and best-first paradigm, employing R-tree-like index 

structures. Section 4.5 presents the results of our experimental while our conclusions are presented in 

Section 4.6. 

4.1. Introduction 

Another interesting query type that is useful in MOD search is derived from the so-called trajectory 

similarity problem, which aims to find ‘similar’ trajectories of moving objects. To illustrate the 

problem, consider the following example. Suppose that the metro network of a city has been recently 

extended, initiating a new transportation line, in view of providing transport services to a major part of 

the residents of the city suburbs. This metro network extension requires the re-designing of the existing 

transportation network (buses, tram, trolley-buses, etc.). Experts in the field would be assisted if they 

could pose queries about the similarity between the trajectories of the existing transport means and the 

new metro line. As such, they would be able, for example, to change the timetable of a bus line, if it 

matches in a certain day with the timetable of the new metro line, or even abort it. To handle such 

queries efficiently, MOD systems should include methods for answering the so-called Most-Similar-

Trajectory (MST) search also discussed in [The03]. 

Trajectory similarity search is a relatively new topic in the literature; the majority of the methods 

proposed so far are based on either the context of time series analysis and the Longest Common 

Subsequence (LCSS) model [VKG02], or the recently proposed Edit Distance on Real Sequence 

(EDR) [COO05]. However, all these methods have the main drawback that they either ignore the time 

dimension of the movement, therefore calculating the spatial (and not the spatio-temporal) similarity 

between the trajectories, or assume that the trajectories are of the same length and have the same 
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sampling rate. To exemplify the problem derived when different sampling rates are present, recall 

Figure 1.4 presenting two trajectories T and Q with their position being sampled in different rates. 

While Q and T sample their position 4 and 32 times respectively, they have approximately the same 

length traversing through the same area. Though the two trajectories are obviously similar, methods 

based on the LCSS or the EDR model cannot detect this kind of similarity since they try to match 

trajectory sampled positions one by one, which clearly does not happen in the above (real world) 

example. Moreover, the majority of the proposed approaches exploit specialized index structures in 

order to prune the search space and retrieve the most similar to a query trajectory.  

The challenge thus accepted in this thesis, is to efficiently support the k-MST search in MODs 

storing historical trajectory information, indexed by R-tree-like structures. The main contributions of 

this chapter are outlined as follows: 

• A dissimilarity metric (DISSIM) for the measurement of the spatio-temporal dissimilarity 

between two trajectories is defined; this metric which can be seen as the average distance 

between the two trajectories in time is also independently presented and employed in [NP06]. 

We subsequently propose an efficient approximation method to overcome its costly 

calculation. 

• A set of novel metrics (MINDISSIM, PESDISSIM, OPTDISSIM) along with several associated 

lemmas are proposed, and subsequently used for pruning purposes by two most similar 

trajectory search algorithms. Specifically, using these metrics, we propose a depth-first and a 

best-first query processing algorithm to perform k-MST search on R-tree-like structures 

storing historical trajectory information. 

• We conduct a comprehensive set of experiments over large synthetic and real datasets 

demonstrating that the algorithms are highly scalable and efficient in terms of node accesses, 

execution time and pruned space. We further demonstrate that the proposed similarity metric 

(DISSIM) efficiently retrieves spatio-temporally similar trajectories in cases where related 

work fails. 

• Finally, we show how the proposed metrics and heuristics can be employed in the context of 

density-based trajectory clustering [NP06]. 

Again, we have to point out that all the proposed algorithms do not require any dedicated index 

structure and can be directly applied to any member of the R-tree family used to index trajectories, 

such as the 3D R-tree, the TB-tree [PJT00] and the TB*-tree proposed in this thesis. To the best of our 

knowledge, the proposal of this thesis is the first that provides techniques for a spatio-temporal index to 

support traditional range, as well as topological and similarity based queries.  

4.2. Related Work 

Similarity search has been extensivelly studied in the time series analysis domain. As a measure of 

approximate matching, Agrawal et al. [AFS93] proposed the utilization of the Discrete Fourier 

Transformation (DFT). An alternative time series matching technique through dimension reduction was 

proposed by Chan and Fu [CF99], using the Discrete Wavelet Transformation (DWT). In order to 

compare sequences with different lengths, Berndt and Clifford [BC96] used the Dynamic Time 
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Warping (DTW) technique that allowed sequences to be stretched along the time axis to minimize the 

distance between sequences. Although DTW incurred a heavy computation cost, it was more robust 

against noise. 

In [YAS03] an indexing method for processing shape-based similarity queries for trajectory 

databases was presented. The proposed method was based on Euclidean Distance. However it could be 

applied only on trajectories with same lengths being valid during the same time interval. Cai and Ng 

[CN04] proposed the utilization of Chebyshev polynomials for approximating and indexing trajectories 

for similarity matching purposes. Still, this method suffered from the requirement that the trajectories 

should be of the same length (in terms of the number of spatio-temporal points that are composed of).  

Vlachos et al. [VGD04] presented a distance measure that allowed to find similar trajectories 

under translation, scaling and rotational transformations. The first step of their method was the 

mapping of each trajectory to a trajectory in a rotation invariant space. For the calculation of the 

distance between two trajectories in the new rotation invariant space, the DTW technique was utilized.  

Sakurai et al. [SYF05] proposed an improved version of DTW, the Fast search method for 

Dynamic Time Warping (FTW), based on a new lower bounding measure for the approximation of the 

time warping distance. They proved that FTW could prune a significant portion of the search space, 

leading to a significant reduction of the search cost.  Recently, Lin and Su [LS05] have studied the time 

independent similarity search problem of moving object trajectories. The “one way distance” (OWD) 

function is introduced for comparing the spatial shapes of trajectories along with appropriate 

algorithms for computing OWD. Their experimental study shows that the adoption of OWD function 

outperforms DTW algorithm in terms of precision and performance. 

Several approaches are based on the Longest Common Sub Sequence (LCSS) similarity 

measure. LCSS measure matches two sequences by allowing them to stretch, without rearranging, the 

sequence of the elements, but allowing some elements to be unmatched (which is the main advantage 

of the LCSS measure compared with Euclidean Distance and DTW). Therefore, LCSS can efficiently 

handle outliers and different scaling factors. Vlachos et al. [VKG02] adopted the utilization of the 

LCSS method. Introducing two similarity measures allowing time stretching and translations 

respectively, the authors proposed non-metric similarity functions, which were very robust to the 

presence of noise and provided an intuitive notion of similarity between trajectories by giving more 

weight to the similar portions of the trajectories. Moreover, an efficient index structure (based on 

hierarchical clustering) for similarity queries was presented. However, as will be shown in the 

experimental study, the proposed method suffers when trajectories have different sampling rates. 

In [COO05] a distance function, called Edit Distance on Real Sequences (EDR), was introduced. 

This distance function, based on edit distance, was shown to be more robust than DTW and LCSS over 

trajectories with noise. The efficiency of this distance function was improved by the application of 

three pruning strategies, which reduced the respective computational cost in terms of computations 

between the query and data trajectories without introducing false dismissals. On the other hand, same 

as LCSS, EDR determines spatial similarity only, ignoring time, while trajectories with different 

sampling rates cannot be handled efficiently, as it will be shown in the experimental study. Moreover, 
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both [VKG02] and [COO05] propose the employment of dedicated indexes to prune the search space 

so as to efficiently support k-MST search. 

Keogh et al. [KWX+06] presented an algorithm (based on the LB_Keogh function introduced in 

[Keo02]), which dramatically reduced the time complexity of the calculation of the Euclidean Distance 

measure. This speed up was further achieved by allowing indexing. However, the above algorithm, 

which was generalized to other distance measures, such as DTW and LCSS, could be applied only to 

2D shapes. 

Recently, Pelekis et al. [PKM+07], consider the problem of trajectory similarity search through a 

different perspective. Contrary to other works which make use of generic similarity metrics that 

virtually ignore the temporal dimension, [PKM+07] introduce a framework consisting of a set of 

distance operators based on primitive (space and time) as well as derived parameters of trajectories 

(speed and direction); as a consequence, they define different distance measures for each kind of 

similarity between trajectories: spatial, temporal, spatio-temporal, speed-pattern and directional 

similarity. The novelty of the approach is not only to provide qualitatively different means to query for 

similar trajectories, but also to support trajectory clustering and classification mining tasks, which 

definitely imply a way to quantify the distance between two trajectories. For each of the proposed 

distance operators highly parametric algorithms are devised, the efficiency of which is evaluated 

through an extensive experimental study. 

Acknowledging the contributions of the above proposals, in the sequel we propose novel metrics 

and algorithms for trajectory similarity search on R-tree-like structures. 

Table 4.1: Table of notations 

Notation Description  

D a trajectory database 

Oi A moving object identifier 

T, Q an indexed and a query trajectory 

Tk, Qk the k-th line segment of T or Q 

xk, yk, tk the coordinates of trajectory T a timestamp tk 

DistQ,T(t) function with time of the synchronous Euclidean distance between trajectories Q and T 

, ,a b c  factors of the DistQ,T(t) trinomial  

EQ,T calculation error of the dissimilarity between trajectories 

Dist distance between trajectories 

V relative speed between moving objects 

N R-tree node 

MINDIST(Q,N) minimum distance between Q and N 

Vmax 
the sum of the maximum speed of indexed trajectories plus the maximum speed of the 

query trajectory 

SR the set of line segments already retrieved from the index 

SC 
the set of trajectories with line segments already retrieved from the index but not yet fully 

completed inside the given time period. 
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4.3. Problem Statement and Metrics for Most Similar Trajectory Search 

In this section the notion of Most Similar Trajectory (MST) queries w.r.t. a dissimilarity metric is 

defined, and then, the notion of spatio-temporal dissimilarity used in the approach of this thesis is 

formally introduced. Finally, a series of metrics and heuristics for MST Search used in the algorithms 

presented in this thesis is established. Table 4.1 presents the notations used in the rest of this chapter.  

4.3.1. Problem Statement 

Let D be a database of N moving objects with objects ids {O1, O2, …, ON} assuming linear 

interpolation between sampled points. The trajectory T of a moving object Oi consists of n-1 3D-line 

segments {T1, T2, .. Tn-1}. Each 3D line segment Tk is of the form ((xk, yk, tk), (xk+1, yk+1, tk+1)), where t0 ≤ 

tk < tk+1≤ now. Bearing in mind that many similarity metrics have been proposed in the literature, as 

discussed in the previous section, the definition of an MST query should be as general as possible. 

Therefore, we formally define MST search to be independent of the underlying similarity metric: 

Definition 4.1: Given a query trajectory Q, a trajectory database D and a metric DSIM measuring the 

dissimilarity between two trajectories, a most similar trajectory query is a query  

( ) ( )( ) ( ) ( ), , , : , , ' 'MST D Q T DSIM Q T DSIM Q T DSIM Q T T D= ≤ ∀ ∈  (4.1) 

that searches database D for the trajectory T having the minimum dissimilarity with the query 

trajectory Q among all trajectories in D, as well as the implied value of dissimilarity. 

However, regarding the underlying similarity metric, the majority of existing work in the domain 

of trajectory similarity search, either ignores the time dimension of the movement, as such calculating 

the spatial similarity between trajectories or assumes that trajectories have the same lengths (in terms of 

the number of spatio-temporal points that are composed of) and the same sampling rate. In order to 

overcome these obstacles, we may generalize the well known Euclidean Distance metric and provide 

the notion of spatio-temporal dissimilarity between two trajectories T and Q both being valid during a 

definite time interval [t1, tn], by integrating their Euclidean distance in time.  

Definition 4.2: The Dissimilarity DISSIM(Q, T) between trajectories Q and T being valid during the 

period [t1, tn] is defined as the definite integral of the function of time of the Euclidean distance 

between the two trajectories during the same period: 

( ) ( )
1

,,
nt

Q T

t

DISSIM Q T Dist t dt= ∫ , (4.2) 

where DistQ,T(t) is the function of the Euclidean distance between trajectories Q and T with time.  

However, since each trajectory is represented by a collection of discrete points where linear 

interpolation is applied in between, the definition of dissimilarity is transformed to: 

( ) ( )
11

,
1

,
k

k

tn

Q T

k t

DISSIM Q T Dist t dt
+−

=

=∑ ∫ , (4.3) 

where tk are the timestamps that objects T and Q recorded their position. Obviously, in real world 

applications, the sampling rates of trajectories may vary, resulting in trajectories with positions 

sampled at different timestamps; however, considering two trajectories with this characteristic, the 

position of the first object at the time instance when the second recorded its position can be 

approximated by applying linear interpolation.  
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The Euclidean distance between two points moving with linear functions of time between 

consecutive timestamps, was determined in Eq.(3.5) and is the square root of a trinomial: 

( ) 2
,Q TDist t at bt c= + + , (4.4) 

where a, b, c are the factors of this trinomial (real numbers, 0a ≥ ). 

In order to calculate the integral of DistQ,T(t), we distinguish between the following two cases for 

the value of the non-negative factor a : 

• 0a = . As shown in [MB04], it implies that 0b = . Hence, 

( )
1

,

1

k

k

t

Q T

k kt

c
Dist t dt

t t

+

+

=
−∫  (4.5) 

• 0a > . According to [MB04]: 

( )
1

1 2
2

,
2

2 4 2
arcsinh

4 8 4

i
k

k
i

t
t

Q T

t t

at b b ac at b
Dist t dt at bt c

a a a ac b

+
+  + − +

= + + −   − 
∫  (4.6) 

In order to avoid such a computationally expensive operation, we adopt the utilization of the 

Trapezoid Rule for the computation of the integral, resulting in the following Lemma. 

Lemma 4.1: The dissimilarity value between two points moving linearly with time can be 

approximated by the following expression: 

( ) ( ) ( ) ( )( ) ( )( )
1

, , 1 1
1

1
, ,

2

n

approx Q T k Q T k k k

k

DISSIM Q T DISSIM Q T Dist t Dist t t t
−

+ +
=

≈ = + ⋅ −∑  (4.7) 

with the error of the approximation, which depends on tk, tk+1 values, being bounded by: 

( ) ( )
( ) ( )

( ) ( )

3

1 (2)
, 1

3
1

1 (2)
, , 1 1

1

3

1 (2)
, 1

,2 212

, 212

, 212

k k

Q T k k

n
k k

Q T Q T k k k

k

k k

Q T k k k

t t
b bDist if t t

a a

t t
bE Dist t if t t

a

t t
bDist t if t t

a

+
+

−
+

+ +
=

+
+

 −
− ≤ − ≤


 −

≤ < < −

 −
 − < <


∑  (4.8) 

Proof: The Trapezoid approximation ( )nT f of ( )
0

nx

x

f x dx∫  associated with the partition 

0 1 ... nx x x< < <   is given by: 

( ) ( ) ( ) ( ) ( ) ( )0 0 1 1

1
2 ... 2

2n n n nT f x x f x f x f x f x− = − ⋅ + + + +   (4.9) 

If ( )(2)
f x  is continuous in 0[ , ]nx x , then the error ( )nE f  in the trapezoid rule is bounded as follows: 

( ) ( ) ( )
3

0 (2)

212
n

n

x x
E f f M

n

−
≤ , (4.10) 

where ( )(2)
f M  is the maximum value of ( )(2)

f x  in 0[ , ]nx x , i.e., 

( ) ( ) [ ](2) (2)
0 , nf M f x x x x≥ ∀ ∈  (4.11) 

In our case, by setting 1n = , we finally calculate: 

( ) ( ) ( )( ) ( )
1

, , , 1 1

1

2

k

k

t

Q T Q T k Q T k k k

t

Dist t dt Dist t Dist t t t
+

+ +≈ + ⋅ −∫  (4.12) 

with the error of our approximation being bounded by: 
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( ) ( )
3

1 (2)
, ,12k k

k k

Q T Q T

t t
E Dist M

+ −
≤ , (4.13) 

where ( )(2)
,Q TDist M  is the maximum value of ( )(2)

,Q TDist t  in 1[ , ]k kt t + . Therefore, we determine the 

maximum value of ( )
( )

2
(2)

, 3 22

4

4
Q T

ac b
Dist t

at bt c

−
=

+ +
 in 1[ , ]k kt t + . Since the first derivative of ( )(2)

,Q TDist t , 

( )(3)
,Q TDist t  zeroes at 2

bt
a

= −  and ( ) ( )
( )

5 2

(4)
, 3 22

3 4
2

4 4
Q T

a a
bD

a
ac b

−
− =

−
 0≤  (since 0a ≥ ), the largest value 

of  (2)
, ( )Q TDist t  in �  is ( )(2)

, 2Q T
bDist

a
− . Finally, we distinguish between three cases: 

• 12k k
bt t

a +≤ − ≤ . In this case, ( )(2)
,Q TDist M = ( )(2)

, 2Q T
bDist

a
−  and the error 

is
( ) ( )

3

1 (2)
, , 212k k

k k

Q T Q T

t t
bE Dist

a
+ −

≤ − ; 

• 1 2k k
bt t

a+< < . In this case, ( )(2)
,Q TDist M = ( )(2)

, 1Q T kDist t +  and the error is 

( ) ( )
3

1 (2)
, , 112k k

k k

Q T Q T k

t t
E Dist t

+
+

−
≤ ; 

• 12 k k
b t t

a +− < < . In this case, ( )(2)
,Q TDist M = ( )(2)

,Q T kDist t   and the error is 

( ) ( )
3

1 (2)
, ,12k k

k k

Q T Q T

t t
E Dist t

+ −
≤ . 

Summing the n-1 equations of the dissimilarity error calculation by sides, it implies that the 

approximation error EQ,T is computed as presented in Lemma 1. � 

Figure 4.1 demonstrates the trapezoid approximation illustrating the approximation error E in the three 

above cases: the value of 
2

b
a

−  is the flex of (2)
,Q TDist ; Ek is calculated based on the value of 

( )(2)
, 1Q T kDist t +  (case b), Ek+1 is calculated based on the value of ( )(2)

, 2Q T
bDist

a
−  (case a) and Ek+2 is 

calculated based on ( )(2)
, 2Q T kDist t + (case c). 
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t 

tk+2 
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Figure 4.1: Trapezoid approximation 

So far we have defined the dissimilarity between two trajectories (Definition 4.2) and have 

approximated this measure with a less expensive computation and a bounded error. As already 

mentioned, the location of non-recorded timestamps is approximated by linear interpolation between 
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consecutive recorder points (Support of non-linear e.g. arc, movement is left as an open issue). In the 

sequel, we will provide a series of metrics that will be used in our MST search algorithms. 

4.3.2. Speed-Dependent Metrics 

In this section we define two metrics, namely OPTDISSIM and PESDISSIM, and provide several 

lemmas to be used for pruning purposes during MST Search. Before proceeding into the core of the 

section, we define the Linearly Depended Dissimilarity (LDD) which is used in the definition of our 

metrics: 

Definition 4.3: The Linearly Depended Dissimilarity (LDD) between two moving objects with initial 

distance D moving collinearly with relative speed V during the period 1[ , ]nt t t∆ = , is given by the 

following expression: 

( ) 2

, 0
2

, ,

,
2

V t
t D if D V t

LDD D V t
D

otherwise
V

 ⋅∆ ∆ ⋅ + + ⋅∆ ≥ 
 

∆ =



 (4.14) 

The relative speed V is a negative (positive) number when the distance between the two objects 

decreases (increases, respectively). To illustrate this definition, consider Figure 4.2 where LDD is 

described as the shaded area encompassed by the inclined line representing a distance function between 

two objects moving towards each other with relative speed V, with the horizontal lines t1 and tn defining 

t∆ . The two cases of LDD definition are illustrated in Figure 4.2(a) and Figure 4.2(b), respectively.  
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LDD 

 

Distance 
 

(a) (b) 

Figure 4.2: LDD definition 

Having defined LDD, we can continue with the definition of the first metric used in our ordering 

and pruning strategies: 

Definition 4.4: The minimum DISSIM (MINDISSIM) during a period 1[ , ]nt t t∆ =  between a trajectory 

indexed by an R-tree-like structure with a line segment lying inside an index node N and a query 

trajectory Q, is defined as: 

( ) ( )( )max, , , , ,MINDISSIM Q N t LDD MINDIST Q N V t∆ = ∆  (4.15) 

where Vmax is the sum of (a) the maximum speed of indexed trajectories and (b) the maximum speed of 

the query trajectory. 
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Figure 4.3: MINDISSIM definition 

This metric can be used for ordering and pruning purposes due to the lemma that follows. 

Lemma 4.2: The DISSIM between a trajectory indexed by an R-tree-like structure partially contained 

inside an index node N and a query trajectory Q during a period [ ]1, nt t  cannot have DISSIM smaller 

than the respective MINDISSIM of the node. 

Proof: According to Definition 4.4, MINDISSIM corresponds to the DISSIM of a moving object 

located inside N for a single time instance and then moved towards the query trajectory with the 

maximum possible speed (the area of the shaded region in Figure 4.3). Obviously, any other object 

with at least one line segment contained inside N will approach the query trajectory with speed lower or 

equal than Vmax, increasing therefore the shaded trapezoid area of Figure 4.3 (i.e. the slope of the 

inclined line in Figure 4.3(b) will be greater). Furthermore, if the object remains inside N for more than 

one time instance, the inclined line would cover a part of the query interval (and not the whole), 

leading to a region with greater area. � 

Depending on the presence or absence of index, any algorithm used for MST or similarity range 

search will have to calculate the dissimilarity between a query trajectory and several (indexed or not) 

trajectories; obviously, at any time instance such an algorithm will have retrieved several parts of 

candidate MSTs.  

Although we cannot calculate the exact DISSIM of these partially retrieved trajectories from the 

query trajectory, we can safely estimate a lower bound for it, called OPTDISSIM. Consider, for 

example, Figure 4.4 that illustrates OPTDISSIM of a partially retrieved candidate trajectory T from the 

query trajectory Q. OPTDISSIM partially consists of the dissimilarity of the entries already retrieved 

from the index (the shaded area during the time intervals [t1,t2] and [t3,t4]). Regarding the period [t4,t5], 

the smallest possible dissimilarity is given assuming that the moving object started from its position at 

t4 approaching the query object with the maximum possible speed (the inclined line between t4 and t5). 

Finally, when dealing with intermediate time intervals such as [t2,t3], one has to calculate the time 

instance 2
o

t  in which the object stopped its movement towards the query trajectory (the inclined line 

between t2 and 2
o

t ) and then returned to its known position at the time instance t3 (the inclined line 

between 2
o

t  and t3). Now we can proceed with the formal definition of OPTDISSIM: 
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Figure 4.4: OPTDISSIM definition 

Definition 4.5: The most optimistic DISSIM (OPTDISSIM) between a query trajectory Q and an 

indexed trajectory T with line segments partially retrieved from the index, during a period 1[ , ]nt t , is 

defined as: 

( )
( )
( )
( )

, 1 max 1

1 , max 1

, max

, 1 max 1

( , ) , ;

( ), , ( ) , , 1;

( , , , ) ( ), , ( ) , , 1;

( ), , ( )

( ), , ( ) ,

k k k R

Q T k k k k R

n Q T k k k k R

o

Q T k k k

o

Q T k k k

DISSIM Q T if T S

LDD Dist t V t t if T S k

OPTDISSIM Q T t t LDD Dist t V t t if T S k n

LDD Dist t V t t

LDD Dist t V t t othe

+ +

+

+ +

∈

− − ∉ =

= − − ∉ = −

− − +

−

1

1
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−

=












∑  (4.16) 

where DistQ,T is the function of distance with time between trajectories Q and T,  SR is the set of line 

segments already retrieved from the index, Vmax is the sum of the maximum speed of indexed 

trajectories plus the maximum speed of the query trajectory, and 
o

kt  is given by the following 

expression: 

( ), 1 ,

1

max

( ) ( )1

2

Q T k Q T ko

k k k

D t D t
t t t

V

+

+

 −
 = + +
 
 

 (4.17) 

Recalling Figure 4.4, the value of o

kt  is straightforward utilizing the fact that the slope of the two 

inclined lines between 2 2[ , ]o
t t  and 2 3[ , ]o

t t  is the same and equal to Vmax. Having defined OPTDISSIM, 

we can provide the following lemma, which will also turn out to be useful for pruning purposes: 

Lemma 4.3: A trajectory indexed by an R-tree-like structure with line segments partially retrieved 

from the index cannot have smaller DISSIM from a query trajectory Q during a period 1[ , ]nt t  than its 

respective OPTDISSIM. 

Proof: According to the previous definition, OPTDISSIM is the sum of the DISSIM of the trajectory 

entries already retrieved from the index (belonging to set SR), a value which is fixed, plus the DISSIM 

of an object which approached the query trajectory with the maximum possible speed (Vmax) during the 

time intervals not already retrieved from the index, with the additional constraint that the object has to 

be found at given positions at the start and/or the end of the interval. Therefore, since the two objects 

approach each other with the maximum possible speed during those periods, the distance between them 

is minimized; hence minimizing the corresponding integral and consequently their dissimilarity. � 

Likewise, by adopting the same scenario where an MST algorithm has only partially retrieved 

trajectories, one can estimate an upper bound, for the DISSIM between the query and a partially 
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retrieved trajectory, named PESDISSIM. As illustrated in Figure 4.5, PESDISSIM works in a fashion 

similar to OPTDISSIM with the difference that during time intervals where the movement of the object 

is not known, the object is assumed to diverge (and not to approach) the query trajectory with the 

maximum possible speed Vmax. In the same way, we formally define PESDISSIM: 

Definition 4.6: The most pessimistic DISSIM (PESDISSIM) between a query trajectory Q and an 

indexed trajectory T with line segments partially retrieved from the index, during a period 1[ , ]nt t , is 

defined as: 

( )
( )
( )
( )

, 1 max 1

1 , max 1

, max

, 1 max 1

( , ) , ;

( ), , ( ) , , 1;

( , , , ) ( ), , ( ) , , 1;

( ), , ( )

( ), , ( ) ,

k k k R

Q T k k k k R

n Q T k k k k R
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Q T k k k

p

Q T k k k

DISSIM Q T if T S

LDD D t V t t if T S k

PESDISSIM Q T t t LDD D t V t t if T S k n

LDD D t V t t

LDD D t V t t otherwise

+ +

+

+ +

 ∈

 − ∉ =



= − ∉ = −


− +

− −

1

1

n

k

−

=




∑  (4.18) 

where DQ,T, SR and Vmax are as defined in previous definitions, and p

kt  is given by the following 

expression: 

( ) ( )( ), , 1

1

max

1

2

Q T k Q T kp

k k k

D t D t
t t t

V

+

+

 −
 = + +
 
 

 (4.19) 

The following lemma is directly derived by the definition of PESDISSIM. 

Lemma 4.4: A trajectory indexed by an R-tree-like structure with line segments partially retrieved 

from the index cannot have DISSIM from a query trajectory Q during a period 1[ , ]nt t  greater than its 

respective PESDISSIM. 

Proof: According to the previous definition, PESDISSIM is the sum of the DISSIM of the trajectory 

entries already retrieved from the index (belonging to set SR), a value which is fixed, plus the DISSIM 

of an object which diverged the query trajectory with the maximum possible speed (Vmax) during the 

time intervals not already retrieved from the index, with the additional constraint that the object has to 

be found in given positions at the start and/or the end of the interval. Therefore, the distance between 

the two trajectories during those periods is maximized, hence maximizing their dissimilarity. � 
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Figure 4.5: PESDISSIM definition 

4.3.3. Speed-Independent Metrics  

The utilization of the previously defined metrics in an MST search algorithm can significantly enhance 

its performance by pruning several candidate trajectories. However, these metrics are relatively loose, 



 91 

since they are based on the maximum speed Vmax which, theoretically speaking, could be orders of 

magnitude higher than the mean object speed. Therefore, we need to define other metrics not 

influenced by Vmax, supporting our speed-independent MST search algorithms. These metrics can be 

developed when an MST algorithm reports index nodes in incremental order of their MINDIST from 

the query trajectory. Obviously, this is a reasonable assumption considering R-tree like structures 

where a best-first strategy like the one proposed in [HS99] can be utilized. 

Consider, for example, Figure 4.6 that describes the DISSIM of a partially retrieved candidate 

trajectory T from the query trajectory Q; According to our previous discussion, the DISSIM between 

[t1,t2] and [t3,t4] is accurately defined. In this case however, we can utilize the fact that index nodes are 

accessed in incremental order of their MINDIST from the query trajectory. Consequently, any line 

segment not yet retrieved from the index, cannot be closer to Q than MINDIST(Q,N) where N is the 

next index node in the queue, and the lower bound of DISSIM turns into the shaded area of Figure 6. 
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Figure 4.6: OPTDISSIMINC definition 

More formally, we define OPTDISSIMINC as follows: 

Definition 4.7: Assuming that index nodes are reported in incremental order of their MINDIST from 

the query trajectory, the most optimistic DISSIM between a query trajectory Q and an indexed 

trajectory T during a period [t1,tn] having a line segment inside a tree node N, is given by the following 

expression: 

( )
( )
( ) ( )

1

1
1 1

, , ;
, , , ,

, ,

n
k k k R

INC n

k k k

DISSIM Q T if T S
OPTDISSIM Q T N t t

MINDIST N T t t otherwise

−

= +

∈
= 

⋅ −
∑  (4.20) 

where SR is the set of line segments already retrieved from the index. 

Using the above definition of OPTDISSIMINC, we can also define the minimum DISSIM of an 

index node N: 

Definition 4.8: Assuming that index nodes are reported in incremental order of their MINDIST from 

the query trajectory, the minimum DISSIM between a trajectory T, indexed by an R-tree-like structure 

having a line segment inside a node N, and a query trajectory Q during a period [t1,tn], is defined as: 

( )
( ) ( )

( )
1

1

1

,
, , , min

, , , , ,

n

INC n

INC n C

MINDIST Q N t t
MINDISSIM Q N t t

OPTDISSIM Q T N t t T S

⋅ −
= 

∀ ∈
 (4.21) 

where SC, is the set of the trajectories with line segments already retrieved from the index but not yet 

fully completed inside the period [t1,tn]. 
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Lemma 4.5: Assuming that index nodes are reported in incremental order of their MINDIST from a 

query trajectory Q, a trajectory that is partially stored inside a tree node N cannot have smaller 

DISSIM from Q during the time period [t1,tn] than the node’s respective MINDISSIMINC. 

Proof: Any line segment inside N resides in a trajectory that either belongs to Sc or not. In the former 

case, considering that nodes are reported in incremental order, trajectory entries not yet retrieved 

cannot be closer to the query object than the MINDIST of the node in which they belong. So, the 

minimum dissimilarity of an object of Sc is the sum of the dissimilarity of its entries already retrieved 

from the index, plus the dissimilarity of an object being as close as MINDIST to the query trajectory 

during the rest of the query time period - a sum which corresponds to OPTDISSIMINC definition. In the 

latter case, where the trajectory does not belong to Sc, the line segment cannot belong to an object fully 

retrieved from the index because this would lead to duplicate line segments in the index. Hence the line 

segment belongs to a moving object with no segments retrieved from the previously accessed nodes 

and it cannot be closer to the query trajectory than MINDIST. Thus, in the best case, its distance from 

the query object during the query period is equal to MINDIST and its DISSIM is equal 

to ( , )MINDIST Q N t⋅ ∆ . � 

4.3.4. Heuristics 

The lemmas provided in previous sections support the following heuristics directly used in the 

MST Search algorithms that will be presented in the following Sections. 

• Heuristic 1: Every trajectory line segment contained in an R-tree-like node with MINDISSIM 

greater than the current most similar (i.e. the one with the smallest calculated DISSIM - or 

PESDISSIM if there is not a fully calculated DISSIM) belongs to a moving object which 

cannot be more similar to the query trajectory than the current most similar; as such it can be 

pruned from the candidates list. 

• Heuristic 2: Every trajectory with OPTDISSIM less than the current most similar cannot be 

more similar to the query trajectory than the current most similar; as such it can be pruned 

from the candidates list. 

• Heuristic 3: When leaf and internal nodes are reported in incremental order of their MINDIST 

from the query trajectory, every trajectory line segment contained in a node with 

MINDISSIMINC greater than the current most similar belongs to a moving object which cannot 

be more similar to the query trajectory, hence, the node can be pruned from the candidates list. 

Moreover, since any node reported after the one processed will have MINDIST greater or 

equal to MINDIST of the current node, according to Definition 4.8 the same will hold for the 

respective values of MINDISSIMINC. As a result, all these nodes will have MINDISSIMINC 

greater than the current most similar, and the algorithm can be terminated since all the 

remaining nodes can be pruned. 

4.4. Algorithms for k-Most Similar Trajectory Search 

In this section we describe in detail the algorithms answering MST queries using the three heuristics 

described in the previous section and, then, we generalize them in order to support k-MST queries. We 
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provide two alternatives: one depth-first and one best-first where the second assumes that index nodes 

are reported in incremental order of their MINDIST. 

4.4.1. Depth-First MST Search Algorithm 

The first algorithm (DFMSTSearch, illustrated in Figure 4.7) accesses the tree structure in a depth-

first mode, pruning tree nodes not fulfilling the temporal constraint of the query trajectory, as also 

shown in subsection 3.4.1.1 regarding trajectory nearest queries. The algorithm starts by interpolating 

to produce the part of the query trajectory being entirely inside the query temporal extent. Generally 

speaking, the algorithm uses the DISSIM between trajectories as distance metric and not the Euclidean 

Distance; at higher levels the MINDISSIM metric is used to sort the branch list and prune it using 

heuristic 1 during the algorithm’s backtracking (lines 31-36). At leaf level, the algorithm uses three 

hashed in-memory structures: One with the completed trajectories (Completed), one with the partially 

completed trajectories (Valid) and one with the partially completed nevertheless already rejected 

(Rejected) trajectories. The Completed and Valid in-memory structures store lists each one of them 

containing the moving object’s time intervals along with their starting and ending distances, its (partial) 

DISSIM the respective calculation error and the OPTDISSIM and PESDISSIM values. The Rejected in-

memory structure contains only trajectory ids. 

When a leaf entry is processed, the algorithm checks whether it belongs to a Rejected moving 

object (by simply using its id) and rejects it if it does (line 6). In the sequel it checks whether the entry 

belongs to a Valid moving object and, if so, retrieves its list L; otherwise, it creates a new list and adds 

it to Valid (lines 7-11). The algorithm uses a plane sweep method which scans leaf entries and 

trajectory segments in their temporal dimension in a single pass. This requires that the leaf entries are 

previously sorted according to their temporal order (line 4), unless the underlying tree structure (such 

as the TB-tree) stores them in temporal organization anyway. 

When a leaf entry and the query trajectory overlap in the temporal dimension the algorithm adds 

the period to the list L (lines 14-15), and calculates DISSIM, OPTDISSIM and PESDISSIM, together 

with the respective calculation error (line 16). If the list L is completed, it is removed from Valid and 

added to Completed, its DISSIM is checked against the current most similar and, if smaller, takes its 

position in MSim (lines 18-19). In the case where L is not yet completed, its PESDISSIM is checked 

against the current most similar and, if smaller, takes its position in MSim (lines 21-24); its 

OPTDISSIM is also compared with the current most similar and, if greater, the list is moved from Valid 

to Rejected applying heuristic 2 (lines 24-26). 
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Algorithm DFMSTSearch(node N, trajectory Q, time period Qper, struct 

                      MSim, Hash Valid, Hash Completed, Hash Rejected)

   Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

   IF N is leaf 

      Sort(N,TS) 

      FOR EACH leaf entry E IN leaf node N 

         IF Rejected not contains E.Id 

            IF Valid contains E.Id  

               retrieve list L 

            ELSE  

               create list L; Add L in Valid  

            ENDIF 

            Find next query entry QS with QS.Te<N.TS; QE=QS 

            DO UNTIL QE.Ts > E.Te 

               Interpolate to produce nE, nQE in period (T1,T2) 

               Add (T1,T2) in L 

               Calc(DISSIM,PESDISSIM,OPTDISSIM,ERR) 

               IF L is completed  

                  Move L from Valid to Completed 

                  IF DISSIM<MSim.DISSIM Update MSim with nE.Id,DISSIM 

               ELSE  

                  IF PESDISSIM<MSim.DISSIM  

                     Update MSim with nE.Id,PESDISSIM 

                  ENDIF 

                  IF OPTDISSIM>MSim.DISSIM  

                     Move L from Valid to Rejected 

                  ENDIF 

               ENDIF 

         NEXT query entry QE 

         Return QE in the query entry QS 

      NEXT 

   ELSE 

      BranchList=GenTrajectoryBranchList(Q,N) 

      SortBranchList(BranchList) 

      FOR EACH entry E IN BranchList 

         DFMSTSearch E.ChNode, E.Trajectory, MSim 

         PruneBranchList(BranchList) 

      NEXT 

   ENDIF 
 

Figure 4.7: Depth-first most similar trajectory search algorithm (DFMSTSearch algorithm)  

4.4.2. Best-First MST Search Algorithm 

The second algorithm (BFMSTSearch, illustrated in Figure 4.8) accesses the tree structure in a best-

first mode, calculating the appropriate MINDISTs between the query trajectory and the tree nodes, thus 

reporting leaf and internal tree nodes in incremental order of their MINDIST from the query trajectory.  

Again, the algorithm starts by interpolating to produce the part of the query trajectory being 

entirely inside the query temporal extent. In the sequel, when an internal node is processed (lines 35-

39), the algorithm calculates the MINDIST between the node and the part of the query trajectory Q 

being inside the temporal extent of the node utilizing the MinDist_Trajectory_Rectangle metric (also 

employed in our trajectory nearest neighbor algorithms) and then is enqueued. When a leaf is processed 

(lines 9-30), the algorithm processes entries with exactly the same way as the DFMSTSearch 

algorithm does. In both cases where a node (leaf or internal) is processed, the algorithm first checks 

whether its MINDISSIMINC is greater than the current most similar and if so, the algorithm terminates 

applying heuristic 3, and returns the current most similar as the query reply (lines 5-7). Note that in 

order to avoid calculating all the OPTDISSIMINC values involving in the MINDISSIMINC definition (i.e., 

CT S∈  in definition 6), we first check whether the 1( , ) ( )nMINDIST Q N t t⋅ −  value of the node is less 

than the current most similar. In such a case, the calculation of the OPTDISSIMINC values is omitted, 
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since the value of MINDISSIMINC will be less than the current most similar regardless of the 

OPTDISSIMINC values. 
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Algorithm BFMSTSearch (R-tree R, trajectory Q, period Qper) 

   Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

   EnQueue Queue, R.RootNode, 0, Q 

   DO WHILE Queue.Count > 0 

      Element = DeQueue(Queue); N=Element.Node; Q=Element.QueryTrajectory 

      IF Completed.Count>0  

         IF MINDISSIMINC(Q,N)>MSim.DISSIM RETURN MSim 

      ELSE 

         IF N is leaf node 

            Sort(N, TS) 

            FOR EACH leaf entry E IN leaf node N 

               IF Rejected not contains E.Id 

                  IF Valid contains E.Id  

                     retrieve list L  

                  ELSE  

                     create list L; Add L in Valid 

                  ENDIF 

                  Find next query entry QS in Q with QS.Te<N.TS; QE=QS 

                  DO UNTIL QE.TS > E.Te 

                     Interpolate to produce nE, nQE period (T1,T2) 

                     Add (T1,T2) in L 

                     Calc DISSIM, PESDISSIM, OPTDISSIM, ERR  

                     IF L is completed  

                        Move L from Valid to Completed 

                     ENDIF 
                     IF DISSIM<MSim.DISSIM  

                        Update Msim with nE, DISSIM 

                     ELSE  

                        IF PESDISSIM<MSim.DISSIM  

                           Update MSim with nE, PESDISSIM 

                        ENDIF 

                        IF OPTDISSIM>MSim.DISSIM  

                           Move L from Valid to Rejected 

                        ENDIF 

                     ENDIF 
                  NEXT query entry QE 

               ENDIF 

               Return QE in the query entry QS 

            NEXT 

         ELSE 

            FOR EACH entry E IN the node Element 

               IF (Q.TS,Q.TE) Overlaps (E.TS,E.TE) 

                  Interpolate to produce nQE in period (T1,T2) 

                  Dist = MinDist_Trajectory_Rectangle(nQ, E) 

                  EnQueue Queue, E, Dist, nQ 

               ENDIF 

            NEXT 

         ENDIF 

      ENDIF 

   LOOP 

 

Figure 4.8. Best-first most similar trajectory search algorithm (BFMSTSearch algorithm)  

4.4.3. Extending to k-MST algorithms 

In the same fashion as in [RKV95] and our work in nearest neighbor queries presented in the previous 

chapter, we generalize the above two algorithms to support the k-most similar trajectory search by 

considering the following: 

• using a buffer of at most k (current) most similar trajectories sorted by their actual 

dissimilarity from the query trajectory; 

• either pruning according to the dissimilarity of the more dissimilar object in the buffer, when 

extending the DFMSTSearch algorithm, or 
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• terminating the algorithm execution when processing a node with MINDISSIMINC greater than 

the dissimilarity of the more dissimilar object in the buffer, when extending the 

BFMSTSearch algorithm. 

4.4.4. Error Management 

Both algorithms calculate the dissimilarities between query and indexed trajectories using the 

approximation introduced in Lemma 4.1 computing at the same time the appropriate approximation 

error (denoted as ERR in both Figure 4.7 and Figure 4.8). However, apart from its computation, the 

usage of the error is fundamental in order to compute exact and correct results, a task which is not 

explicitly described in the two algorithms for sake of clarity. Actually, three modifications must be 

introduced in both algorithms so as to incorporate the role of the approximation error:  

• A candidate most similar trajectory, not already completed, is compared against the current k-

th most similar by using the value of PESDISSIM-ERR. 

• A completed candidate most similar trajectory is compared against the current k-th most 

similar using the value DISSIM-ERR.  

• Instead of using one k-th most similar, it is required to utilize a buffer of the candidate k-th 

most similar trajectories. These will be all the trajectories with DISSIM greater than the k-th 

most similar and DISSIM-ERR less than it. 

According to the previous discussion, both algorithms may end up with m ¥ k candidate most 

similar trajectories; in such cases, a post processing step is required after their execution in order to 

determine the definite k most similar trajectories by calculating the actual dissimilarity of each 

candidate trajectory against the query trajectory. Although, this is a computational expensive operation, 

it only happens when the error buffer contains more than one trajectory, or when the order in which the 

trajectories are reported from the k-buffer can be affected by the calculation error of each trajectory’s 

similarity. 

4.5. Experimental Study 

The two previously presented DFMSTSearch and BFMSTSearch algorithms can be implemented in 

any R-tree-like structure storing historical moving object information such as the 3D R-tree, the STR-

tree [PJT00], the TB-tree [PJT00] and the TB*-tree proposed in Chapter 2. Among them, we 

implemented the algorithms using the 3D R-tree, the TB-tree and TB*-tree.  

4.5.1. Experimental Setup 

During the experiments, we used a page size of 4KB and a (variable size) buffer fitting the 10% of the 

index size, with a maximum capacity of 1000 pages. The experiments were performed in a PC running 

Microsoft Windows XP with AMD Athlon 64 3GHz processor, 512 MB RAM and several GB of disk 

space.  

Regarding the datasets that were employed for the purpose of this study, the real datasets used by 

related work on trajectory similarity ([COO05], [VKG02]), are not suitable for our objectives due to 

the fact that they are composed by 2D projections of trajectories without any information about the 

sampled timestamps; a reasonable fact, bearing in mind that the similarity measured in those papers 
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only depends on the spatial and not the spatio-temporal trajectory similarity. For this reason we 

employed the Trucks dataset (cf. Section 0) using it so as to evaluate the quality of the proposed 

similarity measure (section 4.5.2). However, since this dataset is relatively small (273 trajectories and 

112203 line segments), it could not expose the actual performance of the algorithms; therefore, the 

performance study (section 4.5.3) was conducted using synthetic datasets generated by a custom 

generator based on the GSTD data generator [TSN99]. The main purpose of using a custom data 

generator and not the widely used GSTD, is that a fundamental parameter influencing the performance 

of the proposed algorithms is the relation between the mean and the maximum speed of the moving 

objects indexed by the tree, which cannot be controlled by GSTD. 

Table 4.2: Summary dataset information 

Speed Distribution Index Size (MB) 
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Type µ σ 3D R- tree TB- tree TB*- tree 

Trucks 276 16 112 Real data 3.2 1.8 1.0 

S0100,10 100 10 200 Lognormal 1 0.6 10.7 5.2 2.4 

S0250,10 250 10 500 Lognormal 1 0.6 25.8 13.1 6.1 

S0500,10 500 10 1000 Lognormal 1 0.6 51.0 26.2 12.2 

S1000,10 1000 10 2000 Lognormal 1 0.6 99.1 52.4 24.5 

S0500,2 500 2 1000 Normal 3 1.0 51.4 26.2 12.2 

S0500,5 500 5 1000 Lognormal 1 0.4 51.1 26.2 12.2 

S0500,20 500 20 1000 Lognormal 1 0.8 50.3 26.2 12.2 

 

In order to achieve scalability in the volumes of the datasets, we generated synthetic trajectories 

of 100, 250, 500 and 1000 moving objects resulting in datasets of 200K, 500K, 1000K, and 2000K 

entries, respectively (the position of each object was sampled approximately 2000 times), thus building 

indices of up to 100 MB size. The max / mean speed ratio (denoted in the rest of the chapter as MMS) 

of those datasets was set to a default of 10, which is a reasonable value considering real world 

applications where trajectories represent walking humans or moving vehicles. Nevertheless, in order to 

investigate the sensitivity of the algorithms regarding this parameter, we generated 3 additional sets of 

500 moving objects setting MMS to 2, 5 and 20, respectively. Regarding the rest parameters of the 

generator, the initial distribution and the heading of objects in all cases was random, while their speed 

was ruled by a normal or lognormal distribution depending on the desired MMS. Table 4.2 illustrates 

summary information about the real and the generated datasets and the corresponding indexes. Note 

that each synthetic dataset is denoted by its cardinality and its MMS (e.g. the S0100,10 constitutes from 

100 trajectories with MMS equal to 10). 

4.5.2. Experiments on the Quality 

In order to evaluate the quality of the proposed similarity measure we conducted an extensive set of 

experiments using the real Trucks dataset. All trajectories of the dataset were compressed using the 

TD-TR algorithm described in [MB04] thus producing artificial trajectories, which were similar (but 

not identical) to the ones of the original dataset. Then, we used each compressed trajectory to query the 
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original dataset, expecting the algorithm to return the corresponding original trajectory as most similar. 

We run one set of queries setting k=1 and we counted the number of times the query failed to return the 

original trajectory as the most similar. We also scaled the value of the TD-TR parameter p from 0.1% 

to 10% of the length of each trajectory, in order to achieve different values of similarity since an 

increasing TD-TR parameter produces a compressed trajectory with fewer sampled points and greater 

dissimilarity regarding the original trajectory. As an example, Figure 4.9 illustrates (a) an original 

trajectory and the trajectories produced using the TD-TR algorithm with (b, c, d) different values of p. 

A major observation derived from Figure 4.9 is that while the general sketch of the trajectory remains 

unaffected with the evolution of p, the number of vertices outlining the trajectory decreases and the 

local details are vanished.  

    

p=0 

 (168 Vertices) 

p=0.1 % 

(65 Vertices) 

p=1 % 

(29 Vertices) 

p=2 % 

(22 Vertices) 

(a) (b) (c) (d) 

Figure 4.9: Different degree of compression on a trajectory 

Among the related work we have chosen to run the same experiments using the LCSS [VKG02] 

and EDR [COO05] similarity measures. We did not include DTW [BC96] in our experimental study, 

since both LCSS and EDR were shown to outperform it [VKG02], [COO05]. We set the value of the 

parameter ε for these two measures to be a quarter of the maximum standard deviation of trajectories, 

which leads to the best clustering results, according to [COO05]. We also normalized the trajectory 

dataset as suggested in the same paper. Furthermore, for a fair comparison, we made an obvious 

improvement over LCSS and EDR, by manually adding samples in the under-sampled (query) 

trajectory with linear interpolation at the timestamps the checked dataset trajectory was sampled. We 

called these improved versions LCSS-I and EDR-I respectively. 

The results of the experiments evaluating the quality of the proposed similarity metric are 

illustrated in Figure 4.10. Clearly, the proposed dissimilarity measure (DISSIM) outperforms both its 

competitors in all settings, regarding also their improved versions. Actually, in the largest part of the 

experiments, DISSIM correctly identifies the original trajectory from which the query one has been 

produced. On the other hand, it produces false responses only when the value of p exceeds 5%, 

verifying that it is a very robust similarity metric. LCSS (and LCSS-I) also achieves good quality 

classifying correctly the query trajectory in the majority of the experimental settings; nevertheless, it is 

always less accurate than DISSIM. Regarding EDR and EDR-I, it turns out that for p values greater 

than 1% they completely fail to describe the similarity between trajectories, since the false responses 

exceed 60%.  
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Figure 4.10: False results increasing the value the TD-TR parameter 

The reason for the poor performance of EDR similarity measure demonstrated in these 

experiments can be explained considering its definition:  EDR is the number of insert, delete, or replace 

operations that are needed to convert trajectory A into B [COO05]. Thus, supposing that n is the 

number of vertices in A and m is the number of vertices in (the compressed) Ac, 

( , )cEDR A A n m≥ − since at least n-m vertices are needed to be added into Ac so as to convert it to A. 

For an arbitrary dataset trajectory T with k vertices being spatially away from A, it can be easily shown 

that EDR between T and Ac is at most max(m, k). Therefore, if a dataset contains a trajectory T with k 

vertices and max( , )m k n m≤ − , e.g. a trajectory composed by a small number of vertices, then it also 

holds that ( , ) ( , )c cEDR T A EDR A A≤ . 

 

4.5.3. Experiments on the Performance 

Both algorithms were evaluated with four sets of 500 queries according to the settings presented in 

Table 4.3. As such the effects of cardinality (Q1), MMS (Q2), query length (Q3) and k (Q4) were 

evaluated using the 3D R-, the TB- and the TB*-tree.  

Table 4.3: Query Settings 

Query Set Datasets Query Trajectory (as part of a random data trajectory) k 

Q1 S0100,10 … S1000,10 5% 1 

Q2 S0500,02 … S0500,20 5% 1 

Q3 S0500,10 1% … 100% 1 

Q4 S0500,10 5% 1..10 

 

Figure 4.11 illustrates the execution time and the achieved pruned space for the query set Q1 

(scaling with the dataset cardinality) evaluating the DFMSTSearch and BFMSTSearch algorithms. It 

is clear that, BFMSTSearch outperforms DFMSTSearch algorithm in terms of execution time, while 

both demonstrate a very good pruning power (over 80% in all the experiments). The reason for the 

slightly worse pruning power of DFMSTSearch algorithm is due to the influence of the parameter 

Vmax in the definition of MINDISSIM, OPTDISSIM and PESDISSIM metrics, which leads to relatively 

“loose” heuristics. As the number of moving objects increases, Vmax becomes several times greater than 

the speed of the majority of moving objects, reducing the efficiency of the above metrics and 

consequently the performance of the MST algorithm.  
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Figure 4.11: Scaling with the dataset cardinality (Q1) 

Another observation obtained from Figure 4.11 is that while the DFMSTSearch algorithm 

shows good pruning power, its execution time does not follow a similar behavior. This can be 

explained by the fact that the pruning in the MST algorithm is mainly due to the OPTDISSIM heuristic, 

which requires the algorithm to read leaf entries and reject them without processing them (if their ids 

belong to a Rejected moving object). On the other hand, BFMSTSearch algorithm mainly prunes by 

the MINDISSIMINC heuristic which directly rejects all tree nodes not yet processed by the time it 

realizes. 
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Figure 4.12: Scaling with the MMS (Q2) 

The influence of the Vmax parameter is highlighted in the second set of experiments with the 

query set Q2, scaling with the value of MMS (Figure 4.12). As it can be observed, the execution time of 

DFMSTSearch algorithm increases linearly with the value of MMS. The execution time of 

BFMSTSearch algorithm remains constant, since it does not utilize objects speed. Again, both 

algorithms achieve a very good pruning of the searched space.  

Similar conclusions as the above are drawn from for the query set Q3, scaling with the query 

length (Figure 4.13). In this case it is worth to point out the “bad” behavior of the TB-tree regarding its 

pruning power, as the query length increases. This observation can be explained bearing in mind the 

insertion algorithm of TB-tree, which stores in each leaf node segments belonging to the same 

trajectory. This has the main drawback that spatially close segments from different trajectories are 

stored in different nodes. As such, the TB-tree preserves the temporal order of the positions of the 
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moving objects, while ignores their spatial allocation. However, as the query temporal extent increases, 

the pruning power of the TB-tree deteriorates, since the drawback of the inadequate spatial allocation 

of the positions of the moving objects overcomes the gain of having them stored according to their 

temporal order. Here, we have to mention the advantage of TB*-tree, which seems to be the overall 

winner in all experimental settings. It turns out that the “delete and re-insert” strategy adopted in the 

TB*-tree in construunction with the increased fanout of its nodes is adequately effective in the case of 

similarity search.  
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Figure 4.13: Scaling with the query length (Q3) 

Finally, Figure 4.14 illustrates the behavior of the proposed algorithms regarding the number of 

most similar trajectories requested. Again BFMSTSearch algorithm achieves high pruning power and 

small execution time decreasing its performance with k with a relatively small ratio. On the other hand, 

although DFMSTSearch algorithm shows good pruning power – but always worse than that of 

BFMSTSearch – its execution time is several times higher the respective execution time of its 

competitor, having the same explanation as the previous ones. 

Summarizing the results of our experimental study, both algorithms show high pruning power 

while the BFMSTSearch always outperforms DFMSTSearch by several orders of magnitude. The 

pruning power of the DFMSTSearch depends on the dataset’s MMS, the query length and the number 

of k, while that of BFMSTSearch depends only on the query length and (in smaller degree) in the 

number of k. Moreover, BFMSTSearch always achieves pruning power above 90%. Regarding 

execution time, BFMSTSearch always outperforms DFMSTSearch due to the utilization of the 

MINDISSIMINC heuristic which directly rejects all tree nodes not yet processed by the time it realizes. 
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Figure 4.14: Scaling with number of k (Q4) 

4.6. Conclusions  

Related work on similarity query processing for trajectories is based on the context of time series 

analysis or the Longest Common Subsequence (LCSS) model [VKG02] and the recently proposed Edit 

Distance on Real Sequence (EDR) [COO05]. However, all these methods have the main drawback that 

they either ignore the temporal dimension of the movement  therefore calculating the spatial (not the 

spatio-temporal) similarity between the trajectories, or assume that the trajectories are of the same 

length and have the same sampling rate. What is more, the majority of the proposed approaches exploit 

specialized index structures in order to prune the search space and retrieve the most similar to a query 

trajectory. 

In this thesis we relaxed these assumptions by defining a novel metric, called DISSIM, and then 

we presented a complete treatment of historical MST queries over moving object trajectories stored on 

R-tree-like structures avoiding the drawbacks of the existing methods. We proposed a set of metrics, 

based on simple notions of trajectories, such as the dataset maximum speed, each one followed by a 

lemma that support our ordering and pruning strategies. Then, we presented two MST algorithms over 

trajectories indexed by R-tree-like structures following the depth-first [RKV95] and best-first [HS99] 

paradigm. 

Under various synthetic and real trajectory datasets, we illustrated the superiority of the proposed 

DISSIM metric against related work [VKG02], [COO05], in terms of quality, while our algorithms 

show high pruning ability when processing MST queries, also verified in the case of k-MST queries. 

Among the algorithms proposed, the BFMSTSearch following the best-first paradigm [HS99] seems 

more promising showing better performance over its depth-first competitor DFMSTSearch; in 

particular, it demonstrates linear behavior in terms of execution time and node accesses, while its 

pruning power remains above 90% in all settings tested during the experimental study (whereas the 

pruning power of DFMSTSearch degrades to very small values as the query length increases). 

The proposed algorithms do not require any dedicated index structure and can be directly applied 

to any member of the R-tree family used to index trajectories, such as the 3D R-tree, the TB-tree and 

the TB*-tree used in our implementation.  
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5. Managing the Effect of Location Uncertainty 

in Trajectory Databases 

In this chapter we provide our theoretical model for estimating the effect of uncertainty in spatio-

temporal querying. The chapter is structured as follows. Section 5.1 motivates the work in this chapter. 

Section 5.2 discusses related work, while Section 5.3 describes the theoretical analysis on the effect of 

uncertainty under several uniformity assumptions. In Section 5.4 the proposed model is extended in 

order to support non-uniform distributions over the problem parameters. Section 5.5 evaluates the 

accuracy of the model through an extensive experimental study over synthetic and real datasets, while 

Section 5.6 discusses the employment of the proposed model in the context of spatial databases. 

Finally, Section 5.7 provides the conclusions of the chapter.  

5.1. Introduction 

A common assumption adopted in spatial and spatio-temporal databases is that the position of objects 

is precisely known. However, a variety of reasons, such as GPS and sampling errors, may influence the 

accuracy of the recorded locations of trajectories, since location data obtained from measuring devices 

are inherently imprecise. Moreover, several recent works [BS03], [CZBP06], [GL05] suggest that the 

location privacy of mobile users should be protected by adding a controlled degree of noise in each 

object’s measured position. Consequently, all these errors introduce an uncertainty factor into the 

answers of traditional queries.  

The literature on the management of the location uncertainty of spatio-temporal objects so far, 

deals with either uncertainty representation issues [Tra03], [TWHC04], [WSCY99] or probabilistic 

algorithms [CKP04] that process queries in the presence of uncertainty, estimating the probability of 

each trajectory to be included in the query result. On the other hand, in this thesis we argue that there 

are cases where the user would prefer to know the influence of the measurement error in the query 

results, without actually executing the query.  The challenge thus accepted in this chapter, is to provide 

a theoretical framework that estimates the error introduced due to the uncertainty of moving objects’ 

locations in the results of spatio-temporal queries. Among the spatio-temporal query types, our interest 

is focused on timeslice queries, which can be used to retrieve the positions of moving objects at a given 

time point in the past and can be seen as a special case of spatio-temporal range queries, with their 

temporal extent set to zero [PJT00]. This type of query can also be seen as the combination of a spatial 

(i.e., query window W) and a temporal (i.e., timestamp t) component. As it will be discussed in Chapter 
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7, the extension of the model provided by this work in order to support range queries with non-zero 

temporal extent is by no means trivial and is left as future work. To the best of our knowledge, our 

work is the first that tackles this problem.  

Towards this goal, the model proposed in [TWHC04], [TWZC02] regarding the uncertainty of 

trajectory data is initially adopted. In particular [TWHC04] propose that the trajectories of moving 

objects should be modeled as 3D cylindrical volumes around the tracked trajectory (recall Figure 1.5); 

as such, when executing a timeslice query over the trajectory database, the original trajectory is 

transformed to a single point and the cylindrical volume to a disk (Figure 5.1) which is called 

uncertainty disk and the actual location of the moving object at this particular timestamp is assumed to 

follow a uniform distribution within this disk. Although the model proposed in [TWHC04] (and 

consequently, the uniform statistical distribution) may be assumed when artificially injecting 

uncertainty into data objects as proposed by [BS03], [CZBP06], [GL05], it is rather unrealistic to 

describe the actual measurement and sampling error introduced by various devices (GPS-equipped 

smartphones, etc.) and interpolation methods being employed to calculate the position of the moving 

object between consecutive time-stamped positions. Therefore, in the sequel, we employ other 

statistical distributions [Lei95], [PTJ05] and augmented histograms in order to support more realistic 

scenarios of uncertainty distribution. 

t y Query Window 

Q1 

x 

y 

x 

Data point location 

(sampled or interpolated) 

Uncertainty 

circle 

 

Figure 5.1: Problem Setting 

The model described in this thesis can be used in MODs so as to estimate the average number of 

false hits in query results due to location uncertainty introduced in spatio-temporal data; thus, it could 

be utilized in an interactive graphical query builder/analyzer, providing online an approximation of the 

percentage of the false hits due to location uncertainty along with other estimations, such as selectivity, 

execution time, etc. Moreover, the proposed methodology can be directly employed in existing Spatial 

Database Management Systems (SDBMS) in order to cover the same needs; actually, the majority of 

the techniques developed in this chapter may be straightforwardly used in the context of traditional 

Spatial Databases, since the timeslice of a spatio-temporal database actually produces a snapshot of a 

set of static spatial objects (Figure 5.1).  

A more vivid example demonstrating the applicability of the proposed model can be obtained 

considering the following real-world situation, inspired by the emerging open agoras paradigm [Ioa07]: 

let us assume a user who wishes to pose a timeslice query over several distributed subscribe-based 

data-sources containing the same trajectories represented at different levels of uncertainty due to the 

different measurement methods and, consequently, different errors; though the criterion used to choose 

among them is the optimization, i.e., the minimization, of the uncertainty introduced in the final query 
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results, provided by the data-sources during the negotiation step with their potential customers/users 

[Ioa07]. Under such circumstances, only the model proposed in this thesis may provide the user-side 

query optimizer with the error introduced in the results of the query for each different data-source.  

Additionally, the proposed model can be utilized in order to determine the maximum permitted 

(im)precision of the trajectory data that will feed a MOD (and consequently, an SDBMS) given the 

required accuracy in the results of timeslice (respectively, range) queries. Then, users can be guided by 

the DBMS in the employment of the appropriate, more or less accurate - which also entails a more/less 

expensive - positioning method to be used for the data that will feed the system.  

Perharps the most prominent application of the developed model is over summary data, which 

contain aggregate-only information instead of actual data objects, e.g., the number of distinct 

trajectories inside a given spatial region and timestamp (or the number of spatial objects inside a given 

spatial region, in the case of simple spatial data). Consider, for example, the case of a Trajectory Data 

Warehouse (TDW) [MFN+08], where aggregation may exhibit partial containment relationships 

instead of the total containment relationships normally assumed in conventional data warehouses; that 

is, a spatial cell may be contained in city A by 30% and in city B by 70%. Given that pre-aggregated 

information is only stored at the lowest level of the data warehouse location dimension hierarchy, i.e., 

the cells or base cuboids, a roll-up operation at the city level at a given timestamp, would, among 

others, aggregate over the number of partially contained cells. The above situation is illustrated in 

Figure 5.2, which presents the bounds between four cities, A, B, C and D, along with a snapshot of a 

set of uncertain trajectories (transformed to data points along with their uncertainty disks), and a 

regular grid standing for representing the cells containing the pre-aggregated information.  

Under this setting, the option of performing probabilistic queries cannot be applied, since they 

require the presence of the actual data along with the distribution of their uncertainty. On the other 

hand, the model developed in this chapter can still be directly applied utilizing aggregate information, 

i.e., the number of objects and the radius of the uncertainty disk or standard deviation of the normal 

distribution, producing finally an approximation of the error introduced in the aggregation results. In 

particular, given that our model is capable of determining the effect of the location uncertainty in the 

Minimum Bounding Rectangle (MBB) of city A considering it as a range query, it can approximate the 

effect in the actual spatial object A, involving only the cardinality of each cell, the MBB and the 

uncertainty radius. 

City A 

City C City B 

City D 

City A MBR 

 

Figure 5.2: Partial containment in Trajectory Data Warehouses 

To the best of our knowledge, a theoretical study on modeling the error introduced in spatio-

temporal (or spatial) query results in terms of false hits due to the uncertainty of trajectories (or spatial 
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objects) is lacking. Outlining the major issues that will be addressed, the main contributions of this 

chapter are as follows: 

• Two lemmas that estimate the average number of false positives and false negatives when 

executing timeslice queries over uniformly distributed uncertain trajectories modelled via the 

[TWHC04] proposal, are proved; both errors depend on the radius of the cylindrical volume 

and the perimeter of the timeslice query window, rather than its area.  

• In order to relax the location uncertainty uniformity assumption (directly derived from the 

model of [TWHC04]), we utilize the real-world adapted bivariate normal distribution [Lei95], 

[PTJ05], which is efficiently approximated by the uniform difference distribution. The results 

are close enough to the ones of the original analysis.  

• Novel spatio-temporal and other augmented histograms are employed in order to estimate the 

average number of false hits when the uniformity assumption of objects’ distribution in the 

data space is relaxed, as well as to support various distributions of the uncertainty radius. The 

same methodology is also employed in other forms of summary data, e.g., data warehouses, in 

order to describe the effect of uncertainty.  

• A comprehensive set of experiments is performed demonstrating the correctness and accuracy 

of the analysis. 

• Finally, it is shown how the results of the analysis may be applied over spatial datasets: the 

solutions proposed in this chapter are implemented on top of a commercial SDBMS, namely, 

the PostgreSQL [Post08a] with PostGIS spatial extension [Post08b]. It is worth to note that 

off-the-shelf spatial histograms, already used in SDBMS for query selectivity estimation, 

support the proposed model without additional requirements. 

5.2. Related Work 

Wolfson et al. [WSCY99] address the problem of the location imprecision of moving objects by 

proposing a set of updating policies of the database that stores the object locations. The basic idea is 

that the database is updated whenever the distance between the actual location of an object and the 

stored in the database value exceeds a threshold. In this way, an uncertainty factor of every object’s 

location is introduced, since objects are within distance of 1 Km from the last recorded locations. 

Adopting the utilization of pdfs, they describe an algorithm that processes a probabilistic spatial range 

query applied in the above database. The output of this type of query, which returns the set of objects 

that are within a region R, consists of pairs of the form (Oi, Pi), where Pi is the probability that object 

Oi intersects query region R. Cheng et al. [CKP04] adopt the definition of the probabilistic query 

introduced in [WSCY99] and extend it in the case of nearest neighbor (NN) queries. 

Pfoser and Jensen [PJ99] propose a representation of location uncertainty due to measurement 

and sampling errors. There, the spatial projection of the trajectory of an object is modeled as a 2D 

elliptical area, defined by two consecutive tracked positions. They also present the influence of the 

location uncertainty in the processing of probabilistic range queries and propose a filter-and-refinement 

method to answer them. 
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Location uncertainty of moving objects is also discussed by Trajcevski et al. [Tra03], 

[TWHC04], where a trajectory of an object is modeled as a 3D cylindrical volume around the tracked 

trajectory. Furthermore, two categories of operators for querying trajectories with uncertainty are 

introduced, concerning spatio-temporal point and range queries, respectively, and efficient algorithms 

are presented for their implementation. 

Ni et al. [NRB03] propose a probabilistic spatial data model for the positional accuracy of 

polygon data. According to this model, each polygon is partitioned into disjoint independent chunks. 

Each chunk is a contiguous series of vertices with fully correlated locational uncertainties. Based on 

the above model, a probabilistic spatial join algorithm is described, in which the object pairs of the 

result are associated with the intersection probability between each pair. A variation of the R-tree, 

called probabilistic R-tree, is introduced for the support of the probabilistic filtering of the join 

algorithm, in which each MBB approximation is augmented with the probability distribution of MBB’s 

boundary. 

Cheng et al. [CXP+04] investigated the problem of indexing uncertain data in order to efficiently 

answer probabilistic threshold queries, in which the appearance probability of each data point in the 

result of the query exceeds a given threshold. Two index structures are proposed. The pruning power of 

the first index is based on the utilization of uncertain information augmented to the internal nodes of 

the index, while in the second index data points with similar degrees of uncertainty are clustered 

together. Recently, Tao et al. [TCX+05] studied a similar type of query, the probabilistic range query, 

which retrieves the objects that appear in a rectangular area with probabilities of at least a pre-defined 

value. They introduced a fully dynamic index structure on uncertain data. This structure, called U-tree, 

maintains “auxiliary information” at all of its levels for the respective indexed objects that can be used 

to validate the presence of an object in the results of a probabilistic range query, without calculating its 

computationally expensive appearance probability.  

Dai et al. [DYM+05] have studied the problem of evaluating spatial queries for existentially 

uncertain data; in this case, uncertainty does not refer to the locations of the objects but to their 

existence. The authors define two probabilistic query types: the so-called thresholding and ranking 

queries in which the output is controlled by either thresholding the results of low probability to occur or 

ranking them and selecting the ones with the highest probability respectively. In the sequel, 

probabilistic variants of spatial range and NN queries are presented for objects indexed by a 2D index, 

such as the R-tree. Finally, in order to improve the efficiency of their proposed algorithms, they 

propose an extension of the R-tree, in which the non-leaf entries are augmented with the maximum 

existential probability of the objects indexed under them. 

Perhaps the most relevant to our work is the study by Yu and Mehrotra [YM03], where the effect 

of uncertainty in probabilistic spatial queries, similar to the work presented in [NRB03], is discussed. 

By performing a theoretical analysis, they provide a novel technique which can be used in order to set 

the data precision in the data collection process, so that a probabilistic guarantee on the uncertainty in 

answers of spatial queries can be provided. The first outcome of the analysis are the cardinalities of the 

three subsets of a range query result, namely the MUST, MAY and ANS sets: MUST is the set of objects 

that “must” be located within the query range, MAY is the set of objects that “may” be located within 
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the query range, and ANS is the approximate answer set of objects whose recorded locations are in the 

query region. The second outcome is a method for determining the largest possible imprecision, i.e., 

the uncertainty radius of our analysis, given that the answer to a random COUNT query should include 

an uncertainty δ ≤ δ0, i.e., the cardinality of the MAY set be less than a value, with a probability P ¥ P0.  

Comparing the proposed in this thesis model with [YM03], the first remark is that the numbers 

EN and EP of false hits that we estimate is actually a refinement, i.e., a subset, of the MAY set estimated 

by [YM03], and it is not straightforward to remove the overestimation provided by [YM03] unless our 

model is used; this overestimation was clearly shown in the experimental results presented in Section 

5.6.2.1. A second remark is that the model presented in [YM03] is based on the uniformity assumption, 

whereas our study addresses more realistic requirements.  

5.3. Modeling Error due to Location Uncertainty 

Consider a dataset P consisting of N trajectories Ti, i = 1, …, N, distributed in the unit spatio-temporal 

space S = [0,1] µ [0,1] µ [0,1], that is, all dimensions are normalized in the interval between 0 and 1. 

We initially give the notion of uniformly distributed trajectories: a set of trajectories is uniformly 

distributer iff the positions of moving objects obtained by a snapshot of P at an arbitrary timestamp tk, 

producing a set of points Ti,k, i = 1, …, N, and k=1…now, are uniformly distributed. Moreover, the 

product of this snapshot on S is the space Sk = [0,1] µ [0,1]. 

According to [TWHC04], moving object trajectories should by modelled as cylindrical volumes 

of constant radius d around the actual sampled positions of moving objects and the corresponding 

interpolated trajectory. As such, a snapshot of a trajectory Ti on timestamp tk produces an uncertainty 

disk with center Ti,k and radius d, inside which the actual position †
,i kT  of trajectory Ti on timestamp tk, 

is uniformly distributed. Let also R be the set of all timeslice queries posed over dataset P, Rk the subset 

of R timestamp tk, and Rk,aµb the subset of Rk containing all timeslice queries having sides of length 2a 

and 2b along the x- and y- axis, respectively.  

Two error types are introduced when executing a timeslice query Wk œ Rk,aµb over the dataset P:  

• EN is the set of false negatives, i.e., trajectories qualifying the query window but not retrieved; 

formally, { }†
, ,: |N i i k j i k jE T P T W T W= ∈ ∉ ∈ , and  

• EP is the set of false positives, i.e., trajectories retrieved while not qualifying the query 

window; formally, { }†
, ,: |P i i k j i k jE T P T W T W= ∈ ∈ ∉ . 

The problem is to make an as accurate as possible estimation of false negatives and false 

positives for a random Wj at timestamp tk, based only on known dataset and query parameters. From the 

above problem definition, it is clear that we initially make four main assumptions:  

• AI - uncertainty uniformity assumption: the actual position †
,i kT  of trajectory Ti at timestamp tk 

is uniformly distributed inside the uncertainty disk C(Ti,k,d),  

• AII - data uniformity assumption: the trajectories Ti (and consequently, points Ti,k at timestamp 

tk), are uniformly distributed in the data space,  
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• AIII - constant uncertainty radius assumption: the radius d of the cylindrical volume (and 

consequently, uncertainty disk) is constant,  

and, not directly extracted from the problem definition,  

• AIV - uncertainty size assumption: radius d is always less than the half of the length of the 

smallest side of query window Wj.  

Table 5.1: Table of notations 

Notation Description  

S, P, N 
the unit spatio-temporal data space [0,1]µ[0,1]µ[0,1] the trajectory dataset, and its 

cardinality (also, density) 

tk, Sk a timestamp and the snapshot of S at timestamp tk 

Ti, Ti,k, 
†
,i kT , d a trajectory, the (recorded or interpolated) location of Ti at timestamp tk, its actual 

location, and the radius of the uncertainty disk 

Wj , Wj,c1  - Wj,c4 
the window of a timeslice query, and its four corners (clockwise, starting from the 

lower-left) 

, , , ,, , ,x L x U y L y U

j j j jW W W W  
the minimum and maximum coordinates of the timeslice query window Wj along the x- 

and y- axis.  

R, Rk, Rk,aµb  
the set of all timeslice queries over P, its subset invoked at timestamp tk, and its subset 

with half-sides a and b along the x- and y- axis, respectively 

C(Ti,k,d), Ai,j 

the uncertainty disk of the (recorded or interpolated) location of Ti at timestamp tk with 

radius d and the portion of its area that lies inside (in the case of false negatives) or 

outside (in the case of false positives) Wj  

( ),
,

i k jT WDist  
the minimum Euclidean distance between the (recorded or interpolated) location of Ti 

at timestamp tk and the boundary of Wj 

rx, ry 
the distance of the closest to Ti,k point of the boundary of Wj along the x- and y- axis, 

respectively. 

1 ( , )x x yA r r , 1 ( , )y x yA r r  the area encompassed by a chord perpendicular to the x- (or y-) axis with rx (or ry, 

respectively distance from Ti,k and the respective arc of its uncertainty disk 

2( , )x yA r r  the overlapping area between the uncertainty disk of Ti,k and a query window corner 

being inside the disk, with rx and ry coordinates relatively to Ti,k. 
Vi,j, 1 ( , )x x yV r r , 

1 ( , )y x yV r r , 2 ( , )x yV r r  

the volumes of the conical segments, equivalent to areas Ai,j, 1 ( , )x x yA r r , 1 ( , )y x yA r r , 

2( , )x yA r r  when following the uncertainty uniformity difference assumption. 

AvgPi,P(Rk,aµb), 

AvgPi,N(Rk,aµb) 

the average probability of a single trajectory Ti to be false positive (or false negative) 

with respect to all query windows Wj œ Rk,aµb 

( ),P k a bE R × , ( ),N k a bE R ×  
the average number of false positives (or false negatives) in the results of a timeslice 

query Wj œ Rk,aµb 

 

Regarding the first three assumptions (AI - AIII), they will be relaxed in the model extension to be 

presented in Section 5.4. Regarding assumption AIV, we argue that it is a reasonable property of the 

involved spatial objects, since typical sizes of query window Wj are usually orders of magnitude larger 

than d; for example, trajectories sampled with GPS devices usually introduce an error of a few meters 

(usually less than 10m), while query windows in real applications are expected to be at least hundreds 

of square meters.  
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Having described the framework of our work, in the next two sections we prove two lemmas 

which are fundamental for our model. Table 5.1 summarizes the notations used in the rest of the 

chapter. 

5.3.1. Estimating the Number of False Negatives 

In this section we prove a lemma which undertakes the calculation of the average number of false 

negatives. 

Lemma 5.1: The average number EN(Rk,aµb) of false negatives in the results of a timslice query Wj œ 

Rk,aµb with half-sides of length a and b at timestamp tk over a trajectory dataset that follows the data 

uniformity and uncertainty uniformity assumptions is given by the formula: 

( ) ( )
2

,

8

3 2N k a b

d d
E R N a b

π π×

 
= ⋅ + − 

 
 (5.1) 

where d is the radius of the uncertainty disk. 

Proof:  The average number EN(Rk,aµb) of trajectories being false negatives in the results of a timeslice 

query Wj œ Rk,aµb, i.e., †
, ,|i k j i k jT W T W∉ ∈ , can be obtained by the average probability AvgPi,N(Rk,aµb) of 

an arbitrary trajectory Ti to be false negative regarding an arbitrary query window Wj œ Rk,aµb, 

multiplied by the total number N of trajectories: 

( ) ( ), , ,N k a b i N k a bE R N AvgP R× ×= ⋅  (5.2) 

Obviously, our target is to determine AvgPi,N(Rk,aµb). Towards this goal, we formulate the probability 

that †
, ,|i k j i k jT W T W∉ ∈ . This probability is given by the ratio or the area Ai,j of the portion of the 

uncertainty disk C(Ti,k,d) included inside the query window, over the total area of C(Ti,k,d). However, 

Ai,j is zero in cases where C(Ti,k,d) does not overlap the query boundary. 

Case 1 

Case 3 

Case 2 

a 
 

b 

Wj 
 

 

Figure 5.3: Snapshot of trajectories contributing to the number of false negatives  

Figure 5.3 illustrates a timeslice query window Wj extended by a buffer of width d, over a subset of 

uniformly distributed points, corresponding to the snapshot of P near Wj at timestamp tk: trajectories 

represented as points with uncertainty disks being inside the query window, i.e., those labeled as “case 

1”, cannot incur false negatives because they will be actually retrieved by the query. The same is also 

true for points with uncertainty disks located outside the buffer zone, illustrated as “case 2” in Figure 

5.3. The single case where Ti,k is not retrieved by the query while †
,i kT  may be found inside Wj is when 

Ti,k is located inside the buffer zone that surrounds Wj, which is illustrated as “case 3” in Figure 5.3. 

The above discussion expresses the fact that a trajectory Ti is a candidate to be false negative if and 

only if Ti,k is located outside the query window, while the corresponding uncertainty disk C(Ti,k,d) 

intersects the query boundary. Alternatively, Ti,k should be located inside the Minkowski region of Wj 

with radius d in order to be candidate to be false negative; this region can be determined by extending 
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Wj with distance d on all directions [TZPM04]. Minkowski regions are directly derived from the 

concept of Minkowski sum [AFH02] between the query window Wj and a disk of radius d, which, in our 

case, is composed by a set of line segments and circular arcs, illustrated as the boundary exterior of Wj 

in Figure 5.3. Now, the probability of a trajectory Ti to be false negative, regarding a query window Wj, 

is: 

( ) ( ),

,
† ,2

, ,

, ,
|

0,

i k

i j

i k j j
i k j i k j

T W
A

if T W and Dist d
P T W T W d

otherwise

π


∉ ≤
∉ ∈ = 



 (5.3) 

The area Ai,j, which is illustrated in Figure 5.4, is determined by taking into account the uncertainty size 

assumption by distinguishing between three cases illustrated in Figure 5.4(b) – (d): In the first two 

cases, where the distance between Ti,k and each of the four corners of Wj is larger than d, Ai,j is the 

portion of the uncertainty disk enclosed by (a) the chord c1c2 formed by the query side and the 

uncertainty disk and (b) the respective arc �1 2c c . Thus, it can be computed as the integral of the function 

of the chord length D, given as an expression of its distance, ry or rx (depending on which query side is 

regarded) from the disk center. 
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Figure 5.4: The unit space (a) and three details of it (b, c, d) 

Let the chord c1c2 be parallel to x axis (Figure 4(b)), it holds that 2 2( , ) 2x y yD r r d r= −  and 

,i jA = 1 ( , )y x yA r r =  2 2( , ) 2
y y

d d

x y y y y
r r

D r r dr d r dr= −∫ ∫ , resulting in1: 

2

2 2 2
, 1 ( , ) arctan 1i j y x y y y

y

d
A A r r d r d r

r

   = = − − −   
   

 (5.4) 

Equivalently, let the chord c1c2 be parallel to y axis (Figure 4(c)), the area Ai,j = A1x(rx, ry) is calculated 

by substituting ry with rx in Eq.(5.4). In the third case, where the distance between Ti,k and one of the 

four corners of Wj is less than d (Figure 4(d)), Ai,j can be determined in a similar way resulting in: 

2 2 2 2 2 2
, 2 2 2 2 2

1
( , ) arccot arctan 2

2
y x

i j x y y y x x x y

y x

r r
A A r r d d r d r r d r r r

R r R r

    
 = = − − − − − +   

− −       
(5.5)

The average, with respect to any query window in Rk,axb, probability of a trajectory Ti to be false 

negative is calculated by integrating Eq.(5.3) over all possible query windows: 

( ) ( ) ( )
,

† †
, , , , , ,| |

j k a b k

i N k a b i k j i k j i k j i k j

W R S

AvgP R P T W T W dW P T W T W dxdy

×

×
∈

= ∉ ∈ = ∉ ∈∫ ∫∫  (5.6) 

                                                
1 All advanced calculations in this chapter were performed using the Mathematica software [28]. 
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In order to compute the above integral, it is necessary to determine the main zones inside which the 

area Ai,j can be expressed as a single function. To facilitate discussion, Figure 5.5(a) illustrates the fact 

that the area determined by Dist(Ti,k,Wj)≤d can be divided into three sets of zones inside which point 

Ti,k can be found regarding the position of the query window: the first drawn with vertical stripes, the 

second drawn with horizontal stripes, and the shaded one, called Z1, Z2 and Z3, respectively. Z1 regions 

contain the data points such that the area resulted by the intersection of their uncertainty area with Wj 

forms a complete circular segment; alternatively, Z1 regions is the locus of the points in the space such 

that they are outside Wj, their distance from Wj is smaller than d and their distance from the four 

corners of Wj is greater than d. Z2 regions is the locus of the points in the space such that points are 

outside Wj, their distance from Wj is smaller than d and their x or y coordinates are inside the projection 

of Wj along the x- or y- axis, respectively; similarly, Z3 regions differ only on that the x and y 

coordinates of their points are outside the projection of Wj along the x- or y- axis.  
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Figure 5.5: Zones where area Ai,j contributing in false negatives is expressed as a single function  

Zones Z1,j, Z2,j and Z3,j associated with query window Wj are formally defined by the following 

expressions: 

( ) ( ){ }1, , , , ,: , , , 1..4
ij i i k j i k j i k j cZ T P T W Dist T W d Dist T W d i= ∈ ∉ ∧ ≤ ∧ ≥ =  (5.7) 

( ) ( )
( )

, , , ,

2,
, , , ,

, ,

: , , , 1..4

, ,

ii i k j i k j i k j c

j
x x L x U y y L y U

i k j j i k j j

T P T W Dist T W d Dist T W d i
Z

T W W T W W

 ∈ ∉ ∧ ≤ ∧ ≤ = ∧ 
=  

   ∈ ∨ ∈     

 (5.8) 

( ) ( )
( )

, , , ,

3, , , , ,
, ,

: , , , 1..4

, ,

ii i k j i k j i k j c

j
x x L x U y y L y U

i k j j i k j j

T P T W Dist T W d Dist T W d i
Z

T W W T W W

 ∈ ∉ ∧ ≤ ∧ ≤ = ∧ 
=  

   ∉ ∧ ∉     

 (5.9) 

Regarding zones of type Z1, i.e., those labeled Z1x and those labeled Z1y in  Figure 5.5(b),  area  Ai,j  can  

be  computed  using  Eq.(5.4). When the relative positions of Ti,k and Wj constrain it to be inside a zone 

of type Z2, Ai,j can be computed by subtracting the small area at the upper-right corner of the 

uncertainty disk (Figure 5.5(c)), which is given by Eq.(5.5), from the overall uncertainty disk area 

being above the lower query side (Eq.(5.4)). Finally, for points inside zones of type Z3, as illustrated in 

Figure 5.5(d), Ai,j can be computed using Eq.(5.5). Summarizing, Ti,k  may be found inside: 

• one out of two zones Z1x (top and bottom in Figure 5.5(a)), and two zones Z1y (left and right in 

Figure 5.5(a)); in these cases, Ai,j is calculated by A1x and A1y, respectively, 

• one out of four zones Z3, one for each query window corner; in these cases, Ai,j=A2, 

• one out of four zones Z2, for each query window corner along the x- and another four along 

the y- axis; in these cases, ( ), 1 2i j xA A A= −  and ( ), 1 2i j yA A A= − , respectively, 

• elsewhere; in this case, Ai,j is zeroed.  
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Bearing in mind that (a) Eq.(5.6) integrates ( )† 2
, , ,|i k j i k j i jP T W T W A dπ∉ ∈ =  over the whole space Sk, 

and (b) the value of Ai,j is equal to zero in any other place, expect of the zones Z1, Z2, Z3 where Ai,j is 

provided in terms of the relative position between Ti,k  and Wj, i.e., rx and ry, Eq.(5.6) can be rewritten 

as follows: 

( )
( ) ( )
1 1 3

2 2

1 1 2

, , 2

1 2 1 2

2 ( , ) 2 ( , ) 4 ( , )
1

4 ( , ) ( , ) 4 ( , ) ( , )

x y
x x y y x y x y y x x y y x

Z Z Z

i N k a b

x x y x y y x y x y x y y x
Z Z

A r r dr dr A r r dr dr A r r dr dr

AvgP R
d A r r A r r dr dr A r r A r r dr drπ×

 + +
 = ⇒ 

− + − 
 

∫∫ ∫∫ ∫∫

∫∫ ∫∫
 

( )

1 2 1 2 3

, ,

1 1 22 2 2

1
2 ( , ) 2 ( , ) 4 ( , )

x y

i N k a b

x x y y x y x y y x x y y x
Z Z Z Z Z

AvgP R

A r r dr dr A r r dr dr A r r dr dr
dπ

×

+ +

=

 + − 
 ∫∫ ∫∫ ∫∫

 (5.10)

The two 1 22xZ Z+  areas involved in the above integrals may be regarded as the top and down 

rectangles of Figure 5.5(a) formed by the Z1x and the two Z2 areas surrounding it, and their size along 

the x- and y-axis is 2a and d, respectively. The same also holds regarding the two 1 22yZ Z+  areas, also 

having extents d and 2b along the x- and y-axis, respectively. According to this discussion, the above 

formula can be rewritten as follows: 

( )

( ) ( ) ( )
2 2

, ,

2 2

1 1 22 0 0 0 0 0 0

1
2 , 2 , 4 ,

i N k a b

d a b d d d x

x x y x y y x y x y x y x y

AvgP R

A r r dr dr A r r dr dr A r r dr dr
dπ

×

−

=

 
⋅ + − 
 
∫ ∫ ∫ ∫ ∫ ∫

 (5.11)

Substituting ( )10
,

d

y x y y
A r r dr∫ = ( )10

,
d

x x y x
A r r dr∫ with 32

3
d , and ( )

2 2

20 0
,

d d x

x y yA r r dr dr
−

∫ ∫  with 41

8
d  in 

the above long expression, we result in the simple formula: 

( ) ( )
2

, ,

8

3 2i N k a b

d d
AvgP R a b

π π× = + −  (5.12) 

Substituting Eq.(5.12) into Eq.(5.2) we have proven Lemma 5.1. � 

5.3.2. Estimating the Number of False Positives 

In the sequel, we prove a similar lemma regarding the average number of false positives: 

Lemma 5.2: The average number EP(Rk,aµb) of false positives in the results of a timeslice query Wj œ 

Rk,aµb with half-sides of length a and b at timestamp tk over a trajectory dataset that follows the data 

uniformity and uncertainty uniformity assumptions is given by the formula: 

( ) ( )
2

,

8

3 2P k a b

d d
E R N a b

π π×

 
= ⋅ + − 

 
  (5.13) 

where d is the radius of the uncertainty disk. 

Proof: The average number EP(Rk,aµb) of trajectories being false positives in the results of a timeslice 

query Wj œ Rk,aµb, i.e., †
, ,|i k j i k jT W T W∈ ∉ , can be obtained by the average probability AvgPi,P(Rk,aµb) of 

an arbitrary trajectory Ti to be false positive regarding an arbitrary query window Wj œ Rk,aµb, 

multiplied by the total number N of trajectories in the data space: 

( ) ( ), , ,P k a b i P k a bE R N AvgP R× ×= ⋅  (5.14) 

Then, following a methodology similar to that followed in the proof of Lemma 1, it is proven that the 

probability that †
, ,|i k j i k jT W T W∈ ∉  is: 



 114 

( ) ( ),

,
† ,2

, ,

, ,
|

0,

i k

i j

i k j j
i k j i k j

T W
A

if T W and Dist d
P T W T W d

otherwise

π


∈ ≤

∈ ∉ = 


 (5.15) 

and the average, with respect to any query window in Rk,axb, probability of a trajectory Ti to be false 

positive is: 

( ) ( ) ( )
,

† †
, , , , ,| |

j k a b k

i P a b i k j i k j i k j i k j

W R S

AvgP R P T W T W dW P T W T W dxdy

×

×
∈

= ∈ ∉ = ∈ ∉∫ ∫  (5.16) 

The above integral is again computed by determining the zones inside which the area Ai,j is expressed 

as a single function. These zones are found within the region formed by the original query window Wj  

and the Minkowski difference of Wj with a disk of radius d [TWHC04]. The Minkowski difference, also 

called offsetting, is a complementary operation to the Minkowski sum [TWHC04]; it is extensively 

studied in the field of computer graphics, while its calculation for convex polygons is a straightforward 

operation requiring linear time [TWHC04]. Figure 6(a) illustrates the three sets of such zones, namely 

Z1, Z2 and Z3, which can be defined in a way similar to the ones of the false negatives computation. 

Formally: 

( )
( )

, ,

1, , , , ,
, ,

: ,

, ,

i i k j i k j

j x x L x U y y L y U

i k j j i k j j

T P T W Dist T W d
Z

T W d W d T W d W d

 ∈ ∈ ∧ ≤ ∧ 
=  

   ∈ + − ∨ ∈ + −     

 (5.17) 

( ) ( ){ }2, , , 1, , , ,: , , , 1..4
ij i i k j i k j i k j i k j c

Z T P T W T Z Dist T W d Dist T W d i= ∈ ∈ ∧ ∉ ∧ ≤ ∧ ≥ =  (5.18) 

( ){ }3, , , ,: , , 1..4
ij i i k j i k j cZ T P T W Dist T W d i= ∈ ∈ ∧ ≤ =  (5.19) 
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Figure 5.6: Zones where area Ai,j contributing in false positives is expressed as a single function  

Regarding zones Z1x and Z1y, the area Ai,j is computed using Eq.(5.4) (Figure 5.6(b)). When in zone Z2, 

Ai,j is determined by summing up Eq.(5.4) along the x and y axes (Figure 5.6(c)). Finally, points 

representing trajectories inside Z3 are also computed by summing up Eq.(5.4) along the x and y axes 

and subtracting the small area in the lower-right corner of the uncertainty disk (Figure 6(d)), which is 

given by Eq.(5.5). Summarizing, Ti,j  may be found inside: 

• one out of two zones Z1x (top and bottom in Figure 5.6(a)); in these cases, Ai,j is calculated by 

A1x, 

• one out of two zones Z1y (left and right in Figure 5.6(a)); in these cases, Ai,j is calculated by 

A1y, 

• one out of four zones Z3, one for each query window corner; in these cases, Ai,j=A1x+A1y, 

• one out of four zones Z2, for each query window corner; in these cases, Ai,j=A1x+A1y-A2, 

and Eq.(5.16) is reformulated as follows: 
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( ) ( ) ( )( )
1 1 2

3
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2

1 1 2

2 ( , ) 2 ( , ) 4 , ,
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d A r r A r r A r r dr drπ
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 + + +
 ⋅ 

+ − 
 

∫∫ ∫∫ ∫∫

∫∫

 (5.20) 

which, after the necessary calculations, results in: 

( ) ( )
2

, ,

8

3 2i P k a b

d d
AvgP R a b

π π× = + −  (5.21) 

Substituting Eq.(5.21) into Eq.(5.14) we have proven Lemma 5.2. � 

5.3.3. Discussion 

Summarizing, the analytical model for the prediction of the number of false positives and false 

negatives when executing a timeslice query over uniformly distributed trajectory data, consists of 

Lemma 5.1 and Lemma 5.2 proved in the previous subsections. It turns out that the average number of 

false negatives and false positives of an arbitrary timeslice query at timestamp tk with known size 2a 

and 2b along the x- and y- axes respectively, is a function of a, b, the uncertainty radius d and the 

cardinality N of the dataset. Another result is the corollary that, theoretically, the average number of 

false negatives is equal to the average number of false positives: 

( ) ( ), ,N k a b P k a bE R E R× ×=  (5.22) 

While such a result sounds strange at a first thought, it turns out to be reasonable when we take 

into consideration that, on the one hand, the number of trajectories contributing to the number of false 

negatives, represented by the shaded area in Figure 5.5(a), is greater than the respective one for false 

positives (Figure 5.6(a)) and, on the other hand, the area Ai.j of the uncertainty disk of each trajectory 

contributing to the number of false negatives (Figure 5.5(d)) is smaller than the respective one for false 

positives (Figure 5.6(d)). Our analytical calculation of EN(Raµb) and EP(Raµb) proves that the above two 

complementary factors finally result into two equal values for the number of false positives and false 

negatives, thus resulting in Eq.(5.22). 

Moreover, it notably arises from Eq.(5.1) and Eq.(5.13) that the average number of false 

negatives and false positives of a timeslice query depends on the query perimeter (a+b), rather than the 

query area ( a b⋅ ). A last observation is that, when our model is utilized to determine the maximum 

permitted (im)precision of the data that will feed a MOD, Eq.(5.1) and Eq.(5.13) can be solved for the 

value of the uncertainty radius d, given the values of the required accuracy in terms of false hits and the 

query’s typical extent. 

Intuitively, the two parts of the multiplier of N in Eq.(5.1) and Eq.(5.13), i.e., ( )8

3

d
a b

π
+  and 

2

2

d

π
, stand for representing the contribution in the total number of false hits, of the length of the query 

perimeter, and the four corners of the query window, respectively. This detail will turn out to be very 

useful in the next section when we will relax the data uniformity assumption with the aim of 

histograms. 

Finally, it must be pointed again, that the above developed formulas, as well as the majority of 

the ones presented hereafter, can be straightforwardly applied to simple spatial data without the need 
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for any modification; this due to the fact that a timeslice query over a set of trajectories can be seen as a 

range window query over a snapshot of the trajectories at the timestamp that is determined by the 

timeslice query. As such, the average number EN(Raµb) and EP(Raµb) of false negatives and false 

positives in the results of range window queries with half-sides a and b over simple spatial data, under 

the four assumptions stated in the beginning of this section is: 

( ) ( ) ( )
28

3 2N a b P a b

d d
E R E R N a b

π π× ×

 
= = ⋅ + − 

 
 (5.23) 

The same argument (and the same result) also stands for all the formulas developed in the next 

sections, when relaxing the uniformity assumptions. It will be further, shown in the experimental study 

that the applicability of the developed model is also large over commercial SDBMS.  

5.4. Relaxing the Uniformity Assumptions 

In this section we relax the three assumptions, AI – AIII, made in the problem definition in Section 5.3. 

This will be done in a gradually increasing order. We first show how to support real-world, non-

uniform uncertainty distributions thus relaxing AI (Section 5.4.1), we then employ spatio-temporal 

histograms in order to relax AII (Section 5.4.2), and, finally, show how such histograms can be 

augmented to relax AIII (Section 5.4.3). 

5.4.1. Relaxing the Uncertainty Uniformity Assumption 

The analysis made in Section 5.3 was based on the uncertainty uniformity assumption, meaning that the 

actual position of each trajectory point at a given timestamp is uniformly distributed inside an 

uncertainty disk with the point representing the trajectory in the center and a known radius. 

Nevertheless, in this section we extend the proposed model towards non-uniform distributions of 

location uncertainty. The rationale behind this extension is that if the actual point †
,i kT  is located inside 

a circular neighbourhood of Ti,k, it is more likely that the probability of a location being the actual 

location of †
,i kT  decreases as its distance from Ti,k increases. Even more, it is well-known that the error 

associated with GPS-tracked positions is normally distributed, i.e., following the bivariate normal 

distribution with uncorrelated variables x and y, which is the extension of the normal distribution in 2D 

space [Lei95]; given also that the usage of GPS allows for high sampling rates, the total error in such 

cases is dominated by the error introduced from the tracking device. As such, the argument that the 

uncertainty in real spatio-temporal (and stationary spatial) data tends to be normally distributed is well 

established [CC07], [NRB03], [PTJ05]. 

According to the previous discussion, the goal of this section is to relax the uniformity 

assumption in location uncertainty of moving objects and make the proposed model to support the 

bivariate normal distribution. The respective probability density function (pdf), when variables x, y are 

uncorrelated, is given by the following expression [PTJ05]: 

2 2

22
2

1
( , )

2

x y

BNP x y e σ

πσ

+
−

=  (5.24) 

where σ2 is the variance, along the x- and y- axis; then σ is the corresponding standard deviation. 

However, the computation of the respective formulas as done in Section 2 is a hard task since it 

involves the integration of several exponential functions.  
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Figure 5.7: Uniform difference distribution pdfs in (a) 1D and (b) 2D space 

On the other hand, the density function of the bivariate normal distribution can be efficiently 

approximated by the two-dimensional uniform difference distribution (2d-UDD), which is the 

extension of the uniform difference distribution in 2D space, i.e., the distribution of the difference 

between two uniformly distributed variables in [0, d]. The pdf of 2d-UDD is: 

( )
2 2 2 2

2 2

1
13

,

0
d UDD

x y if x y d
P x y d

d
otherwise

π−

 − + + ≤
= ⋅



 (5.25) 

which is the extension in 2D space of the uniform difference distribution with the following pdf : 

( ) 1 1

0
UDD

x
if x d

P x d
d

otherwise


− ≤

= ⋅



 (5.26) 

Both distributions are illustrated in Figure 5.7 which exposes the silhouette of their pdfs; in fact, P2d-

UDD forms a conical surface with base radius d and unit volume as illustrated in Figure 7(b). 

Towards the reformulation of the proposed model, the uncertainty uniformity assumption must 

be replaced by the following uncertainty uniformity difference assumption: the actual position Ti,k of 

each trajectory Ti at timestamp tk is handled by P2d-UDD distribution described above. Based on this 

assumption, the following lemma is provided: 

Lemma 5.3: The average numbers EN(Rk,aµb) and EP(Rk,aµb) of false negatives and false positives, 

respectively, in the results of a timeslice query Wj œ Rk,aµb with half-sides of length a and b at 

timestamp tk over a trajectory dataset that follows the data uniformity and uncertainty uniformity 

difference assumptions are given by the formula: 

( ) ( ) ( )
2

, ,

2 3

10N k a b P k a b

d d
E R E R N a b

π π× ×

 
= = ⋅ + − 

 
 (5.27)

where d is the radius of the uncertainty disk. 

Proof: EN(Rk,aµb) and EP(Rk,aµb) can be obtained from the average probabilities AvgPi,N(Rk,aµb) and 

AvgPi,P(Rk,aµb), respectively, multiplied by the total number N of objects in the data space. The 

probability of a trajectory Ti to be false negative or false positive, with respect to a query window Wj, at 

timestamp tk is: 

( ) ( ),, ,†
, ,

, ,
|

0,

i ki j i k j j

i k j i k j

T WV if T W and Dist d
P T W T W

otherwise

 ∉ ≤
∉ ∈ = 


 (5.28) 

respectively 

( ) ( ),, ,†
, ,

, ,
|

0,

i ki j i k j j

i k j i k j

T WV if T W and Dist d
P T W T W

otherwise

 ∈ ≤
∈ ∉ = 


 (5.29) 



 118 

where Vi,j is the volume of the 2d-UDD pdf P2d-UDD, contained fully inside or outside Wj, respectively.  

The volume Vi,j, of the P2d-UDD being inside (outside, respectively) the query window is determined 

following the same methodology as in the proof of Lemma 5.1 (Lemma 5.2, respectively), taking also 

into account the uncertainty size assumption. In particular, bearing in mind that Figure 5.4(b) – (d) 

illustrate also the projection of P2d-UDD in the x-y plane, we can employ them in our discussion: in the 

two first cases (Figure 5.4(b) and 4(c)) where the distance between Ti,k and each of the four corners of 

Wj is more than d, Vi,j is equal to V1x(rx,ry) (or V1y(rx,ry)) which is the portion of the P2d-UDD being above 

(or right of, respectively) the vertical plane passing from c1c2. In the third case, where the distance 

between Ti,k and one of the four corners of Wj is less than d (Figure 5.4(d)), Vi,j is equal to V2(rx,ry), 

which is the portion of the P2d-UDD being right of the vertical plane passing from c1c2, and above the one 

passing from c2c3. 

The average, with respect to any query window in Rk,axb, probability of a trajectory Ti to be false 

negative (false positive, respectively) at timestamp tk is calculated by integrating Eq.(5.28) (Eq.(5.29), 

respectively) over all query positions as in Eq.(5.6) (Eq.(5.16), respectively). The corresponding 

integral is computed in the same way as the one followed in the proof of Lemma 5.1 (Lemma 5.2, 

respectively) by replacing the values of A1x(rx,ry), A1y(rx,ry) and A2(rx,ry) with V1x(rx,ry), V1y(rx,ry) and 

V2(rx,ry) into Eq.(5.10) (Eq.(5.20), respectively). Then, by substituting 

( )10
,

d

y x y y
V r r dr∫ = ( )10

,
d

x x y x
V r r dr∫ =

2

d

π
, and ( )

2 2

20 0
,

d d x

x y y x
V r r dr dr

−

∫ ∫  = 
23

40

d

π
 into the respective 

formulas and performing the necessary calculations we result in: 

( ) ( )
2

, ,

2 3

10
i N k a b

d d
AvgP R a b

π π× = + −  (5.30) 

and 

( ) ( )
2

, ,

2 3

10
i N k a b

d d
AvgP R a b

π π× = + −  (5.31) 

By multiplying the above formulas with N we have proven Lemma 5.3. � 
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Figure 5.8: (a) Two-Dimensional UDD, (b) bivariate normal distribution and, (c) best fitting in a 

single dimension (c) 

Up to this point, given that the distribution of the actual data point follows the uncertainty 

uniformity difference assumption, our model constitutes of Eq.(5.27), which is much alike the ones in 

Section 5.2 under the uncertainty uniformity assumption. In particular, when Eq.(5.27) is compared 

with Eq.(5.1) and Eq.(5.13), the formulas differ only in the weights of the function variables d(a+b) 

and d
2. Although the model described above does not directly consider the bivariate normal 
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distribution, it can be used to efficiently approximate it. Consider, for example, Figure 5.8 that 

illustrates the probability function of the bivariate normal distribution with uncorrelated variables 

(Figure 5.8(a)), the probability function of the 2d-UDD (Figure 5.8(b)), and the silhouette of the two 

distributions in 1D space (Figure 5.8(c)); the two probability functions turn out to be close to each 

other. Hence, we can utilize least squares and estimate the radius of the cone which fits best in the 

Gaussian “bell” of the bivariate normal distribution.  

Formally, the following lemma is provided: 

Lemma 5.4: The 2D uniform difference distribution which best approximates the bivariate normal 

distribution with uncorrelated variables, is taken when the radius d of the uncertainty disk is: 

2.36533d σ≈ ×  (5.32) 

where σ is the standard deviation of the bivariate normal distribution along the x- and y- axis. 

Proof: According to the Least Squares Theory, the best approximation of a function f by another 

function g in the same domain D is given by minimizing the integral ( ) ( )( )2

D
f x g x dx−∫∫  of the 

square of their difference along D. Subsequently, in order to prove our Lemma, we have to determine 

the value of d that minimizes ( ) ( )( )2

2

2 , ,
d UDD BN

P x y P x y dxdy− −∫∫� . Towards this goal, it holds that: 
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(5.33)

where C(0,d) is the disk with center (0,0) and radius d. Applying Eq.(5.25) and Eq.(5.24) into Eq.(5.33)

, we get: 
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 (5.34)

At this point, we utilize the Cartesian-to-Polar transformation, which transforms (x, y) to (ρ, θ) 

according to the following formula: 

( ),f x y dxdy =∫∫  ( )cos , sinf d dρ θ ρ θ ρ ρ θ∫∫  (5.35) 

Applying the above transformation to Eq.(5.34), we get: 
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This results in 
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(5.36) 

where Erf[x] is the error function encountered in integrating the normal distribution. In the sequel, we 

calculate the first derivative of Eq.(5.36) with respect to d: 
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(5.37) 
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and by substituting d /σ with a variable a ( 0a ≠ ), we result in the following expression: 

( ) ( )( )
2

2

22
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9 6 9 2 Erf, , 2

a

d UDD BN

a
a ae

P x y P x y dxdy

d ad

π
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 
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∂
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(5.38) 

which is zeroed when the numerator becomes zero. Hence, the first derivative of Eq.(5.36) is zeroed 

when 

2

29 6 9 2 Erf 0
2

a
a

a ae π
−  

+ − = 
 

 (5.39) 

After numerically evaluating Eq.(5.39) it turns out that  

2.36533a ≈  (5.40) 

Recalling that a = d /σ  we have proven Lemma 5.4 � 

Concluding, the proposed model for normally distributed uncertainty constitutes of Eq.(5.27) and 

Eq.(5.32); the value of d provided by Eq.(5.32) can be directly used as input in Eq.(5.27) in order to 

approximate the normal distribution quite effectively, as it will be shown later in the experimental 

study.  

5.4.2. Relaxing the Data Uniformity Assumption 

Sections 5.3 and 5.4.1 assumed that trajectories, and consequently, snapshot data points, are uniformly 

distributed in the data space. In this section, we relax the data uniformity assumption and apply the 

proposed approach to arbitrarily distributed data with the employment of histograms [Ioa93], [IP95]. 

Histograms have been widely used in query optimization issues, such as spatial and spatio-temporal 

selectivity estimation [APR99], [TS96], [CC02], [HKT03], [TSP03], in order to overcome similar 

assumptions made when estimating the number of disk page accesses required to answer a query. The 

background idea is that when data are included in a small space, they may be considered as uniform 

even though the distribution of the entire dataset may differ significantly. The goal therefore when 

using histograms, is to break down the space into small regions, called buckets, which can be assumed 

to contain uniform data. Among the schemes proposed, we adopt the concept of [APR99], since it can 

be modified in a simple way in order to apply it in our requirements. 

In particular, Acharya et al. [APR99] present several space partitioning techniques for the 

construction of spatial histograms utilized in selectivity estimation of range queries. Among them, the 

MinSkew technique has been shown to provide the most accurate selectivity estimates for spatial 

queries. MinSkew is a binary space partitioning (BSP) technique employing the spatial skew definition, 

also provided in [APR99]. More specifically, the spatial skew of a bucket is the statistical variance of 

the spatial densities of all points grouped within this bucket, and the spatial skew of the entire set is the 

weighted sum of spatial skews of all buckets. The proposed technique initially uses a uniform grid of 

regions and their spatial densities as input; as such it produces a compact approximation on the input 

data in place of the original in order to build the histogram (grouping) in memory. Then, the 

construction algorithm repeatedly partitions the given set of regions such that the spatial-skew is 

minimized at each step until no more buckets are available for the histogram. Since it always partitions 

an existing region into two, the result is a BSP partitioning. As a result, the constructed histogram H is 

the set of n buckets ( ) ( ){ }:i i iH B B S B= = ∧ = ∅U I and { }, , , ,, , ,
i i L i U i L i U

B x x y y   =     .The main 
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advantage of this technique is that the initial cells grouped together within the same bucket have small 

spatial skew, i.e., variance. It is therefore expected that the cells contained inside each bucket should 

enclose approximately the same number of data points; as a result, it is usually assumed that the data 

distribution inside each bucket Bi is uniform. Actually, this assumption, as demonstrated both in 

[APR99] and in our experiments, is rather reasonable even in the presence of totally skewed spatial 

data, such as the Charminar dataset [APR99]. 

The main usage of spatial histograms is to provide estimates for the local density of the dataset, 

given a spatial region. Towards this goal, the buckets that overlap the spatial query are initially 

determined, and then, the local density is calculated by producing the weighted average of the 

overlapped buckets densities Ni. This happens by weighting density Ni of each bucket Bi with the 

corresponding area Ai that partially covers the given region, normalized by the total area: 

1..

1
' ( )

4
i i

i n

N N A
ab =

= ⋅∑  (5.41)

In the followings, it is showed how to appropriate modify the MinSkew histogram structure so as 

to support spatio-temporal timeslice queries. 

5.4.2.1. Spatio-temporal Histograms for Time-slice Queries 

The first step towards the construction of a spatio-temporal histogram that supports the estimation of 

the selectivity of timeslice queries, is to augment the spatial data space initially used by [APR99] in 

order include the temporal dimension. As such, the proposed histogram is 

( ) ( ){ }:i i iH B B S B= = ∧ = ∅U I  and  { }, , , , , ,, , , , ,i i L i U i L i U i L i UB x x y y t t     =       . The basic idea that 

allows us to use MinSkew partitioning for our purposes is summarized as following: apply a uniform 

grid of n intervals on each spatial dimension that forms n
2 spatial regions Gi, repeat it at several 

uniformly distributed timestamps tk (k = 1...now – 1), and compute the number of trajectories mi,k found 

inside each Gi on every tk, . If a quite large number of tk is used, then the number of trajectories found 

inside region Gi at any timestamp during the period [tk, tk+1] can be considered to be equal with mi,k; in 

other words, trajectories can be considered stationary between tk and tk+1 if the length of period [tk, tk+1] 

is small enough. Then, we can straightforwardly use the construction algorithm of [APR99] applying 

the same set of heuristics in order to minimize the spatial skew of the constructed buckets: the goal 

again is to group together several grid regions Gi at several timestamps tk having similar values of mi,k, 

thus resulting in a grouping with as smaller spatial skew as possible. 

Finally, the local density N’ of a timeslice query invoked at timestamp tk is calculated by 

producing the weighted average of the overlapped buckets densities Ni being at the same time valid at 

this particular timestamp:  

, ,:

1
' ( )

4
i L k i U

i i

i t t t

N N A
ab ≤ <

= ⋅∑  (5.42)

Eq.(5.42) expresses the fact that the local density N’ is calculated by weighting density Ni of each 

bucket Bi with the corresponding area Ai that partially covers the given region, normalized by the total 

area. 
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5.4.2.2. Estimating the Effect of Uncertainty Using Spatio-temporal Histograms 

Moving into our core problem, MinSkew spatio-temporal histograms can be utilized in order to apply 

our analysis in non-uniform data and estimate the error introduced in the query results without actually 

executing the query. Specifically, two alternative approaches are proposed for estimating EP(Rk,axb) and 

EN(Rk,axb). The first one is to simply use the estimate of the local density produced by the spatio-

temporal histogram in place of the total density employed in the proposed model; this can be achieved 

by evaluating Eq.(5.1), Eq.(5.13) or Eq.(5.27) using the local density N
 ', derived from Eq.(5.42), 

instead of the overall space density N. 

As an alternative approach, instead of computing a global local density N ' for the total timeslice 

query window, we may consider the different contributions of the query window sides and query 

window corners in the total number of false hits, as discussed in Section 5.3.3. Therefore, given a 

spatio-temporal histogram containing n disjoint spatio-temporal buckets Bi, the estimation of the 

number of false positives and false negatives in the results of a timeslice query invoked at timestamp tk 

under the uncertainty uniformity assumption, can be determined using the formula: 

( ) ( )
, ,

2

, ,

:

2

3 8
i L k i U

P k a b N k a b i i i

i t t t

d d
E R E R N L s

π π× ×
≤ <

  
= = ⋅ − ⋅     

∑ , (5.43) 

where Li is the length of the part of the query perimeter that spatially overlaps Bi and si is the number of 

timeslice query window corners being inside Bi.  

Eq. (5.43) formulates the fact that the total number of false negatives or positives is the 

summation of the contributions of the different query components as discussed in Section 2.3. More 

specifically, the 
2

3
i

d
L

π
 part of Eq.(5.43) is derived from the ( )8

3

d
a b

π
+  of Eq.(5.1) and Eq.(5.13), 

multiplied by the length of the query perimeter Li that overlaps bucket Bi and divided by the total query 

length 4(a+b); in the same manner, the 
2

8
i

d
s

π
 part of Eq.(5.43) is the transformation of the 

2

2

d

π
 part of 

Eq.(5.1) and Eq.(5.13), multiplied by the actual number of query window corners si spatially inside 

bucket Bi, divided by their total number, i.e., 4. 
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Figure 5.9: (a) A timeslice query window over of a snapshot of a spatio-temporal histogram (b) A 

timeslice query window over a snapshot of the augmented 4-D space. 

Consider, for example, Figure 5.9(a) that illustrates the snapshot of a timeslice query window W 

at timestamp tk, overlapping at this particular timestamp four histogram buckets (B1 … B4). Since false 

hits may only be found close to the boundary of W, the number of false positives or negatives on 
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bucket B1 depends on the length of the query perimeter that overlaps it, that is, the length of lines 

1 1 1 2m c c m+  and the number or corners s1=1. It is also worth to note that using the above procedure, 

the query window is not dissected across the histogram buckets’ boundaries, as such an approach 

would increase the total perimeter and consequently decrease the accuracy of the model. Moreover, in 

the 2d-UDD uncertainty distribution case, the formula for estimating the number of false positives and 

false negatives is: 

( ) ( )
, ,

2

, ,

:

3

2 40
i L k i U

P k a b N k a b i i i

i t t t

d d
E R E R N L s
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≤ <

  
= = ⋅ − ⋅     

∑ , (5.44) 

The above formula is derived counting the different contributions of the query sides and corners 

of Eq.(5.27) in a way similar with the above. In particular, the 
2

i

d
L

π
 part of Eq.(5.44) is computed by 

multiplying the ( )2d
a b

π
+  of Eq.(5.27) by the part of the query perimeter Li that spatially overlaps 

bucket Bi, divided by the total query length 4(a+b), while, the 
23

40
i

d
s

π
 part of Eq.(5.44) is obtained by 

multiplying the 
23

10

d

π
 part of Eq. (5.27) by the actual number of query window corners si spatially 

inside bucket Bi, divided by their total number, i.e., 4. 

The same methodology can be applied to any bucket–based data storage scheme containing 

summary information, such as data cubes in trajectory data warehouses (TDW). Since a trajectory data 

cube consists of disjoint spatio-temporal buckets, i.e., the base cuboids, along with summary 

information, Eq.(5.43) and Eq.(5.44), depending on the type of uncertainty distribution, can be applied 

in OLAP operations and produce an estimation for the total number of false positives or false 

negatives. For example, when aggregating from the cell to the city level as discussed in the 

introduction, i.e., performing a roll-up operation, the MBB of a city can be considered as a query 

window and be used to estimate the false hits introduced in the aggregation. Given, however, that the 

density between the boundary of the actual city and its MBB can be much different, the Ni involved in 

Eq.(5.43) or Eq.(5.44) should be determined by using the actual perimeter of the city polygon in place 

of its MBB, and the Li lengths should be weighted accordingly using the MBB and the polygon 

perimeter. This approach will be tested in the following sections regarding simple spatial data, and it 

will be shown to produce very good estimations. 

5.4.3. Relaxing the Constant Uncertainty Radius Assumption 

The third extension of the model presented in this thesis in order to support real-world application 

scenarios, is to deal with datasets of trajectories having different values of uncertainty radius or 

standard deviation for each one of them. Consider, for example, m sets Pj containing Nj trajectories 

each, obtained by using different positioning technologies, such as GPS, Wi-Fi positioning, etc. Then, 

the union of all sets { }
1... ji m

P P
=

=U contains trajectories having several uncertainty radiuses 

depending on each trajectory’s original data source. A straightforward approach in order to determine 
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the error EP or EN introduced in the results of a timeslice query over P, is to calculate the specific errors 

EP,j or EN,j for each one Pj separately and then summarize the resulted errors. More formally, 

( ) ( ),
1..

P a b P j a b

j m

E R E R× ×
=

= ∑  and ( ) ( ),
1..

N a b N j a b

j m

E R E R× ×
=

= ∑  (5.45) 

Such an approach would reasonably be successful when dealing with uniformly distributed data. 

However, when dealing with real-world, usually skewed data, the methodology provided in the 

previous section should be applied, meaning that we would have to maintain m different histograms, 

one for each different possible value of uncertainty radius. Nevertheless, in this thesis a more 

sophisticated solution is provided to the above challenge. Specifically, we may further augment the 

spatio-temporal histogram proposed in section 5.4.2.1, with the uncertainty radius considered as the 

fourth dimension. In other words, we propose to use the MinSkew histogram in the normalized 4D 

space formed by the two spatial dimensions, the temporal one, and the length of the uncertainty radius 

d.  

More formally, the proposed histogram is ( ) [ ] ( ){ }: 0,1i i iH B B S B= = × ∧ = ∅U I  and  

{ }, , , , , , , ,, , , , , , ,
i i L i U i L i U i L i U i L i U

B x x y y t t d d       =         . It is built by applying a uniform grid in [ ]0,1S ×  

and counting the number of data points found inside each cell in the 4D space, and then, recursively 

partitioning the data space, minimizing the total spatial skew at each step. Following the respective 

discussion of the previous section regarding simple spatial histograms, it is assumed that the data 

distribution inside each 4D bucket Bi is uniform. Then, the estimation of the number of false hits can be 

easily calculated in the case of the uncertainty uniformity assumption as follows: 
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where Li is the length of the query perimeter that overlaps bucket Bi in the two spatial dimensions, si is 

the number of query window corners being inside bucket Bi, and , ,,i L i Ud d  are the lower and upper 

values of the third dimension d in Bi, respectively. Eq.(5.46) is directly derived when integrating 

Eq.(5.43) over all possible values of d in the data space, bearing also in mind that the actual number of 

objects found at each slice of the third dimension is ( ), ,i i U i LN d d−  and ( ), ,i U i Ld d− is the bucket’s 

extent along this dimension. Intuitively, the above two formulas express the fact that the total error is 

the summation of the errors encountered on each histogram bucket the query window boundary 

overlaps; moreover, in this case, the spatial component of the query window W is also augmented in the 

dimension of d, forming a box entirely covering this dimension, as illustrated in Figure 5.9(b). Finally, 

Eq.(5.46), after the necessary calculations turns into: 
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Following a similar approach, the estimation of the number of false hits in the case of the uncertainty 

uniformity difference assumption is calculated as: 
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The proposed approach has two basic advantages regarding the alternative of maintaining 

different histograms for the m sets of trajectories; the first is that the space requirements are sufficiently 

reduced, especially in the case where the number of different uncertainty radiuses increases 

significantly. However, the most important advantage of this proposal is revealed bearing in mind that 

data belonging to the same class may have different accuracy; for example the uncertainty due to GPS 

depends on a large number of parameters, such as the number of visible satellites, the frequency 

interference, and the satellite signal reflection in large glass surfaces inside urban areas, resulting in a 

different uncertainty radius for each individual sampled point of each trajectory; the naïve approach 

could not fulfil such requirements since we would have to maintain a separate histogram for each 

possible value of uncertainty radius. On the other hand, our proposal can absorb these necessities and 

handle an unrestrained number of different radiuses without increasing the memory space requirement 

of the constructed histogram, producing at the same time a very good estimation.   

5.5. Experimental Study: Spatio-temporal Data 

In this section several experiments are presented in order to demonstrate the correctness and accuracy 

of the previous analysis using synthetic trajectory datasets. In the experimental study that follows we 

demonstrate the accuracy of the analytical model under uniform distribution of uncertainty with the aid 

of spatio-temporal histograms (Eq.(5.43)), as well as its sensitivity with respect to the involved 

parameters, i.e., the uncertainty radius and the length of the query perimeter.  

Here it is worth to note that for typical query and uncertainty sizes (e.g., queries of 0.05µ0.05 to 

0.30µ0.30 in the unit space, and uncertainty radius set to 0.01), the formulas of the proposed model 

produce values of false negatives / positives between 0.0004µN and 0.0025µN, meaning that for 2000 

trajectories we expect between 0.8 and 5.0 trajectories as false positives / negatives per query. As such, 

it becomes clear that for typical query sizes and uncertainty radiuses, the dataset population should be 

quite large in order to produce a significant number of false hits, so as to be counted and compared 

against the results of the proposed model. However, since the cardinality of trajectory datasets is 

usually small (on the other hand, their actual size may become huge as time evolves), the details of the 

developed model using all possible setting combination, will be tested using synthetic and real spatial 

datasets in the next section. 

5.5.1. Experimental Setup 

The experimental study over spatio-temporal data is based on the NG synthetic datasets (section 1.5.3). 

Each trajectory was modelled as a cilyndrical volume [TWHC04], following therefore the uniform 

distribution of uncertainty assumption. During each experiment the dataset was queried with 1000 

randomly distributed square, i.e., with a=b, timeslice queries. Each query initially retrieved the 

interpolated position of each trajectory in the dataset at the timestamp determined by it, and then, the 

assumption of [TWHC04] was used in order to reveal the actual position of each moving object at this 

particular timestamp. As such, a number of false negatives and false positives were generated, since the 

query results gathered by the first step were different than the ones determined after the second step. 
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We used for the estimation of the same number our analytical model expressed by Eq.(5.43), that is, 

with the aid of spatio-temporal histograms, as presented in the previous section (thus, relaxing 

assumption AII); the MinSkew partitioning of the dataset under consideration was created using a 

uniform grid of original grid size set to 0.005µ0.005µ0.005, as discussed in [APR99]. The radius of the 

cilyndrical volume (uncertainty radius) was scaled between 0.0005 and 0.02, while each square query 

side’s length was scaled between 0.06 and 0.36; elongated query windows reported similar behavior. 

We conducted our experiments on a Windows XP workstation with AMD Athlon 64 3GHz processor 

CPU, 1 GB of main memory and several GB of disk space.   

5.5.2. Experimental Results 

Two statistical measures were used so as to demonstrate the behavior of our model. The average 

number of false negatives and false positives, 
NE  and 

PE , respectively, and the average absolute 

error in the estimation of false negatives and false positives in each individual query, 
NES  and 

PES , 

respectively. Formally, these measures are defined as: 
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where n is the number of executed queries and EP,i (EN,i) the actual number of false positives (false 

negatives, respectively) in the i-th query. We distinguish between, e.g. PE  and PES , in order to 

uncover the details of the behavior of our model, as will be shown in the following experiments. 

In the first series of experiments the synthetic dataset is utilized in order to demonstrate the 

accuracy and the behavior of the presented analytical model scaling the two influencing factors: the 

radius d of the uncertainty disk and the size (a, b) of the query window. Note that in all figures the 

query size is exposed in terms of its side length 2a = 2b, e.g., for query side length 0.30, the size of the 

query window is equal to 0.30 µ 0.30 = 0.09 of the unit space. 
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(a) (b) 

Figure 5.10: Average false negatives / positives and their estimations scaling with (a) d and (b) the 

query size (synthetic data – uniform distribution of uncertainty). 

In particular, in the first experiment the value of d is scaled between 0.05% and 2% of the space 

extent along the x- and y- axis, querying the synthetic dataset, with fixed side length 0.18 (i.e., a = b = 
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0.09 resulting in a query window sized 3.24% of the data space). The results of this experiment are 

illustrated in Figure 5.10(a); as a first result, the number of false positives and false negatives turn out 

to be almost equal, verifying the correctness of the corollary in Eq.(5.22). Moreover, the estimations 

EP(Rk,aµb) and EN(Rk,µb) are very accurate with respect to 
PE and

NE , with the error being always 

below 6%, whereas the error bars in each graph column, illustrating 
PES and

NES , demonstrate low to 

medium values. Specifically, the average error in individual queries is around 40% in the vast majority 

of the experimental settings while it increases significantly only in the extreme case where the 

uncertainty radius d is set to its minimum (d = 0.05%).  

Similar results are exposed in the second experiment, illustrated in Figure 5.10(b), where the 

query size is scaled. In particular, the uncertainty radius is set to 0.5%, and the length of the query side 

is scaled between 0.06 and 0.36, resulting in query sizes covering between 0.36% and 12.96% of the 

data space. When comparing the estimation of the number of false negatives and false positives, and 

the respective average values 
PE  and 

NE , the reported estimation error is again below 6%, regardless 

of the query size, while the error bars in each graph column (i.e., PES  and NES ) show the same trend 

as previous being around 40%; again the only case where they reach high values, occurs when both σ 

and the query size were set to their minimum values.  

While at a first thought these values of PES and NES  may be considered as high ones, it has to 

be pointed out that the error of the estimation is lowered significantly as the cardinality of the dataset 

increases, a fact that will be demonstrated over simple spatial data in the next section. Finally, in order 

to justify the accuracy of the estimations, we have to indicate that the values of PES and NES  never 

exceed 2 false hits in absolute values (e.g., actual vs. estimated false negatives : 6 vs. 8).  

5.6. Experimental Study: Spatial Data 

In this section, following the previous experiments on spatio-temporal trajectory data, we present a 

series of experiments using synthetic and real spatial data so as reveal all the details of the proposed 

model, over datasets with medium cardinality (nevertheless, significantly greater than the one of the 

experimental study of spatio-temporal data), as well as the efficiency of the proposed solutions. 

Concisely, the objectives of the experimental study that follows are to:  

• demonstrate the accuracy of the simple analytical model (Eq.(5.1) and Eq.(5.13)), as well as 

its sensitivity with respect to the involved parameters, i.e., the uncertainty radius, or standard 

deviation, and the length of the query perimeter.  

• show the quality of the approximation of normally distributed location uncertainty by 2d-

UDD utilizing the model supported by Eq.(5.27) and Eq.(5.32)  

• present the accuracy of the estimation provided by the analytical models – Eq.(5.43), 

Eq.(5.44), Eq.(5.47), and Eq.(5.48) – over real spatial data utilizing histograms and also 

demonstrate their advantage to the alternative of utilizing the histogram as a local density 

estimator using Eq.(5.41),  
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• show how the proposal of this chapter can be used in the context of spatial data warehouses, 

and, 

• reveal the efficiency of the provided solutions implemented on top of a commercial SDBMS. 

5.6.1. Experimental Setup 

The experimental study of this section over spatial data is based on both synthetic and real point 

datasets. Specifically, the employed datasets are as follows: a synthetic dataset (Rnd0) of 100K 2D 

points randomly distributed in the unit data space as well as two real datasets, namely, the North East 

(NE) and the Digital Chart of the World (DCW) datasets, illustrated in Figure 5.11(a) and (b), 

respectively.  

  
(a) (b) 

Figure 5.11: Real datasets: (a) North East and (b) Digital Chart of the World 

Then, as suggested by [BS03], [CZBP06], [GL05], in each dataset point is added noise in a 

controlled way. In particular, the location of each point in all three datasets is modified by adding 

noise, either uniformly distributed inside an uncertainty disk of radius d , producing the respective U-d 

dataset, or following a bivariate normal distribution with standard deviation σ, producing the respective 

N-σ dataset; for each U-d and N-σ dataset, we produced five different datasets that is RndU-d-1, to RndU-

d-5, NEU-d-1 to NEU-d-5, and DCWU-d-1 to DCWU-d-5,  and also the same five datasets for each one of the 

RndN-σ, NEN-σ, DCWN-σ cases. In order also to test the accuracy of our estimations under the settings of 

Section 3.3, we produced the NEN-v0.02 dataset on which we have added noise following the bivariate 

normal distribution with σ varying between 0 and 0.02. Unless otherwise indicated, all 

experimentations involving spatial queries were performed by running 1000 randomly distributed 

square, i.e., with a=b, queries over all five datasets of the respective case; elongated query windows 

reported similar behavior.  All experiments are conducted on a Windows XP workstation with AMD 

Athlon 64 3GHz processor CPU, 1 GB of main memory and several GB of disk space; all evaluated 

methods were implemented on both VB.NET and PostgreSQL 8.2 [Post08a] with the PostGIS 1.2.1 

[Post08b] extension using the PL/PgSQL language.  

5.6.2. Experiments on the Quality 

Following from the experimental study over spatio-temporal data, in this section we also utilize the 

average number of false negatives and false positives, NE  and PE  (Eq.(5.49)), as well as the average 

absolute error in the estimation of false negatives and false positives in each individual query, 
NES  

and PES  (Eq.(5.50)). 
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5.6.2.1. Experiments over Synthetic Data Following all three Original Assumptions AI, AII, 

AIII 

In the first series of experiments the synthetic datasets are utilized in order to demonstrate the accuracy 

and the behavior of the analytical model scaling the two influencing factors as already done in the 

previous section regarding spatio-temporal data. In the first experiment the value of d was scaled 

between 0.05% and 2% of the space extent along the x- and y- axis, querying both Rnd0 and the 

respective Rndu-d dataset, with fixed side length 0.18. The results of this experiment are illustrated in 

Figure 5.12(a); as a first result, the estimations EP(Raµb) and EN(Raµb) are extremely accurate with 

respect to PE and NE , with the error being always below 3%, whereas the error bars in each graph 

column, illustrating 
PES and

NES , are shown to be relatively low. Specifically, the average error in 

individual queries is below 10% in the vast majority of the experimental settings and is up to 29% in a 

single extreme case where the uncertainty radius d is set to its minimum (d = 0.05%). It is therefore 

confirmed the initial intention of the experimental study over spatial datasets, that is, to demonstrate 

that the estimations produced by the proposed analytical model over spatial datasets of medium 

cardinality are much better than the ones produced over datasets of small cardinality (as the ones used 

in the previous section). 

0

50

100

150

200

250

300

350

400

450

500

0.05% 0.50% 1.00% 1.50% 2.00%

Uncertainty radius d 

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

MAY set Estimation

 

0

50

100

150

200

250

300

350

400

0.06 0.12 0.18 0.24 0.30 0.36

Query  Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

MAY set Estimation

 

(a) (b) 

Figure 5.12: Average false negatives / positives and their estimations scaling with (a) d and (b) the 

query size (synthetic data – uniform distribution of uncertainty). 

In the same experiments the methodology provided by [YM03], which estimates the cardinality 

of the MAY set, was also included. As already stated, the MAY set is actual a superset containing, 

among others, the false hits calculated by our analysis; nevertheless, we evaluate the assumption that 

50% of the MAY set are false hits, that is, an object in the MAY set maybe either true or false hit with 

the same probability. However, as illustrated in Figure 5.12 by the MAY set estimation curve, the above 

assumption does not result in correct estimations. It is worth to note, however, that the goal of the 

analysis presented in [YM03] is not to provide the number of false hits the way our analysis does. Our 

assumption regarding the portion of the MAY set encountering false hits, i.e., the 50%, is used due to 

the lack of any other suggestions on this subject included in [YM03]. Moreover, Figure 5.12(a) could 

also lead to the presumption that a simple multiplier on the MAY set estimation, i.e., lowering the 

corresponding curve of Figure 5.12, could force it to produce better results. Still, in order to determine 

this multiplier, it is the methodology provided in the presented analysis that should be followed. 
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Similar results are exposed in the second experiment, illustrated in Figure 5.12(b), where the 

query size is scaled. In particular, the uncertainty radius is set to 0.5%, and the length of the query side 

is scaled between 0.06 and 0.36, resulting in query sizes covering between 0.36% and 12.96% of the 

data space. When comparing the estimation of the number of false negatives and false positives, and 

the respective average values PE  and NE , the reported estimation error is below 1%, regardless of the 

query size. Furthermore, the estimation based on the MAY set cardinality, once again could not yield on 

comparable results; as such, based on the observation that this estimation systematically overestimates 

PE and
NE , it will be excluded from the rest of the experimental study. Regarding the error bars in 

each graph column, illustrating the respective PES  and NES , they are relatively small in the majority 

of the experiments being below 16%; the only case where it reached higher values, i.e., 35%, occurred 

when both σ and the query size were set to their minimum values.  

5.6.2.2. Experiments over Synthetic Data Relaxing Assumption AI 

In order to evaluate the accuracy of the estimation of the number of false positives and false negatives 

calculated by Eq.(5.27), and Eq.(5.32), a similar experimentation was performed with the RndN-σ 

datasets where σ and the query size were scaled. The results of these experiments are illustrated in 

Figure 5.13 and it is clear that the estimation error regarding 
PE  and 

NE  is always below 5%. 

Moreover, the respective error bars, illustrating 
PES and

NES , are shown to be relatively small, being 

usually below 12 %, while reaching 36% only in the case where both d and the length of the query side 

were set to their minimum values.  

0

100

200

300

400

500

600

700

0.05% 0.50% 1.00% 1.50% 2.00%

Standard Deviation σ 

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

 

0

5

10

15

20

25

30

35

0.06 0.12 0.18 0.24 0.30 0.30

Query  Side Length

F
a
ls

e
 P

o
s
it
iv

e
s
 /
 N

e
g
a
ti
v
e
s
(h

it
s
)

False negativ es

False positiv es

Estimation

 
(a) (b) 

Figure 5.13: Average false negatives, positives and estimation scaling (a) with σ and (b) with the query 

size (synthetic data - normal distribution of uncertainty). 

A more detailed presentation of the average estimation error in each individual query 
PES  and 

NES  is illustrated in Figure 5.14(a) and (b), as a percentage of the number of false positives and false 

negatives, respectively. Both figures illustrate that PES and NES  vary from small values, i.e., less than 

10% for high values of σ, to higher ones for very small values of σ. They also depend on the query size, 

increasing as the size decreases. In general, it appears that PES and NES  are essentially ruled by the 

standard deviation σ and, at a smaller extent, on the query size. Furthermore, for small values of σ and 
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small query sizes, while the estimation is still accurate regarding 
PE and

RE  (Figure 5.13(a) and (b), 

respectively), 
PES  and 

NES  increase significantly up to 40%.  
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Figure 5.14: Average estimation error of (a) false positives 
PES and (b) false negatives 

NES , in each 

query, scaling with d and the query size (synthetic data – normal distribution of uncertainty). 

5.6.2.3. Experiments over Real Data Relaxing Assumption AII 

In order to support real, arbitrarily distributed spatial data by employing histograms, the NE dataset 

along with the respective NEN-σ datasets were employed. Subsequently, the MinSkew partitioning of 

each modified dataset was created using a uniform grid of original grid size set to 0.001µ0.001, as 

discussed in [APR99]. The experiments over the NEU-d datasets, i.e., with uniform uncertainty 

distribution, reported similar behavior and thus are omitted. In particular, in order to evaluate the 

accuracy of the analysis of section 5.4.2, i.e., the estimation of false negatives and false positives using 

Eq.(5.44), the NE and NEN-σ datasets were used for experimentation, first scaling σ with query size 

fixed to 0.18µ0.18, and then, scaling the query size with σ fixed to 0.5%.  

Figure 5.15 illustrates the actual and estimated values of false negatives and false positives using 

the above experimental settings. Clearly, the estimations are accurate with the reported error being 

always lower than 6%. Additionally, the average absolute error of the estimation in each individual 

query 
PES and 

NES , which is illustrated in the error bars of Figure 5.15 and, in more detail, in Figure 

5.16(a) and (b), respectively, is considerably small being below 12% in the majority of the 

experimental settings. It is also clear that as the query size increases, 
PES  and 

NES  decrease to values 

lower than 11%. On the other hand, small query sizes lead to increased 
PES  and 

NES  values, between 

12% and 24% regarding query sizes of 0.06µ0.06, nevertheless with smaller error peak than the ones 

reported for random data without the usage of histograms, e.g., the reported 36% in Figure 5.14 vs. 

24% in Figure 5.16. The above observation can be explained by the fact that histograms provide a 

locally more accurate value of the estimated error, than the global formula does over synthetic data, 

since they help the model absorb the local density changes of real, arbitrarily distributed, spatial data. 

Here, is worth to note that the settings of this particular experiment make it directly comparable with 

the one of Section 5.5, i.e., both use histograms in order to achieve better estimations; it becomes 
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therefore clearer that the functionality of the proposed analytical model over datasets of (at least) 

medium cardinality is much better than the ones produced over datasets of small cardinality. 
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(a) (b) 

Figure 5.15: Average false negatives / positives and their estimations scaling with (a) σ and (b) the 

query size (real data – bivariate normal distribution of uncertainty). 

The impact of the analysis in real datasets with the aid of histograms is demonstrated by 

performing a set of experiments over the NE and NEΝ-σ datasets, computing our model by two different 

approaches: (a) producing the local density via Eq.(5.42) and then using it in Eq.(5.27), and, (b) 

directly utilizing Eq.(5.44). In this experiment is set σ = 0.5% and the side of the query window is 

scaled from 0.06 to 0.36. The respective results are illustrated in Figure 5.17(a), which demonstrates 

that although approach (a), labeled as Estimation – Area in Figure 5.17(a), provides an accurate 

average estimation, the obtained values for 
PES  and 

NES  are higher than those produced by approach 

(b), labeled as Estimation in Figure 5.17(a). This confirms that the appropriate use of histograms in our 

model is according to the analysis in Section 5.4.2 by directly employing Eq.(5.44). 
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Figure 5.16: Average estimation error of (a) false positives PES and (b) false negatives NES , in each 

query, scaling with σ and the query size (real data – bivariate normal distribution of uncertainty). 

5.6.2.4. Experiments over Real Data Relaxing Assumption AIII 

In order to demonstrate the high quality estimations obtained when using the augmented histogram 

methodology of Section 5.4.3 (adapted to support spatial datasets), an experiment is performed by 

employing the NE and NEN-v0.02 datasets; as already mentioned, the NEN-v0.02 contain data with variable 

known size of standard deviation σ varying between 0 and 0.02. We then scaled the side of the query 
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window from 0.06 to 0.36. The respective results, illustrated in Figure 5.17(b), show that there is no 

significant difference between this case and the one where σ was set to a constant value (Figure 

5.15(b)) and the estimations of 
PE , 

NE  are again very accurate. Moreover, the obtained values for 

PES  and 
NES , i.e., the error bars, vary between 7% and 14%, while in the case of Figure 5.15(b) the 

respective error varied between 6% and 13%. It is therefore clear that the analysis of Section 5.4.3 

regarding variable uncertainty radiuses is verified to be at least as accurate as the respective analysis of 

Section 5.4.2, which assumes constant uncertainty radius. 
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Figure 5.17: (a) Average false negatives / positives and estimation error in each individual query using 

different model approaches (real data – normal distribution of uncertainty). (b) Average false negatives 

/ positives and their estimations scaling with the query size (real data – bivariate normal distribution of 

uncertainty). 

5.6.2.5. Experiments over Real Data Warehouses 

In order to demonstrate the application of the proposed model in a data cube operation, the DCW and 

DCWN-0,5 datasets were used; the added Gaussian noise in the location of each point has σ equal to 

0.5% of the space extent along the x-axis, since the size of the space is different along the x- and y- 

axis. Then, a uniform 60µ30 grid is applied along the x- and y- axis, as illustrated in Figure 5.11(b), 

forming 1800 buckets overlaying the USA map and counted the number of objects contained inside 

each cell. Subsequently a roll-up operation at the state level is performed, as discussed in Section 0. In 

particular, the estimation of false positives and false negatives were calculated by the MBBs of US 

states as range queries as discussed in Section 5.4.2. Finally, the original datasets were used in order to 

determine the actual number of false positives and false negatives.  

The error between the estimated and the actual number of false hits obtained as the sum of false 

negatives and false positives is illustrated in Figure 5.18(a). Clearly, the error in the majority of the US 

States, is below 25% while the actual weighted average is 16%. Regarding the four outliers, labeled 

with the name of the state in Figure 5.18(a), the high error presented is due to either the tiny size of the 

query polygon, i.e., the Delaware case, verifying the result of a previous experiment that the error 

increases as the query size decreases, or the irregular shape of the query polygon that is not well 

approximated by its MBB, i.e., the California, Florida and Michigan cases, with their shapes illustrated 

in Figure Figure 5.18(b). 
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Figure 5.18: (a) Error between the actual number of false hits and their estimation in the roll-up 

operation from the cell to state level in the USA map, (b) a bad approximation of a state by its MBB 

5.6.3. Experiments on the Efficiency 

The last experimentation performed on the subject involved the performance of the proposed solutions 

using an implementation of the proposed model in the PostgreSQL [Post08a] DBMS along with the 

PostGIS [Post08b] spatial extension. Since the selected DBMS does not natively support MinSkew 

[APR99] spatial histograms, we have extended it towards this direction; moreover, we have included in 

our implementation the augmented histogram proposed in Section 3.3. All methods were implemented 

as functions of the spatial DBMS in the PL/pgSQL language; the developed software is ported in a 

template database.  

Table 5.2: Histogram statistics 

 Dataset # Objects grid size # grid cells # buckets 
Construction 

Execution time (sec) 

Histogram NEN-0.01-1 123K 0.001µ0.001 920K 1K 21 

Augmented 

Histogram 
NEN-v0.02 123K 

0.005µ0.005µ

0.0001 
7078K 1K 29 

 

In the first experiment the NEN-0.01-1 and NEN-v0.02 datasets were utilized and the time required to 

construct the MinSkew and the augmented MinSkew histograms, respectively, was counted; the results 

are shown in Table 5.2. Clearly, the processing time is reasonable given the fact that this is an off-line 

operation, executed only once; then, the constructed histogram buckets are permanently stored in a 

relational table. Here, it is worth to note that since the MinSkew construction algorithm initially 

overlays a regular grid on top of the dataset, being subsequently used instead of the original dataset, the 

time required for constructing a MinSkew histogram does not depend on the dataset size; this is also 

confirmed in the respective experimental study of [APR99]. Therefore, the execution times illustrated 

in Table 5.2 can be considered as representatives, given also the other histogram parameters, i.e., the 

number of buckets and the number of the overlaid grid cells.  

In the second experiment the NEN-0.01-1 dataset and 1000 randomly distributed rectangular queries 

were employed in order to evaluate the average execution time of the function that implements the 

proposed model; the query size was also scaled in a way similar to that in Section 5.6.2 from 0.06µ0.06 
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to 0.36µ0.36. The respective results showed that regardless of the query size, the execution time 

required by the DBMS to estimate the false hits introduced in a query was approximately 16 ms, while 

the time required to process the actual query was 120 ms. Clearly, the proposal of this thesis can be 

employed as an estimator, since its execution time is restrained to a few milliseconds, given also that 

the execution of the actual query typically needs one order of magnitude more time. Moreover, it is 

revealed the expected result that the overhead introduced by the estimator is independent from the 

query size.  

5.7. Conclusions  

In this chapter, we presented a theoretical model that estimates the error introduced by each object’s 

location uncertainty in the results of timeslice spatio-temporal queries, as well as, over simple range 

queries over stationary spatial data. We provided a closed formula of the average number of false hits, 

classified as false positives and false negatives, under three assumptions: uniform location uncertainty 

(following the model proposed by [TWHC04] in order to describe the uncertain position of 

trajectories), uniformly distributed data and constant radius of uncertainty disk. Then, we relaxed these 

assumptions towards more realistic settings, using the bivariate normal distribution over location 

uncertainty and MinSkew histograms for data and radius distributions.  

The accuracy of the proposed model over spatio-temporal trajectory data, as well as over 

stationary spatial data, was evaluated through extensive experimentation using various synthetic and 

real spatio-temporal and spatial datasets. Our model shows high accuracy with an average error on PE  

and 
NE  never exceeding 6% for either random synthetic or real spatio-temporal and stationary spatial 

data; regarding trajectory data, the model showed values of  
PES  and 

NES  near 40%. However, we 

have to stress again that for typical query and uncertainty sizes the formulas of the proposed model 

produce values of false negatives / positives between 0.0004µN and 0.0025µN. It becomes therefore 

clear that the dataset cardinality should be quite large in order to produce a significant number of false 

hits, and this significantly affects the quality of the model’s output.  

Then again, in cases where the cardinality reaches appropriate, i.e, high values, and the random 

dataset case, the estimation of the number of false hits is accurate regardless of the value of the query 

size and the radius d of the uncertainty disk, or σ in the case of data with normally distributed 

uncertainty. Moreover, it has been shown that simple modifications in the single work that is very close 

to the one presented in this thesis [YM03], could not yield to an accurate estimation of the average 

number of false hits. The experiments over real spatial data demonstrate accuracy even higher than the 

one reported for synthetic data, with very low 
PES  and 

NES  errors, indicating the advantage 

introduced by the employment of histograms, even in the case of variable σ. Furthermore, it is verified 

that in the presence of histograms it is much more appropriate to use the model expressed by Eq.(5.43) 

and Eq.(5.44) than using the local density estimated by the histogram via traditional operations, i.e., via 

Eq.(5.41). The results on the application of the proposed model in spatial data cubes and spatial OLAP 

operations are also very promising. Finally, the implementation of the proposed solutions in real-world 
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environments has shown the efficiency of this proposal when employed as an estimator, since its 

execution time is typically only a few milliseconds. 

The applications of our proposal include query optimization under the open agoras scenario 

[Ioa07], interactive database querying, imprecision settings and data warehouse operations, as 

extensively discussed. The proposed model can be directly employed in spatial database systems in 

order to provide users with the accuracy of spatial query results based only on known dataset and query 

features, while off-the-self histograms already employed in spatial databases for query optimization 

purposes, can serve our model without the need for any additional adjustments.  
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6. Managing the Effect of Trajectory 

Compression in Spatio-temporal Querying 

The purpose of this chapter is to provide an analysis on the effect of trajectory compression in spatio-

temporal querying. The chapter is structured as follows. Section 6.1 introduces basic notions on 

trajectory compression. Related work is discussed in Section 6.2. Section 6.3 constitutes the core of the 

chapter presenting our theoretical analysis. Section 6.4 presents the results of our experimental study, 

while Section 6.5 provides the conclusions of the chapter. 

6.1. Introduction 

Existing work in Moving Object Databases (MOD), repeatedly addresses that the ever-present 

positioning devices will eventually start to generate an unprecedented data stream of time-stamped 

positions. During the last decade the database community continuously contributes on developing 

novel indexing schemes [AG05], [PJT00], [TP01] and dedicated query processing techniques, in order 

to handle this excessive amount of data produced by the ubiquitous location-aware devices. However, 

sooner or later, such enormous volumes of data will lead to storage and computation challenges. Hence 

the need for trajectory compression techniques arises.  

The objectives for trajectory compression are [MB04]: to obtain a lasting reduction in data size, 

to obtain a data series that still allows various computations at acceptable (low) complexity, and finally, 

to obtain a data series with known, small margins of error, which are preferably parametrically 

adjustable. As a consequence, our interest is in lossy compression techniques which eliminate some 

redundant or unnecessary information under well-defined error bounds. However, existing work in this 

domain [CWT03], [MB04], [PPS06], [PPS06a], [PPS07] is mainly guided by advances in the field of 

line simplification, cartographic generalization and time series compression.  

Especially on the subject of the error introduced on the produced data by such compression 

techniques, the single related work [MB04] provides a formula for estimating the mean error of the 

approximated trajectory in terms of distance from the original data stream. On the other hand, in this 

chapter, we argue that instead of providing a user of a MOD with the mean error in the position of each 

(compressed) object at each timestamp (which can be also seen as the data (im)precision), he/she 

would rather prefer to be informed about the mean error introduced in query results over compressed 

data. The challenge thus accepted in this chapter is to provide a theoretical model that estimates the 
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error due to compression in the results of spatio-temporal queries. To the best of our knowledge, this is 

the first analytical model on the effect of compression in query results over trajectory databases.  

Outlining the major issues that will be addressed in this chapter, our main contributions are 

summarized as follows: 

• We describe two types of errors (namely, false negatives and false positives) when executing 

timeslice queries over compressed trajectories, and we prove a lemma that estimates the 

average number of the above error types. It is proved that the average number of the false hits 

of both error types depends on the Synchronous Euclidean Distance [CWT03], [MB04], 

[PPS06] along the x- and y- axes between the original and the compressed trajectory, and the 

perimeter (rather than the area) of the query window. 

• We show how the cost of evaluating the developed formula can be reduced to a small 

overhead over the employed compression algorithm, while we discuss how the developed 

analytical model helps to provide more effective compression algorithms.  

• Finally, we conduct a comprehensive set of experiments over synthetic and real trajectory 

datasets demonstrating the applicability, correctness and accuracy of our analysis. 

The model described in this chapter can be employed in MODs so as to estimate the average 

number of false hits in query results when trajectory data are compressed. For example, it could be 

utilized right after the compression of a trajectory dataset in order to provide the user with the average 

error introduced in the results of spatio-temporal queries of several sizes; it could be therefore exploited 

as an additional criterion for the user in order to decide whether compressed data are suitable for 

his/her needs, and possibly decide on different compression rates, and so on. Moreover, it could be 

utilized as to improve the efficiency of the proposed trajectory compression algorithms; given that a 

model of this kind would expose the actual measures on which the error is depended, it could 

subsequently provide intuitive directions towards the employment of more sophisticated / efficient 

solutions. 

6.2. Background 

In this section we firstly deal with the techniques introduced for compressing trajectories during the last 

few years, while, we subsequently examine the related work in the field of estimating and handling the 

error introduced by such compression techniques. 

6.2.1. Compressing Trajectories 

As already mentioned, existing work in trajectory compression is mainly guided by related work in the 

field of line simplification and time series compression. Meratnia and By [MB04] exploit existing 

algorithms used in the line generalization field, presenting one top-down and one opening window 

algorithm, which can be directly applied to spatio-temporal trajectories. The top-down algorithm, 

named TD-TR, is based on the well known Douglas-Peucker [DP73] algorithm (Figure 6.1) introduced 

by geographers in cartography. This algorithm calculates the perpendicular distance of each internal 

point from the line connecting the first and the last point of the polyline (line AB in Figure 6.1) and 

finds the point with the greatest perpendicular distance (point C). Then, it creates lines AC and CB and, 

recursively, checks these new lines against the remaining points with the same method, and so on. 
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When the distance of all remaining points from the currently examined line is less than a given 

threshold (e.g., all the points following C against line BC in Figure 6.1) the algorithm stops and returns 

this line segment as part of the new - compressed - polyline. Being aware of the fact that trajectories 

are polylines evolving in time, the algorithm presented in [MB04] replaces the perpendicular distance 

used in the DP algorithm with the so-called Synchronous Euclidean Distance (SED), also discussed in 

[CWT03], [PPS06], which is the distance between the currently examined point (Pi in Figure 6.2) and 

the point of the line (Ps, Pe) where the moving object would lie, supposed it was moving on this line, at 

time instance ti determined by the point under examination (Pi' in Figure 6.2).  

A 

B 

 

C 

 

Figure 6.1: Top-down Douglas-Peucker algorithm used for trajectory Compression. Original data 

points are represented by closed circles [MB04] 

Ps(xs,ys,ts) 

Pe(xe,ye,te) 

Pi(xi,yi,ti) 

Pi’(xi’,yi’,ti) 

 

Figure 6.2: The Synchronous Euclidean Distance (SED): The distance is calculated between the point 

under examination (Pi) and the point Pi’ which is determined as the point on the line (Ps, Pe) the time 

instance ti [MB04] 

The time complexity of the original Douglas-Peucker algorithm (which the TD-TR algorithm is 

based on) is O(N2), with N being the number of the original data points, while it can be reduced to 

O(NlogN) by applying the proposal presented in [HS92]. Although the experimental study presented in 

[MB04] shows that the TD-TR algorithm is significantly better than the opening window (presented 

later in this section) in terms of both quality and compression (since it globally optimizes the 

compression process), the TD-TR algorithm has the disadvantage that it is not an on-line algorithm 

and, therefore, it is not applicable to newcoming trajectory portions as soon as they feed a MOD. On 

the contrary, it requires the a priori knowledge of the entire moving object trajectory.  

On the other hand, under the previously described conditions of on-line operation, the opening 

window (OW) class of algorithms can be easily applied. These algorithms start by anchoring the first 

trajectory point, and attempt to approximate the subsequent data points with one gradually longer 

segment (Figure 6.3). As long as all distances of the subsequent data points from the segment are below 

the distance threshold, an attempt is made to move the segment's end point one position up in the data 

series. When the threshold is going to exceed, two strategies can be applied: either the point causing the 

violation (Normal Opening Window, NOPW) or the point just before it (Before Opening Window, 
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BOPW) becomes the end point of the current segment, as well as the anchor of the next segment. If the 

threshold is not exceeded, the float is moved one position up in the data series (i.e., the window opens 

further) and the algorithm continues until the last point of the trajectory is found; then the whole 

trajectory is transformed into a linear approximation. While in the original OW class of algorithms 

each distance is calculated from the point perpendicularly to the segment under examination, in the 

OPW-TR algorithm presented in [MB04] the SED is evaluated. Although OW algorithms are 

computationally expensive - since their time complexity is O(N2) - they turned out to be very popular. 

This is because, they work online, and they can work reasonably well in presence of noise (though only 

for relatively short data series). 
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C 

  

Figure 6.3: Opening Window algorithm used for trajectory Compression. Original data points are 

represented by closed circles [MB04] 

Recently, Potamias et al. [PPS06] proposed several techniques based on uniform and spatio-

temporal sampling to compress trajectory streams, under different memory availability settings: fixed 

memory, logarithmically or linearly increasing memory, or memory not known in advance. Their major 

contributions are two compression algorithms, namely, the STTrace and Thresholds. The STTrace 

algorithm, utilizes a constant, for each trajectory, amount of memory M. It starts by inserting in the 

allocated memory the first M recorded positions, along with each position's SED with respect to its 

predecessor and successor in the sample. As soon as the allocated memory gets exhausted and a new 

point is examined for possible insertion, the sample is searched for the item with the lowest SED, 

which represents the least possible loss of information in case it gets discarded. In the sequel, the 

algorithm checks whether the inserted point has SED larger than the minimum one found already in the 

sample and, if yes, the currently processed point is inserted into the sample at the expense of the point 

with the lowest SED. Finally, the SED attributes of the neighboring points of the removed one are 

recalculated, whereas a search is triggered in the sample for the new minimum SED. The proposed 

algorithm may be easily applied in the multiple trajectory case, by simply calculating a global 

minimum SED of all the trajectories stored inside the allocated memory. 

It notably arises from the previous discussion that the vast majority of the proposed trajectory 

compression algorithms base their decision on whether keeping or discarding a point of the original 

trajectory on the value of SED between the original and the compressed trajectory at this particular 

timestamp. Consequently, a method for calculating the effect of compression in spatio-temporal 

querying based on the value of SED along the original trajectory data points, would not introduce a 

considerable overhead in the compression algorithm, since it would require only performing additional 

operations inside the same algorithm.  
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6.2.2. Related Work on Error Estimation 

To the best of our knowledge, a theoretical study on modeling the error introduced in spatio-temporal 

query results due to the compression of trajectories is lacking; our work is the first on this topic 

covering the case of the spatio-temporal timeslice queries. Nevertheless, there are two related subjects: 

The first is the determination of the error introduced directly in each trajectory by the compression 

[MB04], being the average value of the SED between a trajectory p and its approximation q (also 

termed as synchronous error E(q, p)). [MB04] provide a method for calculating this average value as a 

function of the distance between p and q along each sampled point. The outcome of this analysis turns 

to a costly formula, which provides the average error (i.e., mean distance between p and q along their 

lifetime); however, there is no obvious way on how to use it in order to determine the error introduced 

in query results.  

The second related subject is the work conducted on the context of trajectory uncertainty 

management, such as [CKP04], [PJ99], [Tra03], [TWHC04]. This is due to the fact that the error 

introduced by compression can also be seen as uncertainty, and thus related techniques may be applied 

in the resulted dataset (e.g., probabilistic queries); as such the work presented in the previous chapter 

could be employed towards our goal. However, such methodology cannot be directly used in the 

presence of compressed trajectory data, since the task of determining the statistical distribution of the 

location of the compressed trajectory using information from the original one, is by itself a very 

complex task.  

On the other hand, our approach is based only on the fact that the compression algorithm exploits 

the SED in each original trajectory data point and thus, introduces a very small overhead on the 

compression algorithm. 

6.3. Analysis 

The core of our analysis is a lemma that provides the formula used to estimate the average number of 

false hits per query when executed over a compressed trajectory dataset. In this chapter, we also focus 

on timeslice queries, which can be used to retrieve the positions of moving objects at a given time point 

in the past and can be seen as a special case of spatio-temporal range queries, with their temporal extent 

set to zero. This type of query can also be seen as the combination of a spatial (i.e., query window W) 

and a temporal (i.e., timestamp t) component. As it will be discussed in Chapter 7, the extension of our 

model to support range queries with non-zero temporal extent is by no means trivial and is left as future 

work. 

It is important to mention that our model supports arbitrarily distributed trajectory data without 

concerning about their characteristics (e.g., sampling rate, velocity, heading, agility). Therefore, it can 

be directly employed in MODs without further modifications. The single assumption we make is that 

timeslice query windows are uniformly distributed inside the data space. Should this assumption be 

relaxed, one should mathematically model the query distribution using a probability distribution and 

modify the following analysis, accordingly. Table 6.1 summarizes the notations used in the rest of the 

chapter. 
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Table 6.1: Table of notations 

Notation Description  

S, †
T ,T The unit space, a trajectory dataset and its compressed counterpart. 
†

iT , Ti an original trajectory and its compressed counterpart. 

R, Raµb, Wj 
the set of all timeslice queries over S, its subset with sides of length a and b across the 

x- and y- axes, and a timeslice query window. 

n, mi 
the cardinality of dataset T and the number of sampled points inside trajectory †

iT . 

SEDi(t),  

δxi(t), δyi(t) 

the function of the Synchronous Euclidean Distance (SED) between trajectory †
iT and 

its compressed counterpart Ti, and its projections along the x- and y- axes. 

ti,k, SEDi,k, 

 δxi,k , δyi,k 

the k-th timestamp on which trajectory †
iT sampled its position, its Synchronous 

Euclidean Distance from its compressed counterpart Ti at the same timestamp, and its 

projection along the x- and y- axes  

Ai,j 
the area inside which the lower-left corner of Wj has to be found at timestamp tj in 

order for it to retrieve trajectory Ti as false negative (or false positive). 

AvgPi,N(Raµb), 

AvgPi,P(Raµb) 

the average probability of all timeslice queries Wj œ Raµb, to retrieve Ti as false 

negative (or false positives). 

EN(Raµb), EP(Raµb) 
the average number of false negatives (or false positives) in the results of a query Wj œ 

Raµb. 
 

Let us consider the unit 3D (i.e., 2D spatial and 1D temporal) space S containing a set †
T of n 

trajectories †
iT  and a set T with their compressed counterparts Ti. Let also R be the set of all timeslice 

queries posed against datasets †
T  and T, and Raµb be the subset of R containing all timeslice queries 

having sides of length a and b along the x- and y- axis respectively. Two types of errors are introduced 

when executing a timeslice query WjœR over a dataset with the previously described settings:  

• false negatives are the trajectories which originally qualified the query but their compressed 

counterparts were not retrieved; formally, the set of false negatives 
NT T⊆  is defined as 

{ }†: |N i i j i jT T T T W T W= ∈ ∉ ∈ ; 

• false positives are the compressed trajectories retrieved by the query while their original 

counterparts are not qualifying it; formally, the set of false positives PT T⊆  is defined as 

{ }†: |P i i j i jT T T T W T W= ∈ ∈ ∉ .   

 t 
y 

x 

T2 
 

  †
2T  

  †
1T  

T1 
 

†
3T  

W 

 

Figure 6.4: Problem setting 

Consider for example Figure 6.4 illustrating a set of n uncompressed trajectories †
iT , along with 

their compressed counterparts Ti. Each uncompressed trajectory †
iT  is composed by a set of mi time-
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stamped points, applying linear interpolation in-between them. Figure 6.4 also illustrates a timeslice 

query W; though W retrieves the compressed trajectory T1, its original counterpart †
1T  does not intersect 

the query window, encountering a false positive. Conversely, though the original trajectory †
2T  

intersects W, its compressed counterpart T2 is not present in the query results, forming a false negative. 

Having described the framework of our work, we state the following lemma 

Lemma 6.1: The average number of false negatives EN(Raµb) and false positives EP(Raµb) in the results 

of a timeslice query Wj œ Raµb with sides of length a and b along the x- and y- axis, respectively, over a 

compressed trajectory dataset is given by the following formula: 

( ) ( )
( ) ( ) ( )1

, , 1 , , 1, 1 ,

1 1 (1 ) (1 ) 2 2 6

imn
i k i k i k i ki k i k

N a b P a b

i k

b x x a y yt t e
E R E R

a b

δ δ δ δ−
+ ++

× ×
= =

 + +−
 = = ⋅ + −
 + ⋅ +
 

∑∑  (6.1) 

where n is the cardinality of the dataset, mi the number of sampled points inside trajectory Ti, δxi,k and 

δyi,k the projection of the synchronous euclidean distance vector between the original trajectory Ti and 

its compressed counterpart at timestamp tk along the x- and y- axes, and , ,2 i k i ke x yδ δ= +  

, 1 , 1 , , 1 , 1 ,2 i k i k i k i k i k i kx y x y x yδ δ δ δ δ δ+ + + ++ + . 

Eq.(6.1) formulates the fact that the average error in the results of a timeslice query over 

compressed trajectory data is directly related to the weighted average SED along the x- and y- axis 

(i.e., ( ), 1 ,i k i kt t+ −  multiplied by , , 1i k i kx xδ δ ++ or , , 1i k i ky yδ δ ++ ) multiplied by the respective 

opposite query dimension (i.e., ( ), , 1i k i kb x xδ δ ++  and ( ), , 1i k i ka y yδ δ ++ ), while e is a sum of minor 

importance, since it is the sum of the products between pairs of , , 1 , , 1, , ,i k i k i k i kx x y yδ δ δ δ+ + . 

6.3.1. Proof of Lemma 6.1 

The average number EN(Raµb) of trajectories being false negatives in the results of a timeslice query Wj 

œ Raµb, can be obtained by summing up the probabilities ( )†|i j i jP T W T W∉ ∈ of all dataset trajectories 

Ti (i=1,…,n) to be false negative regarding an arbitrary timeslice query window Wj œ Raµb: 

( ) ( ),
1

n

N a b i N a b

i

E R AvgP R× ×
=

=∑  (6.2) 

Similarly, the average number EP(Raµb) of trajectories being false positives can be calculated by the 

following formula: 

( ) ( ),
1

n

P a b i P a b

i

E R AvgP R× ×
=

=∑  (6.3) 

Hence, our target is to determine AvgPi,N(Raµb) and AvgPi,P(Raµb). Towards this goal, we formulate the 

probability of a random trajectory being false negative (or false positive), regarding an arbitrary 

timeslice query window Wj œ Raµb invoked at timestamp tj (i.e., †|i j i jT W T W∉ ∈ , and †|i j i jT W T W∈ ∉ , 

respectively). As also illustrated in Figure 6.5(b), the intersection of trajectories Ti, 
†

iT with the plane 

determined by the temporal component of Wj (i.e., timestamp tj) will be demonstrated as two points 

(points pi,j and †
,i jp , respectively, in Figure 6.5(b)) having in-between them, distance δxi,j and δyi,j along 

the x- and y- axis, respectively.  
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Figure 6.5: The intersection of a trajectory †
iT and its compressed counterpart Ti, with the plane of a 

timeslice query at timestamp tj.  

In order to calculate the quantity of timeslice query windows that would retrieve trajectory Ti as a false 

negative (false positive) at timestamp tj, we need to distinguish among four cases regarding the signs of 

δxi,j and δyi,j as demonstrated in Figure 6.6 (Figure 6.7, respectively). The shaded (with sided stripes) 

region in all four cases illustrate the area inside which the lower-left query window corner has to be 

found in order for it to retrieve trajectory Ti as false negative (or false positive, respectively). However, 

as can be easily derived from these figures, the area of the shaded region in all four cases, is equal for 

both false negatives and false positives, and can be calculated by the following equation: 

( ) ( ), , ,i j i j i j
A a b a x b yδ δ= ⋅ − − ⋅ −  (6.4) 
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Figure 6.6: Regions inside which the lower-left query window corner has to be found in order to 

retrieve trajectory Ti as false negative 
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Figure 6.7: Regions inside which the lower-left query window corner has to be found in order to 

retrieve trajectory Ti as false positive 

Given that Wj is valid when it is (either partially or totally) found inside the unit space, the lower-left 

query window corner must be found inside a space region of area equal to ( ) ( )1 1a b+ ⋅ + . Then, the 

probability of trajectory Ti to be retrieved as a false negative or false positive at timestamp tj is: 
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Given also our assumption regarding the distribution of query windows, the average probability of a 

trajectory Ti to be false negative regarding an arbitrary query window Wj œ Raµb at any timestamp can 

be obtained by integrating Eq.(6.5) over all timestamps inside the unit space. 

Since ( )†|i j i jP T W T W∉ ∈ =  ( )†|i j i jP T W T W∈ ∉ , it follows that: 
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However, given that each original trajectory Ti is a set of mi sampled points applying linear 

interpolation in between them, Eq.(6.6) is transformed as follows: 
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and δxi,j and δyi,j can be trivially formulated as single functions of t when , , 1i k i kt t t +≤ ≤ , between 

sampled points: 
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Substituting Eq.(6.8), Eq.(6.9) and Eq.(6.5) into Eq.(6.7) and performing the necessary calculations we 

result in the following formula:  

( ) ( )

( )
( ) ( )

, ,

, , 1 , , 1

1
, 1 ,

1
, , , 1 , 1 , , 1 , 1 ,

2 2
(1 ) (1 ) 2 2

6

i

i N a b i P a b

i k i k i k i k

m
i k i k

k
i k i k i k i k i k i k i k i k

AvgP R AvgP R

b x x a y y

t t

a b x y x y x y x y

δ δ δ δ

δ δ δ δ δ δ δ δ

× ×

+ +
−

+

= + + + +

= =

 + +
 + −−  ⋅ + ⋅ + + + + 
 
 

∑
 (6.10) 

Finally, by substituting Eq.(6.10)  into Eq.(6.2) and defining  

, ,2 i k i ke x yδ δ= + , 1 , 1 , , 12 i k i k i k i kx y x yδ δ δ δ+ + ++ +  , 1 ,i k i kx yδ δ++  (6.11) 

we haven proven Lemma 6.1. � 

6.3.2. Discussion on Lemma 6.1 

Eq.(6.1), the main result of Lemma 6.1, can be straightforwardly used to estimate the average number 

of false negatives and false positives for timeslice query windows with known size along the x- and y- 

axes (a and b, respectively). It notably arises from this formula that the average number of false 

negatives in the results of a timeslice query is equal to the respective average number of false positives, 

while their values depend mainly on the perimeter of the query window (a+b), rather than its area 

( a b⋅ ). However, it should be explicitly mentioned that Lemma 6.1 holds in the case of uniformly 

distributed query windows only; as such, the estimated average number of false negatives and false 

positives serves as a metric estimating data loss due to compression, rather than providing an accurate 

result regarding individual queries. 
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Another interesting result is that the error introduced in query results due to trajectory 

compression depends on the absolute values of ,i kxδ  and ,i kyδ  rather than their squares, i.e., 2
,i kxδ  

and 2
,i kyδ .  This is not an expected result; as such, it gives rise to the following discussion. In 

particular, Eq.(6.1) states that the minimization of the error introduced in timeslice query results over 

compressed trajectories occurs when minimizing , ,i k i kx yδ δ+ , instead of the Synchronous Euclidean 

Distance (SED), which is considered as the optimization criterion in the majority of the existing 

trajectory compression algorithms. It is therefore expected that the employment of , ,i k i kx yδ δ+  

instead of SED as the minimization criterion in the trajectory compression algorithms, will lead to 

simplified trajectories that result in smaller values of error introduced in timeslice query results. 

Obviously, the evaluation of Eq.(6.1) is a costly operation; given that it involves a double sum, 

its time complexity is O(nÿm) where n is the number of trajectories and m is the (average) number of 

sampled points per trajectory. In other words, since Eq.(6.1) includes the calculation of δxi,k, δyi,k, 

between each tuple of the initial and compressed trajectories on each timestamp the trajectory was 

originally sampled, it requires to process the entire original dataset along with its compressed 

counterpart. On the other hand, as already mentioned in Section 6.2, the vast majority of the proposed 

trajectory compression algorithms base their decision about the point of the original trajectory data to 

eliminate, on the value of the SED; however, since ( ) ( ) ( )2 2

i i i
SED t x t y tδ δ= + , the respective 

algorithm should first evaluate ( )ix tδ  and ( )iy tδ  at timestamps ti,k producing thus, ,i kxδ and ,i kyδ , 

respectively. Consequently, any trajectory compression algorithm using SED as the criterion to decide 

which trajectory points to eliminate, also calculates ,i kxδ and ,i kyδ . As such, Eq.(6.1) can be calculated 

during the algorithm’s execution, adding very small overhead in the original algorithm; the above 

observation is further confirmed in our experimental study presented in the next section. 

Moreover, since Eq.(6.1) involves the query dimensions a and b, it follows that different values 

of a and b will lead to different calculations for the average error. However, such an approach (i.e., 

evaluating Eq.(6.1) from the beginning for every different query size), would lead to high computation 

cost since it would also require O(nÿm) time. In order to overcome this drawback, Eq.(6.1) can be 

rewritten as follows: 

( ) ( )
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Therefore, in the case where the average error needs to be determined for a variety of query sizes (i.e., 

different sizes of a and b), rather than directly calculating Eq.(6.1) for each different query size, the 
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three factors A, B and C could be calculated first, and be subsequently employed in Eq.(6.12); an 

approach which dramatically reduces the computation cost to O(1) time. 

6.4. Experimental Study 

In this section, we present several sets of experiments using synthetic and real trajectory datasets. The 

goal of our experimental study is two-fold:  

• first, to present the overhead introduced in the execution of a compression algorithm when 

calculating during its execution the values of A, B and C factors introduced in Eq.(6.12), and, 

• second, to present the accuracy of the estimation provided by our analytical model regarding 

the number of false negatives and false positives over synthetic and real trajectory datasets. 

6.4.1. Experimental Setup 

Once more, we experimented with the real-world datasets used for experimentation purposes in this 

thesis, the fleet of trucks (cf. section 0). We have also used the synthetic dataset NG 2000 (cf. section 

1.5.3). All the datasets where normalized in [0,1] space. In order to test the accuracy of our model and 

produce compressed datasets, we implemented the TD-TR algorithm proposed by [MB04]. Then we 

executed it over all the above datasets, varying its threshold between 0.001 and 0.02 of the total space, 

thus producing the respective compressed datasets. Finally, we used the original and compressed 

datasets and created several 3D R-trees [TVS96] in order to accelerate the querying process used when 

performing experiments on the quality. Table 6.2 illustrates summary information about the (original 

and compressed) datasets used. The experiments were performed in a PC running Microsoft Windows 

XP with AMD Athlon 64 3GHz processor, 1 GB RAM and several GB of disk size.  

Table 6.2: Summary Dataset Information  

Original Datasets Compressed Datasets (#entries) 

TD-TR threshold value  
#trajectories # entries 

0.001 0.005 0.010 0.015 0.020 

Trucks 273 112,203 62,067 20,935 12,636 9,274 7,571 

Synthetic 2,000 800,000 229,167 120,437 88,565 74,638 65,410 
 

6.4.2. Experiments on the Performance 

In order to demonstrate the applicability of our proposal in trajectory data and estimate the overhead 

introduced in a trajectory compression algorithm when calculating the values of A, B and C factors 

introduced in Eq.(6.12), we first ran the TD-TR compression algorithm over the real data and measured 

the average execution time required for each trajectory, scaling also the threshold of the algorithm. We 

then modified the algorithm in order to calculate the model parameters (i.e., the values of A, B and C in 

Eq.(6.12) within its execution and also ran it against the same dataset with the same parameters. The 

respective results are illustrated in Figure 6.8. 

In particular, Figure 6.8(a) and Figure 6.8(b) illustrate the execution time of the TD-TR 

algorithm per compressed trajectory (in milliseconds), with and without the evaluation of the model 

parameters, against the trucks, and the synthetic datasets, respectively. A first conclusion is that the 

execution time of the algorithm is reduced as the value of the TD-TR threshold increases; this is an 
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expected result, since typically, the number of the algorithm iterations increase, as the value of the 

threshold degreases. However, the main result gathered from Figure 6.8 is that the overhead introduced  

is typically small (i.e., the difference between the two bars). In all cases, the overhead introduced in the 

algorithm is between 7% and 19% of the originally required execution time; furthermore, in absolute 

times, the overhead introduced never exceeds 0.2 milliseconds per trajectory. As a consequence, the 

discussion presented in Section 3.2 is further confirmed, and our model can be evaluated as an 

extension of the compression algorithm’s execution, introducing a small, perhaps negligible, overhead. 
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Figure 6.8: Execution time for the TD-TR algorithm with and without the calculation of the model 

parameters over (a) the trucks, and, (b) the synthetic datasets, scaling the value of the TD-TR threshold. 

6.4.3. Experiments on the Quality 

The statistical measure employed in order to demonstrate the quality of our estimation, are the reported 

average number of false negatives and false positives, NE and PE , respectively. Formally, these 

measures are defined as:   

,
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where n is the number of executed queries and EN,i (EP,i) the actual number of false negatives (false 

positives, respectively) in the i-th query. In the next experiments, n is set to 10000 timeslice queries.  
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Figure 6.9: Accuracy of the model scaling the value of the TD-TR threshold over (a) the trucks, and, 

(b) the synthetic datasets 
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Our first set of experiments was performed over both the real and the synthetic datasets. 

Specifically, we executed 10,000 square timeslice queries of 0.10µ0.10 size (i.e., covering 1% of unit 

space) randomly distributed inside the unit space, over both the original and the compressed datasets, 

and then, utilizing the results of each particular query over the two datasets, we counted the actual 

number of false negatives and false positives, EN,i and EP,i, respectively. Figure 6.9 that follows 

illustrates the results of this experiment scaling the value of the compression threshold over the trucks 

and the synthetic dataset. A first conclusion is that the average number of false hits (negatives and 

positives) is linear with the value of the TD-TR compression threshold. Moreover, the 

estimations,
NE and

PE , of our model are very close to the actual values of average false negatives and 

false positives reported by the experiments, regardless of the value of the compression threshold. In 

particular, the average error in the estimation for the synthetic dataset is around 6%, varying between 

0.2% and 14%; regarding the trucks dataset, the average error raises up to 10.6%, mainly due to the 

error introduced in small values of TD-TR threshold. 
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Figure 6.10: Accuracy of the model scaling the rectangular query size over (a) the trucks, and, (b) the 

synthetic datasets 

In our second experiment we used the same experimental settings (i.e., datasets, number of 

queries), but we fixed the TD-TR threshold to 0.01 and scaled the size of the timeslice query window 

between 0.05µ0.05 and 0.30µ0.30 (resulting in 0.25% and 9% of unit space, respectively). The 

corresponding results are illustrated in Figure 6.10(a) and Figure 6.10(b) against the trucks and the 

synthetic datasets, respectively. Again, it is clear that our model is highly accurate, producing estimates 

NE and
PE  with errors for the synthetic dataset between 0.2% and 8.7% and the average being around 

2.9% (while the respective average error for the trucks dataset is 7.5%.) Another notable conclusion is 

that the average number of false positives and false negatives are sub-linear with the query size; an 

expected result gathered directly from the way that Eq.(6.12) involves the lengths a and b of the query 

sides. 

In the last experiment we verified the effect of using non-square timeslice queries (i.e., a∫b) over 

the synthetic datasets (while the experiments with the trucks dataset produced similar results). 

Specifically, we used timeslice query windows with sizes varying from 0.05µ0.30 (where a<<b) to 

0.30µ0.30 (where a=b); we also scaled the query size towards the other direction (from 0.30µ0.05 to 
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0.30µ0.30). The results of this experiment, illustrated in Figure 6.11(a) and (b) respectively, resulted in 

similar outcomes as the ones presented in the previous paragraph regarding square (i.e, a=b) timeslice 

queries. Specifically, our model is once again very accurate, producing estimates with error between 

0.6% and 7.2%, while the average error is 3.5%.  
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Figure 6.11: Accuracy of the model scaling the non-rectangular query size towards (a) the x- axis, and 

(b) the y- axis, against the synthetic datasets. 

6.5. Conclusions 

Related work on the subject of trajectory compression has focused on the development of compression 

algorithms, also emphasizing on the error introduced in the position of each object from the 

compression. In this work, acknowledging that users are more likely concerned about the error 

introduced by the compression in spatio-temporal query results, we presented the first theoretical 

model that estimates this error in the results of timeslice queries. We provided a closed formula of the 

average number of false hits (false negatives and false positives) covering the case of arbitrarily 

distributed trajectory data with various speeds, headings etc. Under various synthetic and real trajectory 

datasets, we first illustrated the applicability of our model under real-life requirements – it turns out 

that the estimation of the model parameters introduce only a small overhead in the trajectory 

compression algorithm - and then presented the accuracy of our estimations, with an average error 

being around 6%.  
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7. Epilogue 

7.1. Conclusions 

In this thesis we have presented several techniques to support the efficient management of Trajectory 

Databases. Specifically, we provided effective mechanisms that allow Moving Object Databases to 

efficiently store and query historical trajectories, advancing the fields of indexing, query processing, 

supporting of uncertainty and trajectory compression. Next, we discuss the specific contributions of 

this thesis. 

In Chapter 2, we provided two novel indexing techniques; among them, the first advances an 

existing solution while the second exploits network-constrained movement so as to outperform general 

solutions. Specifically, on the case where objects move freely in the space, acknowledging the basic 

advantages of the TB-tree [PJT00], we proceed one step beyond by proposing a novel index, called 

TB*-tree. The proposed index overcomes the main disadvantages of its predecessor while at the same 

time preserving all of its ‘desired’ properties: it supports trajectory insertions and deletions, trajectory 

compression, while querying is performed by employing the same algorithms provided in [PJT00]. In 

the second case of network-constrained objects, we provide the Fixed Network R-tree, which is forest 

of several 1D (1D) R-trees  [Gut84] on top of a single 2D (2D) R-tree  [Gut84]. The 2D R-tree is used 

to index the spatial data of the network graph, while the 1D R-trees are used to index the time interval 

of each object’s movement on a given segment of the network. Additionally, the leaf nodes of all the 

1D R-trees are indexed by another 1D R-tree used to answer queries with no spatial extent. We 

experimentally compared the FNR-tree with the TB*-tree and the traditional 3D R-tree [TVS96] and 

TB-tree [PJT00]. Under various datasets and range queries, the FNR-tree was shown to outperform all 

its competitors in the vast majority of settings. The FNR-tree has high space utilization, smaller size 

per moving object and supports range queries much more efficiently. In general, we argue that the 

FNR-tree is an access method ideal for fleet management applications. However, the FNR-tree may 

only be used under the network-constrained scenario; when objects are moving freely in the space, the 

TB*-tree is shown to outperform the original TB-tree in the vast majority of settings, regarding 

insertion and querying operations. Moreover, the TB*-tree is more compact than its competitors, 

behaves well in non-chronological trajectory insertions that appear in real-world environments, and 

supports trajectory deletions and trajectory compression efficiently. 

In Chapter 3, we studied the problem of performing nearest neighbor queries over historical 

trajectories. Related work on this subject so far, mainly deals with either stationary or moving query 
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points over static datasets or future (predicted) locations over a set of continuously moving points. In 

contrast, in this thesis, we presented the first complete treatment of historical NN queries over moving 

object trajectories stored on R-tree-like structures; as such, the presented solutions may be applied to a 

variety of indexes, such as the 3D R-tree [TVS96], the TB-tree [PJT00], as well as the novel TB*-tree. 

We provide a set of novel metrics, and advance existing work in the calculation of the well-known 

MINDIST metric between line segments and rectangles. The metrics support our ordering and pruning 

strategies which are subsequently employed in a set of algorithms answering nearest neighbor and 

historical continuous nearest neighbor queries for stationary or moving query points. The presented 

algorithms, following both depth-first [RKV95] and best-first [HS99] paradigms, are then generalized 

to search for the k nearest neighbors. In order to measure the performance of the introduced algorithms 

we conducted an extensive experimental study based on synthetic and real datasets. Regarding the 

historical non-continuous algorithms, it has been shown that while the incremental (best-first) approach 

is always less expensive than the non-incremental (depth-first) in terms of node accesses, its actual 

execution time heavily depends on the used queue length. In general, the best first approach 

outperforms its competitor only for point NN queries under small temporal extent (less than 2-4% 

depending on the index used and under any k), while in all other cases the depth first approach takes 

less time to be executed. This drawback of the incremental algorithms is mainly due to the queue 

length which may become huge, especially in the case of the TB-tree and the TB*-tree. Moreover, we 

demonstrated that our improvement over the MINDIST computation can sufficiently increase the 

performance of the proposed algorithms. Finally, the experimental study shows that the majority of the 

presented algorithms are linear or sub-linear with the main parameters of our experimental study (in 

terms of node accesses): the dataset cardinality, the query temporal extent and the number of k.  

In Chapter 4, based on our work on NN search, we examined the problem of most similar 

trajectory (MST) search. More specifically, existing related work on similarity query processing either 

ignores the temporal dimension of trajectories, or considers trajectories with the same sampling rate. 

Then again, in this thesis we relaxed these assumptions by defining a novel metric based on the average 

Euclidean distance between trajectories, called DISSIM, while we subsequently presented a complete 

treatment of historical MST queries over moving object trajectories stored on R-tree like structures 

avoiding the drawbacks of the existing methods. We proposed a set of metrics, based on simple notions 

of trajectories, such as the dataset maximum speed, each one followed by a lemma that support our 

ordering and pruning strategies; then we presented two MST algorithms. Under various synthetic and 

real trajectory datasets, we illustrated the superiority of the proposed DISSIM metric against related 

work [VKG02], [COO05], in terms of quality, while our algorithms show high pruning ability when 

processing MST queries, also verified in the case of k-MST queries. Among the algorithms proposed, 

the BFMSTSearch following the best-first paradigm [HS99] seems more promising since it shows 

better performance over its competitor DFMSTSearch; in particular, it demonstrates linear behaviour 

in terms of execution time and node accesses, while its pruning power remains above 90% in all 

settings tested during the experimental study (whereas the pruning power of DFMSTSearch degrades 

to very small values as the query length increases).  
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Here, we have to point out that all the proposed algorithms on nearest neighbor and similarity 

queries do not require any dedicated index structure and can be directly applied to any member of the 

R-tree family used to index trajectories, such as the 3D R-tree [TVS96], the TB-tree [PJT00] and the 

TB*-tree proposed in this thesis. To the best of our knowledge, the application of the proposals of this 

thesis enables for the first time a spatio-temporal index to support classical range, topological, nearest 

neighbor and similarity based queries. Moreover, a number of the proposed, in this thesis, techniques 

have been implemented in the ORACLE Object – Relational DBMS and integrated into the HERMES 

engine [PFGT08]. In particular, the HERMES engine, so far, has been extended so as to include the 

TB-tree [PJT00], along with the point and trajectory nearest neighbor algorithms presented in Chapter 

3. 

Regarding the management of the location uncertainty of spatio-temporal trajectories, in Chapter 

5 we argued that there are cases where the user would prefer to know the influence of the objects’ 

uncertainty in the query results, without actually executing the query. Such cases include interactive 

database querying, imprecision settings, data warehouse operations and querying under the open agoras 

scenario [Ioa07] as extensively discussed in this chapter. Towards this goal, we provided a theoretical 

model that estimates the error introduced by each object’s location uncertainty in the results of 

timeslice spatio-temporal queries, as well as, over simple range queries over stationary spatial data. The 

model proposed consists of a closed formula that calculates the average number of false hits, classified 

as false positives and false negatives, under three initial assumptions: uniform location uncertainty 

(following the model proposed by [TWHC04] in order to describe the uncertain position of 

trajectories), uniformly distributed data, and, constant value of the uncertainty threshold [TWHC04] 

(radius of uncertainty circle). Then, we relaxed these assumptions towards more realistic settings, using 

the bivariate normal distribution for describing the location uncertainty and MinSkew histograms so as 

to support arbitrary data and uncertainty radiuses distributions. The accuracy of the proposed model 

over spatio-temporal trajectory data was evaluated through experimentation using various synthetic 

spatio-temporal datasets. In particular, our model is shown to provide high accuracy with an average 

error on 
PE  and 

NE  never exceeding 6% for spatio-temporal and stationary spatial data. Regarding 

the application of our model over trajectory data, the model showed values of  
PES  and 

NES , i.e., 

average absolute error in each individual query, near 40%. While at a first prospect this error seems to 

be high, in reality, it is due to the small number of individual trajectories used (according to the 

formulas, for typical query sizes and uncertainty radiuses we expect 0.0004µN and 0.0025µN as false 

positives / negatives per query). Bearing these values in mind, it becomes clear that for typical query 

sizes and uncertainty radiuses, the dataset population should be quite large in order to produce a 

significant number of false hits, suitable to be counted and compared against the results of the proposed 

model. Therefore, the details of the developed model using a variety of settings were further 

investigated using synthetic and real spatial datasets of appropriate cardinality. Regarding the 

applicability of the model in stationary synthetic (random) spatial datasets, the estimation of the 

number of false hits is accurate regardless of the value of the query size and the radius d of the 

uncertainty circle, or σ in the case of data with normally distributed uncertainty. The experiments over 

real spatial data demonstrate accuracy even higher than the one reported for synthetic data, with very 
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low 
PES  and 

NES  errors, indicating the advantage introduced by the employment of histograms, even 

in the case of variable σ. The results on the application of the proposed model in spatial data cubes and 

spatial OLAP operations are also very promising. Finally, the implementation of the proposed solutions 

in real-world environments (PostgreSQL [Post08a] with PostGIS spatial extension [Post08b]) has 

shown the efficiency of this proposal when employed as an estimator, since its execution time is 

typically only a few milliseconds. The proposed model, apart from its application in MODs, can be 

directly employed in existing SDBMS in order to provide users with the accuracy of spatial query 

results based only on known dataset and query features, while off-the-self histograms already 

employed in spatial databases for query optimization purposes, can serve our model without the need 

for any additional adjustments.  

The last subject of this thesis is the management of the effect of trajectory compression 

algorithms in spatio-temporal querying. Related work on this domain so far, has focused on the 

development of compression algorithms also emphasizing on the error introduced in the position of 

each object from the compression. On the other hand, in Chapter 6, acknowledging that users are more 

likely concerned about the error introduced by the compression in spatio-temporal query results, we 

presented the first theoretical model that estimates this error in the results of timeslice queries. We 

provided a closed formula of the average number of false hits (false negatives and false positives) 

covering the case of arbitrarily distributed trajectory data with various speeds, headings etc. It turns out 

that the error is depended on the summation of the absolute values of ,i kxδ and ,i kyδ (i.e., the difference 

between the compressed and the original trajectory, along the x- and y- axis, respectively) at every 

timestamp tk the original trajectory sampled its position. Moreover, exploiting the developed formula, 

in that chapter we provide the intuition for a novel approach that may improve the efficiency of 

existing trajectory compression algorithms. Given that according to the model, the error is depended on 

the absolute values of ,i kyδ  and ,i kxδ , its minimization should involve the minimization of  

, ,i k i kx yδ δ+ , instead of the minimization of ( ) 2 2
, ,i k i k i kSED t x yδ δ= +  which is considered as the 

optimization criterion in the majority of the existing trajectory compression algorithms. Under various 

synthetic and real trajectory datasets, we first illustrated the applicability of our model under real-life 

requirements – it turns out that the estimation of the model parameters introduce only a small overhead 

in the trajectory compression algorithm - and then presented the accuracy of our estimations, with an 

average error being around 6%. It has been therefore shown that our model can be utilized right after 

the compression of a trajectory dataset in order to provide the user with the average error introduced in 

the results of spatio-temporal queries of several sizes (bringing in only a small overhead). Then the user 

could use it as an additional criterion so as to decide whether compressed data are suitable for his/her 

needs, and possibly choose on different compression rates, and so on.  

7.2. Open Issues 

Several research fields are remained open in the field of trajectory data management. In the next 

paragraphs we describe the future research work directly fountain by the advances of this thesis.  
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On the subject of trajectory indexing, database technology has been advanced during the years, 

proposing indexes that overcome the efficiency of our proposals. Both TB*- and FNR-tree were 

introduced in the early stages of this thesis; meanwhile, other structures have been proposed in the 

literature and proved to be more efficient. Currently, the state-of-the-art regarding the indexing of 

objects moving in unrestricted and network-constrained space is considered the PA-tree [NR07]and the 

MON-tree [AG05], respectively. On the other hand, according to the results of our respective 

experimental study, as well as corresponding results published in [AG05], structures exploiting the 

network-constrained movement are much more efficient than those indexing objects in the unrestricted 

space; actually, the former usually outperform the lalter by orders of magnitude. However, none of the 

proposed network-constrained index structures is designed to preserve trajectories: both FNR- and 

MON-tree by definition lack a mechanism to retrieve trajectories and only care about the processing of 

coordinate-based queries. Even SETI [CEP03], which is one of the most efficient indexing schemas in 

unrestricted space regarding coordinate-based queries, suffers from the same drawback. However, as 

mentioned in Chapter 2, the trajectory preservation is prerequisite to process trajectory-based queries. 

As such, the first research direction arising on the subject of trajectory indexing is the development of 

access methods that efficiently support trajectory-based querying under both unrestricted and network-

constrained space. 

Regarding advanced query processing, our proposal enables R-tree-like structures to efficiently 

support NN and MST queries; on the other hand, none of the proposed spatio-temporal indexes, apart 

from R-tree-like structures, consider NN or MST search algorithms. However, for some of them (e.g., 

FNR-tree), NN querying can be probably supported. A first idea on this subject is that since in the 

FNR-tree the underlying network is indexed by a conventional R-tree, the best first-algorithm 

described in [HS99] can be employed in order to find the spatial nearest neighbor; then, given that the 

network line segments (e.g., the spatial elements of the trajectory segments) are reported in incremental 

order of their distance from the query object, the algorithm would have to report such nearest segments 

until retrieving the first overlapping the query in the temporal dimension; a similar approach can be 

also employed in MON-tree. 

Future work on advanced query processing also includes the development of algorithms to 

support distance join queries (“find pairs of objects passed nearest to each other (or within distance d 

from each other) during a certain time interval and/or under a certain space constraint”), and Time-

Relaxed MST queries over trajectories using the proposed DISSIM metric. This type of query calculates 

the minimum dissimilarity between trajectories regardless of the time instance in which the query 

object starts. The algorithms should consider trajectories indexed by R-tree-like structures, which are 

the most popular trajectory indexes. Yet, the most promising future work is considering the 

employment of the DISSIM metric together with the ordering and pruning techniques developed in this 

thesis, so as to support efficient similarity range search, a query type having great applications in the 

data mining domain. In particular, since the application of the generic density-based clustering 

algorithm OPTICS [ABKS99] according to the DISSM metric [NP06] requires finding for each 

trajectory in the dataset, the number of trajectories being closer (i.e., more similar) than a given value 

of distance (similarity) the exhaustive scan that is used in the implementation of [NP06] turns to be a 
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very expensive operation. However, under such circumstances, an R-tree based method for trajectory 

similarity range queries, would significantly improve performance over alternative indexing and 

querying strategies.   

Finally, future work on advanced query processing should include the development of cost 

models for NN [TZPM04] and MST queries on historical trajectories. On the same manner, selectivity 

estimation formulae for query optimization purposes should be developed investing on the work 

presented in [TSP03] for predictive spatio-temporal queries.  

A side advance of this thesis, presented in Section 5.4.2 is the development of a spatio-temporal 

histogram, based on existing approaches of spatial databases [APR99], for supporting the selectivity 

estimation of timeslice queries. On the other hand, the estimation of the number of distinct trajectories, 

for general range queries (i.e., with temporal extent ∫ 0), is not a trivial task, since it involves the well 

known distinct-counting problem [TKC+04]. The distinct-counting problem stands when an object 

samples its position in several timestamps inside a given query window, resulting to be counted 

multiple times in the query result. [TKC+04] provide a solution to the aforementioned problem by 

integrating spatio-temporal indexes with sketches, traditionally used for approximate query processing. 

However, their proposal reduces the space requirements only a few times (typically about the 40% of 

the original database size), while the corresponding index structure is maintained on the disk. Clearly, 

such an approach cannot be utilized instead of histograms (having a typical size of a few kilobytes 

[APR99]), since it introduces a sizeable overhead in terms of both memory space and processing time 

requirements. 

In the same fashion, a spatio-temporal histogram concerning about the number of distinct 

trajectories, would have to partition the space into several spatio-temporal buckets, counting the 

number of distinct trajectories inside each bucket. However, when trying to produce an estimation of 

the selectivity of a query window which contains more than one bucket, this estimation cannot be 

computed as the sum of the cardinality of two buckets since trajectories may be counted several times 

depending on the number of buckets they overlap. Figure 7.1 exemplifies this problem, illustrating four 

histogram buckets (B1, B2, B3, B4) along with their respective selectivity Sel(Bi); the total selectivity 

reported by all four buckets ( ) 3iSel B =U  is far from being the sum of per bucket selectivities 

( ) 7iSel B =∑  because trajectories T1, T2, T3 will be counted as many times as the buckets each of 

them overlaps. Moreover, the same problem arises during the histogram construction following the 

methodology introduced in [APR99] for simple spatial histograms: the construction algorithm initially 

calculates the number of distinct objects inside each cell produced by a dense spatial grid, and then, in 

each iteration it aggregates groups of cells to form more wide buckets based on the MinSkew heuristic. 

However, during this aggregation, the number of trajectories inside each resulted bucket has to be 

calculated, clearly, not as the sum of the trajectories contained inside each fundamental cell. 
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Figure 7.1. The distinct-counting problem in trajectory histograms 

Regarding the subject of uncertainty management, there are numerous interesting research 

directions arising from the work presented in this thesis, including the application of our model in data 

spaces of higher dimensionality and its extension in order to support general spatio-temporal range 

queries (i.e., with temporal extent ∫ 0), non-point datasets, non-rectangular query windows as well as 

nearest neighbor queries. The majority of the aforementioned research directions require significant 

effort. Among them, the first that must be examined in the context of spatio-temporal databases is its 

extension in the case of general range queries. This is not a trivial task; nevertheless, we subsequently 

provide hints towards this direction. Consider, for example, Figure 7.2 illustrating trajectories of three 

moving objects along with their uncertainty regions (i.e., the dotted areas) in the x-t space, along with a 

range query (Due to simplicity reasons all trajectories are illustrated as line segments without loss of 

generality). Trajectories T1 and T2 can not ever encounter a false hit regarding the query window due to 

the fact that for at least one time instance their uncertainty region was entirely located inside it. On the 

other hand, trajectory T3 may encounter a false hit because it is not inside the query window; 

nevertheless, its uncertainty region crosses it. Generalizing the above observation, we can state that 

only objects whose uncertainty area crosses the query window without being entirely inside it at any 

time instance, may contribute to the number of false hits in the results of the query. 
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Figure 7.2. The effect of uncertainty in general range queries 

The last subject considered in this thesis, i.e., trajectory compression, gives also rise to numerous 

interesting research directions, including the development of the presented model’s counterparts for 

nearest neighbor queries, or even more, general spatio-temporal range queries. More specifically, the 

extension of our approach towards the second direction, would require to determine the shape of the 

spatio-temporal space inside which the lower left range query corner (i.e., the minimum point of the 

range query) has to be found in order for the compressed trajectory to be retrieved as a false hit 
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(negative of positive), in accordance with Figure 6.6, Figure 6.7, and subsequently to determine its 

volume in accordance with Eq.(6.4). Although this volume can be calculated when δxi and δyi are 

expressed as single functions (i.e., between consecutive timestamps), in the general case where δxi and 

δyi are expressed as multi-functions (i.e., different functions in different original trajectory line 

segments), the respective volume is very hard to be determined. Nevertheless, it remains as a great 

challenge for future work. 

Finally, it would be interesting for one to apply our intuition regarding the appropriate 

minimization criterion of trajectory compression algorithms, so as to provide a novel approach that 

improves the efficiency of existing solutions. This efficiently would be measured in terms of 

compression rates vs. number of false hits introduced in spatio-temporal queries due to compression, 

contrary to existing approaches which measure it in terms of the average error introduced in the 

position of each trajectory [MB04]. 
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