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Preface

The domain of Moving Object Databases (MODs) is an important research area that has received a lot
of attention during the last decade. The objective of moving object databases is to extend database
technology to support the representation and querying of moving objects and their trajectory. MODs
have become an emerging technological field due to the development of the ubiquitous location-aware
devices, such as PDAs, mobile phones etc., as well as the variety of the information that can be
extracted from such databases. However, the development of mechanisms that enable MODs to
efficiently support trajectory data involves several physical aspects of the database technology, such as
indexing, advanced query processing and query optimization.

The challenge accepted in this thesis is to provide mechanisms that enable MODs to manage
trajectory data efficiently. Towards this goal, we develop a series of access methods, and dedicated
query processing techniques which are subsequently implemented in prototypes in order to demonstrate
their efficiency. Following the proposals of our thesis, existing moving object indexing techniques are
enabled to support a wide range of standard and advanced queries. Beyond that, by applying the
suggestions of related work we develop a model for the prediction of the effect of uncertainty in spatio-
temporal querying. The results of our research may be directly employed in the context of spatial and
spatio-temporal databases and warehouses, as well as, for query optimization purposes over distributed
data with uncertainty. Finally, we provide a model that estimates the effect of trajectory compression in
spatio-temporal querying. Our model expose interesting details regarding the error distribution of
compressed trajectories which may lead to a new generation of more efficient compression algorithms,
while it can be used as an additional criterion in order for a user to decide whether the compressed data

are suitable for his / her needs.

July 2008 Elias Frentzos
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1. Intoduction

This chapter highlights the background of the thesis and outlines its structure. In Section 1.1 we
introduce some basic knowledge about trajectories and motivate the thesis. Section 1.2 presents the
notion of trajectories, which are the general subject of this work. In Section 1.3 we set the problems
that we will cope with, and Section 1.4 sketches the contributions of this thesis. In Section 1.5 the

datasets used throughout the thesis are introduced and finally, Section 1.6 outlines the rest of the thesis.

1.1. Moving Object Databases

The domain of Moving Object Databases (MODs) is an important research area that has received a lot
of interest during the last decade. The objective of moving object databases is to extend database
technology to support the representation and querying of moving objects and their trajectory. MODs
have become an emerging technological field due to the development of the ubiquitous location-aware
devices, such as PDAs, mobile phones etc., as well as the variety of the information that can be
extracted from such databases. Currently, a number of decision support tasks can exploit the presence
of MODs, such as traffic estimation and prediction, analysis of traffic congestion conditions, fleet
management systems, battlefield and animal immigration habits analysis [GS05].

Traditionally, the following taxonomy exists in the spatio-temporal database literature: (a) work
on the present and future positions of moving objects, such as [SJLLOO], [BJKS02], [MXAO04] and (b)
work on the past positions of objects, asking historical queries, such as [TVS96], [PJT0O0]. The latter
category, can be also classified into two other categories: (a) approaches that model and treat spatial
data changing discretely over time, with examples including management of multimedia data [TVS96],
simple spatial [NST99] and more comlex, spatial referenced data, such as cadastral data [ACNV99],
and, (b) approaches that deal with data changing continuously their position with time [GBE+00],
[PJTOO]; the latter is the category into which this thesis belongs.

Moving objects are geometries, which may be points, lines, areas or volumes, changing over
time, while a trajectory is the description of the movement of those objects. As the geographical space
per se is continuous, the physical movement is described by a continuous change of position, i.e., a
function from time to geographical space. Movement also implies a temporal dimension as we can only
perceive movement through comparison at two different instants. Therefore, a trajectory can be
equivalently defined as the recording of a time-varying spatial phenomenon.

According to the previous discussion, a historical trajectory can be quite simply defined as a

function from time to geographical space; on the other hand, its description, representation and



manipulation are much more complex. Indeed, from an application point of view, a trajectory is the
recording of the movement of some object i.e., the recording of the positions of the object at specific
moments in time. Thus, while we naturally think of a well-shaped curve representing the trajectory of
the object, in reality the trajectory has to be built from a set of sample points, i.e., the sampled positions
of the object; then the trajectory curve is obtained by applying interpolation methods on the set of
sample points. However, whichever interpolation method is being employed, the resulting curve will
only be a guess of the actual trajectory; a guess that is even worse when considering the possible
measurement errors that inevitably happen when recording the original sampled points. There is thus an
inherent uncertainty associated with trajectories. In order to model and manage adequately uncertainty,
different modelling concepts have been proposed in the literature [TWHCO04], [TWZCO02], [PJ99].

Moreover, given that trajectories have to be a first-class modeling construct, rather than
computable derived data, their concept was introduced in some early papers [CR99], [EGSV99],
[FGNSO00], which addressed the need for capturing and modeling the complete history of objects’
movement. Assessing the fact that location data may change over time, the respective database must
contain the whole history of this development; and the Database Management System (DBMS) should
be allowed to go back in time at any particular timestamp, and retrieve the state of the database at that
time.

Specifically, according to [GBE+00] moving points (mpoints) and moving regions (mregions)
are described as 3D (2D space + time) or higher-dimensional entities whose structure and behaviour is
captured by modeling them as abstract data types. Such types and their operations for spatial values
changing over time can be integrated as base (attribute) data types into an extensible DBMS.
[GBE+00] introduced a type constructor T which transforms any given atomic data type a into a type
7(a) with semantics z(a) = time — a. In this way, the two aforementioned basic types, namely mpoint
and mregion, may be also represented as 7(point) and =(region), respectively. [GBE+00] also provided
an algebra with data types (such as moving point, moving region, moving real, etc.) together with a
comprehensive set of operations, supporting a variety of queries over spatio-temporal trajectory data.
The realization of such data models proposed in the literature, as well as packaging corresponding
functionality to specific technical solutions results in moving object database engines. In the literature,
one can find at least two MOD engines developed to realize the model proposed by Gutting et al.
[GBE+00], namely the SECONDO prototype [AGB06] and the HERMES engine [PT06], [PTVPO06].

Then again, the development of such engines involves physical aspects of database technology,
such as indexing, and dedicated query processing and query optimization techniques. The challenge
thus accepted in this thesis is to provide efficient mechanisms that allow MOD Engines to efficiently
store and query trajectories. Towards this goal, a number of access methods and dedicated advanced
query processing techniques are developed in this thesis and are subsequently implemented and shown
to be efficient. All these methods are initially implemented as prototypes in independent development
environments, while their porting in commercial DBMS is left as future work; nevertheless, a number
of the proposed techniques have been already implemented in the HERMES engine [PFGTOS] and the
PostgreSQL [Post08b] together with the PostGIS spatial extension [Post08a].



Briefly outlining the main topics that we will cope with in this thesis, which are physical subjects
of a MOD engine, they include indexing techniques for moving object trajectories, dedicated query
processing techniques, models for querying under the presence of uncertainty, and, finally, issues on

trajectory compression.

1.2. Basic Concepts of Trajectories

Generally speaking, spatio-temporal trajectories can be classified into two major categories, according
to the nature of the underlying spatial object: (i) objects without area represented as moving points, and
(ii) objects with area, represented as moving regions; in this case the region extent may also change
with time. Among the above two categories, the former has attracted the main part of the research
interest, since the majority of the real-world applications involving spatio-temporal trajectories
consider objects represented as points, e.g., fleet management systems monitoring cars in road
networks. It is therefore the former type on which this thesis is focused; as such, in the followings our
discussion is restricted to trajectories of moving points.

Under this perspective, a trajectory can be straightforwardly defined as a function from the
temporal / 0 domain to the geographical space 0, i.e., the 2D plane. Formally, a trajectory T is a

continuous mapping from the temporal I c[J to the spatial domain ([J *, the 2D plane):

Il >0t a(t)=(a,(t).a,(1)). (1.1)

and,
T={(a,(1).a,(1).1) 111} <00 (12)
On the other hand, from an application point of view, a trajectory is the recording of an object’s
motion, i.e., the recording of the positions of an object at specific timestamps; while the actual
trajectory consists of a curve, real-world requirements imply that the trajectory has to be built upon a
set of sample points, i.e., the time-stamped positions of the object. Thus, trajectories of moving points

are often defined as sequences of (x, y, ?) triples:
T ={(x0: 301, )+ (%2 Y21 ) (£, 301, )} (1.3)
where x,,y,t, €l ,and 1, <1, < .. <1, , and the actual trajectory curve is approximated by applying

spatio-temporal interpolation methods on the set of sample points (Figure 1.1).

Is
A —
t 's
1y
vl 13
, =

- t
4 t

>

>

X
Figure 1.1: The spatio-temporal trajectory of a moving point: dots represent sampled positions and
lines in between represent alternative interpolation techniques (linear vs. arc interpolation). Unknown

type of motion can be also found in a trajectory (see [ts, t;) time interval)



The first and foremost restriction posed by such spatio-temporal interpolation methods, is that a

trajectory connected to a data sample should contain the sample points. i.e., for all points (xi, )’wt,-) in
the sample it holds that (x,,y,.7,)= (ax (¢.).a, (z,.),t,.). Secondly, given a data sample, there is an

infinite number of trajectories connected to that data sample, which implies that the trajectory is by no
means unique. Finding a suitable curve connecting the sample points, is called interpolation.
Interpolation brings along its own problems; we wish it to be fast, easily manageable, flexible and
accurate. Unfortunately improving one property doesn't necessarily improve another. Linear
interpolation is the fastest and easiest of them all (Figure 1.2). The idea is to connect the sample points

with straight lines; the linearity is expressed in the fact that equal jumps in time (between the same

sample points) lead to equal jumps in space. For example, the segment between the points (x,., y,,t,)

and (X, y,,.1,,,) is given by

i

iy (xm =X Vi ~ Violin _ti)’ and 7, <1 <t,,, (1.4)

i+l i

(31) = (3 y1) -
which is a straight line segment in [1* x[] parameterized by ¢ € [t;, t;,]. Finally, the trajectory consists
of the concatenation of all these segments. Therefore, a trajectory may be also regarded as a collection

of n-1 3D-line segments T ={L,,L,,....L,_,} with L, :{(x,.,y,.,t,.),(x,.ﬂ,yM,t,.+1 )}
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Figure 1.2: Linear interpolation

Linear interpolation in this manner is not so innocent; along the way some assumptions have

been made. The first one is that the moving object keeps constant speed and direction between the

sample points. Moreover, this speed is the average speed needed to cover the distance between (x,. s yi)

and (x,,,y,,) in time 7, —7, . Secondly, changes in speed and direction at sample points are often

abrupt and discontinuous, due to the sharp corners of the trajectory at the sample points. On the other
hand, linear interpolation is fast to construct and to handle, and this is the main reason why it has been
widely adopted in the trajectory database literature. Hereafter in this thesis, the term ‘trajectories’ will
be used to describe such sets of triplets as in Eq.(1.3), applying linear interpolation in-between them as

determined by Eq.(1.4).



1.3. Research Problems and Challenges in Trajectory Databases

Among the variety of technologies involved in the development of MODs for supporting historical
trajectories of moving points, in this thesis we focus on a number of physical aspects, namely,
indexing, advanced query processing, uncertainty support, and finally, trajectory compression. In the
next sections, we briefly present the main research problems and challenges on trajectory databases that

we will cope with in this thesis.

1.3.1. Indexing

Querying in MODs could be very expensive due to the nature of the underlying data and the
complexity of the query processing algorithms. Given also the ubiquitousness of location-aware
devices, trajectory databases will, sooner or later, face enormous volumes of data. It consequently
arises that performance in the presence of vast data sizes, will be a significant problem for trajectory
databases and the only way to deal with such enormous sizes is the exploitation of specialized access
methods used for spatio-temporal indexing purposes.

The domain of spatio-temporal indexing is dominated by the presence of the R-tree [Gut84],
along with its variations and extensions; this is actually an expected phenomenon given the popularity
of the R-tree in spatial databases. The variations and extensions of the R-tree in the spatio-temporal
domain include, among others, 3D R-trees [TVS96], TB-trees and STR-trees [PJT00], PA-trees
[NRO7], MON-trees [AGO5], while SETI [CEPO3] is a hybrid R-tree-based and partition-based
technique. Since our interest in this thesis focuses on historical MODs, we restrict our discussion to
indexing techniques recording past locations. The reader interested in indexing current locations and
motion vectors can find very interesting work in [SJ02], [SJLLOO], [TPS03], and [XP03].

However, as pointed out in [PJTO00], the vast majority of the proposed spatio-temporal indexes
overlook the challenges posed by the nature of trajectory data, and they just index collections of line
segments in the spatio-temporal space, only concerning about the processing of traditional coordinate-
based queries ignoring at the same time other useful types, such as topological and navigational
queries, which are trajectory-based. Moreover, existing spatio-temporal indexes not preserving moving
object trajectories and dealing with the spatio-temporal data as collection of line segments in the 2+1
dimensional space (such as SETI [CEPO3] and 3D R-tree [TVS96]), overlook the need for deletion
operations; albeit the deletion of a line segment from trajectory database may sound meaningless, the
deletion of an entire trajectory is a very useful operation which has to be supported by any real-world
trajectory index. The same need for trajectory preservation arises when dealing with compression
mechanisms, which as we will see in the next chapter, by definition requires treating each trajectory as
a single object.

Two index structures presented in [PJT00], namely the Spatio-Temporal R-tree (STR-tree) and
the Trajectory Bundle tree (TB-tree), try to fulfill these needs and to efficiently support trajectory-
based operations. The outcome of this work was that the TB-tree could support non-traditional queries
much more efficiently than the traditional 3D R-tree and the STR-tree. Unfortunately, in spite of its
clear advantages in trajectory-based query processing, the TB-tree has a crucial drawback due to its
insertion strategy: new trajectory data are always inserted at the right ‘end’ of the tree, leading its

performance to heavily depend on the data insertion ordering. However, in real-world applications, this



assumption is not guaranteed to be always true. For example, consider an application with the need to
support real-time insertions, and a situation where the moving object enters an area where the position
transmission system does not function; then its trajectory could be stored locally in the object and be
transmitted to the central server — where the index operates — at a later time. Meanwhile, other moving
objects could have transmitted their positions, violating the above TB-tree assumption. Furthermore,
the structure of the TB-tree is not suitable for supporting deletion and compression operations; a
trajectory deletion would leave ‘holes’ in the nodes, and trajectory compression as we will discuss in
the sequel, requires the index to handle data inserted in non-chronological order.

Another interesting approach regarding the indexing of spatio-temporal trajectories, arise
acknowledging that trajectories are more likely to be network — constraint. As pointed in [KGT99], the
existence of restrictions in the space in which moving objects realize their movement is a condition that
can be used to improve the performance of spatio-temporal indexes. Actually, this is the case in most
real-world applications: planes fly in air-paths, cars and pedestrians move on road networks, while
trains have fixed trajectories on railway networks. These kinds of special conditions (moving
restrictions) have been the subject of research interest [KGT99], [PTKZ02].

More specifically, according to Kollios et al. [KGT99], the domain of the object’s trajectories
moving on a network is not the 2+1 dimensional space, rather than, a space with 1.5 dimensions, as line
segments comprising the network can be stored in a conventional index of spatial data (such as the R-
tree). Then, indexing of objects moving in a network is reduced to a one-dimensional indexing
problem. In [KGT99], the problem of network-constraint trajectory indexing is studied under a more
theoretical view rather than actually proposing an access method that could be used in real-world
applications. On the other hand, following the directions provided by [KGT99], in this thesis, we show
how this intuition can be realized by developing novel access methods for indexing network-constraint

trajectory data.

v

Figure 1.3: Querying trajectory databases

1.3.2. Advanced Query Processing

Advanced query processing over MODs storing historical trajectory information aims at developing
specialized query processing techniques suitable for executing advanced queries, which may (or may
not) exploit existing index structures being present to support more traditional queries. Here we have to
point out that, queries of the form “find all objects located within a given area during a certain time

interval”, i.e., range queries (Q, in Figure 1.3), are regarded as traditional queries, and they are by



definition supported by any index; in the same category fall also the queries of the form “find all
objects' locations within a given area at a certain time instance”, which are called timeslice queries,
and constitute a specialization of simple range queries having their lifespan set to zero (Q; in Figure
1.3) . The execution of range queries is usually a straightforward task; for example, the execution of a
range query over R-tree-like (such as, the 3D R-tree [TVS96], the TB- and STR-trees [PJT00] and the
TB -tree) structures storing historical trajectory information is a straightforward extension of the
FindLeaf algorithm, originally proposed in [Gut84], in the 3D space formed by the two spatial and the
one temporal dimension.

On the other hand, there is a variety of spatio-temporal operators, which require more
sophisticated query processing techniques in order to be efficiently processed; often these operators are
extensions of the respective spatial ones. Among them, an important class of queries that has been
introduced in the MOD directly from the spatial domain is the so-called k nearest neighbor (k-NN)
search, where one is interested in finding the k closest trajectories to a predefined query object Q. To
the best of our knowledge, the database literature regarding such queries primarily deal with either
static ([RKV95], [CF98], [HS99]) or continuously moving query points ([SRO1], [TPS02]) over
stationary datasets, or queries about the future or current positions of a set of continuously moving
points ([BJKS02], [TP02], [ISS03], [YPKO5], [XMAO5], [MHPOS5]). Apparently, these types of queries
do not cover NN search on historical trajectories. Thus, one of the challenges being present in the
domain of trajectory databases is to develop mechanisms to perform k-NN search on MODs exploiting
spatio-temporal indexes storing historical information.

Moreover, the complexity of the underlying data makes the possible nearest neighbor operators
over MODs storing historical trajectory data to be classified as follows: (a) according to the nature of
the query object, which may be either a stationary or a moving point, i.e., another trajectory not
contained in the MOD and, (b) according to the requested output of the operator, i.e., between the
nearest to the query object during the query lifespan, and the nearest(s) at any time instance during the
query lifespan; the latter are called historical continuous nearest neighbor queries.

To make the previous taxonomy more intelligible, recall Figure 1.3 illustrating a trajectory
database containing four trajectories {7, T, T3, T4}, and several queries posed against it. Query Q;
asks for the nearest trajectory to the query object (which is a stationary point) during the time period
[#1, t4]; this is the simple case, and the answer to the query is trajectory 75. Similarly, Q, is equivalent
with Q;, with the single difference that the query object is another trajectory, not contained in the
database; in this case, the answer is trajectory 7,. Now, consider query Qs which is a historical
continuous nearest neighbor query; in this case the query output should be a list of tuples containing the
nearest trajectories along with the time period during which they were the nearest trajectory, i.e., {(7y,
[71,5)), [T, (83, 1]}

Another interesting query type that is useful in MOD search is the so-called trajectory similarity
problem, which aims to find ‘similar’ trajectories of moving objects. To handle such queries efficiently,
MOD systems should include methods for answering the so-called Most-Similar-Trajectory (MST)
search also discussed in [The03]; an example of an MST query is Qs in Figure 1.3, which retrieves

trajectory 7 as its most similar. Trajectory similarity search is a relatively new topic in the literature;



the majority of the methods proposed so far are based on either the context of time series analysis or
the Longest Common Subsequence (LCSS) model [VKGO02] and the recently proposed Edit Distance
on Real Sequence (EDR) [COOO05].

Figure 1.4: Trajectories with different sampling rates

However, the majority of the proposed methods either ignore the time dimension of the
movement, therefore calculating the spatial (and not the spatio-temporal) similarity between the
trajectories, or assume that the trajectories have the same sampling rate. To exemplify the problem
derived when different sampling rates are present, consider Figure 1.4 illustrating trajectories 7 and Q
with their position being sampled in different rates; while these two trajectories are obviously similar,
methods based on the LCSS or the EDR model cannot detect this kind of similarity since they try to
match trajectory sampled positions one by one, which clearly does not happen in the above (real world)
example. What is more, the majority of the proposed approaches exploit specialized index structures in
order to prune the search space and retrieve the most similar to a query trajectory. Thus, one of the
challenges being present in the domain of trajectory databases is to develop mechanisms to perform k-
MST search on MODs exploiting existing spatio-temporal indexes that support other type of queries as

well.

1.3.3. Supporting Uncertainty
In the literature, uncertainty has been defined as the measure of the difference between the actual
contents of a database, and the contents that the current user or application would have created by
direct and perfectly accurate observation of reality [ZG02]. Sources of uncertainty may be one of the
followings:

e Imperfect observation of the real world,

e Incomplete representation language,

e Ignorance, laziness or inefficiency.
Pfoser and Jensen [PJ99] propose a representation of location uncertainty due to measurement and
sampling errors, which fall into the first and the third of the above error sources, respectively.
According to [PJ99] the spatial projection of the trajectory of an object can be modeled as a 2D
elliptical area, defined by the two consecutive tracked positions. On the other hand, a model that
simultaneously captures both kinds of uncertainty is described by [TWHCO04], [TWZCO02]. In this
model an uncertainty threshold is introduced, denoting the maximal distance of the object to the
assumed location on the trajectory. Specifically, given the sampled points, after applying linear
interpolation between them, this model assigns to each point on the trajectory a disc, parallel to the XY-
plane, of radius equal to the threshold. Taking all those discs together in the 3D space-time, they finally

result in a tube around the polyline connecting the sample points (Figure 1.5). This threshold



incorporates interpolation uncertainty and measurement errors all at once, and it does not discriminate

sample points from interpolated points.
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Figure 1.5: Modeling of Moving Object Uncertainty [TWHC04]

The literature on the management of the location uncertainty of spatio-temporal objects so far,
apart from uncertainty representation issues [Tra03], [TWHCO04], [WSCY99], also deals with
probabilistic algorithms [TWHCO04], [TWZC02], [CKP04] that process queries in the presence of
uncertainty, estimating the probability of each trajectory to be included in the query result. On the other
hand, there are cases where the user would prefer to know the influence of the measurement error in the
query results, without actually executing the query. Consider for example the following real-world
situation, inspired by the emerging open agoras paradigm [loa07]: let us assume a user who wishes to
pose a query over several distributed subscribe-based data-sources containing the same spatio-temporal
objects (i.e., trajectories) represented at different levels of uncertainty due to different measurement
methods and, consequently, different uncertainty thresholds associated; though the criterion used to
choose among them is the optimization, i.e., the minimization, of the uncertainty introduced in the final
query results, the data-sources provide during the negotiation step [loa07] their potential customers-
users with aggregate-only data. The only way thus to decide on the uncertainty of the results is the
presence of a model that serves for this purpose, based on the aggregate-only information provided by
the providers.

Another challenging problem, related to the one previously presented, is to determine the
maximum permitted (im)precision of the trajectory data that will feed a MOD given the required
accuracy in the results of timeslice queries. Then, users can be guided by the DBMS in the employment
of the appropriate, more or less accurate - which also entails a more/less expensive - positioning
method to be used for the data that will feed the system.

Both previous requirements could be fulfilled by a model that predicts the error introduced in
query results based on known dataset (such as the uncertainty threshold) and query properties, without

actually executing the query; moreover, such a model could be also utilized in an interactive query



builder / optmizer, informing the user about the effect of uncertainty in the query results, along with
other interesting measures such as the query selectivity, estimated execution time etc.. To the best of
our knowledge, a theoretical study on modeling the error introduced in spatio-temporal query results
due to the uncertainty of trajectories is lacking; thus, it remains an open research problem in the

domain of spatio-temporal databases.

1.3.4. Compressing Trajectories
As addressed in [MBO04], it is expected that all the ubiquitous positioning devices will eventually
generate an unprecedented data stream of time-stamped positions. Sooner or later, such enormous
volumes of data will lead to storage, transmission, computation, and display challenges. Hence the
need for compression techniques arises. However, existing work in this domain is relatively limited
[CWTO03], [MB04], [PPS06], [PPS06a], [PPSO7], and mainly guided by advances in the field of line
simplification, cartographic generalization and data series compression. According to [MBO04], the
objectives for trajectory data compression are:
e to obtain a lasting reduction in data size;
e to obtain a data series that still allows various computations at an acceptable (low)
complexity;
e to obtain a data series with known, small margins of error, which are preferably parametrically
adjustable.
As a consequence, we are interest in lossy compression techniques, which eliminate some redundant or
unnecessary information under well-defined error bounds.

Especially on the subject of the error introduced on the produced data by such compression
techniques, the single related work [MBO04] provides a formula that estimates the mean error of the
approximated trajectory in terms of distance from the original data stream. On the other hand, there are
other kinds of errors that could help a user of a MOD to decide on the quality of the compressed data.
For example, it is much more meaningful to provide the user with information about the mean error
introduced in query results over the compressed data. Therefore, the need for an analytical model that
estimates the error due to compression in the results of spatio-temporal queries arises.

Such a model could be utilized right after the compression of a trajectory dataset in order to
provide the user with the average error introduced in the results of spatio-temporal queries of several
sizes; it could be therefore exploited as an additional criterion for the user in order to decide whether
compressed data are suitable for his/her needs, and possibly decide on different compression rates, and
so on. Moreover, it could be used so as to improve the efficiency of the proposed solutions regarding
trajectory compression; given that a model of this kind would expose the actual measures on which the
error is depended, it could subsequently provide intuitive directions towards the employment of more
sophisticated / efficient solutions. The challenge thus being present regarding trajectory compression is
to provide a theoretical model that estimates the error due to compression in the results of spatio-

temporal queries, and also adapt it in the context of MODs.

1.4. Thesis Contribution

This thesis presents several works being necessary for the efficient Management of Trajectory Data.
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The uttermost goal of the conducted research is to provide effective mechanisms that allow Moving
Object Databases to efficiently store and query historical trajectories; as such, the research deals with
indexing, advanced query processing, supporting of uncertainty and issues on trajectory compression.
Next, we discuss the contributions of this thesis, grouped by the respective issue. Here, we have
to point out, that the novelty of our approach is established in each different chapter, by appropriately
presenting the respective related work. This approach is selected, instead of providing the related work

in a single chapter, due to the variety of the issues so as to facilitate the reading of the thesis.

Indexing. In order to deal with the indexing requirements earlier presented, in this thesis we introduce
two novel indexes, namely, the TB-tree and the FNR-tree. The TB -tree is an extension of the TB-tree
which enables it to support non-chronological insertions; it is more compact, it advances its
performance in terms of construction time, while, it outperforms its predecessor in the majority of the
querying settings. Apart from the construction and query processing algorithms, the TB -tree supports
trajectory deletions, while its structure makes it capable of supporting trajectory compression
algorithms as well, two of the properties not supported by the original TB-tree . It is essential however
to clarify that the proposed TB'-tree, does not exploit the special conditions that objects have when
moving on fixed networks; quite the opposite, it indexes objects moving freely in the 2D space.

On the other hand, under the network-constraint scenario this thesis provides a novel index,
called Fixed Network R-tree (FNR-tree) which is an extension of the well-known R-tree [Gut84]. The
general ideas on which the FNR-tree is based are roughly presented in [Fre02], nevertheless, without
giving any implementation or experimental evaluation of the proposed method. The FNR-tree can be
briefly portrayed as a forest of 1D (1D) R-trees on top of a 2D (2D) R-tree. The 2D R-tree is used to
index the spatial data of the network graph (i.e., roads consisting of line segments), while the 1D R-
trees are used to index the time interval of each object’s movement on a given segment of the network.
As it will be shown experimentally, the proposed FNR-tree outperforms all of its competitors in
general coordinate-based queries, something that comes for the cost of lacking a mechanism which
preserves trajectories.

Our results in the aforementioned topics are presented in Chapter 2. Preliminary results have

been already published in [Fre03], [FT06].

Advanced Query Processing: Nearest Neighbor Search. In order to efficiently support nearest neighbor
search on moving object trajectories we first propose a set of novel metrics being necessary for the
ordering and pruning strategies followed by the proposed algorithms. More specifically, the definition
of the minimum distance metric MINDIST between points and rectangles, initially proposed in
[RKV95] and extended in [TPS02], is further extended in order for our algorithms to calculate the
minimum distance between trajectories and rectangles efficiently. We then propose query processing
algorithms to perform NN search over spatio-temporal indexes storing historical information of moving
objects. Among the candidate spatio-temporal indexes, we exploit on the most commonly found
indexes which are the ones supporting unconstrained movement, i.e., R-tree-like structures as the 3D

R-tree [TVS96], the TB-tree [PJT00] and the TB"-tree proposed in this thesis. The description of our
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algorithms for different queries depends on the type of the query object (point or trajectory) as well as
on whether the query itself is continuous or not. In particular, we present efficient depth-first and best-
first algorithms for historical NN queries as well as depth-first algorithms for their continuous
counterparts. All the proposed algorithms are generalized to find the k nearest neighbors. Finally, we
conduct a comprehensive set of experiments over large synthetic and real datasets demonstrating that
the algorithms are highly scalable and efficient in terms of node accesses, execution time and pruned
space.

Our results in the aforementioned topics are presented in Chapter 3. Preliminary results have

been already published in [FGPTO0S5], [FGPT07], [PFGTO8].

Advanced Query Processing: Similarity Search. The issues mentioned on the subject of trajectory
similarity search are addressed in this thesis, by efficiently supporting the k-MST search in MODs
storing historical trajectory information, indexed by R-tree-like structures. More specifically, we
support k-MST search by defining a dissimilarity metric (DISSIM) for the measurement of the spatio-
temporal dissimilarity between two trajectories; this metric is also employed in [NP06] and can be seen
as the average distance between the two trajectories in time. We subsequently propose an efficient
approximation method to overcome its costly calculation, while, in the sequel, we develop a set of
novel metrics along with several associated lemmas, which are employed for ordering and pruning
purposes by the proposed most similar trajectory search algorithms. More specifically, using these
metrics, we propose a depth-first and best-first query processing algorithm to perform k-MST search on
R-tree-like structures storing historical trajectory information. We close this subject by conducting a
comprehensive set of experiments over large synthetic and real datasets demonstrating that the
algorithms are highly scalable and efficient in terms of node accesses, execution time and pruned
space. We further demonstrate that the proposed similarity metric efficiently retrieves spatio-
temporally similar trajectories in cases where related work fails. Finally, we describe how this work
can be adjusted so as to support density-based trajectory clustering.

We have to point out that all the proposed algorithms do not require any dedicated index
structure and can be directly applied to any member of the R-tree family used to index trajectories,
such as the 3D R-tree [TVS96], the TB-tree [PJT0OO] and the TB'-tree proposed in this thesis. To the
best of our knowledge, the proposal of this thesis is the first that provides techniques for a spatio-
temporal index to support classical range, topological, nearest neighbor and similarity based queries.

Our results in the aforementioned topics are presented in Chapter 4. Preliminary results have

been already published in [FGTO7].

Supporting Uncertainty: The problems regarding the management of uncertainty highlighted in the
previous section are initially covered by proving two lemmas that estimate the average number of false
positives and false negatives when executing timeslice queries over uniformly distributed uncertain
trajectories modelled via the [TWHCO04], proposal; both errors depend on the radius of the cylindrical
volume (i.e., the uncertainty threshold) and the perimeter of the timeslice query window, rather than its

area. Then, in order to relax the location uncertainty uniformity assumption (directly derived from the
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model of [TWHCO04]) and to utilize the real-world adapted bivariate normal distribution [Lei95]
[PTJO5], it is efficiently approximated with the uniform difference distribution. The results are close
enough to the ones of the original analysis. The extension of the model towards supporting arbitrarily
distributed trajectories and various distributions of the uncertainty radiuses is covered by employing
novel spatio-temporal and other augmented histograms. We then perform a comprehensive set of
experiments demonstrating the correctness and accuracy of the analysis. Finally, it is shown how the
results of the analysis may be applied over spatial datasets: the solutions proposed are implemented on
top of a commercial Spatial Database Management Systems (SDBMS), namely, the PostgreSQL
[Post08b] with PostGIS spatial extension [Post08a]. Here, it is worth to note that off-the-shelf spatial
histograms, already used in SDBMS for query selectivity estimation, support the proposed model
without additional requirements.

Our results in the aforementioned topics are presented in Chapter 5. Preliminary results have

been already published in [FGTO08].

Compressing Trajectories: In order to cover the issues raised by the previous discussion regarding
trajectory compression, we first describe two types of errors (namely, false negatives and false
positives) when executing timeslice queries over compressed trajectories, and we prove a lemma that
estimates the average number of the above error types. It is proven that the average number of the false
hits of both error types depends on the Synchronous Euclidean Distance [CWTO03], [MB04], [PPS06],
[PPSO6a] along the x- and y- axes between the original and the compressed trajectory, and the
perimeter (rather than the area) of the query window. We subsequently show how the cost of evaluating
the developed formula can be reduced to a small overhead over the employed compression algorithm,
while we discuss how the developed analytical model helps to provide more effective compression
algorithms. Finally, we conduct a comprehensive set of experiments over synthetic and real trajectory
datasets demonstrating the applicability, correctness and accuracy of our analysis. It is worth to note
that the most prominent application of the proposed model is based on the intruition it provides towards
the development of more effective compression algorithms than the ones already present in the
database literature.

Our results in the aforementioned topics are presented in Chapter 6. Preliminary results have
been already published in [FT07].

In summary, the main contributions of our research are:

e The development of two novel spatio-temporal indexes, called TB"-tree and FNR-tree
respectively, with the former enhancing the well known TB-tree towards the supporting of
more realistic operation scenarios, and the latter exploiting the network-constraint assumption,
outperforming all other compared indexes.

e The proposal of several scalable and efficient algorithms for nearest neighbor search over R-
tree-like structures storing historical trajectory information.

e The development of two algorithms for Most Similar Trajectory search over R-tree-like

structures storing historical trajectory information. Here, it is worth to note that using the
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proposed NN and MST search algorithms, enables R-tree-like structures to support a wide
range of spatio-temporal queries.

e The proposition of an analytical model that estimates the effect of uncertainty in timeslice
queries over trajectory data, along with its extension to support arbitrarily distributed
trajectories with the aim of histograms; the same model demonstrates great applications over
stationary spatial data, while it can be directly employed in existing SDBMS.

e The development of an analytical model that estimates the effect of trajectory compression in

spatio-temporal querying.

1.5. Trajectory Datasets Overview

Throughout this thesis we have experimented with a variety of real and synthetic trajectory datasets.
Specifically, we have used two real trajectory datasets and also synthetic datasets generated by the
GSTD data generator [TSN99], the network-based data generator of [Bri02] and a custom trajectory
generator developed to fulfill specific purposes [FGTO07]. The details of the employed datasets are
given in Table 1.1.

Table 1.1: Summary dataset information about GSTD synthetic datasets

Dataset # trajectories # entries
Real Data (Trucks) 276 112K
Real Data (Buses) 145 66K

GSTD 100 100 485K
GSTD 250 250 1213K
GSTD 500 500 2426K
GSTD 1000 1000 4850K
GSTD 2000 2000 9701K

NG 200 200 106K

NG 400 400 213K

NG 800 800 417K

NG 1200 1200 626K
NG 1600 1600 831K
NG 2000 2000 1043K

1.5.1. Real trajectories

The origin of the two employed real datasets, was a fleet of trucks (dataset Trucks) and a fleet of school
buses (dataset Buses), illustrated in Figure 1.6(a) and (b), respectively. The two real datasets consist of
276 (112203) and 145 (66096) trajectories (entries), respectively. Both datasets are available at

http://www.rtreeportal.org.

1.5.2. Synthetic Trajectories Simulating Uncostrained Movement

In order to produce trajectories moving in the unconstrained space, we have used the GSTD data
generator [TSN99]. A snapshot of the generated data using GSTD is illustrated in Figure 1.6(c). The
synthetic trajectories generated by GSTD correspond to 100, 250, 500, 1000 and 2000 moving objects
resulting in datasets of 500K, 1250K, 2500K, 5000K, and 10000K entries (the position of each object
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was sampled approximately 5000 times), thus building indices of up to 500 Mbytes size (the case of 3D
R-tree index for the GSTD 2000 dataset). Regarding the rest parameters of the GSTD generator, the

initial distribution of points was Gaussian while their movement was ruled by a random distribution.

(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data

Figure 1.6: Snapshots of real and synthetic spatio-temporal data

1.5.3. Synthetic Trajectories Simulating Road-network Costrained Movement

Regarding the case of network-constrained moving objects, our experiments were based upon synthetic
datasets created using a network-based data generator [Bri02] and the real-world road network of San
Joaquin (Figure 1.7). We produced the NG trajectory datasets constituting of 200, 400, 800, 1200, 1600
and 2000 moving objects, where each object’s position was sampled 400 times. While the output of the
generator was of the form (id, ¢, x, y), in our experiments we wanted to utilize those data only if (x, y)
are the coordinates of a node of the network. Therefore, the generator was modified in order to produce
records of the form (id, ¢, x, y) each time a moving object was passing through each node of the
network. The maximum volume of line segments produced by the network-based generator was

approximately 1M entries and that came up for 2000 moving objects.

Figure 1.7: Real-world network of San Joaquin, with a snapshot of the generated data

1.6. Thesis Outline

The outline of the thesis is as follows: In Chapter 2 we propose and evaluate two novel indexes for
spatio-temporal trajectories for unconstraint (the TB'-tree) and network-constraint movement (the
FNR-tree), respectively. Chapters 3 and 4 propose solutions for efficient support of nearest neighbor
and similarity search, respectively, over historical trajectory information. Chapters 5 and 6 propose two

models, the former for the prediction of the effect of uncertainty in spatio-temporal queries, and the
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latter, for the estimation of the effect of trajectory compression in spatio-temporal queries. Finally,

Chapter 7 closes the thesis by summarizing the conclusions and discussing interesting open issues.
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2. Trajectory Indexing

In this chapter we focus on the indexing problem regarding trajectory databases, and we present our
two proposals, the TB"-tree and the FNR-tree. The outline of the chapter is as follows: Section 2.1
introduces the issues being related to the indexing of spatio-temporal trajectories while, Section 2.2
examines the related work. Section 2.3 presents the structure and the algorithms for maintaining and
searching the TB -tree, while section 2.4 stands for the structure and the algorithms of the FNR-tree.
Sections 2.5 and 2.5.4 present the experimental study in unrestricted, and network-constraint space,

respectively, and finally, Section 2.6.4 closes the chapter providing the conclusions.

2.1. Introduction

Like in traditional databases, querying in MODs could be very expensive due to the nature of data and
the complexity of query processing algorithms. Given also that location-aware devices are almost
ubiquitous nowadays, trajectory databases will, sooner or later, face enormous volumes of data. It
consequently arises that performance in the presence of vast data sizes, will be a significant problem
for trajectory databases. Since ordering is far from the nature of the geographic (multi-dimensional)
data, traditional indexes like B-trees are not useful in spatial (and consequently in spatio-temporal)
databases. In the domain of spatial databases, the R-tree proposed by Guttman [Gut84] is “almost
ubiquitous”, with applications ranging from Geographical Information Systems (GIS) and Computer

Aided Design (CAD) to Image and Multimedia Management Systems [MNPTOS5].
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Figure 2.1: An example of spatial data, their Minimum Bounding Boxes (MBBs), a range query and

the corresponding R-tree [MNPTOS5].

The R-tree can be considered as an extension of the B-tree in n-dimensional spaces. Similar to

the B-tree, R-tree is a height-balanced tree with the index records in its leaf nodes containing pointers
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to the actual data objects. Leaf node entries are of the form <id, MBB>, where id is an identifier that
points to the actual object and MBB (Minimum Bounding Box) is an n-dimensional interval. Non-leaf
node entries are of the form <ptr, MBB>, where ptr is a pointer to a child node, and MBB the bounding
box that covers all child nodes. A node in the tree corresponds to a physical disk page (or disk block,
which is the fundamental element on which the actual disk storage is organized) and contains between
m and M entries (M is the node capacity and m is a tuning parameter - usually m is set to M/2 which
guarantees that the space utilization is at least 50%). Contrary to the B-tree, node MBBs belonging to
the same tree level are allowed to overlap. Figure 2.1 illustrates a set of spatial objects and the
corresponding R-tree.

In the domain of spatio-temporal indexing, R-tree variations and extensions include, among
others, 3D R-trees [TVS96], TB-trees and STR-trees [PJT00], Octagon-Prism trees OP-tree [ZSI02],
PA-trees [NRO7], MON-trees [AGO05], while SETI [CEPO3] is a hybrid R-tree-based and partition-
based technique. We will thoroughly examine them in the next sections. Moreover, since our interest in
this thesis focuses on historical MODs, we restrict our discussion to indexing techniques recording past
locations. The reader interested in indexing current locations and motion vectors can find very

interesting work in [SJ02], [SJLLOO], [TPS03], and [XP03].

Table 2.1: Classification of spatio-temporal queries (extracted from [Pfo02])

Query Type Operation

. . overlap, inside, nearest
Coordinate-Based Queries .
neighbor, etc.

Topological
) enter, leave, cross, bypass, etc.
. . Queries
Trajectory-Based Queries T -
Navigational traveled distance, covered area,
Queries speed, heading, parked, etc.

2.1.1. Specifications for Trajectory Indexing

As pointed out in [PJTO0], the vast majority of the proposed spatio-temporal indexes overlook the
challenges posed by the nature of trajectory data, and they just index collections of line segments in the
spatio-temporal space, only concerning about the processing of traditional coordinate-based queries
(such as range and timeslice queries), ignoring at the same time other useful queries, such as
topological and navigational queries, which are trajectory-based. In particular, queries of the form
“find all objects located within a given area during a certain time interval’ generalize the spatial range
query of the form “find all objects within a given area” and do not take the notion of trajectory into
consideration; thus, called coordinate-based [PJT00]. Queries of the form “find all objects’ locations
within a given area at a certain time instance”, called timeslice queries, constitute a special type of
range queries where the temporal extent is set to zero. Another straightforward extension of pure
spatial queries in the domain of spatio-temporal applications includes nearest neighbor queries of the
form “find the nearest moving object to a query object during a certain time interval”. Moreover, in the
case of spatio-temporal nearest neighbor queries, the query object could be a 2D point or another

moving object trajectory, while the query would return the nearest to the query object at any time
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during a time interval, or, in every time instance of the query time interval (historical continuous
queries).

Furthermore, [PJT00] propose to call trajectory-based the queries which require the knowledge
of the complete — or at least of a subset of the — object’s trajectory in order to be processed. Such
queries are those considering topological relations (enter, leave, etc.) and those providing derived
information about an object’s navigation (average speed, traveled distance etc.). Table 2.1 summarizes
the above two query types.

The combination of range and topological queries produces another type of queries called
combined queries. As an example [PJT00], consider the following query “What were the trajectories of
objects after they left Tucson street between 7 a.m. and 8 a.m. today, in the next hour”, which firstly
locates the trajectories contained in an inner range query window (Tucson street, between 7 a.m. and 8
a.m. today, Q;, in Figure 2.2) and then retrieve those parts of objects’ trajectories contained in an outer

query window (in the next hour, Q,,, in Figure 2.2).
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Figure 2.2: Combined search queries

In another line of research, [MBO04] recently address the need for efficient trajectory compression
mechanisms; according to that work, it is expected that all the ubiquitous positioning devices will
eventually start to generate an unprecedented data stream of time-stamped positions. Sooner or later,
such enormous volumes of data will lead to storage, transmission, computation, and display challenges.
Hence the need for compression techniques arises. However, existing spatio-temporal indexes not
preserving moving object trajectories and dealing with the spatio-temporal data as collection of line
segments in the 2+1 dimensional space (such as SETI [CEP03] and 3D R-tree [TVS96]), overlook the
need for compression, which by definition requires treating each trajectory as a single object. The same
need for trajectory preservation arises when dealing with deletion operations; albeit the deletion of a
line segment from trajectory database may sound meaningless, the deletion of an entire trajectory is a
very useful operation which has to be supported by any real-world trajectory index.

Two index structures presented in [PJT00], namely the Spatio-Temporal R-tree (STR-tree) and
the Trajectory Bundle tree (TB-tree), try to fulfill these needs and to efficiently support trajectory-
based operations such as topological query processing. The outcome of this work was that the TB-tree
could support non-traditional queries much more efficiently than the traditional 3D R-tree and the
STR-tree. Unfortunately, in spite of its clear advantages on trajectory-based query processing, the TB-
tree has a crucial drawback: because of its insertion strategy, new trajectory data are always inserted at
the right ‘end’ of the tree, leading its performance to heavily depend by the order of data insertion.
However, in real-world applications, this assumption is not guaranteed to be always true. For example,

in an application where insertions occur in real-time, if the moving object enters an area where the
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position transmission system does not function, its trajectory could be stored locally in the object and
be transmitted to the central server — where the index operates — at a later time; meanwhile, other
moving objects could have transmitted their positions, violating the above TB-tree assumption.
Furthermore, the structure of the TB-tree is not suitable for supporting deletion and compression
operations; a trajectory deletion would leave ‘holes’ in the nodes, and trajectory compression as we
will discuss in the sequel, requires the index to handle data inserted in non-chronological order.
Another interesting approach regarding the indexing of spatio-temporal trajectories arises by
acknowledging that trajectories are more likely to be network—constrained. As pointed out in [KGT99],
the existence of restrictions in the space in which moving objects realize their movement is a condition
that can be used to improve the performance of spatio-temporal indexes. Actually, this is the case in
most real-world applications: planes fly in air-paths, cars and pedestrians move on road networks,
while trains have fixed trajectories on railway networks. These kinds of special conditions (moving
restrictions) have been the subject of research interest [KGT99], [PTKZ02]. More specifically,
according to Kollios et al. [KGT99], the domain of the trajectories of objects moving on a network is
not the 2+1 dimensional space, rather than, a space with 1.5 dimensions, as line segments comprising
the network can be stored in a conventional index of spatial data (such as the R-tree). Then, indexing of
objects moving in such a network is reduced to a one-dimensional indexing problem. In [KGT99], the
problem of network-constraint trajectory indexing is studied under a more theoretical view rather than
actually proposing an access method that could be used in real-world applications. On the other hand,
following the directions provided by [KGT99], in the next sections, we show how the intuition of
[KGT99] can be realized by developing novel access methods for indexing network-constraint

trajectory data.

2.1.2. What is proposed

In order to deal with the above requirements, in this work, two novel indexes are independently
proposed, namely, the TB"-tree and the FNR-tree. In particular, the TB -tree is an extension of the TB-
tree that overcomes the drawback of its predecessor, that is, the need for trajectory preservation and
the need for non-chronological insertions, preserving at the same time all of its ‘desired’ properties.
Moreover, apart from the construction and query processing algorithms, the TB -tree supports
trajectory deletions, while its structure makes it capable of supporting trajectory compression
algorithms as well. The TB'-tree structure and algorithms will be demonstrated in the next sections,
followed by an experimental study which reveals the positive and negative aspects of the proposed
index. It is essential however to clarify that the proposed TB-tree, does not exploit the special
conditions that objects have when moving on fixed networks; quite the opposite, it indexes objects
moving freely in the 2D space.

On the other hand, under the network-constraint scenario this thesis provides a novel index,
called Fixed Network R-tree (FNR-tree) which is an extension of the well-known R-tree [Gut84]. The
general idea that describes the FNR-tree is that of a forest of 1D (1D) R-trees on top of a 2D (2D) R-
tree. The 2D R-tree is used to index the spatial data of the network graph (e.g., roads consisting of line
segments), while the 1D R-trees are used to index the time interval of each object’s movement on a

given segment of the network. As it will be shown experimentally in the next sections, the proposed
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FNR-tree outperforms the TB-, the TB'- and the 3D R-tree in general coordinate-based queries;
however the demonstrated efficiency of the FNR-tree in coordinate-based queries comes for the cost of
lacking a mechanism which preserves trajectories, making it therefore unable to support trajectory-

based queries.

2.2. Related Work

In the sequel, the related work in the field of indexing historical trajectories of moving objects is briefly
examined. It is essential to note that we do not include all these structures in our experimental study
since their majority was proposed during the elaboration of this thesis; nevertheless, some of the
examined related work cites, and is compared with, a preliminary version of the FNR-tree presented in
[Fre03], while the others are also evaluated against the original 3D R-tree [TVS96] and TB-tree
[PJTOO]. We fist discus structures indexing objects moving in unconstrained space, while in the sequel,

we present some of the network-constraint approaches.

2.2.1. Indexing the Trajectories of Objects Moving in Unconstrained Space

A first enhancement of the TB-tree was proposed by Zhu et al. [ZS102], which extend the work of
[PJTOO] by proposing the Octagon-Prism tree (OP-tree); OP-trees use octagon approximations instead
of MBBs. Based on the conducted experiments, OP-trees are shown to outperform the original TB-tree
on both range and trajectory based queries. Here, it is important to note that the TB" modifications
regarding the original TB-tree (i.e., replacement of 3D line segments by 3D points and the altered
insertion strategy) may be directly applied in the context of the OP-tree by simply replacing MBB

approximations with octagons.
Data File
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Figure 2.3: The SETI [CEPO03] structure

The Scalable and Efficient Trajectory Index (SETI) presented in [CEPO3] is a hybrid structure
that indexes trajectories at two levels in order to disjoint the spatial from temporal indexing.
Acknowledging that trajectory data sets continually expand the temporal dimension while the spatial
boundaries remain static or at least rarely change, SETI partitions the 2D space into disjoint hexagon
cells which remain static during the structure's lifetime; other adaptive spatial partitioning strategies
can also be used. Each cell logically contains only those trajectory segments that are completely within
the cell, while in the case of a trajectory segment that crosses the cell boundary, it is split and
subsequently inserted into both cells. In physical level, trajectory segments are inserted into a data file;

each page of the data file contains segments from only one cell. Then, a temporal index (i.e., a 1D R-
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tree) indexing the time intervals of each particular cell in the data file, is assigned to the corresponding
cell. Figure 2.3 summarizes the SETI structure.

The insertion and searching algorithms follow a multi-step approach composed of spatial
filtering, temporal filtering and refinement. In particular, during each insertion, the algorithm locates
the cell into which the segment has to be inserted (considering also possible splits between cells), and
then inserts it in the corresponding page of the data file, updating at the same time the corresponding
entry of the 1D R-tree (if this is necessary). Although as presented in the experimental study of
[CEPO3], SETI clearly outperforms the 3D R-tree and the TB-tree in time-interval and time-slice
queries, it cannot be used to process trajectory-based queries. This is due to the fact that trajectory line
segments are organized inside the index based only on their spatial and temporal relations; as such,
successive line segments of the same trajectory may be placed in different disk pages. Therefore, in the
worst case scenario the retrieval of a single trajectory would require to read one disk page for each
trajectory line segment. Moreover, the work of [CEP0O3] do not provide any nearest neighbor query
processing algorithm, while the development of an efficient one is not a straightforward task.

Pfoser et al. [PJO1] use the restrictions placed in the movement of objects by the existing
infrastructure in order to improve the performance of spatio-temporal queries executed against a spatio-
temporal index. The strategy followed does not affect the structure of the index itself. Instead, [PJO1]
adopt an additional pre-processing step before the execution of each query. In particular, provided that
the infrastructure is rarely updated, it can be indexed by a conventional spatial index such as the R-tree.
On the other hand, a general-purpose spatio-temporal index, such as the TB-tree [PJT00] or the 3D R-
tree [TVS96] can be used to index trajectories of moving objects. Then, a pre-processing step of the
query, divides the initial query window in a number of smaller windows, from which the regions
covered by the infrastructure have been excluded (Figure 2.4). Each one of the smaller queries is
executed against the (general-purpose spatio-temporal) index returning a set of candidate objects,

which are finally refined with respect to the initial query window.
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Figure 2.4: The initial query window Q (a) is decomposed into a number of smaller query windows

(@) (b)

Q1I, Q2,.. (b) with respect to infrastructure elements (drawn in black).

In the same paper [PJO1], an algorithm is provided for the implementation of the query pre-
processing step, based on the work presented in [KF93]. According to [KF93], the number of node

accesses required by an R-tree-based index to answer a window query, depends not only on the
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window area but also on its extent per dimension. Consequently, what concerns is not only the
minimization of the area of the query window (which is achieved by removing the section containing
the infrastructure from the initial window) but also the minimization of its perimeter. In the
corresponding evaluation, the performance of two spatio-temporal indexes (TB- and 3D R-tree) was
compared, either using the described query pre-processing step (i.e., dividing the initial window in
smaller windows) or not, and it was shown that the query performance was improved for both indexes
when this step was used.

Recently, work has been also done on how to optimally split trajectories for the purpose of
improving range query performance [HKTGO02], [HKTGO06]. Hadjieleftheriou et al. [HKTGO02] use a
partially persistent structure, the PPR-tree, trying to confront the problem of the dead space generated
by MBB approximations of moving object trajectories. Dead space is termed as the amount of space in
an MBB approximation which does not actually covers any object contained inside it. [HKTGO02]
introduce “artificial object updates” partitioning the trajectories into smaller elements, thus reducing
the dead space; they use non-linear functions to describe the moving objects' trajectories, which are
initially indexed by the PPR-tree. This work is extended in [HKTGO06] where a Multi-Version R-tree,
such as the one proposed in [TPS03] is used instead of the PPR-tree, leading to an indexing schema
with improved performance. Moreover, the proposed algorithms for handling the problem of the dead
space introduced in MBBs can be used in combination with any spatio-temporal data archive, such as
the R-tree and its variants.

However, the most promising approach regarding the indexing of moving object trajectories in
unconstrained space is the one presented in [NRO7]; according to [NRO7], MBBs are not able to
capture the smoothness of actual trajectory data, they propose that trajectories should be approximated
as a sequence of movement functions with single continuous polynomial. They subsequently introduce
the PA-tree, a parametric index that indexes the resulted polynomials; PA-trees resemble R-trees, with
the main difference that entries consists of polynomial coefficients, rather than MBBs. According to
the experimental study presented, PA-tree outperforms both MVR-tree [HKTGO06] and SETI [CEP03]

in the majority of the experimental settings.

2.2.2. Indexing the Trajectories of Objects Moving in Fixed Networks
The first proposal considering network-constrained moving objects was the work by Papadias et al. in
[PTKZ02] which adopted this assumption, in order to create a structure that answers spatio-temporal
aggregate queries of the form "find the total number of objects in the regions intersecting some window
qs during a time interval ¢q,". Same as the FNR-tree, the proposed aggregate R-B-tree (aRB-tree)
follows the intuition of [KGT99] and provides a combination of R- and B-trees based on the following
idea: the lines of the network are stored only once and indexed by an R-tree. Then, in each internal and
leaf node of the R-tree, a pointer to a B-tree is placed, which stores historical aggregate data about the
particular spatial object (e.g. the MBB of the node).

In particular, this approach is based on two types of indexes: a host index, which manages the
region extents and associates to these regions an aggregate information over all the timestamps in the
base relation and some measure indexes (one for each entry of the host index), which are aggregate

temporal structures storing the values of measures during the history, complete the proposed structure.
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For a set of static regions, the authors define the aRB-tree, which adopts an R-tree with summarized
information as host index, and a B-tree containing time-varying aggregate data, as measure index.

As already stated, the aRB-tree is well suited for the efficient processing of a window aggregate
query, i.e., for the computation of the aggregated measure of the regions which intersect a given
window. Indeed, for nodes that are totally enclosed within the window query, the summarized measure
is already available thus avoiding descending these nodes. As a consequence, the aggregate processing
is made faster. For instance, let us compute the number of phone calls inside the shaded area in Figure
2.5(a) during the time interval [7,,T;] using the aRB-tree of Figure 2.5(b). Since Rs is completely
included in the window query there is no need to analyze R; and R, hence one accesses the B-tree for
Rs. The first entry of the root of this B-tree contains the measure for the interval [T, T;] which is the
value we are interested in. Instead, in order to obtain the sum of phone calls in the interval [T}, T3] for
R; one has to visit both an entry of the root of the B-tree for R; and also one leaf (the colored nodes).

Figure 2.5 illustrates an example of the aRB-tree structure
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Figure 2.5: (a) Example data and (b) the corresponding aRB-tree [PTKZ02]

Exploiting the same property of a spatial network, a variation of the FNR-tree, called Moving
Objects in Networks tree (MON-tree), has been proposed in [AGOS]. Instead of using one 1D R-tree for
every leaf node of the 2D R-tree, the MON-tree utilizes a 2D R-tree for every polyline of the spatial
network. The MON-tree is shown to significantly outperform the 3D R-tree and the FNR-tree, in time-
interval and time-slice queries, and is currently considered the state-of-the-art. However, it also shows
the same disadvantage with the previously described schemes, being unable to efficiently process
trajectory-based queries.

Another interesting methodology on the same subject (i.e., indexing of objects moving on
networks) is presented in [PJO3]. This approach suggests the mapping of the underlying network from
two to one dimension by sorting the network edges according to their Hilbert values. Hilbert values is
an approach for ordering the 2D space; they are determined by applying a Hilbert curve covering the
2D space, mapping each 2D to a 1D point [WDO04]. Then, the problem of indexing three (i.e., 2 spatial
+ 1 temporal) dimensions is reduced to the problem of indexing two (i.e., 1 spatial + 1 temporal)
dimensions, which can be efficiently handled by employing any existing simple spatial index as the
well known R-tree which is supported by existing DBMS. After that, each range query has to be

mapped accordingly to the reduced one-dimensional space, producing thus a number of two-
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dimensional (spatial and temporal) rectangles, which are subsequently posed against the R-tree. The
technique also uses an R-tree to index the underlying network so as to speed up the query mapping
process. The experimental study presented in [PJO3] shows that the proposed method clearly
outperforms the three-dimensional approach (e.g., 3D R-tree, treating time as an extra spatial
dimension) as the query size increases; the respective experimental study includes neither FNR nor
MON:-tree. Moreover, there is no obvious way on how this approach [PJO3] can process trajectory

based queries.

2.3. Indexing the Trajectories of Objects Moving in Unconstrained Space

Before describing in detail the structure and algorithms of the TB'-tree, it is essential to briefly

introduce the original TB-tree on which the former is based.

2.3.1. The TB-tree

Practically, the first index proposed to support trajectory-based queries was the Trajectory Bundle tree
(TB-tree) [PJTO0], which is fundamentally different from other spatio-temporal access methods mainly
because of its insertion and split strategy. Similar to the original R-tree, the TB-tree is a height-
balanced tree with the index records in its leaf nodes; leaf nodes contain entries of the same
trajectories, and are of the form <MBB, Orientation>, where MBB is the 3D bounding box of the 3D
line segment belonging to an object’s trajectory (handling time as the third dimension) and Orientation
is a flag used to reconstruct the actual 3D line segment inside the MBB among four different
alternatives that exist (see Figure 2.6). Since each leaf node contains entries of the same trajectory,

object id can be stored once in the leaf node header.

Figure 2.6: Alternative ways that a 3D line segment can be contained inside a MBB
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Figure 2.7: The TB-tree structure

However, contrary to the majority of the R-tree variations, its insertion algorithm is not based

upon the spatial and temporal relations of moving objects but it relies only on the moving object
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identifier (id). When new line segments are inserted, the algorithm searches for the leaf node
containing the last entry of the same trajectory, and simply inserts the new entry in it, thus forming leaf
nodes that contain line segments from a single trajectory. If the leaf node is full, then a new one is
created and is inserted at the right-end of the tree. For each trajectory, a double linked list connects the
leaf nodes that contain its portions together (Figure 2.7), resulting in a structure that can efficiently
answer trajectory-based queries.

On the other hand, the TB-tree performs modestly on range queries as shown in [PJTO0] because
its data organization does not consider keeping together entries that lie close in 2D space. A second,
perhaps more crucial, drawback is that its construction algorithm makes a consideration that positions
of moving objects are most probably inserted in a chronological fashion, thus it does not favor the
insertion of a position at time #; when the latest position of any object already inserted in the index,
corresponds to timestamp #; > t,. However, in real-world applications, this assumption is not guaranteed
to be true. As already mentioned, if we assume that an object enters an area where the position
transmission system does not function, its trajectory could be stored locally in the object and be
transmitted at a later time; meanwhile other moving objects could have transmitted their positions,
violating the above TB-tree assumption.

In the next section, acknowledging the basic advantages of the TB-tree on trajectory
preservation, we develop a novel index, called TB -tree, which overcomes the drawbacks of its

predecessor while preserving all of its ‘desired’ properties.

2.3.2. The TB'-tree

The need for an index that supports insertions of object positions independently, the need for deletion
support, the trajectory preservation and the efficiency for both coordinate-based and trajectory-based
queries are the main requirements for the new index. In the following, we present the structure of the
TB'-tree as well as algorithms for inserting, deleting, compressing, and querying object trajectories.

It is important to notice that, contrary to the original TB-tree, the TB -tree does not care whether
or not entries are inserted in chronological order. There is still an assumption on the trajectory itself
(that also holds for TB-tree): entries belonging in the same trajectory are inserted in chronological
order, i.e., the index does not permit the insertion of a position at time #; when the latest position
already inserted in the index for the same object, was at t; > t;. Even this can be easily relaxed, as will

be sketched in section 2.3.2.2.1.

2.3.2.1. The TB -tree Structure
In the original TB-tree, every time a moving object updates its position, a new 3D line segment is
inserted in it using the insertion algorithm described in [PJTOO]. This fact leads to storing each 3D
point of the moving object’s trajectory twice: once as an ending point and once as a starting point.
While this would be necessary for a structure storing entries from different trajectories in its leaf nodes
(e.g. the 3D R-tree [TVS96] and the STR-tree [PJTO00]), it is waste of space in the TB-tree: by
definition, line segments stored in the same leaf node belong to the same trajectory.

Instead of 3D line segments, TB -tree leaf nodes store 3D points forming together a 3D polyline

that represents a part of the exact trajectory of the object. Moreover, since the object id is stored once in
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the header of the leaf node, TB -tree leaf node entries consist of 3D points only (the Orientation flag is
redundant). The single 3D points that appear twice are the ones at the end of a leaf node and at the start
of its consecutive node (Figure 2.8). While these happen at the leaf level, the structure of non-leaf
nodes remains the same as in the original TB-tree.

Formally, TB-tree leaf nodes are of the form (header, {P;}), where each P; = (t;, x;, vy and
header = (id, #entries, ptr) (in other words, the object identifier, the number of node entries and a
pointer to the parent node). On the other hand, non-leaf nodes are of the form (header, {E;}), where
each E; = (MBB,, ptr;) with MBB; be the enclosing 3D box of the child node pointed by ptr; a pointer to
it, and header = (#entries, ptr) simply stores the number of node entries and a pointer to the parent
node. Furthermore, similar to SETI [CEP03] and in order to support high insertion rates, the TB'-tree
uses an in-memory hashed front-line structure, which maintains tuples of the form {id, P, Ny With
the object identifier id, its latest position P, = {turr Xcurrs Yeurry and a pointer N, to the leaf node

containing P,,,.
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Figure 2.8: The single points appearing twice in the TB -tree are the starting and ending ones at each

leaf.

2.3.2.2. The TB -tree Algorithms

In the sequel, we provide algorithms for maintaining the index by inserting a new position, deleting a
trajectory, and compressing the index. As for query processing regarding the algorithms for range,
trajectory based and combined query processing, they are identical to those presented in [PJTOO] for
the original TB-tree. Furthermore, the algorithms used for advanced query processing, such as nearest
neighbor and most similar trajectory, will be examined in the next chapters. Nevertheless, for the sake
of completeness, we include the range search algorithm in our discussion, which is essentially the

FindLeaf algorithm originally proposed in [Gut84] for the original R-tree.

2.3.2.2.1. Inserting new Trajectory Segments

The insertion algorithm of the TB -tree is executed every time a moving object id transmits its (new)
position P,,,,, thus making, with the help of the front-line structure, a new entry to be inserted in the
tree rooted by Root. The Insert algorithm is illustrated in pseudo-code in Figure 2.9. The presented
pseudo-code includes comments that explain each step of the algorithm. Just note that it is one entry,
P...» which is inserted in the index except the case of a full node where the algorithm results to the

creation of a new node with two entries, the latest already indexed, P,,.,, and the new position, P,
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Also, by adding the front-line structure, finding the appropriate leaf node turns out to be a simple

procedure (in contrast to the expensive FindNode algorithm for the TB-tree described in [PJTO0]).

1 Algorithm Insert (node Root, int Id, 3D Point Pcurr)

2 // Algorithm TB*-tree Insert

3. // Find leaf node NN containing previous segment

4. NN = FrontLine(Id).LastNode

5 Pprev = FrontLine (Id) .Pcurr

6 // If NN exists and has space, insert Pcurr in it and propagate
7 // changes upwards using Guttman’s AdjustTree

8. IF NN exists

9. IF NN has space

10. Insert Pcurr in node NN

11. AdjustTree (NN)

12. // If, after the insertion of Pcurr, node NN becomes full,
13. // delete and reinsert its entry in parent node using
14. // Guttman’s delete and insert algorithms

15. IF NN is full

16. PN = NN.Parent

17. PE = PN.Entry_pointing_to (NN)

18. Delete (Root, PE)

19. Insert (Root, PE)

20. ENDIF

21. ELSE

22. // Otherwise, create a new node, insert Pprev and Pcurr 1in
23. // the new node and update the front-line

24. NNode=InsertInNewNode (Root, Pprev, Pcurr)

25. FrontLine (Id) .LastNode = NNode

26. ENDIF

27. ELSE

28. NNode = InsertInNewNode (Root, Pprev,Pcurr)

29. FrontLine (Id) .LastNode = NNode

30. ENDIF

31. FrontLine (Id) .Peyr = Pcurr

Figure 2.9: The TB -tree Insert Algorithm

Node n

Figure 2.10: The strategy followed when a leaf node becomes full: (a) The leaf node n becomes full

(b) Entry e, is deleted from the tree, and (c) Entry e, is re-inserted in the tree

A major modification in comparison with the original TB-tree takes place when a leaf node
becomes full (Figure 2.10). Then, the algorithm locates the leaf node’s parent entry and deletes it from

the tree using Guttman’s classic R-tree Delete algorithm [Gut84]. Then, the entry is re-inserted in the
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tree, using Guttman’s Insert algorithm, but it is placed higher in the tree (at the level above the leaf
level), so that the (leaf) node that the entry brings together is located at the same level with the rest
leaves — a technique also used in the original R-tree Delete algorithm. With this technique, when a
leaf node gets full it is placed in a ‘better’ position, in terms of spatial neighborhood, since Guttman’s
Insert algorithm uses the least enlargement criterion in order to find the node in which to place the
entry. This “delete and re-insert” technique, originally used in the R’-tree [BKSS90], is the reason for
calling this novel index, TB -tree.

Another major difference from the original TB-tree concerns the creation of new leaf nodes and
the choice of the location where the new leaf nodes are placed. For this purpose, a new algorithm called
InsertInNewNode 1is developed (pseudo-code in Figure 2.11), which uses Guttman’s
ChooseLeaf and AdjustTree algorithms [Gut84]. As already discussed, the algorithm initially
places two points, P, and P, in the new leaf (cf. Figure 2.8).

Differently from the TB-tree construction, Insert InNewNode algorithm of the TB -tree finds
the leaf node next to which the new leaf should be placed using the least enlargement criterion
(Guttman’s ChooseLeaf algorithm). Then, Guttman’s AdjustTree algorithm is invoked passing
both leaf nodes — the one returned by ChooseLeaf and the newly created one — such as it would
happen if the node returned by the ChooseLeaf was previously split. Finally, if the procedure causes
the root node to split, then the tree grows taller by creating a new root whose children are the two

resulted nodes.

1 Algorithm InsertInNewNode (node Root, 3D Point Pp,ey, 3D Point P.u.)
2 // Algorithm TB*-tree InsertInNewNode

3 Create New Leaf Node NNode

4. Insert P, in node NNode

5. Insert P.,,, in node NNode

6 // Find Position for the new Node using Guttman’s ChooseLeaf

7 L = ChooseLeaf (Root, (PprevsPours))

8. // Propagate changes upward

9. AdjustTree (L, NNode)

10. // Grow tree taller

11. IF AdjustTree caused the Root to split
12. Create a new Root NRoot

13. Insert first resulted node in NRoot
14. Insert second resulted node in NRoot
15. ENDIF

16. // Return the new Node

17. RETURN NNode

Figure 2.11: The Insert InNewNode algorithm

With reference to the assumption of the TB'-tree that entries belonging to the same trajectory are
inserted in chronological order, this only happens in order to keep the insertion procedure simple (a
new position is inserted either in the ‘current’ node — as indicated by the front-line structure — or in a
new node, updating accordingly the in-memory front-line). Should this assumption be relaxed, a
backward search in the double-linked list of nodes is required (starting from the ‘current’ node), the
new (‘outdated’) entry is to be inserted in the appropriate node and, since all nodes before the ‘current’
node in the list are by definition full, an entry is to be moved from each node to its next node in the

chain starting from the node the entry was inserted and ending at the ‘current’ node.
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Finally, a buffering technique can be used to optimize the insertion process in terms of touched
disk pages. In particular, further than using a traditional buffering mechanism (such as LRU), the TB"-
tree structure can utilize an additional buffer, hereafter called Last Page (LP) Buffer, which would hold
all leaf nodes not yet filled. Since each leaf node is expected to be completely filled with leaf entries,
the LP buffer can be used in order to hold those leaves not yet completed; then when each leaf node is
completely filled, it is saved on the disk just once, and the next (new) leaf node of the same trajectory
takes its place on the LP buffer. Therefore, the size of the LP buffer will always be equal with the
number of trajectories currently indexed by the TB"-tree. As it will also be shown in the experiments,

the LP buffer dramatically reduces the number of disk page accesses required for insertions.

9,

Figure 2.12: The TB -tree structure

The general picture of the TB-tree is illustrated in Figure 2.12. Compared with the TB-tree (cf.
Figure 2.7), it is clear that leaf nodes belonging to the same trajectory are no longer placed in
increasing time order (e.g. from left to right), but are placed in locations determined by the least

enlargement criterion.

2.3.2.2.2. Deleting Trajectories
Deletions are often neglected when proposing indexing methods for moving object trajectories, with
the main argument that deleting a 3D line segment from an object’s trajectory is meaningless. Although
this might be assumed to be conceptually correct (transmitted positions are recorded, thus exist),
deleting an entire object’s trajectory is meaningful (trajectories of objects being no more useful could
be deleted from the index). Therefore, we provide an efficient algorithm to support deletions of object
trajectories. The input of the algorithm is the id of the trajectory to be deleted.

The DeleteTrajectory algorithm, illustrated in Figure 2.13, can be used in the TB -tree in
order to delete a moving object’s trajectory. The algorithm initially locates the ‘current’ leaf node N.
Then, it removes N’s parent entry from its parent node executing Guttman’s R-tree Delete algorithm
[Gut84] and follows the chain backwards to nodes containing parts of the same trajectory, deleting one
after the other. If necessary, according to Delete algorithm, nodes are rearranged, e.g. if the number

of entries falls under the m=M/2 threshold, or even the tree may be forced to condense.
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1. Algorithm DeleteTrajectory(int Id)

2. // Algorithm TB*-tree DeleteTrajectory

3. // Find latest trajectory leaf node N

4. N = FrontLine (Id) .LastNode

5. // Delete leaf node N’s parent entry using Guttman’s Delete
6. // Algorithm and follow the pointers to the trajectory’s previous
7. // leaf nodes deleting also their parent entries

8. DO UNTIL N Is NULL

9. PN = N.Parent
10. PE = PN.Entry_pointing_to(N)
11. Delete (Root, PE)
12. N = N.PreviousLeaf
13. LOOP

Figure 2.13: The DeleteTrajectory Algorithm

The structure of the TB -tree looks ideal for providing such an algorithm: having located just one
line segment belonging to an object’s trajectory, one could follow the double-linked lists in order to
retrieve the entire trajectory and delete leaf nodes that compose it. On the other hand, the original TB-
tree cannot easily support trajectory deletions: node deletions result in deletions of entries in non-leaf
nodes which either require condense techniques to be handled (such as the CondenseTree algorithm
[Gut84]) or leave holes in the nodes. In any case, the ‘desired’ TB-tree properties (all leaf nodes but the
‘current’ ones are full; a chronological order of leaf nodes exists, etc.) are not prevented.

As for other index structures (such as the 3D R-tree [TVS96], the STR-tree [PJT00], the SETI
[CEPO3]), they by definition lack a mechanism to efficiently retrieve an object’s entire trajectory; thus,
in order to support trajectory deletions they have to answer sequential range queries such as described
in [PJTOO] for the combined search of the 3D R-tree and the STR-tree — a very expensive approach as
shown in [PJTO00].

2.3.2.2.3. Compressing the Index
While the original TB-tree satisfies the trajectory preservation requirement in order to utilize the TD-
TR trajectory compression algorithm [MBO04], such an algorithm would have to read each indexed
trajectory one-by-one, compress it, and finally feed a new TB-tree with the compressed trajectory.
However, since the TB-tree places new entries always at the right ‘end’ of the tree, such an approach
would place entire trajectories on this side of the tree without considering their temporal ordering, thus
leading to a tree with high temporal overlap decreasing its performance. Therefore, in order to
overcome this drawback, we would have to utilize intermediate steps processing all trajectories indexed
by the TB-tree, producing the new compressed ones, sorting them according to their temporal order and
finally feed the new TB-tree. Nevertheless, such a technique would require processing the entire index
in the main memory, or developing specialized algorithms to handle it efficiently. Moreover, the
opening window spatio-temporal algorithm presented in [MB04] would be a solution; then again, such
an approach would lead to utilize a less efficient compression algorithm in terms of both quality and
compression.

On the contrary, the proposed TB -tree does not show any of these disadvantages. Its insertion
algorithm supports trajectory additions in non-chronological order. As such, in Figure 2.14 we present
a simple algorithm which compresses a TB -tree by utilizing the TD-TR algorithm [MB04]. The

algorithm starts by creating a new TB-tree, and then, using the hashed structure, it accesses the last
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node of every trajectory. Then, following the pointers to the previous leaves, it retrieves the entire
trajectory on which the TD-TR algorithm [MBO04] is applied with the given threshold. Finally, the
algorithm feeds the new TB'-tree with the compressed trajectory and repeats the same procedure for

the remaining trajectories until all have been accessed.

1 Algorithm CompressIndex(double Threshold, TB*-tree TB)

2 // Algorithm TB*-tree CompressIndex

3. // Create a new TB*-tree

4. NTB = New TB*-Tree

5 FOR EACH Id IN TB.Trajectories

6 // Find latest trajectory leaf node N

7 N = FrontLine (Id) .LastNode

8. // Create a new Trajectory retrieve all of its entries
9. Traj = New Trajectory

10. DO UNTIL N Is NULL

11. Traj.Add N.Segments

12. N = N.PreviousLeaf

13. LOOP

14. // Apply the top-down spatiotemporal compression algorithm
15. // TD-TR in the Trajectory with the given threshold

16. TD-TR (Traj, Threshold)

17. // Insert in the new TB*-tree each point P of the compressed
18. // trajectory

19. FOR EACH P IN Traj

20. Insert NTB.Root, Id, P

21. NEXT

22. NEXT

Figure 2.14: The CompressIndex Algorithm

2.3.2.2.4. Querying the TB -tree

As already mentioned, since both the TB- and TB"-tree are based on the well known R-tree, the
respective range search algorithms follows the FindLeaf algorithm originally presented in [Gut84].
This algorithm recursively visits tree nodes, rejecting node MBBs that does not overlap the query
window, while following the pointers from overlapping MBBs to their respective child nodes until all
candidate leaf nodes have been found. Following the example illustrated in Figure 2.1 for spatial
objects, consider a range query Q executed against the 2D R-tree. The algorithm starts by visiting the
tree root, checking whether the MBBs of the root entries overlap Q. If a node entry MBB overlaps Q,
the algorithm follows the pointer to the corresponding child node (entries A and B in our example),
where it repeats recursively the same task. If the algorithm reaches a leaf node, leaf entries are
examined against Q and if their MBB overlap, the algorithm reports their ids (objects F and G when the
algorithm visits leaf node A, and object H when in node B). The extension of the above algorithm in the
spatio-temporal domain is a straightforward task, where each 2D MBB is simply replaced by the

respective 3D MBB of actual objects, nodes or queries.

2.4. Indexing the Trajectories of Objects Moving in Fixed Networks

As already mentioned, following the suggestions of [KGT99], in this thesis we propose the FNR-tree,
an extension of the well-known R-tree [Gut84], designed to index objects moving on fixed networks.
The FNR-tree can be considered as a forest of several 1D R-trees on top of a single 2D R-tree. The 2D
R-tree is used to index the spatial data of the network (i.e., roads consisting of line segments), while

each one of the (temporal) 1D R-trees, hereafter called “Children 1D R-trees”, corresponds to a leaf

32



node of the 2D R-tree and indexes the time intervals during which moving objects moved on network
links that fall into the Minimum Bounding Box (MBB) of the corresponding 2D R-tree leaf node. As
such, the (spatial) 2D R-tree remains static during the lifetime of the FNR-tree — as long as there are no
changes in the network. An additional (temporal) 1D R-tree hereafter, called “Parent ID R-tree” is
used to index the leaf nodes of all the children 1D R-trees with respect to their lifetime. Hence, the time
interval of each 1D R-tree’s leaf node is inserted along with a pointer to the actual node as a new entry
in the parent 1D R-tree. The overall structure of the FNR-tree is outlined in Figure 2.15, while Figure

2.16 (b) demonstrates an example for the configuration of objects illustrated in Figure 2.16 (a).
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Figure 2.15: The FNR-tree structure
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Figure 2.16: An FNR-tree example: (a) trajectories of three objects on a road network and (b) the

corresponding FNR-tree components

2.4.1. The FNR-tree Structure

As already mentioned, the FNR-tree can be considerer as a 2D R-tree indexing the network line
segments, along with a forest of 1D R-trees indexing time intervals. Following the standard R-tree
structure, non-leaf nodes of the 2D R-tree are of the form {header, {ptr, MBB;}), where each MBB; =
omin-is Ymin-i Xmax-is Ymax-iy and header = (id, #entries, ptr). On the other hand, the structure of the 2D R-
tree leaf nodes is slightly modified regarding the conventional R-tree; formally, leaf nodes are of the
form (header, {link;, MBB,, orientation}) and header = (id, #entries, ptr, ptr piia-riree)- According to this
form, the pointer normally located inside each leaf node entry has been replaced by an ‘orientation’

flag (0/1) that describes the exact geometry of the line segment inside the MBB (Figure 2.17(a)). A
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similar approach was followed in [PJTOO] to represent segments of trajectories in 3D R-tree [TVS96].
Moreover, each 2D R-tree leaf node contains a pointer (ptreniaraee) that points to the root of the

corresponding child 1D R-tree.

{Moving Object Direction 0

T Moving Object Direction 1

(a) (b)
Figure 2.17: (a) The ‘orientation’ flag in 2D R-tree entries; (b) the ‘direction’ flag in 1D R-tree entries

Regarding the 1D R-trees, non-leaf nodes are of the form (header, {ptr;,, MBB;}), while leafs are
slightly different: (header, {Object-id;, Link-id;, MBB;, direction}), and MBB=(t;,, t,,) is the time
interval during which object with id Object-id; moved on the line segment with id Link-id;, which is
included in the MBB of t