UNIVERSITY OF PIRAEUS
DEPARTMENT OF INFORMATICS

Data Warehousing & Mining Techniques
for Moving Object Databases

PhDThesis

GERASIMOS D. MARKETOS

Degree in InformatigdJniversity of Piraeu$2003
MSc inInformation Systemg&ngineeringUMIST (2004

PiraeusDecembe009






Thesis
submittedfor thedegreeof
Doctor of Philosophy
atthe Department of Informatics
University of Piraeus

UNIVERSITY ORPIRAEUS
GERASIMOS MARKETOS

AData Warehousing & Mining
Techniquesfor Moving Object
Databases

AdvisoryCommittee
Supervisor

Yannis Theodoridis

Assoc Professor U. Piraeus ExaminationCommittee

Yannis Manolopoulos

Members ProfessoAristotle U. Thessaloniki

Georgios Vasilakopoulos

Professor U. Piraeus Themistoklis Panayiotopoulos

Professor U. Piraeus

Dimitrios Despots

Professor U. Piraeus Yannis Kotidis

Asst. Professor Athernld. of Economics
& Business

DespinaPolemi
Lecturer U. Piraeus




GERASIMOS D. MARKETOS

CopyrightE GerasimosD. Marketos 20009.
All rightsreserved



Preface

Analyzing mobility data that are collected from location aware devices enables us to discover
behavioral patterns that can be explored in applications like service accessibility, mobile marketing and
traffic management. Online analytical processing (OLARY data mining (DM) techniques can be
employed in order to convert this vast amount of raw data into useful knowledge. Their application on
conventional data has been extensively studied during the last decade. The high volume of generated
mobility data aises the challenge of applying analytical techniques on such data. In order to achieve
this aim, we have to take into consideration the complex nature of spatiotemporal data and thus to
extend appropriately the two aforementioned techniques to handlarttamrefficient way. This thesis
proposes a framework for Mobility Data Warehousing and Mining which consists of various
components (actually, Knowledge Discovery & Delivery steps). More specifically, Trajectory Data
Warehousing techniques are addresseduding on modeling issues, ETL processes (trajectory
reconstruction, data cube loading) and OLAP operations (aggregation etc). Moreover, we propose data
mining techniqueghat explore mobility data and extract a) interaction patterns gfaticiemporal
representationsynthesis andclassificationand b) traffic patterns thatan provide useful insights

regarding the traffic flowona road network

Gerasimos Marketos
Decembel009
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1. Introduction

This chapter highlights the backgralef the thesis and outlines its structure. In Sectioh we
introduce some basic knowledge aboubbility dataanalysis we motivate the thesisnd refer to
interesting application scenariodSectionl.2 sketchs the contributionsof this thesisand Section1.3
outlines the rest of the thesis.

1.1. Analyzing Mobility Data

Our everyday actionsas expressed by thveay we live and move, leave digital traces imformation

systemsThis happens because we use mobile phones and other location aware devices that allow us to
communicate and get routing instructiomstually, through thesdraceswe can sens¢he human

movementsin a territory and thus theipotential value is really high |1t 6s becoming even

because of the increasinglume,pervasiveness and positioning accuratthese traces

The number of mobile mne users worldwidevas more that 2 billion in 2005e., one mobile phone
everythree people[Cia09]. Furthermore location technologies, such as GSM and UMTS, currently
used by wirkess phone operators are capable of providibgtterestimation of thal e v i po%tions
while the integration of variousogitioning technologieproceedgGPT08} GPSequipped mobile
devices can transmit thdocation informatiorto some service provideMoreover, Atest advances like
Wi-Fi and Bluetooth deviceare becoming aource of data for indoor pdisining, while Wi-Max can

become an alteative for outdoor positioningsP07}

Modern @mmunication and computing devices are ubiquitous and carried everywhere and always by
people ad vehicles The consequencis that human activity in a territory may be sensedot
necessarily on purpose, but simply as a side effect of the services provided to mobil€hisdext

allows considering the wirelegghone network as an infrasttuce to gather mobility data so as to
analyzethem and gain insights abobtuman movements Clearly, in these scenarios privacy is a
concern[GPO7] In particular, how can trajectories afobile individuals be stored and analyzed
without infringing personal privacy rights and expectations? How can, out of prdessitive
trajectory data, patterns be extracted that are demonstrably ppvesgrving, i.e., patterns that do not

discloseidd i vi dual sé6 sensitive information?

The usage of location aware devices, such as mpbdaes and GR8nabled devices alloveaccess to
large spatiotemporal datasets. The sgane nature of this kind of data results in the generation of

huge amounts ofpatiotemporatlata and imposes new challenges regarding the analytical tools that



can be used for transforming raw data to knowledgehim thesis we investigate the extension of

traditional analytical technique® as to be applicable omobility data

The analysis of such mobility data raises opportunities for discovering behavioral patterns that can be
exploited in applications like mobile marketing, traffic management etc. Online analytical processing
(OLAP) and data mining (DM) techniques can bepkayed in order to convert this vast amount of raw

data into useful knowledge. Their application on conventional data has been extensively studied during
the last decade. The high volume of generated mobility data arises the challenge of applyinglanalytica
techniques on such data. In order to achieve this aim, we have to take into consideration the complex
nature of spatiotemporal data and thus to extend appropriately the two aforementioned techniques to

handle them in an efficient way.

1.1.1. Motivation Scenarios

The research efforts that are presented in this thesis are motivasetnbgcenariofrom thehuman
movement activitand thetransportation managemedbmainsand are inspired by the research work
done in GeoPKDD projedtGeo06] Their different characteristics allow us to show the usefulness of
our work.The former application scenario regards an educational mobile ganoityread helattera

service for managing thedffic situation in city networks in an effective way.

As for the first domainlet us consider an advertising company which is interested in analyzing
mobility data in different areas of a city so as to decide upon road advertisements (placed on panels on
the roads). They are interested in analyzing the demographical profiles of people visiting different
urban areas of the city at different time zones of the day so as to decide about the proper sequence of
advertisements that will appear on the panelsifégrent time periods. This knowledge will enable

them to execute more focused marketing campaigns and apply a more effective strategy.

Another interesting application of this domain could berd@eationalplanning scenario which can

be shown througta game. A typical educational mobile game is the paper chase (also known as
scavenger hunt), an old childrends game in which an
hints on a sheet of paper. Each team tries to find the locations thatlax@éd on the questionnaire.

Once a place is found, they try to best and quickly answer the questions on the sheet, note down the

answer, and proceed to the next point of interest (POI). The game mainly consists of a set of geo

referenced checkpointssaxiated with multimedia riddles.

The playerdéds device includes a GPS receiver whi ch
device. As the checkpoints are proximitware an event is raisedand the server is contacted

whenever a player physicgpllapproaches one of the virtual checkpoints. The server responds by

sending the information about the corresponding riddle, which is presented in a hypermedia

presentation to the user.

Each riddle has associated resources like an image or other addjtrestih) information that are
needed to solve the riddle with the respective interaction(s). The player tries to solve the riddle not only
correctly but also as quick as possible, because the time needed to solve all the riddles is accumulated

and added tdhe overall score. The answer to the riddle is communicated to the game server. It is



possible for the player to interact with the systauh also with other people,g, by asking them for
help with the riddles.

Two main application requirements haveebeselected based on the general lack of knowledge of
recreation planners about the actual behavioral patterns of players within a recreation site, accordingly
to:

1 Points of Interesin a recreational site: The assumption is that game activities arewsgtsal
performed in planned recreational zones.

T Similar pl ay énragdrreational site: dtetassomptson is that the behavior of
groups of players partly depends on interaction with others. For examptey identify that
somegroupsshowingdifferent behavior might interfere with each other (e.g. teams that might

start competing against each other).
In particular, the recreation planners need to:
91 understand the actual trajectories followed by players, not only the starting and ending points;
1 estimate the flow between points of interest;
1 understand the interactions and movement of players and foreseen possible new riddles;

9 identify possible players interactions and how the players respond when some unexpected
event happens;

91 discover alternativplaces for the recreational game;

i1 discover dangerous and suspicitehaviorin the recreational game.

As for thetransportation managemestenario trying to understand, manage and predict the traffic
phenomenon in a city is both interesting and usd¥at. instance, city authorities, by studying the
traffic flow, would be able to improve traffic conditions, react effectively in case of some traffic
problems and arrange the construction of new roads, the extension of existing ones, and the placement
of traffic lights. Furthermore, studying the interactions between objects in spatiotemporal

neighborhoods is essential so asliscoveruseful knowledge about moving behavior.

An interesting final goal would be the development of a decision support tdohitha to help in
managing traffic, analyzing past movements and behaviors of people through data coming from their
mobile devices. This service is addressed to urban planning departments, mobility agencies, traffic
managers, but also the public adminitnas that are responsible for mobility both at urban and

regional scale. The needs that this service aims to satisfy are:

1 to identify and observe the user flow variations in geographical areas according to urban
changes in different time periods;
1 to knowthe real average time to move between different areas;

9 to identify the most popular aggregated trajectories followed by people.



The input data for this kind of service can be very diverse, and according to the type of data at disposal,
different functionéities can be implemented. In this case, both GSM and GPS data can be used, along

with data already at disposal coming from traffic cameras and traffic sensors.
The functionality that such a tool would implement includes:

1 automatic building and construaticof origin destination matrix, in order to estimate the
traffic flow from one region of interest to another both at urban and regional scale;

1 calculation of the average travel time from one zone to another, both at regional and urban
scale;

1 simulation oftraffic flow in presence of extraordinary events, such as football matches, strikes

or big concerts.

The above motivation scenarioan be realized using novahalyticaltechniques that will be able to

exploit the available rich mobility semantidedicatively, a Trajectory Data Warehouse (TDW) can

help us to analyzerarious measures such as the number of moving obfpetsple, vehiclesjn

different urban areas, the average speed of veHiolgseople) t he wups and downs of ve
as well asuseful insights, like discovering popular movemeMsreover, trajectorynspired mining

techniques can be used dscover traffic related patterns. These patterns can be expressed through
relationships among the road segments of the city network.hier etords, we aim to discover, by

using aggregated mobility data, how the traffic flows in this network, the road segments that contribute

to the flow and how this happenBinally, representing movement as a set of descripgores us

insight about the behavior of objeets well as theiinteractions witithe neighbors

1.2. ThesisContribution

This thesis proposes innovativanalytical techniques aimingo extract useful patterns from
spatiotemporal datalt discusses the differenadf two types of spatiotemporal datamobility and
immobility data. In order to clarify this distinction, we choose seismological data as a typical case of
immobile data and wpresenta Seismic Data Management and Mining Systenguick and easy data
collection, processing, and visualization. Thwoposed frameworkincludes, among others, a
seismological database for efficient and effective querying and a seismological data warehouse for
OLAP analysis and data mining. We provide template schemes for thesemwpoments as well as
examples of their functionality towards the support of decision makiug.results in this topic are

presented in Chapt@r Preliminary resitis have been already published MiTK 08].

The main part of or research focugseon data warehousing and mining techniques that can be applied
on Moving Object Databases. More specificallfistthesis proposes a complete framework for
Mobility Data Warehousing and Mining (MDWM) which consists of various components (actually,

Knowledge Discovery & Deliverysteps).



Next, we discuss the contributions of this thesis, grouped by the respective issue. Here, we have to
point out, that the novelty of our approach is established in each different chapter, by appropriately

presenting the respgve related work.

Trajectory Data Warehousing: We investigate how the traditional data cube model is adapted to
trajectory warehouses in order to transform raw location data into valuable information. In particular,

we focus our research on two issuest tare critical to trajectory data warehousing:

1 the ETL (ExtractTransformLoad) procedure that feeds a trajectory data warehauitie
aggregate trajectory data. To this aim, we propose two alternative methods: ab@isdd)
cell-orientedand a (norindexbased)trajectory-orientedETL processAs we will illustrate
during the experimental study, the choice of a particular method is adifabetween the

selected granularity levaind the number of trajectories;

91 the aggregation of cube measures folABLpurposesThe challenge is that trajectory might
span multiple base celtsausingaggregationhindrances in OLAP operations. Véatend the
data cube model adding some auxiliary measures that will help us to correct the errors caused
due to the duplides when rollingup. This is an approximatsolution for thisissuewhich

turns out to perform effectively.

In both aforementioned research issues,provide design solutions and we test their applicability and
efficiency in real world setting®ur results in this topic are presented in Chatd?reliminary results
have been already publishedMFN+08a], [MFN+08b] and[MT09b].

Ad-hoc OLAP on trajectory data: We present a new approach in designing trajectory data cubes
aiming at giving answers to dwc OLAP queries taking into account different interpretations of the
notion of trajectoryA flexible trajectory data cube that providestaat analysis can sernaenumber of

applications even if they considdifferent definitions of trajectory data. In more details:

1 We extend the OLAP data mod® as to include #iexible fact table thatananswer queries
considering different semaatdefinitions of trajectorie and provides the option to choose the

appropriate semantfor aggregatin queries over trajectory data;

1 We develop an ETL technique that transforms the data appropriately in order to load them in
the fact table. This technique utilizes the new OLAP datdeland feeds the flexible TDW.
Its performance, compiag to conventional ETL, deemei® be more efficient as we will

present in the exggimental section of this work;

1 We enhance OLAP techniques so as to utilize the dete& modelTo this aim, we propsea
competent algorithm that can answer adhoc aggregation queriesWe also discuss
materialization issues that improve the performance of this algorithm as they speed up the

calculation process.

Preliminary experimental results illustrate the appliligband efficiency of our approach. Our results
in this topic are presented in Chapter Preliminary results have beesubmitted for evaluation
[MTO094.



Mining interaction patterns: We propose a competent framework for mininggraction patterns that
enables spatiotemporal representation, synthesis and classification. This work intrecudessit

ideas:

1 an adequate understanding of what is happening to a single object requires to look not only at

its trajectory, but also at the context where it moves;

1 such context is defined not only by the nature of the geographical space, but als® by t
presence of other objects and their interaction with the moving object under analysis.

We model interaction as a groupse phenomenon trying to understand bietaviorof an object with

respect of itseighborhoodThis is achieved by computing intetiag interaction descriptors that can

help us describe and understand the movement in various spatiotemporal windows. We compare
alternative discovery processes: on the one hand, considering a dymaghiborhoodor each object

and on the other hand, foWing a fixed grid approach and computing descriptors for static
spatiotemporal windows. Preliminary experimental results illustrate the applicability and efficiency of
our approach. Our results in this topic are presented in Chdptereliminary results have been
submitted for evaluatiofiNMOQ9].

Mining traffic patterns: We propose &ramework with mining capabilities over mobility data that are
stored either in a MOD or in a TDWVe define various relationships between the edges of the network
graph that allow us to combine the temporal information provided by the traffic time waéthethe
spatial semantics inherited in the road network. We provide solutions for the detection of traffic
patterns and we propose innovative mining algorithms for the detectidimeffocused traffic
relationships between the different road segmenta oity network. We distinguish two discovery

processes

In summary, our approachiscovers spatiotemporal patterns for supporting traffic management
decisions.Preliminary experimental results illustrate the applicability and efficiency of our approach.
Our results in this topic are presented in ChagtdPreliminary results have been already published in
[NMMO08] and[MT09b].

T-WAREHOUSE - a prototype for Visual TDW: We demonstrate a framework that transforms the
traditional data cube model into a trajectory warehouse. As a-pfamincept, we implemented-
WAREHOUSE a system that incorporates all the required steps for Visual Trajectory Data Warehousing,
from trajectory reconstruction and ETL processing to Visual OLAP analysis on mobility Tdasa.

system is based on the works thoroughly presented in Ctaptet is illustrated in details in Chapter

5. As for the trajectory reconstruction is concerned, we present an efficient technique that transforms
sequences of raw sample points into meaningful trajectories. These reconstructed trajectories are then
stored in the moving object database and are raaailable for ETL processing that feeds the TDW

with aggregate mobility data.

We describe the architectural aspects of our framewodkwe investigate the power, flexibility and

efficiency of our framework for applying OLAP analysis on real world mobiligfa Preliminary



experimental results illustrate the applicability and efficiency of our approach. Preliminary results have
been already published jRIFN+08a], [MFN+08b] and [LMF+10].

1.3. ThesisOutline

The outline of thehesisis as follows:In Chapter2, we present basic concepts of spatiotemporal data
distinguishingbetweenmobile and immobile entities. Chapteproposesa frameworkfor Trajectory
Data Warehousingsupportingall the steps fromETL to OLAP analysisand also introducing a
variation of it thatis suitably designed so as to support multiple definitions of the notion of trajectory.
Chapter 4 presents two approaches for trajectorgpired data minindocusing, the formeon the
discovery of interaction patterns from mobility datadthe latteron the detection of traffic patterns in
city networks respectivelyln Chapter5 we presenT-WAREHOUSE a prototypetool for Mobility Data
WarehousingFinally, Chaptei6 sumnarizesthe conclusionsind results of our researehddiscusses

interesting open issues



2. Basic Concepts on Spatiotemporal Data

In this chapter we focus on the notion of spatiotemporal data, and we present two different kinds of
them that should be treated in a different way: mobile and immobile data. The outline of the chapter is
as follows: Sectior?.1 introduces the issues being related to the spatiotemporal data. S2&ion
examines the case of mobile entities, while Sectio2.3 presents the notion of mobile entities.
Section2.4 discusses the need for the development of innovative decision support teclfimégeitiser

kind of spatiotemporal dat&inally, Sectior2.5 providesthe conclusionsf the chapter

2.1. Introduction

With advances in remote sensors, sensor networks, and the proliferation of location sensing devices in
daily life activities and common usiness practices, the generation of disparate, dynamic, and
geographically distributed spatiotemporal data has exploded in recent Warshould distinguish

from the beginning of the thesiwo differenttypesof spatiotemporal datan the one hand, dsethat

involve the notion of mobility andn the other handtatic spatiotemporal data.

An important and interesting example of the latter category is the scientificdet@in Sgnificant
progress in ground, ailmnd spacdorne sensor technologieashled to an unprecedented access to
earth science data for scientists from different disciplines, interested in studying the complementary
nature of different parameters. These developments are quickly leading towardsrizhdata
informationpoor envionment. The rate at which geospatial data are being generated clearly exceeds
our ability to organize and analyze them to extract patterns critical for understanding in a timely
manner a dynamically changing world. Computer scienceGaminformaticscancollaboratein order

to address these scientific and computational challenges and provide innovative and effective solutions.
In Section2.2, we focus on seismologal data, an exciting category of scientific datad we present

our approach on how to apply analytitathniquesto help seismologists and geoscientistg#in

knowledge from vast amounts of seismic data.

On the other hand, gpical category of mobty data is the timestamped location data that can be
collected by locatioraware devicesThe usage of such devices, such as mobile phones and GPS
enabled devicesis widely spread nowadays, allowing access to large datasets consisting of time
stamped gographical locationsAppropriate handling of raw location data results in trajectory
databases, a task that is usually referredraectory reconstructiofMFN+08a]. To addresshe

emergingneed, the traditional database technology has been extended into Moving Object Databases



(MODs) that handlemodeling indexing and query processing issues for trajectqf&05] As it
usually happens in data management world, the challenge after storing the data is the implementation
of appropriate analytics that could extract useful knowletly&edion 2.3, we introduce some basic

issues regarding trajectories and MQi3swell as about th@eographidPrivacy-awareKDD process

2.2. Immobile Entities: The Case ofSeismological Data

For centuries, humans have been feeling, recording and studying earthquake phenomena. Taking into
account that at least one earthquake of magnitude M < 3 (M > 3) occurs every one second (every ten
minutes, respectively) worldwide, theismic data collection is huge and rapidly increasing. Scientists
record this information in order to describe and study tectonic activity, which is described by recording
attributes about geographic information (epicenter location and disaster areas)pftievent,

magnitude, depth, etc.

On the other hand, computer engineers specialized in the area of Information & Knowledge
Management find an invaluable fAdata treasureo,
discovery of knowledge from this ta A number of applications for the management and analysis of
seismological or, in general, geophysical data have been proposed in the litgxa@g, [KROO],

[The03] [YuO5]. In general, the collaboration between ti&a mining community and physical

scientists has been only recently launcfi&id00].

Earthquake phenomena are instantly recorded by a number of organizations (e.g. Institutes of
Geodyamics and Schools of Physics) worldwide. Hence, a system that salhgicanalyzethe most
accurate seismic data among different souisemededObviously, some sources provide data about

the same earthquakes though with slight differences in tlegdilsl (e.g. the magnitude or the exact
timestamp of the recorded earthquaké)hat raises from this discussion is the need faeneric
architecture of a soalledSeismic Data Management and Mining Syst8sBDMMS) that will beable to

integrate the remetsources in a proper way by refining and homogenizing rawidats 08].

2.2.1. Seismic Data Warehousing ad Mining

Desirable components of$DMMS include tools for quick and easy data exploration and inspection,
algorithms for generating historic profiles of specific geographic areas and time periods, techniques
providing the association of seismic data with other geophysical parameters of ,rdemtstas
geological morphology, and, top line, visualization components using geographic and other thematic
oriented (e.g. topological and climatic) maps for the presentation of data to the user and supporting
sophisticated user interaction.

In summary, e classify users that an SDMMS should support in three profiles:

1 Researchers of geophysical scienceserested in constructing and visualizing seismic
profiles of certain regions during specific time periods or in discovering regions of similar
seismic fehavior.

1 Public administration officers requesting for information such as distances between

epicenters and other demographical entities (schools, hospitals, heavy industries, etc.).

whi



1 Citizens( Aweb surferso), sear chi n ghe systam fos seisnsioni ¢
properties of general interest, e.g. for finding all epicenters of earthquakes in distance no more
than 50Km from their favorite place.

The availability of systems following the proposed SDMMS architecture provides users a wealth of
information about earthquakes assisting in awareness and understanding, two critical factors for

decision making, either at individual or at administration level.

Collected data can be stored in a local database and/or a data warehouse (for simple ajgrying
analysis for decision making, respectively). In general, data within the database is dynamic and
detailed; while that within the data warehouse is static and summarized (this is because the
modifications of the former are continuous, while the latersubjected to periodical updates).

-
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Figure 2-1: A general SDMMS architecture proposed for seismological data manageme

Figure 2-1 presents the proposed abstract architecture that serves the task of collecting data from
several sources around the world and storing them in a local repository (database and/or data
warehous). A mediator is responsible for the management of the process from the extraction of data
from their sources until their load into the local repository, theadled Extract TransformlLoad

(ETL) approach. The collected data are cleansed and transftonagdmmon structure so as to store

them in the database of the SDMMSurthermorethe collected data can be summarized so as to feed

the Data Warehouse with aggregations.

Traditional Database Management Systems (DBMS) are known as operational dataDa3® (on

line transaction processing) systems as they support the daily storage and retrieval needs of an
information system.Querying seismological databases involves spatiotemporal concepts like
shapshots, changes of objects and maps, motion and maeadPT98], [The03] In particular,

SDMMS should provide at least the following database querying functionality:
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i Retrieval of sptial information given a temporal instancghis concept is used, for example,
when we aredealing with records including position (latitude and longitude of earthquake
epicenter) and time of earthquake realization together with attributes like magnitude, depth of

epicenter, and so on.

T Retrieval of sptial information given a temporal intervalhis way, evolution of spatial
objects over time is captures (assume, for example, that we are interested in recording the
duration of an earthquake and how certain parameters of the phenomenon vary throughout the

time interval of its duration).

I Overlay d smtial information on layers given a temporal instance or interv@he
combination of layers and time information results into snapshots of a layer. For example, this
kind of modelingis used when we are interested in magnitude thematic maps of ed&ehlqu
realized during a specific day inside a specific area (temporal instance) or modeling the whole
sequence of earthquakes, including-paed aftershocks (using the notion of layers in time

intervals).

Examples of typical queries involving the spatiatidahe temporal dimension of seismological data are
the following[TheO03]:

I Find the ten epicenters of earthquakes realized during the past four months, which reside

more closely to a given location.

I Find all epicenters of earthquakes residing in a certa@gion, with a magnitude M >5 and a

realization time in the past four months.

i (Assuming multiple | ayers of information, e.
population) find the five strongest quakes occurred in a distance of less than IAfm

cities of population over 1 million during the 20th century.

Nevertheless, maintaining summary data in a local data warehouse can be used for data analysis
purposes. Two popular techniques for analyzing data and interpreting their meaning arar@Lysi

and data mining. Summarized data and hidden knowledge acquiring from the stored data, can lead to
better decisions. Similarly, summarized seismological data are of particular interest to earth scientists
because they can study the phenomenon feorigher level and search for hidden, previously
unknown knowledge. We illustrate the benefits obtained by such an approach with two examples of
operations supported by spatial data warehouse and OLAP technologies:

T A user may ask to view part of the histal seismic profile, i.e. the ten most destructive
guakes in the past twenty years, over Europe, and, moreover, he/she can easily view the same
information over Greece (more detailed view, formallyridl -downoperation) or worldwide

(more summarized giv, formally aroll-up operation).

I Given the existence of multiple thematic maps, perhaps one for quake magnitude and one for

another, nofgeophysical parameter such as the resulting damage, these maps could be

11



overlaid for the exploration of possible rédaships, such as finding regions of high, though

non-destructive, seismicity and vice versa.

Further to roHup and driltdown operations described above, typical data cube operations istitele
and dice, for selecting parts of a data cube by imposoogpditions on a single or multiple cube

dimensions, respectivelyigure2-2), andpivot, which provides the user with alternative presentations

of the cube.
M
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Figure 2-2: Selecting parts of a cube by filtering a single (slice) or multiple dimensions.(dice)

Integrating data analysis and mining techniques into an SDMMS ultimately aims to the discovery of
interesting, implicit and previously unknown knowledge. Examples of useful patterns found through
Knowledge Discover & Delivery KDD) process include clusteig of information (e.g. shocks
occurred closely in space and/or time), classification of phenomena with respect to area and epicenter,
detecting phenomena semantics by using pattern finding techniques (e.g. characterizing the main shock
and possible intenge aftershocks in shock sequences, measuring the similarity of shock sequences,

according to a similarity measure specified by the domain expert, etc.).

2.3. Mobile Entities: The Case of Trajectory Data

Moving objects are geometries (i.e. points)el, ares) changing over time and trajectory data
describes the movement of these objectavéinent implies two dimensions; the spatial and the
temporal. More specifically, movement can be described as continuous change of position in the

geographical space and through comparison between two different temporal [htaGts08].

More formally,a trajectoryT is a continuous mapping from the tempataP R to the spatial domain
(R?, the 2D plane]jMV O+08]:

| PRY Rt ¥ ta= act,at (1)
and,
T= act,a t,t |08 OORXR (2-2)

where a, t ,a, t ,t are the sample points contained in the available dataset.
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Froman application point of view, a trajectory is
of the positions of an object at specific timestamps; while the actual trajectory consists of a curve, real
world requirements imply that the trajectdrgis to be built upon a set of sample points, i.e., the- time
stamped positions of the object. Thus, trajectories of moving points are often defined as sequences of
(%, y, t) triples[GBE+00]:

T= Xl!ylatl ' X21y2!t2 !81 Xannatn ’ (2'3)
wherewgtp0o R, andt; <t < .. <t,,

The spacdime nature of the mobility data that are collected from modern sensing technologies and
wireless telecommunication devices enables novel research fields related to the management of this

new kind of data and the implementation of appropriaté/ics for knowledge extraction.

Moving Object Databases is an important research field that has received a lot of attention during the

last years. The main objective of this emerging area is to extend database technology so as to include

t

h

appropriate teahiques for the representation, querying, indexing amtlelingo f moving objectd

trajectoriesMoreover, the analysis of the huge amount of collected trajectory data is a new interesting
topic. This is because traditional analytical techniques canngifiea asis due to the spatiotemporal
nature of trajectory datdVhat raises from this discussion is the need for a new KDD process which
will be applicable on trajectory datahit thesis discusses several steps of this process; an outline of

which is pesented on the next subsection.

2.3.1. Moving Object Data Management, Warehousing and Mining

The research area of Moving Objects Databases has addressed the need for representing movements of
objects (i.e., trajectories) in databases in order to perfortmoadyerying and analysis on them.

During the last decade, there has been a lot of research ranging from data models and query languages
to implementation aspects, such as efficient indexing, query processing and optimization techniques. At
least two MOD engire have been proposed in the literature, namely the SECONDO prototype
[AGBO06] and the HERME®ngine[PFG+08]

HERMES is the core moving object database engine used for the development of the techniques
proposed in this thesis and thus we briefly introduce it. HERNMESdatabase enginbat provides
spatbtemporal functionality so as to handbbjects that change location, shape and size, either
discretey or continuously in timeThe system can be used either as a pure temporal or a pure spatial
system, but its main functionality is to support the modekmd querying of continuously moving
objects. Such a collection of data types and their corresponding operations are defined, developed and
provided as an Oracle data cartridge, cal#RMES Moving Data Cartridge HERMESMDC),

which is the core componeaf the HERMES system architecturdt offers an expressive and easy to

use query language for moving objeatswell asa palette of moving object data typ@sg. Moving

Circle, Moving Polygon, Moving Point etchmong othersHERMESfunctionality inclues:

1 Queries on stationary reference objects; examples include didiased or nearest neighbor

gueries (e.g., find nearby or cl osest l andmar k

location) and topological queries (e.g., find those crosse@tbasduring the past hour);
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1 Queries on moving reference objects; examples include diskasesl (e.g., find those passed
close to me this evening) and similaritgsed queries (e.g., find the three most similar
trajectories to the one | followed yesterflay

1 Queries involving unary operators, such as traveled distance or speed (e.g., find the average

speed of the trajectory | have followed during weekend.

As for the analysis of mobility dateheterm GeographicPrivacy-aware KDD processemerged from

the GeoPKDD projecfGeo06] which proposed some solid theoretical foundations at an appropriate
level of abstraction to deal with traces and trajectarfamioving objectsaiming atserving real world
applications. This process consists of a set of techniques and methodologies that are applicable on
mobility data and are organized in some well defined and individual steps that have a cleatotarget:
extrect userconsumable forms of knowledge from large amounts of raw geographic data referenced in

space and in time, also taking into account privacy isddere specifically, the main tasklustrated

in Figure2-3) of GeographicPrivacy-awareKDD processare:

1 reconstruction of trajectories from streams of raw data about moving objects, and construction
of a privacy-aware trajectory warehouse;

1 spatiotemporal privacpreserving data mining and knowledge extraction algorithms, yielding
spatidemporal patterns;

1 geographic knowledge interpretation and visualization techniques to deliver meaningful
patterns to end users.

This KDD process can be apgdi in heterogeneous sources of mobility datze cell phone that is

illustrated inFigure2-3 could represent various datasets coming from various devices:

1 GPS the fully-functional satellitenavigationsystemthat constellates more than two daz
satellites broadcasts precise timing signalsragio to GPS receivers, allowing them to
accurately determine their locatiolorfgitude latitude andaltitude in any weatherday or
night, anywhere orcarth

1 GSM the most popular standard fanobile phonesn the world, used by over 1.5 billion
peofde across more than 210 countries and territorld®e ubiquity of the GSM standard
makes internationafoaming very common betweemmobile phone operatarsenabling
subscribers to use their phones in many parts of the w&&M networks consist of a
numbers of base stations each responsible for a particular geographical area (known as cell).
Hence, for eaclsSM-enabled device we can colldodbm whichbase stationsvasserved at
different timestamps and therefose can assumiés movement.

1 Wi-Fi: the most popular standard for wireless communication between dediced-Fi
enabled device such asaptop mobile phonePDA etc can connect to another device when it
is within the range of awireless network The wireless network is defined as a set of
interconnectedccess pointd calledhotsposd that can cover an area as small as a single
room or as large as a whole city (WiMax). As in GSM, we can collect for each device the list

of hotspots that served it at differdithestamps.
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In the real world thesedifferent data types could bevailable and need to be stored, queried and
analyzed. Towards this aim, we need approptiaectory reconstructioriechniqus thatrespecthe

data differences. Obviously the concept of these techniques is the same: they transform raw data into
trajectories. However, the variations in the nature and the accuracy of the data demand a different
approach for each data typdoreover, trajectoryeconstruction techniques magrform some basic
trajectory preprocessing. This may include parameterized trajectory compression (so as to discard
unnecessary details and concurrently keep informative abstractions of the portions of the trajectories

trangmitted so far), as well as techniques to handle missing/erroneous values.

The reconstructed trajectories are stored in the trajectory data warehouse that serves two core needs: to
provide the appropriate infrastructure for advanced reporting capabitities to facilitate the
application of trajectory mining algorithms on the aggregated data. According to end users needs, they
could have access either to basic reports QIrAP-style analysis. Whatf scenarios and
multidimensional analysis are typical exdegpof analytics that could be based on the trajectory data

warehouse.

Kindly consider a relaxed definition of the trajectory warehouse that is preserigniia2-3. It could
include a MOD that stores trajectory data in full detdilse MOD can feed the TDW with aggregate
data by applying afETL process which aim tderiving qualitative information (e.g. trajectories in

different granularities, aggregations, motional metadata etc.)
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Figure 2-3: The big picture of moving object data managemeatehousing and mining concepts
[Geo06]

To deal with moving object applications that are restricted to some network, both the MOD and the
TDW may need map matched trajectories. In other words, they may need the specific trajectory points

and portions to correspond to valid network paths. This may include for example, performing pre
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processing or pogirocessing tasks that do not violate the validity of trajectories in terms of the real

underlying network.

Additionally, Geoknowledge ifrigure2-3 can be expressed liycorporating of GIS layers that could
result in a richerconceptual model providing thus more advanced analysis camahilfiombing
trajectory data with thematic layers (such as geographic, topographic and demographic layers) could

enhance the analytics capabilities of potential applications.

Trajectory miningregards the application of data mining techniques on trajectaty. This task
produces trajectory patterns that describebilgaviorof trajectories. Sequential and frequent patterns

may be discovered using traditional or ad hoc pattern extraction methods.

Concerning privacy, privacy has to be embedded into the data warehousing and mining tools (as it is
exposed inFigure 2-3) so as to guarantee that &efories of mobile individuals will stored and
analyzed without violating personal privacy rights. A very simple strategy towards the protection of
personal privacy is that we avoid discovering patterns that regards only a limited number of users. This

hasto be done so as to avoid identifying these users.

The discovered knowledge can be useful to both public administration and business companies.
Especially in the case of telecommunication provider, the discovered knowledge could be really helpful
in a rumber of domains: such as the optimization of mobile network services as well as the

development of new innovative location based services that will offer useful applications.

2.4. The Needfor Innovation in Decision Support Techniques

Traditional decision symrt techniques developed as a set of applications and technologies for
gathering, storing, analyzingnd providing access to dawg. data warehousing, online analytical
processing, data mining and visualizatidiese techniques are embedded in daTisupporsystems

to support business and organizational decisi@king activities.Suchsystemshelp decision makers
combineraw data, documents, personal knowledge, business mettetis identify, analyzeand solve

problemsas well agnake decisions.

Decision support techniques were developed to satisfy the changeable and complicatedauersiy of
business and technological environment. Towards this aim it is necessary to constantly extend them
appropriately so as to give solutions to the new ehgks that arise. It is commordglievedthat there

are two challengethat lead the change in the area of decision support techniques: on the one hand
there is the need to ameliorate the existing tools so as to expleiinneabperational data and olmet

other handhe technological advances in the area of communications allow access to vast volumes of

mobility datasets.

As for the former, it regards the extension of existing tgolsasto supportalso operational beyond
strategic and tactical decisis. The differences amonlgese typesre related with the time scale that

every decision demands and with the nature of them as well. The top management is responsible for the
strategic planning of their organizations, whereas middle managers maked thatiseons following

the plans of top managememtence, operational decisions, responsible for the daily activity of the
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organization, were underestimated. Nowadays, there is the trend for integrated performance
measurement and managem@vfT06] and this lead to new tools and techniques that can utilize
operational datgKot06], [ADH+03], [CCD+04].

This thesis focuses on the second challeargk discusses thextension of traditional techniques so as

to deliver new analyticssuitable for mobility dataThe aim is to servermeerging applicationge.qg.
mobile marketing and traffic management) that need to convert raw location data into useful
knowledge.

Their application oDW andOLAP techniques omonventimal business data has been extensively

the literature Applying such techniques on mobility datanprovide us withusefulknowledgeabout
trajectories A Trajectory Data Warehouse can help towards computing aggregations on trajectory data
and thusstudying them in a higher level of abstraction. Theoretically speaking, this approach preserves
privacy as it is not focus on individual trajectories. Moreoitdgads to a data repository that collects

and homogenizes data from multiple sources. Thisvalserving further analytical techniques that can

be applied on aggregate data instead of raw location datasets.

Data mining techniques are used to discover unknown, useful patterns. The vast amount of available
mobility data requires the extension ddditional mining techniques so as to be suitable for this new
kind of data.Discovering spatiotemporal associations, clusters, predicting actions etc lead to mobility
patterns that could help us to construct summary and useful abstractions of largesvofurag

location data and gain insights on movement behaviors.

2.5. Synopsis

In this chapter, we distinguished two different types of spatiotemporal data: those that involve the
notion of mobility and the static spatiotemporal d&te also presented different architectures for the
management of the data belonging in the two categdriegarding the static spatiotemporal data, we
considered as a typical example the seismological data and presented a complete framework for
Seismic Da Management and MinindAs for mobility data, we outlined the areaMbving Object

Databases and we presented the notidBeafgraphic PrivacyawareKDD process
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3. Efficient Trajectory Data Warehousing

In this chapter we focus on data warehousing techniques and we study their application on trajectory
data. We pesent our two proposals, a framework for TDW that demands a unique and static suitable
interpretation of the notion of trajectory and a framework fothad TDW which allows multiple
semantic definitions regarding the notion of trajectory. The outlinbeothapter is as follows: Section

3.1 introduces the issues being related to the data warehousing techniques on mobility data, whreas
Section3.2 motivates our research. Secti8rB focuses on data warehousing issues regarding static
semantic definitions of trajectories while, Secti8ml presents a framework that considers multiple
semantic definitions of trajectories. Secti®® examines the related work and Sect®f closes the

chapter provithg the conclusions.

3.1. Introduction

Data warehousing hasceived considerable attention of the database community as a technology for
integrating all sorts of transactional data, dispersed within organizations whose applications utilize
either legacy (nomelational) or advanced relational database systems. Data warehouses form a
technological framework for supporting decisimaking processes by providing informational data. A
data warehouse is defined as a subjeiginted, integrated, tireariant, norvolatile collection of data

in support of managemeaf decision making proce$sm96].

In a data warehouse, data are organized and manipulated in accordance watitéipéscand operators
provided by a multidimensional data modehich views data in # form of a data cub@AD+96]. A

data cube allows data to be modeled and viewed in multiple dimensions, where each dimension
represents some business perspective, and is typically implemented by adopting a star (or snowflake)
schema model. According to this model, the data warehouse consists of a fact table (schematically, at
the centre of the star) surrounded by a set of dimensional tables related with the fact table, which
contains keys to the dimensional tables and measursingle entry in the fact table modeling the

primitive analysis component is calléatt

For instance,lte purpose of the data warehouse illustrateBigure 3-1 is to store aggregated data
about sales transactions taking place in various stores around the cohstg.is a fact tabl8ales
Fact Tablecontaining keys to the four dimension tables and three meastiraasactionswhich
counts the number of salrgnsactions (in other words the number of baskait)| valueas the total

amountof salesandavg_quantitywhich measures the average number of products.
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time

time_key product
day product_key
day_of_the_week Sales Fact Table product name

month \ - N product_group
quarter time_key product_category
year

product_key

store_key
store profile
profile_key
store_key - \ profile_key
store_name # transactions profile_description
city
prefecture total value

avg_quantity

Figure 3-1: A simple(conventionaldata cube schema.

Dimensions represent the analysis axes, while measures are the variables being analyzed over the
different dimensions. For example, kiigure 3-1 the dimensionsare product, profile,storg time. As

for the profile dimension, it represents a specific group of people with some common characteristics
(age, gender, occupation etc). Sdhirs casethe data warehouse stotbe number of transactiorthe

amount of saleand the average quantityr a given producbought by a specific group of peopie,a

givenstoreand over a given period of time.

Each dimension is organized as a &iehy (or even a set of hierarchies) of dimension levels, each
level corresponding to a different granularity for the dimension. For example, year is one level of the
time dimension, while the sequene@ay, month, year defines a simple hierarchy of inagng
granularity for the time dimension. Finally, the members of a certain dimension level (e.g. the different
months for the time dimension) can be aggregated to constitute the members of the next higher level
(e.g. the different years). The measuresase aggregated following this hierarchy by means of an

aggregation functionThe same approach can be applied in the remaining dimensions.

Data Warehouses are optimized f@LAP operations. Typical OLAP operations include the
aggregation or daggregation of information (calletbll-up and drill-down respectively) along a
dimension, the selection of specific parts of a cuieifg and dicing) and the reorientation of the

multidimensional view of the data on the scregirdting) [Kim96].

Generally speaking, Data Warehousing and OLAP techniques can be employed in order to convert vast
amount of raw data to useful knowledge. However, the conventional techniques were not designed
for analyzing trajectory datédence, there is the need for extending Data Warehousing technology so
as to handle mobility data. This chapter discusses all the necessary stépsidiog reatworld
Trajectory Data Warehousdsdicatively, such a warehouse could analyneasures likehe number

of vehiclesin specific spatialareas, the averageceleration®f vehicles, themaximum and average
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speed of vehicles. This analysis wbibe done through appropriate dimensions (e.g. a spatial and a

temporal) that will allow us texploreaggregated datander different granularities

3.2. Motivation Issues

The motivation behind a TDW is to transform raw trajectories to valuable inforntatbican be used

for decision making purposes in ubiquitous applications, such as Lo&sdemsd Services (LBS),

traffic control management, etc. Intuitively, the high volume of raw data produced by sensing and
positioning technologies, the complex natofedata stored in trajectory databases and the specialized
guery processing demands make extracting valuable information from such spatiotemporal data a hard
task. For this reason, the idea is to extend traditional aggregation techniques so as to produce

summarized trajectory information and provide OLAP style analysis.

Extending traditional (i.e., nespatial), spatial or spatiotemporal models to incorporate semantics
driven by the nature of trajectoriegrimducespecific requirements as the goal is twofold: to support
high level OLAP analysis and to facilitate knowledge discovery from TDWSs. Having in mind that the
basic analysis constituents in a TDW (i.e. facts) are the trajectories themselves, irctibis ae
categorize the identéd requirements intmodeling analysis and managemeatjuirements. Therft
considers logical and conceptual level challenges introduced by TDWs, the second goes over OLAP
analysis requirements, while the third focuses on nexknical aspect$n each case, we also survey
related work.

3.2.1. Data CubeModeling Issues
The following paragraphs investigate the prerequisites and the constraints imposed when describing the
design of a TDW from a user perspective (i.e. conceptual model), as well as when describing the final

resultas a system in a platforindependent tooli.e. logical model).
Thematic, spatial, temporal measures

From a modkng point of view, a trajectory is a spatial object whose locatiares in time (recall
discussions on the nature of trajectoriesSaction2.3). At the same time, trajectories have thematic
properties that usuallgre space and timdependent. This implies that difent characteristics of

trajectories need to lescribed in order to be anadyy As such, we distinguish
1 numeric characteristics, such as the average speed of the trajistoingction, its duration
9 spatial characteristics, such as the geomsh@pe of the trajectory
1 temporal characteristics, such as the timahthe movement; and
1 spatiotemporal characteristics; such as a representative trajectory or a cluster of trajectories.

Additionally, as we pay particular attention to uncertaiatyd imprecision issues, a TDW model
should include measures expressing dh@unt of uncertainty incorporated in the TDW due to raw
data imprecisionlUncertainty should also be seen in granularities, while this implies that dhere
special aggregation operators propagating uncertainty to various levp&ticular, dependingn the

application and user requirements, sevetaheric measures could be considered.
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1 the number of trajectories found in the cell (or started/ended their patheincell; or

crossed/entered/left the cell, and so on);

o For instance, inFigure 3-2: no one trajectory started or ended in cefl @o

trajectories crossed, entered and left the cell.
1 the {average/min/maxilistance coveed by trajectories in the cell;

o For instance, inFigure 3-2: the average distance covered is the summary of the
length of the portions of trajectories inside the cel(t@e bold lines) divided by the
number of trajectaes found in the cell (two trajectories)

1 the{average/min/max}time required to cover this distance.

o For instance, inFigure 3-2: the average time required lied inside cell i€ the
summary of the durations of the portions of trajectories inside the ¢c€th€ bold

lines) divided by the number of trajectories foundhe cell (two trajectories).

Other measures could include motion characteristics of the trajectoriespeed. and change of speed
(acceleration), direction and change of direct{trn), underlying spatial framework characteristics
(e.g. network usge, frequency, density), and also the uncertainty associated with the locations of
objects in the database. Handling uncertainty, the warehouse could even cdotaiation regarding

the quality of raw data (e.g. spatial/temporal tolerasfaecordings)

T

»
L

X

Figure 3-2: The portions of trajectories that lie within a cell

As a final remark about measures, it is worth noticing that even restricting to numeric measures, the
complexityof the computation can vary a I@ome measures require little gremputation and can be
updated in the datawarehouse while single observations of the various trajectories arrive, whereas
others need a given amount of trajectory observations beforg¢ingnddrazet al.[BOO+07] propose

the following clasdication of measures according to an increasing amount aigpealation &ort:

a) no precomputation: the measure canlpated in the data warehousedirectly using each

single observation;

b) per trajectory local preomputation: he measure can be updated bpleiting a simple pre

computation, which only involves a few and cladeservations of the same trajectory;
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C) per tajectory global preeomputation: the measure updagguires a preomputation which

considers all the observations of a single trajectory;

d) global precomputation: the measure requires a-gomputation whichconsiders all the

observations of all the tragtories.
For instance:

1 the number of trajectories starting/ending their path inctecan be of type aaé explained

above);

1 if the first/last point of the trajectories are marked, dietance covered by trajectories in the
cell, the number ofrajectories thaenterel, left the cell are of type tin Figure 3-2 these

points have been marked for trajectorieaiid T);

1 the number of trajectories thabverel a total distance larger than a given valus of type ¢
(e.g. inFigure 3-2, the distance covered by the portions of trajectories inside celiiliCbe

compared to the value v);

1 the number of trajectories that intersect another trajectory only in the céltyipe d (e.g. in

Figure3-2 there is one intersdéonin cell C).

The amount of prealculation associated with each type of measurealsasa strong impact on the
amount of memory required to thar incomingtrajectory observations. Note that, since observations
may arrive in stream atifferent rats, and in an unpredictable and unbounded Way,processing

time andimited memory size are both important constraints.

Similar remarks can be found [MSK98] where Han et al. present three methtmlsompute spatial
measures in spatial data cube construction. filise oneconsists of simply collecting and storing the
corresponding spatial data bab precomputation of spatial measures is performed. Henck auc
methodmay require more computation ehefly. The second method poemputesand stores some
rough approximation/estimation of the spatial measures gpatial data cube. For instance, if the
measure is the merge of a setspfatial objects, one castore the Minimum Bounding Rectangle
(MBR) of the merge of the objects. Finally, one can selectivelycprepute some spatiaieasures. In
this case the question is how to select a set of spatial meésupes-computation. In[HSK98] some

criteriafor materializatiorof a cuboid arg@resented.
Thematic, spatial, temporal dimensions

Regarding the supported dimensions, as starting point a TDW should support the classic spatial (e.g.
coordinate, roadway, district, cell, city, provinamuntry) and temporal (e.g. second, minute, hour,
day, month, year) dimensiorand hierarchigsdescribing the underlying spat@mporal framework
wherein trajectories are moving. Additionally, itimportant to allow spacgme relateddimensions

interact with thematic dimensions describing other sorts of infeemakegarding trajectories like
technographic (e.g. mobile device used) demographic data (e.g. age and gender of users)
[MFN+08a]. This will allow an analyshot only to query the TDW for instance about the number of

objects crossedn area of interest but also to be able to identify the objects in question.
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This is particularly important as in thérst case we usually get quantitatimdormation, while in the
second case, the information is qualitative. ConsequenthichaTDW schemashould includethe

following dimensions:
1 temporal (time)
1 geographical (locatin);

1 demographics (e.g. gender, age, occupation, marital status, home quoatalwork postal
code, etc;)

1 technographics (e.g. mobile device, GB&habled, subscriptions in specefvices, etc.)

Regarding the technographics and demograptiitensions, the idea behind them is to enhance the
warehouse with semantic informatiofhese dimensions allow the grouping of trajectories according

to demographical characteristics or based on the technological characteristics of their devices.

An issueconcerning the dinition of dimensionsis the considered level afetail for eachlLet us
consider the spatial dimensiognce a trajectory isctually a set of sampled locations in time, for
which the inbetween positiongare calculated throughome khd of interpolation, the lowest level
informationis that of spatial coordinates. Thisowever implies a huge discretization tiie spatial
dimension, thus more generic approaches should be followedexaonple,cell positions could be

usedinstead of pint positions.
Hierarchies on dimensions

Once having déned the dimensionsgheir hierarchiegan beexplicitly specfied by users or generated
automatically by data clustering or data analysishniques. A general technique used tdirgde

hierarchiesincludes thediscretization ofthe valuesover the dimension ranges, resulting in a-set
grouping hierarchyA partial order can thus be established among these groups of values.nost us
analyzethe dfferent proposals andffiiculties in creating hierahies forthe dimensions suggested in

the previous subsection.

Defining hierarchies over the time dimension is straightforward, since typically there is an obvious
ordering between the flerent levels of the hierarch¥ror instance, a potential hierarchguld be:
Year > Quarter > Month ®ay > Hour > Minute > Second. Other hierarchies over the time dimension

could concern seasons, time zonedfitgam hours, and so on.

On the other hand, creating hierarchies over spatial data is caonglicated.In fact, non explicitly
defined hierarchies might exist over the spatial data. For example, in the hie@ochnry > City >
District > Cell > Road, it is not always the case twatinclusion relation holds between District and
Cell and between Cell aridoal. A Road value, for example, might cross more than one Cellssalue
To solve this problem, Jensen et glJKP+04] proposed a conceptual model, which supports
dimensions with full or partial containment relationships. Thus, veheartial containment relationship
exists between the flerent levels of a dimension, one should specify the degree of containment, e.qg.
80% of this Roads covered by thi€ell.
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Besides the standard relation City < Country, further hierarchies dmulddined over the spatial
dimension depending on the application, e.getgrouping hierarchies on districts according to the

pollution.

Finally, as far as the demographic and technographic dimensions are concerned, the simplest solution is

to create a hierarchy for each dimension. Tdakition, however, might cause complexity problems

especially if the numbeof the dimensions considered l@rge. Another possibility is to combine

attributes of these dimensions by creating groups of dimensions values atidsesgroups as the

levels of abstraction. As an example of suchagroupdonl e r t h e fgentder ofewale,@ageo n e : f
= 25- 35, maital status =s i n .gTheegéoup dienition could be performed by a domain expert or by

carrying out some statistical ppeocessing over the data. This approach reduces the number of
dimensions, thus allowing for a simpler and mdifeceentdata warehose in terms of processing time

and storage requirements.

Finally, sme approacheflKP+04], [MZ04b] offer the support for creating multiple hierarchies for
each dimensionThese works focus on the hierarchies that can be defined in the spatial dimensions
More specifically, the spatial dimension may include not expliciéfined hierarchies. Thus, multiple

aggregation paths are possible arahbe taken into consideration during OLAP operations.

3.2.2. OLAP Requirements

In traditional data warehouses, data analysis is performed interactively by applying a set of OLAP
operators. In spatial data warehousing, partic@&AP operators have been fidged to tackle the
specficities of the domaifPTK+02]. Similarly, in our context, we expect an algebra of OLAP
operators to be dimed for trajectoy data analysis. Such an algebra should include not only the
traditional operators, such as ral, drill-down and selection properly tailoréal trajectories, but also
additional operators which account of thpecific city of the spatiotemporadata type. Below we

present these operators in mdegail:

Roll-up. The roltup operation allows us to navigate from a detailed to a more geeegl of
abstractioneither by climbing up the concept hierarchye . g . fromcitybh e ol eufieel |cefv ed
&ountryd or by some dimensioreduct i on ( e. g timebdimensighrandr perfogning he 06

aggregatioom nl y over dnessiod.l ocati ond

As shown in[BOO+07], dependingn the kind ofanalyzedmeasures, the rellp operation in TDWs
can introduce some errossuming the object or trajectory iddngr is notrecorded, when summing
up along the spatial and/or temporal dimensimme cannot obtain the distinct numberti@jectories
because there is onbggregatednformation. This is a particular case of the distinct counting problem
[TKC+04] which is presented in Secti@®5.1.2

In Figure 3-3 let usconsider the spatial projection of somdicef the cubeThe TDW stores for
instance the number of distinct trajectories in each cell. Hence, we have four distinct trajectofjes in R
two in R; and one R If we try to aggregate at a higher hierarchy level, i.e. R that contajrizs Rnd

Re, then a traditional rolup operation would count six distinct trajectories instead of 3 which is the

correct answer.
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Another open issue concerns the application of theumlbperation whemnincertain data exist, which
is the case for thtrajectoriesindeed, two fators of uncertainty should be taken into account during
the aggregation: thencertainty in the values, and the uncertaiim the relationships. The farer
refers to the uncertainty associated with the values of the dimenaimhsmeasureswhich is
propagated into the warehouse from the source @&t latter refers to the uncertainty imposed into

the warehouse due to thenexplicitly defined concept hierarchies.

Figure 3-3: Aggregating neasures in the cube.

Drill -down. The drilkdown operation is the reverse of rafp. It allows us to navigate from less
detailed to more detailddformationby eitherstepping down a concept hierarchy for a dimension (e.g.
from the level of&countryd & lme | eciyd br by ihtrodécing additional dimensions (ely
consideri ng notdimensibnyutthéd & i dinkedsoralso). Simitarly to the rolup
operation, drild o wn i sens#iv@doothe distinct counting problem and tdé uncertainty
associated with both valuesd relationshipsAs we already mentioned, Figure 3-3, the number of
distinct trajectories in R it is not equal to tember of distinct trajectories in the drilledwn regions

R4, Rsand R.

Slice, Dice.The slice operation performs a selection over one dimerfsien city=Athéng), whereas

the dice operation involves selections over two more dimensions (e.gdci t y=At hens and
y e a r =)2Thédrilitions camvolve not only numeric values but also more complex criteria, like

spatial andbr temporal query windosv To support these operations, the selection critesia be

transformed into a query against the TCANd processed by adequapgery processing methods

summary, traditional OLAP operations should be also supported HP\W since they provide
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meaningful information. Aother motivation is the questiowhetherother operations dedicated to

trajectoriegmight be definedExamples include:

1 operators that dynamically modify the spatiotemporal granularity of measures representing

trajectories

1 medoid etc. operators which apply advanced aggregation methodsasuclstering of

trajectories to extract repgentatives from a set of trajedes;
1 operators to propagateggregate uncertainty and imprecision presetiterdata of the TDW.

As for the first issue, we present in Secti®® a complete framework that allows defining the
spatiotemporal granularity of trajectories in a dynamic way in the context of TDW. The second issue is
discussed in Sectiof.2 where the representative trajectory measure is outlasedn open issue
Although dealing with uncertainty data is beyond the scope of this thesis, we included this as a possible

requiremengs it is real world problem.

3.2.3. ManagementRequirements ETL Issues, Sipport for Continuous Data Streams
and Multiple Spatial Topologies

The previous sections disclosed higher level requirements for TDWs asctiedee captured by
extended conceptual atmbical data warehouse modelis.this section we investigate the management
requirements of a TDW fronan implementation point of view, but still without restricting the

discussiorunder a spefiic physical modiéng framework.

Having as main objective to build a data warehospsecializedfor trajectoriesand considering the
complexity and the vast volumes of trajectory data,n@ed to dierentiate our architectural design
from the one in traditional DW4.he situation isnade even more complicated by the streaming nature
of data sourcessuch as logs from locatieaware communication devices, whipbtentially come in
continuous ows of unbounded size. Therefordfi @entand dfective storage of the trajectories into
thewarehouse should be devisedpable of dealing with continuous incoming streams of raw log data,
while the TDW itself must be equipped with suitable access methods to fadlitalgsis and mining
tasks. This poses extra challenges to be solved asbtlily of incrementally processing the data
stream in an féicient and accuratevay, and the denition of adaptive strategies to make the

hypercubes evolveith the data stream.

Also, due to the peculiarities of trajectories, some problems can aribe ioading phase of the fact
table. To give an intuitive idea of these issuem)sider adata cubewhere the facts are still the
trajectories, but having onlthe spatial and temporal dimensions, discretized according to a regular
grid, and as measure thmimber of distinct trajectories in the spatiotempaell, geneated by the

grid.
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Figure 3-4: (a) A 2D trajectory, with a sampling (b) Linear interpolation of the trajectory (c) The

interpolated trajectorwith the points matching the spatial and temporal minimum granularity.

Moreover, assume that a trajectorynimdded as afinite set of observations, i.e.finite subset of
points taken fronthe actual continuous trajectory, later edllsampling. For emple, Figure 3-4(a)

shows a sampling of a trajectory.
The main issues are the following:

1 the rough observations in a sampling cannot be directly used to cothputeasures of

interest in a correct way, and

1 these observations are not independent points; the fact that they betbag#mme trajectory

has to be exploited when computing some measures.

For instance, loading the fatatble with the points ifrigure 3-4(b) results ina very simple fact table
(Figure 3-5). Notice that thdirst column of the table does tnbelong to the factable; it is used to
clarify which observations fall in the spatiotemporal délis evident that other cells might be crossed
by the trajectory (e.g., theell [60; 90)x [60; 90)x [60; 90)), meaning that some information can be
missing. On the other hand, the same cell can contain more than one observaticomimeted
measure is not correct because it does not store the nunttistiredt trajectories (see the cell [30; 60)
x [30; 60)x [0; 30)).

Time label X Interval Y Interval T Interval N Trajs
10,27 [30,60) [30,60) [0,30) 2
65 [60,90) [30,60) [60,90) 1
75 [90,120) [90,120) [60,90) 1
118 [120,150) [90,120) [60,120) 1

Figure 3-5: A simple fact table for a trajectory warehouse
In order to solve thdirst problem, Braz et a[BOO+07] propose further intermediate points to be
added by linearly interpolating the trajectory. The neimlserted points arthe ones which intersect
the borders of the spatiotemporall, considering all its three dimensiori&gure 3-4(c) shows the
resulting interpolated points as whitedagray circles. Note that the white interpolatedints,
associated with temporal labels 30, 60, and 90, have been addedtdb the granularity of the
temporal dimension. In fact, they corresponatitass points of the temporal border of the 3D cell. On
the other hand, thgray points, labeled with 32, 67, 70, 73, and 99, have been instead intraduced

match the spatial dimensions. They correspond to the cross points syfdied borders of some 3D
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cell, or, equivalently, the cross points of the si@D squares depietl in Figure 3-4(c). The second
problem concerning duplicates is more complex and an approach to cope with it is presented in Section
3.3.2 A thorough discussion aboetrors in the computation of fieérent measures related to the

described issuesan be foundri [BOO+07]

Certainly, a factor thatharacterizes TDW is the interrelationship betweéme development of the
trajectories upon various possible spatial topologggsesented by corresponding spatial dimensions.
The baselevel partitioningof a spatial topology directlyfects the multidimensional analysis of
trajectories. Possible available topologiaay be simple grids (e.g. artifal partitioning), complex
polygonal amalgamations (e.g. suburbs of a city), real neorksand mobile cell networks. The
first case is the simplest one as $pace is divided in explicitly diened areas of a grid and thus it is
easy toallocate trajectory points in spéici areas. However, counting the numbeobjects that passed
from an area may be proved hard for a trajectory dataehouse. This is because sampling frequency
may not help in representinbe actual trajectorfBOO+07]. Thus, it may be necesgao reconstruct
the trajectory (as an ETL task) to add intermediate points between the samplingedefgure
3-4(c)).

In case of road networks, trajectoriesshl be reconstructed so as to be network constrained, whereas
managing cells is a more complex problem because the areas covered by cells may change from time to
time depending on the signal strength of the base stations of the provider. Whatever thiethase
spatial dimension relating with the trajectories all spatial topologies are subject to the distinct counting
problem[TKC+04] which will be presented in SubsectidrB.2

Obviously, the reconstruction of the trajectories and the multiple counts afject moving inside a
region is straightforwardly dependent on the intempioh (e.g. linear, polynomial) used (if any) by the
corresponding trajectoryata model. The above discussion implleg tan analyst has the abilitydily

to analyzea bunch of trajectories according to a population thematic maptaadsecondary leve

according to the road network of the most populated area.

3.2.4. Our Contributions
In order to build a TDW, several issues should be handled; we summarize these issues below
accompanied with our contributions as presentgFiN+08a], [MFN+08b], [MT09b], [MT 099:

1 TheTDW is to be fed with aggregate trajectory data; to achieve it we propose two alternative
solutions: a (indesbased) cell-oriented and a (norindexbased)trajectory-oriented ETL

process.

1 Aggregation capabilities over measures should be offered for OLAP purposes (i.e., how the
measures at a lower level of the cube hierarchy can be exploited in order to compute the
measures at some higher level of the hierarchy). The peculiarity with trajectory data is that a
trajectory might span multiple base cells (the so callistinct count problei This causes
aggregationhindrances in OLAP operations. We provigeapproximaion solution for this

problem, which turaout to perform effectively.
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1 Wepresent an alternative, innovative organization of a trajectory data cube in order to answer
OLAP queries considering different interpretations of the notion of trajectory. Thiscad
analysis on trajectory data cubes can be achieved, which can be really useful for a humber of
applications.

3.3. Trajectory Data Warehousing

In [MFN+08a], we proposeé a framework for TDW that takes into consideration the complete flow of
tasks required during a TDW development. The complete lifecycle of a TDW is illustrakeguie

3-6 and it consists of various steps.TAajectory Reconstruction process applied on the raw time
stamped location data in order to generate trajectories, whicthan stored into MOD. Then, an
Extract TransformLoad (ETL) procedureis activated that feeds the data cube(s) with aggregate
information on trajectories. The final step of the process offers OLAP (and, eventually, DM)

capabilities over the aggregatiedormation contained in the trajectory cube model.

location data producers trajectory data analyst

/\\

/y ;4

N\

— | Analysis

Location data (x, v, t)
are recorded 6

o aggregate
rajectory . data is
g MOD Trajector;
reconstruction > — DatJa Cubi/e performed
module (OLAP)

Reconstructed trajectory
data are stored in MOD

Aggregates are loaded in the
data cube (ETL procedure)

Figure 3-6: The architecture of our framewaork

A MOD maintains object locations recorded at various time points in the form of trajectories. Formally,
letD = {Tq, Ty, @} be a MOD consisting of the trajectories of a set of moving objects. Assuming

linear interpolation between consecutive sampled cations, the trajectory
Ti= ‘(Nl-Yil-til),---,()ﬁq Yiy ,tiq )> consists of a sequence mf; line segments in 3D space, where each

segment represents the continuous fdeveltwopmento of

consecutivéocationyx ,y ) and(x ,y ) sampled at time and . ProjectingT; on the spatial 2D

plane (temporal 1D line), we get theute r; (the lifespanl;, respectively) ofa moving object.
Additional motion parameters cdre derived including the traverseténgthlen of route r;, average

speed, acceleration, etc.

Let us assume a MOD that stores raw locations of moving objects (e.g. humans); a typical schema, to
be considered as a minimum requirement, for such a MOusdréited irFigure3-7.
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OBJECTS id: identifier, descriptiontext gender: {M | F},

birth-date:date professiontext devicetype:texf)

RAW_LOCATIONS (objectid: identifier, timestamp
datetime eastings<: numeric northingsy: numerig

altitudez: numeriq

MOD_TRAJECTORIES tfajectoryid: identifier, object

id: identifier, trajectory:3D geometry

Figure 3-7: An example of a MOD.

OBJECTSIncludes a unique object identifier (id), demographic information (e.g. description, gender,
date of birth, profession) as well as dewvietated technographic information (e.g. GPS type).

RAW_LOCATIONS stores object locations at various time stamps (i.e., samples), while
MOD_TRAJECTORIE®aintains the trajectories of the objects, after the application of the trajectory

reconstruction process.

Following the multidimensional modgAAD+96], a data cube for trajectories consists of a fact table
containing keys to dimension tables and a number of appropriate measures. Dimension tables might
have several attributes in order to buihdiltiple hierarchies so as to support OLAP analysis whereas
measures could be trajectesyiented (e.g., number of trajectories, number of objects, average speed,
etc.). For each dimension we define a finest level of granularity which refers to theofl¢haildata

stored in the fact table.

OBJECT_PROFILE_DIM

PK |OBJPROFILE_ID

GENDER
BIRTHYEAR
PROFESSION
MARITAL_STATUS
DEVICE_TYPE

A

TIME_DIM
FACT_TBL PK | INTERVAL _ID
SAREE By PK,FK3 [ INTERVAL_ID
PK | PARTITION ID PK,FK2 | PARTITION_ID INTERVAL_START
PK,FK1 | OBJPROFILE_ID INTERVAL_END
PARTITION_GEOMETRY | g HOUR
DISTRICT COUNT_TRAJECTORIES L DAY
CITY COUNT_USERS MONTH
STATE AVG_DISTANCE_TRAVELED QUARTER
COUNTRY AVG_TRAVEL_DURATION YEAR
AVG_SPEED DAY_OF_WEEK
AVG_ABS_ACCELER RUSH_HOUR

Figure 3-8: An example oA TDW.

Definitely, a TDW should include spatialand atemporal dimensiodescribing geography and time,
respetively. Another dimension regardingpnventionalinformation about moving objects (including

demographical information, such as gender, age, etc.) could be considered as well.

Based on the above, we consider as a minimum requirement for our framewofidldiaéng

dimensions Eigure3-8):
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1 Geography the spatial dimensionsPACE DIM) allows us to define spatial hierarchies.
Handling geography at the finest level of granularity could include (as alternative solutions) a
simple grid, a road network or even coverage of the space with respect to the mobile cell
network. According to the first alternative, the space is divided in explicitly defined (usually,
rectangular) areas. For the purposes ofwligk, we assume a grid of egly sized rectangles
(PARTITION_GEOMETRY in Figure 3-8), the size of which is a usdefined parameter, (e.g.
107 10). Km

1 Time the temporal dimensiofTiME_DIM) defines temporal hierarchies. Time dimension has
been extensively studied in the data warehousing liter@&&B+96]. At the finest level of

granularity, we assume usgefined time intervals (e.g. 1 hour periods).

1 User Profile the thematic dimensionoBJECT PROFILE DIM) refers to demographic and

technographic information.

Apart from keys to dimension tables, the fact table also contains a set of measures includigategg
information. The measures considered in the TDW scherkiofe 3-8 include thenumber of distinct
trajectories(COUNT_TRAJECTORIES, thenumber of distinct use(€OUNT_USERY, theaverage traveled
distance (AVG_DISTANCE _TRAVELED), the average travel duration(AvG_TRAVEL_DURATION), the
average speefhvG_sPEED and theaverageaccelerationin absolute valuesayG_ABS_ACCELER), for

a partialar group of people moving in a specific spatial area during a specific time period.

3.3.1. ETL Issues

Once trajectories have been constructed and stored in a MOD, the ETL phase is executed in order to
feed the TDW. Loading data into the dimension tables isgstifarward; however, thiprocesds far

more complexvhen addressinthe fact table. In particular, recalliggure 3-8, the main task is to fill

in the measures with the appropriate numeric values for each of the base cells that are identified by the

three foreign keysPRARTITION_ID, INTERVAL_ID, OBJPROFILE ID) of the fact table.

The COUNT _TRAJECTORIES measure for a base cdiic is calculated by counting all the distinct
trajectory ids that pass through. The COUNT _USERSmMeasure for a base celtis calculated similarly
by counting all the distinct object ids that pass thrdaugh

In order to calculate thevG_DISTANCE TRAVELED measure for a base célt we define arauxiliary
measure, calleduM_DISTANCE as the summation of the lengin(TP) of each portionTP of the
trajectories lying withirbc. More formally,
SUM_ DISTANCEbc) = § len(TR) (3-1)
TRi be
Then, theAvVG_DISTANCE_TRAVELED measure is computed by dividing tls&M DISTANCE by the

COUNT_TRAJECTORIESMeasure:

SUM_ DISTANCEHbC) (3-2)

AVG_ DISTANCE TRAVELEDbC) =
COUNT_TRAJECTORES(bc)

Similar is the case for the/G_TRAVEL_DURATION measure:

31



SUM_ DURATIONbc) (3_3)
COUNT_TRAJECTORES(bC)

AVG_TRAVEL DURATIONbC) =

where,SUM_DURATION is also an auxiliary measure defingi4) as the summation of the duration

lifespan(TP)of each portioTP of the trajectories insidec.

SUM_ DURATIONbC) = 3 lifespan(TP) (3-4)

TRi be
In the same fashion, thevG_SPEED measure is calculated by dividing the auxiliary measure

SUM_SPEED(i.e. the sum of the speeds of each porfierinsidebc) with COUNT_TRAJECTORIES

AVG_ SPEED(bC) = SUM_ SPEED(bO (3-5)
COUNT_TRAJECTORES(bC)

where = 5 _lenR)
SUM_SPEEObo) = § — 17— (3-6
TRi bCIlfespar(TFl?)

Likewise, theAvG_ABS_ACCELERIs a suchlike fraction

SUM_ ABS_ ACCELERb0) 37)

AVG_ ABS_ ACCELERbO) =
COUNT_TRAJECTORES(bc)

wheresuM_ABS_ACCELERIsS a supplementary measure that summates the absolute accelerations of all

portionsTP lying in bc

SUM_ABS_ ACCELERbC) = a ‘Speeqin (TR) - Spee%it(TFlg)‘ (3-8)
TR be lifespar{TR)

andspeedg, (speegh) is the final (initia) respectively) recorded speed of thegectory portion TP) in
bc.

It is important to remark that all these measures are computed in an exact way by using the MOD. In
fact our MOD Herme$PFG+08]provides a rich palette of spatial and temporal operators for handling
trajectories. Unfortunately, rollingp these measures is not straightforward due to the count distinct

problem[TKC+04] is it will be discussed in detail in the next subsection.

As already mentioned, in order to calculate the measures of the data cube, we have to extract the
portions of the trajectories that fit into the base cells of the cubecdsider a MOD olU user

profiles, N trajectories,M spatial partitions an&K temporal intervals. We propose two alternative
solutions to this problem: (i) a cadriented and (ii) a trajectorgriented approach.

According to thecell-oriented approacfCOA), we search for the trajectory portions that lie within the
base cells. The ETL procedure for feeding the fact table of the TDW is described by the proposed
CELL-ORIENTED-ETL algorithm Eigure 3-9). First, we search for the portions of trajectories under the
concurrent constraint that they reside inside a spatiotemporaCaqéithe 4). Then, the algorithm
proceeds to the decompositiofthe portions with respect to the user profiles they belong to (lines 6

9).
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Algorithm Cell - Oriented - ETL(D MODTrajectoryTable)

1. /[ For each pair <Region, Interval> forming a s -tcellC
2. FOREACHcell G DO

3. // Find the set of sub - trajectories inside the cell
4 S = intersects(D, C i)

5. // Decompose S to subsets according to object profile

6. FOR EACHsubset S6 oDOS

7 /l Compute the various measures

8 Compute_Measures( S 0;

9 END FOR

10. END FOR

Figure 3-9: The CELL-ORIENTED-ETL algorithm

The efficiency of the above describ€DA solution depends on the effective computation of the parts

of the moving object trajectories that reside in the spatiotemporal cells (line 4). This step is actually a
spatiotemporal range query that returns not only the identifiers but also the poftitajsatories that
satisfy the range constraints. To efficiently support this trajedtasgd query processing requirement,

we employ the TBree [PJTO0] a stateof-the-art index for trajectories that can efficiently support

trajectory query processing.

On the other handhetrajectory-oriented approaclfTOA) is described by the propos@&AIECTORY
ORIENTED-ETL algorithm §igure 3-10). In TOA, we discover the spatiotemporal cells where each
trajectory resides in (line 6). In order to avoid checking all cells, we use (line 4) a rough approximation
of the trajetory, its Minimum Bounding Rectangle (MBR), and we exploit the fact that the granularity
of cells is fixed in order to detect (possibly) involved cells in constant time. Then, we identify the
portions of the trajectory that fits into each of those ceélieg¢l 815).

Algorithm Trajectory - Oriented - ETL(D MODTrajectoryTable)

1./ For each Trajectory T i

2. FOR EACH Trajectory T i of D DO

3. /I Find the Minimum Bounding Rectangle of T i

4. MBRT ; = Compute_MBR(T ;);

5. // Find the set of s -t cells C that overlap with the MBR
6. O = Overlap(C, MBRT i)

7. // Find the portions (P) of trajectory T i inside each cell
8 FOR EACHO 6 0of O DO

9. P =singlet_intersects( Ti, Q;6

10. //If the cell contains portions of the trajectory

11. IF (P NOT NULL) THEN

12. /[l Compute the various measures

13. Compute_Measures( P);

14. END IF

15. END FOR

16. END FOR

Figure 3-10: The TRAJECTORYORIENTED-ETL algorithm

3.3.2. OLAP Operations: Addressingthe Distinct Count problem
During the ETL process, measures carabeurately computediay by executing MOD queries based

on the formulas provided in the previous section. However, once the fact table has been fed, the
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trajectory and user idefigrs are not maintained and only aggregate information is stored inside the
TDW.

The aggregate functions computing the stauggregates of the measures are categorized by Gray et al.
[GCB+97]into three classes based on the complexity required for this computation, starting from a set
of dready available sulggregatesin our case, the aggregate functions to obtain saggregates for

the main measures discussed in Subse&iBriare classified as holistic and as such they require the
MOD data to compute supaggregatesat all levels of dimensions. This is due to the fact that
COUNT_USERS COUNT_TRAJECTORIESand, as a consequence, the other measures defined in terms of
COUNT_TRAJECTORIESare subject to the distinct count problgRKC+04]: if an object remains in the

guery region for several timestamps during the query interval, instead of counting this object once, it is
counted multiple times in the result.

Notice that once a technique for rollig the COUNT TRAJECTORIES measure is devisedt is
straightforward to define a rellp operation for the AVG measures. In fact the latter can be
implemented as the sum of the corresponding auxiliary measures divided by the result ofup@foll
COUNT_TRAJECTORIES As such, diminishing the calctians in the numerator, hereafter, we focus on
the (denominator) number of distinct trajectorie®NT_TRAJECTORIES; COUNT_USERSIs handled in

a similar way.

In order to implement a rolip operation over this measure, a first solution is to definetabdisve
aggregate function which simply obtains the stgggregate of a ce€ by summing up the measures
COUNT_TRAJECTORIESIN the base cells composirtg In the literature, this is a common approach to
aggregate spatiotemporal data but, as we stibw in Sibsection 3.3.3 it produces a very rough
approximation Following the proposal ifOOR+07] an alternative solution is to define an algebraic
aggregate function. The idea is to store in the base cells a tuple of auxiliary measures that will help us

to correct the errors caused due to the duplicates when rajiing

More formally, letCy) ., be a base cell, which contains, among the others, the following measures (i
is worth noting that these measures are loaded without errors into the base cells, by exploiting the
MOD functionalities:

T Ciy),pCOUNT_TRAJECTORIES the number of distinct trajectories of profpieintersecting the
cell (Ci,y)..p Traj for short).

T  CxypCrossx: the number of distinct trajectories of profieecrossing thespatial border
betweerCey.1,y).p@NdCx).p WhereCy.1 ) piS the adjacent cell (on the left) along withaxis.

T  CxypCrossy: the number of distinct trajectories of profipecrossing thespatial border
betweerCy y.1),.p aNdCy)..p WhereCy y1y.5iS the adjacent cell (below) along wighaxis

T Cuy)rpCrosst: the number of distinct trajectories of profile p crossing téraporalborder

betweerCy ) t1,,aNdCey) 1, WhereCeu ) 11,iS the adjacent cell (below) along withaxis

Let C x5, ybg aicell gonsisting of the union of two adjacent cells with respect to a spatial/temporal
dimension, for exampl€ , s, y o Coyprp &Exay).tp (When aggregating along axis). In order to

compute the supeaggregate correspdimg toC, 5, v, d¥e proceged as follows:
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Cixo, v 85 T&opptp 1T& + Cixr1y)ip 178) T Cixaa,y),i,p-CrOSSX (3-9)
The other measures associated With s , y 63N bg cgmputed dsllows:
Ci x 6, y&5058% = Gxy)1p-CrOSSX
C(xo, y&5058Y% =Gixy).tp-CroSSY + Ciu1y)tp.CTOSSY
Ci x o, y€50S8HE= Coxy),tp-CroSst + Cixity) tp-Crosst

The computation ofC( s, .38 (AN, e thought of asnaapplication of the welknown
Inclusion/Exclusion principle for set@ACBO = aAse+ aBee- aAABG Note that in some cases
Cix+1).,pCrossx is not equal teAABG, and this may introduce errors in the values returned by this
algebraic function. In fact, if a trajectory is fast and agile, it can be found inQagih, and Ci1,y).tp
without crossing theX border (since it can read@y.1 ), by crossimg theY borders ofC ), and

Coxrt -

It is worth noticing that the agility of a trajectory affects the error in theumpkkomputation. In fact, a
trajectory coming back to an already visited cell can produce an error. In the following figures we

illustrate the two main kinds of error th&gtalgebraic aggregate function can introduce.

In Figure 3-11a, if we group together the cell§; and C,;, we obtain that the number of distinct
trajectories isCs.Traj + C4.Traj 1 Cscrossx = 1+110 = 2 This is anoverestimateof the number of
distinct trajectories. On the other hand Figure 3-11b, if we group togethe€, and C, we correctly
obtainC,.Traj + C,.Traj i C,.crossx = 1+1i 1 = 1, similarly by aggregating€s andC, However, if we
group C,CC, with C;CC, we obtainC,CC,.Traj + C;CC,.Traj i C,CCy.crossy = 1+1i2 = Q This is

anunderestimat®f the number of distinct trajectories.
C C G

T/ iy
o' 11l ol Jc

Figure 3-11: a) Overestimate ofraj. b) Underestimate ofraj.

C

In order to give a bound to this kind of err@89), let us focus on a single trajectoryhis is not a
limitation because the values of the measineg, crossx, crossy, and crosst can be computetly
summing up the contributions given to such a measure by each trajectory in isolation. Since the

aggregation operations are linear functions, the above property also holds for aggregated cells.

First of all, let us introduce the concepturfi-octant squence We calluni-octant sequenca maximal
sequence of connected segments of a trajectory whose slopes are in the same octant. It is evident that a

trajectory can beniguelydecomposed into wtictant sequences.

A uni-octant sequenagscan traverse eell C only once, i.e. iusstarts fromC it can only exit fronC,
otherwise it can only enter once @ As a consequence, if a trajectory consists of a singleatant

sequence it does not produce any error in the-umll computation for the measure
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COUNT_TRAJECTORIES In fact, as discussed above, errors can only arise when a trajectory visits a cell
at least twice.

This can begeneralizedo a trajectoryT composed by severahi-octant sequences. In this case, the
computed value of the measuFeaj in anaggregatedcell C is limited by the number of wdctant

sequences df intersectingC. This is an upper bound that can be reached, as shdvigure3-11a.

3.3.3. Experimental Study

In this section, we evaluate the proposed solutions by implementing the TDW architEgure3-8)

for a realworld application. More specifically, we used a large real dataset: a part ofGharier
datasefEco09] consistig of 6.67 millions of raw location records (a file of 504 Mb, in total), that
represent the movement of 84 couriers moving in greater London (covered area 66°860rkm a
one month period (July 2007) with a 10 sec sample Fageire 3-12 illustrates some snapshots of the
datasetFor all the experiments we used a PC with 1 Gb RAM and P4 3 GHz CPU.

Figure 3-12 a) The complete datasgt Zooming over Thames
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Figure 3-13: Comparison of alternative ETL processes
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For the evaluation of the ETL process we compared the performance of the TOA vs. theaseldx

COA approaches. Both approaches are implemented on the MOD system, Hermes, presented in
[PTV+06], [PFG+08] We used two different granularitige partition the spatial and the temporal
hierarchiesa spatial grid of equally sizeslq uar es o %( 1100001 1160 regpektively)and a

time interval of one (six, respectively) hours. The results of the four cases are illusttaiguar&8-13,

where it is clear that the choice of a particular method is a-ttideetween the selected granularity

level and the number of trajectories.

We complete the experimental study with some results on the trajectory aggregatiorFigate (
3-14). We would like to assess the accuracy of the approximations of the measure
COUNT _TRAJECTORIEScomputed in roHup operations by using the distriiue and the algebraic
functions presented in Subsecti®B3.2 To this aim we consider the normalized absolute error

proposed by Vitter et a[VWI98]: For all the OLAP querieg in a setQ we define this error as

follows:
Pr . M_ M
Error=w (3-10)
aquMq
where Mqis the approximate measure computed for qaewyhile Mqis its exact value.
10000
P
Cd . . .
< 100 L ¥ =< -distributive
g ‘_f"-_ﬁ —a— algebraic
2 10
()
1 T 1
2 4 8 16 32 64
granularity (as a multiple at base granularity)
Figure 3-14: Distributive vs. algebraic aggregate functigbase granularity set to
1 01 1 Gand&Irhour time interval)
We assume, as base granulagfya s pati al grid of equdhrdyptinei zed

interval of one hour. Then our queries compute the measaueCTORIESfOr larger granularitieg 6 =

ni g, withn> 1.

The distributive aggregate function has an error which always exceeds 100% and quickly grows as the
roll-up granularity increases. Instead, as expected, the computations based on the algebraic function are
always more precise than those based on the llititte one and they are accurate for small
granularities. Still, the error grows up for large granularities but it never exceeds 100%. Although the
corresponding experiments are not reported here, it is worth noting that starting from smaller base
granulaities g and using the algebraic function we get a better accuracy, with errors under 10% for

small multiples ofy.
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3.4. Ad-hoc OLAP on Trajectory Data

In this section we describean innovative organization of a trajectory data cube in order to be able to
answe OLAP queries considering different interpretations of the notion of trajeaemmyresented in
[MT099. Thus, aehoc analysis on trajectory data cubes can be achieved, which can be really useful
for a number of applications. Preliminary experimental results illustrate the applicability and efficiency
of our approach.

Nevertheless, trajectory analysis is based on the specific requirements of each application. For instance,
there may be a considerable difference on the semantic definition of a trajectory given by a traffic
analyst and, on the other haradlogistics manager. Let us consider a fleet of trucks moving in a city
and delivering goods in various locations. For each truck, the logistic manager may consider a number
of different trajectories (e.g. between the different delivery points) whiletriféc analyst may
consider a single trajectory for the whole day. Thus, in order to satisfy these two, quite different in
semantics, needs we would have to retrieve raw location data from a common repository and, then,
execute two different reconstruatidasks so as to produce trajectories that are semantically compliant

to each domain. After that step, we would also have to build two different trajectory data cubes in order

to allow users to apply OLAP techniques oriented to their purposes.

For instance Figure 3-15a illustrates a raw dataset of time stamped locations. Different analytical
needs may result to different set of reconstructed trajest@tigure 3-15b-d, respectively). Recalling

the previous example of the truck dataset, les us considefFidiate 3-15b and 1c illustrate the
reconstructed trajectories for the logistic manager and for the traffic manager respectively. Another
example of trajectory reconstruction is presentedrigure 3-15d which considers a compressed
trajectory of the movement.

. ...0 . {_? A
y . y y y
X ” X ” X ” X ”
@ (b) (c) (d)

Figure 3-15: Different trajectory reconstruction approaches (b, c, d) for a raw dataset (a)

If we follow (e.g. [MFN+08a]) the conventional approach of building a TDW, for each set of
reconstructed trajectories we would have to repeatedly execute an ETL process so as to build different

trajectory data cubes. This is clearly presente&figure 3-16 (traditional approach) where different
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semantic definition¢def,, € ,) dethanfl different executions of the trajectory reconstruction process

(TR, é ,)reduRng in different TDWs and trajectory data cubes, respectively..

In fact, this is unusual in other (conventional or not) data warehousing scenarios. For instasaoagthe

sales data warehouse can be used by both salesmen and marketers because they both agree that a sale
has some specific, though widely accepted characteristics. In scientific databases, the same seismic
DW [MTK 08] can be used by both a scientist and a public administration officer in order to explore
seismic activity under a commonly accepted definition of earthquake. Even in latest applications of
data warehousintechniques on workflow dafiKot06] the data cube is built on top of well defined

facts (service provisions).

Traditional approach
( def; A
» Cube; e
OLAP
OLAP
ser
» Cube, ~
defy
& J
/—Ad-hoc approach ~

AN 3
raw OLAP
Cube | Mater.
data TDW i
views
Sstream i
t User
OLAP(defy)——— |

OLAP(def,)

Figure 3-16: Traditional vs. aehoc approach

On the other hand, the spaime nature of trajectory data allows different semantic definitions of
trajectories. Intuitively, we have to revisit basic structures (fact table, dimensions, ETL, cube
materialization) of DW, and build more flexible mecharssso as to satisfy this challenging request.
Furthermore, it is important to extend traditional OLAP techniques to Headn order to handle
appropriately the dynamic nature of trajectories. Our target is illustratdeigiure 3-16 (ad-hoc
approach) where different semantic definitions of trajectode$,( éef) are applied on the same
cube. In case of known semantic definitions, the cube camaierialized and get the functionality

described by the traditional approach.

To the best of our knowledge, this is the first work considerindpaad analysis in a TDWThe

contributionof this sectiorcan be summarized as follows:

1 We extend the OLAP dataodel for TDW in two ways. First, we propose a flexible fact table
that will be able to answer queries considering different semantic definitions of trajectories.
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Second, we introduce a parameter that supports the choice of semantics for aggregation

queries over trajectory data.
1 We present a suitable ETL method loading raw location data in our flexible data cube.

1 We enhance OLAP techniques so as to utilize the newoadapproaches. An efficient

algorithm is proposed that takes advantage of our model Epamswer aggregation queries.

1 To speed up the calculation process, we discuss cube materialization issues¢hbtupate
results for known semantic definitions of trajectories.

3.4.1. Problem Definition

Following the relational implementatiggim96] of the multtdimensional modelAAD+96] for data
warehousing, a TDW consists of a fact table containing keydimension tables and a number of
appropriate measure®imension tables might have several attributes in order to build multiple
hierarchies so as to support OLAP analysis. For each dimension, the finest level of granularity is
defined, which refers tthe detail of the data stored in the fact table. The multidimensional form of a
data warehouse, known as data cube, can be thought of as a multidimensional array of numeric

attributes on which aggregate functions are applied. More formally:

Definition 3-1 (Dimension table): A dimension tablés a mary relation oveF 1 A A é1, A

where:

i. F is the primary key of the dimension table;
i. Eachcolummy,0 O iga s ofattributes values;

iii. m = 1+v. y
Definition 3-2 (Fact table): A fact tableis an nary relation oveK 1,1 MM  é T ,, were:

i. K is the set of attributes representing the primary key of the fact table forniad by,
é 1 ,PRvhereeacl;, 1 Oisa for€gn gey to the dimension tables;

ii. Each columrv,, 1 @ aket ddmeasures that can be computed using aggregate functions
on the characteristics of the raw trajectories;

i.  n=p+r. y
The TDW presented in SectioB.3 follows the aforementioned definitiondowever, mplementing a
TDW using the above approach does not take into consideration the differentiseteéinitions of
trajectories. It assumes that trajectories have been reconstructed on an earlier phase following a specific
trajectory definition and that its measures have been computed on this basis. We adopt the measures of
the TDW of SectiorB.3, a subset of them is also discussef0d@R+07] as arunningexample in the

remainder of this subsectiamhere we discuss how the TDW can be transformed so as to consider

multiple semantic definitions.

Before proceeding to the core of this new approdehus describe the notion of different semantic
definitions of trajectories. Assuming that a sequence of-8taenped locations has been recorded for a

moving object (using e.g. a GPS device), the movement of this object can defined as
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M = ((%1, Y1, 1) ---(Xn» Ynsth)) (3-11)

After trajectory reconstruction, this movement can result into a set of trajectories:

M =(Tp,...T}) (312

with each trajectory; definedas[GBE+00]:

Ti = <, Yo 1) Xk Yio ti) > (3-13
wherel O k , , i.mi.eQOtrajectory points are points in tieerresponding raw dataset or in other

Words,8'|'i EM.

Two basic functions that are usually provided by MODs and can be applied on trajestelegT;)
and lifespar(T;), which return the length of the (2D) spatial projectionTpéind its duration in (1D)
time, respectively.

Based a the aforementioned model, a b&bf raw timestamped location points can result in aldet

of trajectories. The exact number of reconstructed trajectories depends on the different semantic
definitions that can be given to a trajectory. For instand¢ajdeconsider someone who drives in the
morning from her home to office, works for eight hours, and then returns home after a short stop for
shopping. Different applications may consider a different number of trajectories in this case.
Spaccapietra et a[SPD+08] argue that different time granularities result in different semantic
definitions of trajectories. For instance, in the previous example, there is not a single answer on the
qguestioni Ho w ma ntyo rtireasjasdtxdépentds?od the time granularity level which we are
interested in. One might think of either one or two or three trajectories (e.g., setting the time granularity
at the level of day, hour, minute, respectiveAithors in[SPD+08]discuss about trajectory semantics

and recognize the need of enriching the underlying spatiotemporal data model with maximum
flexibility. The idea behind this is the agtation of the model to the specific semantics of trajectories

in a given application context. The approach discussed in this paragraph is to model trajectories as a
sequence of moves going from one stop to the next one (or as a sequence of stopegsHparati
moves). This approach is based on the fact that trajectories may themselves be semantically segmented
by defining a temporal sequence of time subintervals (moves) where alternatively the object position
changes and stays fixed (stops). Based on apjzoach, Baglioni et al.[BMR+08] propose the
enhancement of raw trajectories with semantic information by exploiting some domain knowledge

encoded in an ontology

The problem discussed in thgsctionis that of building a flexible TDW that enables OLAP analysis on
mobility data by allowing the specification of a particular semantic definition of trajectory only when
an aggregation query is posed. In other words, we study the problem of discoveriset tbe
trajectories M during the execution of an aggregation query and computing numerical measures on

this set of trajectories. This task is mitild as it involves several issues:

1 TDW modelinga new flexible model shouldncapsulate the necessary flexibility regarding

different semantic definitions of trajectories;
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1 ETL processan appropriate mechanism feeding the TDW should comply with the above
model;

1 OLAP technologyit should be enhanced so as utilize the new TDW mdtek allowing
users to select the level of time granularity which they are interested in;

1 Cube materializationperformance should be taken into consideration in order to increase the
guery response time of the TDW.

All the above issues are addressedhim section that follows, which describes in detail the proposed
ad-hoc OLAP approach.

3.4.2. A Framework for ad-hoc OLAP

The challenge of building a TDW suitable for-ldc analysis introduces three challenges regarding the

fact table: a) the adoption of a fible structure that will allow atioc analysis b) the computation of

the measures during the loading phase of the cube (ETL) and c) the aggregation issues after the fact
table has been loaded. In the following subsections, we present our solutions ge¢faedabove

issues, and we also present a modeling approach so as to express, in the TDW, different trajectory

forms.

3.4.2.1. The model

As we mentioned in the previous section, a fact table consisting of a number of (trajentgd)
measures assumes that thefinition given to trajectories is-@riori known. In this subsection, we
propose a more flexible structure that will allow the user to decide upon the characteristics of
trajectories. In particular, we focus on the measures that their computatiorestioéy spatial and/or
temporal distances between the points of each trajectory, and we propose the transformation of
movement asa sequence of spatiotemporal distances between consecutive. gantsally, the

movement of a moving object is formulated as:

M; = <00),(sd,tdp),... (St tdy) > (3-14)
where(sd ,td,) represent the (Euclidean) spatisd)(and temporal distancéd] between the"fand the
(i-1)™ point; the first pair is always set to (0, 0) as there is no previous point to compare it with.

Obviously, Mj is a lossy representation with regard b or Md However, as it happens in

conventional data management world, DWs storey dhé necessary information so as to answer
aggregation queries and they do not substitute DBs which keep the full details. Similarly, in TDWs we
are allowed to store a loosy representation of movement just for the purpose of offering OLAP analysis
on moblity data andvl andM écan be stored in a MOD.

Based on this formulation, we replace the traditional fact table as defined in the previous section by
introducing the notion ofrajFact table which includes keys to the dimension tables as well as the

minimum level of information that can be used for computing the measures using different
interpretations of the term fitrajectoryo. Keep i n n

table define a unique position in the multidimensional space of the cube (also knbagea=lls In
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this position, i nstead of storing measures, for

sequence of temporal and spatial distances betwepoiitts (sed-igure3-17). Formally:
Definition 3-3 (TrajFact table): the TrajFacttable is an rary relation oveK 1 whdrg

i. Kis the set of attributes representing the primary key of the fact table fornted by,F & T
Fp where eaclr;, 1 Ois a foréign gey to the dimension tables;
ii. A distance table which consists of:
o Objed identificationQ;, for all objects that contribute to the unique position in the
multidimensional space of the cube that is defined by the primary key;

0 A sequence opairs(sq ,td;) , wheresd is the Euclidean distance atdithetemporal
distancebetween two successive timstamped location poin{s;, v, t) and the(x.4,
Vi1, ti.1) pointof objectO;.
i. n=p+l y
The above is graphically presentedRigure 3-17, (F4, €é,) repfesent a random combination of

dimension keys and for this row a distance table is defined.

TrajFact Table Oi | ((0,0), (sd2,td),é (sdn,tdn))
(F, Fo, € ,Fp) C—— )1 Oi | ((0.0), (sd2,td2).€ (Sdu,tdu))

Figure 3-17: The TrajFact Table

One could argue that spatial/temporal distance between consecutive points is derived information, thus
we could store in the fact table the poifks y, t) themselves. This is true but, the two main concerns
when building a dta warehouse are: a) the size of the DW and b) the query response time. Storing
distancegsd, td) only, allows us to save 1/3 (if we stored points) or almost 2/3 (if we stored segments)
of space and at the same time providing us the information weineeder to efficiently calculate

measures.

Next, we need a way to model the different semantic interpretations of trajectories. For this purpose,
we do not propose yet another model but we follywvhich considers the temporal distances between

consecutive points as a way to identify trajectories from a raw dataset. Hence, our model allows the

user to select the maximum allowed timeeiwal for defining a particular form of trajectory:

semme The maximum allowed time intervéletween two consecutive tirstamped positions of the

same moving object.

In other words, for each tirgtamped location position a temporal period is defiredssto examine
whether the next timstamped location can be considered as part of the same trajectory or not. The
value of this parameter is chosen by the user so as to specify the time granularity level, and therefore a
particular interpretation of theotion of trajectory. The choice is made during aggregation querying; as

such, it does not affect the overall organization of the data cube.
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The value osem, is used in aggregation queries when it is needed to identify trajectories of objects
that liein each base cell. As discussedSubsection 3.4.2.3 this can be achieved by examining the
distance tables of base cells. This process results in discovering the set of trajectories in a dynamic
way. Hence, the functionten(T) and lifespan(T) can be also applied in the discovered set of
trajectories but or approach allows a different computation technique. In particular, the two functions

summarize the spatial and the temporal distances respectively stored in the distance tables.

Our model utilizes the notion of dimension table as it was defined inréwiops section. Hence, the
schema of an aloc TDW can be defined as:

Definition 3-4 (Schema of adhoc TDW): The schema of an dibc TDW @dhocTDW can be
defined asadhocTDW = (DT, TFT)whereDT is anonempty finite set of dimension tables defined

according tdDefinition 3-1 andTFT is theTrajFacttable defined according @efinition 3-3. y

3.4.2.2. ETL processingver trajectory data

An ETL process is executed in order to feed thdvacd TDW. Loading data into the dimension tables

is straightforward; however, we should pay attention on loading th-act table. This is because,
instead of applying a reconstruction task during the ETL phase (or in a previous phase, during the
MOD loading), we transform the data appropriately in order to load them in the fact table.

Using previous approach@gFN+08a], [OOR+07] the computation of almost every measure (except
the COUNT_USERS assumes a specific semantic definition of trajectory. For instance, the computation
of COUNT_TRAJECTORIESneeds a specific definition of trajectory based on which the number of

trajectories will be counted.

We propose a more flexible ETL strategy based on the model described in the previous section. In
particular, we only need to calculate the temporal/ spatial distances between consecutive locations of

the same object. As we already mentioned, the differ@mibinations of keys in the fact table define a

unique cell in the multidimensional space of the cube. Hence, the aim of the ETL procedure is to find

which points reside in this cell and compute the distance tables. wdhis we dondét consi der

daa and we assume that we work on a clean dataset, thus we compute meaningful distances.

»
»

t
Figure 3-18: Applying linear interpolation
Note that in order to study the movement of objects inside the cells, we have to identify the cross points
of each base cell. Hence, we assuntiaear interpolation function that considers a straight movement
with constant speefPJTO00] For instance, in celC; of Figure 3-18 the square points represent the
interpdated cross points of a particular object. Note that we only consider spatial/temporal distances
between points that are insi@gand, obviously, we do not introduce distances between cross points (to

be precise, we set the temporal and spatial distagteeebn the two cross points to zero).
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The above approach is incorporated ihtoAD-TDW-ETL algorithm which is illustrated inFigure
3-19. The algorithm searches for the set of points which reside into each base cell (line 4). Finally, for
each list of points belonging to the same object, the spatial (using Euclidean diatahtieg temporal

distance are computed (line 8).

Algorithm Load - TDW ETL(ListOfPoints LoP)
1. //We assume LoP is sorted by Object - id, timestamp
2. FOREACHbasecellbc ; DO

3. //Find the set of points inside the cell

4. S = contains(LoP, bc i)

5. //Consider a list of points LP for

6. /leach object of S

7. FOR EACHLPofS DO

8. Compute_Distances(LP);

9. END FOR

10. END FOR

Figure 3-19: The LoadTDW-ETL algorithm for loading théact table

3.4.2.3. Ad-hoc OLAP
The proposed TDW organization needs a new OLAP mechanism that utilizes the notion of multiple
semantic definitions of trajectories. In this paragraph, we present an algorithm that incorporates this

capability and performs aggregation queries in an efficiety.

A query posed towards the TDW contains a number of members of dimensions based on which the
base cells are filtered and a subset is selected, and a measure which implies an aggregate function (e.g.
SUM, MIN, MAX, AVG, COUNT, DISTINCT COUNT). Furthemore, it contains a value for the

semme parameterwhich will be used to identify different trajectories. We need it because each base
cell contains no information about trajectories but includes a table containing spatial/ temporal
distances between esecutive points of each object. Formally:

Definition 3-5 (Aggregation query):is a set of(bc,, b, é , ), tim,entd}, where:

i. Eachbg, 1 @ apaseQellithat was filtered based on the selected members of dimension
(which result in specific rows in thErajFacttable)
i. mis the measure

iii. mtdis the selected value for the parametem, e Yy

In this work, we proposeAD-HOC-AGGREGATION algorithm that is suitably designed to answer
aggregate queries and incorporates thbd@dapproach. There, the user chossag,,c = mtd and the
OLAP query returns a s&0OCof base cells

In detail, AD-HOC-AGGREGATION algorithm examines the table containing ttemporal distances in
each cell and, for each object (line43), searches for temporal distances with values lowerrttidn
(line 5). This way, the algorithm identifies that the same trajectory evolves and so it updates the
measures (line 7) applyinge corresponding aggregate functibM. If it is found a temporal distance

with value greater thahtdthen a new trajectory is identified.
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/Algorithm General - Aggregation(SetOfCells SOC,
TargetMeasure TM, MaxTemporalDistance MTD)

1. FOREACHcell C ofSOC DO

2. //Process the distance table DT of the cell C

3. FOR EACH object P of C DO

4, FOR EACH TemporalDistance t of P in DT DO
5. IF t<MTD THEN

6. /lthe same trajectory evolves

7. UpdateMeasure(TM);

8. ELSE

9. /la new trajectory is identified

10. newTrajectory();

11. END IF

12. END FOR

13. END FOR

14. END FOR

Figure 3-20: The AD-HOC-AGGREGATIONalgorithm.

The aggregate functions computing the stgopgregates of the measures are categorized by Gray et al.
[GCB+97]into three classe@istributive algebraicandholistic) based on the complexity required for
this computation, starting from a set of already availableagigvegates. The same classification is
followed by our OLAP mechanismn the remaining paragraphs of this subsection, we discuss
computation isses, using our atioc framework, for the measures[MFN+08a] and[OOR+07]and

we classify them to categories according to their compl¢&GB+97].

The COUNT_TRAJECTORIESMeasure is classified as distributive, and calculated byu&rgcthe AD-
HOC-AGGREGATION algorithm on theéSOCset of base cells. At this point, we should mention that, in

this work, theCOUNT_TRAJECTORIES measure refers to theumber of trajectoriesand not to the
number of distinct trajectoriethat is discussedn [MFN+08a], [OOR+07] This happens because in

our approach no trajemties have been reconstructed in an earlier phase, thus it does not make sense to
search for distinct trajectories in base cells, which is the source of the distinct count problem
[TKC+04]. Nevertheless, we discuss a different meaning of number of distinct trajectories as a piece of

future work.

The couNT_UserRsmeasure for a base célt, refers to thewumber of distinct objectand is calculated

by counting the number of rows of the distance tablboddince each row corresponds to a different
object. However, this measure can be classified as holistic as we cannot just count the results of each
base cell. This happens becaaseobject may appear in more than one distance tables (base cells), as
such we have to avoid counting it more than one time.

The remaining measures are classified as algebraic as they are calculated on the basis of other
measures. In order to calculatke AVG_DISTANCE TRAVELED when can use the Formul@-2).
However,sum_DISTANCE is definedas the summation of the lengdn(T) of each trajectoryl lying

within a base celbc. More formally:

SUM_ DISTANCHbO) = & len(T;) (3-15)
Ti be
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Therefore, the functiomen(T) is not applied on the trajectory portion that lies indidebut on the

trajectory T that has been discovered in a dynamic way as we have already described.

Similar is the case for thevG_TRAVEL DURATION measurewhich can be discovered using the
equation(3-3) but SUM_DURATION is also an auxiliary measure defined as the summation of the
durationlifespan(T)of each trajectory insidebc.

SUM_ DURATIONbC) = a lifespar(T;) (3-16)

T;l bc

In the same fashion, the/G_sPEEDmeasurgequation(3-5)) is calculated by dividing the auxiliary
measure sUM_SPEED (i.e. the sum of the speeds of each trajectdryinside bc) with
COUNT_TRAJECTORIES;

_ 5 _lenT)
SUM__SPEEDNObc) = — 1 31
- o) Ti?‘bclifespar(ﬁ) ( 7)

Likewise, theAvG_ABS_ACCELERIs a suchlike fractiofequation(3-7)) wheresum_ABS_ACCELERIS a
supplementary measure that summates the absolute accelerations of all trajettoniem bc
. |speedn(T) - speeghir(T)|

SUM_ABS_ACCELERbc) = § -
Tibe lifespar(T;)

andspeed, (speeg) is the finally(initially, respectively) recorded speed of the trajectdiyif bc.

o | (0,0) \ (150,10) \ (160,13) \ (150,10) \ (1,600) \ (160,15) \ (150,12) \ (0,900) \ (100,9) \ (150,12) \

Selecting B000as U
maximum temporal distance

| ©0) |@5010) | (16013) | (150,10) | (1.600) | (160.15) | (150,12) | (0900) | (1009) | (250,12) |

<

(0,0) \ (150,10) \ (160,13) \ (150,10) |  (0,0) \ (160,15) \ (150,12) | (0,0) \ (100,9) \ (150,12)

Obj

Len() = 0+150+160+150 = 460 Len() = 0+160+150 = 310 Len() = 0+100+150 = 250
Lifespan() = 0+10+13+10 = 33 Lifespan() = 0+15+12 = 27 Lifespan() = 0+9+12 = 21
obj COUNT_TRAJECTORIES =3

SUM_DISTANCE = 1020
SUM_DURATION =81

Figure 3-21: ComputingCOUNT_TRAJECTORIES SUM_DISTANCE andSUM_DURATION measures

Let us present our adoc OLAP operations through an example. Let us consider that a user requests
the total distance covered by the trajectori®sm DISTANCE), the total duration of the trajectories
(SUM_DURATION) and the number of trajectorieS§UNT_TRAJECTORIES under specifi spatiotemporal
constraints. The user defines the maximum temporal distang8@G0esecs.Figure 3-21 illustrates the
complete process that is executed for the computation of the measure®ISTANCE and
SUM_DURATION using the distance table of a base cell. The first table contains the spatial (in meters)
and temporal distances (in seconds) of each fi@nt its previous one. As a first step, the algorithm

locates the points with temporal distance greater3b@secs. In the example &fgure3-21 there are
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existtwo such points. Therefore, these points will be the start points of trajectories (so their temporal
and spatial distances are set to zero). Hence, three trajectories are identified amgirtheasures are
computed.

3.4.2.4. Discussion aboutata cube materialization

In the previous subsections, we presented our TDW architecture that enabtes@UAP analysis on
mobility data. Obviously, there is a trad#f between flexibility and performance. A TDW based on
predefined and reconstructed &etiories may perform faster than ourtemt TDW. However, the
former does not offer flexibility regarding different semantic definitions of trajectories. In traditional
DW, materialized views have been proposed to speed up query processing. These viefegedeas
summarytables[CD97] that store redundant, aggregate information. The advantage of materialized

views is their small size (compared with the detailed @gjahat allows much faster query response.

Following the aforementioned approach, we define an appropriate summary table for our TDW with

rows of the form:
Definition 3-6 (Summary table): A summary tablé&Tis a quadrupl¢bc, mtd, m, valugwhere:
i bcis a particular base cell
ii. mtdis a specific maximum temporal distance;
iii. mis a measure; and
iv. valueis the precalculated aggregated value for y

Obviously, this strategy performs well only in the case of distributive and algebraic (that are not based
on holistic) functions. This happens because in case of a holistic measureoleng. USERS the
superaggregates cannot be computed fromagbregtes.

The most trivial way to definmtdis to apriori know it. More specifically, in case that some semantic
definitions of trajectories arexiori known, we can materialize the calculations of the measures so as

to speed up query response.

We providethis short discussion in order to emphasize on the fact that materializing our flexible data
cube it is possible to get the functionality described by the cubes propod&t-h+08al and
[OOR+07] This happens because, in this case, the possible answers are already computed as it is
proposed in those two works. In other wardhe data cubes described in those two papers can be

considered as specific materialized data cubes using our approach.

3.4.3. Experimental Study

In this section, we evaluate the proposed solutionssinyg the samdatase{[Eco09) with the one in
Section3.3.3 It contains6.67 millions of raw location recordbat represent the movement of 84
couriers moving in London during a one month period (July 2007) with a 10 sec sample rate. For all
the experiments we used a PC with 1 Gb RAM and P4 3 GHz CPU.

In the following, we evaluate the performance of the basicpom@nts (ETL, computation methods,

data cube size) of o@d-hoc approactthat allows building of flexible trajectory data cubes. Moreover,
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we provide a comparison with the respective components of TDW that are propdbHeNin08a],
[OOR+07] In this study, we refer to the latter approaclstasicapproach. To achieve this comparison

we use as TDW model the one presentefdifN+08a] (the model ofOOR+07]can be considered as
subset of it) consisting of a spatial, a temporal, and an object profile dimension, as well as the measures
that have already been discusse8isectior8.4.2.3
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Figure 3-22: Performance of Loa@DW-ETL algorithm and comparison to the static ETL

First, we evaluate theffectivenesof the LOAD-TDW-ETL algorithm Figure 3-22). It is clear that it
performs linear with the size of the input dataset (and allows thegsing of the full dataset in about

1 min). The ETL step of thetatic approachincludes a trajectory reconstruction task and the feeding of
the data cube, which follows either a c€IdA) or a trajectory oriented approachiqA). Obviously the
proposed adhoc approach performs better than #tatic as no reconstruction work takes place and
also the feeding of the data cube does not require the discovery of portions of trajectories that lie inside
base cells.

Second, we evaluatéd time required for the computation of different measures (usingthieoc-
AGGREGATIONalgorithn). We have experimented with different sizes of the input datasets that result
in a different number of base cells that have to be proceBgpde 3-23 presents computation times
regarding the highest level cuboid of the lattice (left vertical axis). Furthermore, the number of
processed base cells is ilitaged on the right vertical axis so as to provide a view on the data cube size.
The two distributive measuresyM_ DURATION andCOUNT_TRAJECTORIES present a similar behavior.

The latter has a slightly better performance as in this case the algorithiifiedeonly the different
trajectories and does not compute anything else (as it happens in the case @RATION where
distances are summarized)/G_DURATION is an algebraic measure, so its performance is in direct
proportion to SUM_DURATION and COUNT_TRAJECTORIES Although the measureCOUNT USERS is
holistic, its performance is very good as it utilizes the structure that was proposed in Sul3sé@&ian

Furthermore, its performance is affected by the number of base cells and not by the number of records.
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This is due to the fact the computation of this measure considers only the objecthdsdistance

table of each base cell.
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Figure 3-23. Computation time using the dwbc approach

Figure 3-24 illustrates the computation of a distributive and an algebraic measure using our flexible
data cube (not materialized) and a typical materialized data cube using either the summary tables as
discussed irsubgction3.4.2.4or thestatic cubes. Obviously, the materialized cube performs better as

the measure values are fmaculated butit does not provide any flexibility regarding different
definitions of trajectories (this is the trad#f between flexibility and performance). We do not provide

a comparison regarding holistic measures becawsecannot utilize the summary tablés ther
computationand also the cubes §¥IFN+08a], [OOR+07]do not supporsuch measures (they only

support distributive and algebraic measures).
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Figure 3-25. Comparing data cube sizes:-hdc vs. static approach

Our fourth experiment compares the sizes of data cubes built using-bac @hd the static approach.

We recall that our purpose is to build aalaube that will be generic enough to serve a number of
applications. We assume that these applications consider some different definitions of the notion of
trajectory. Both cubes consist of 210.000 base cells containing the full dataset (6.6 milli@s)ecor
Obviously, the size of alloc data cube remains the same even if there is a large number of different
definitions. Even the number of measures that are computed from this data cube does not play any role
as the answers are not precomputed. Its sirepsoportion to the number of location points as the ad

hoc data cube stores the distances between these points. On the other hand, the statiotthmes

is in proportion to the number of measures computed in this data cube and the numbecafdbéoee
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each base cell different values have to be computed). As we $éguie 3-25, our approach will

perform well in term of data cube sizen& have five or more definitions.

3.5. Related Work

In the sequel, the related work in the fielif Spatial and Spatiotemporal Warehousaémgexamined
These are considered as the ancestors of Trajectory Data Warehaginge focus on dimensional

modeling and measures.

3.5.1. Spatial Warehousing

The pioneering work by Han et #iSK98] introduces the concept of spatial data warehouSmyV).

The authors extend the idea of cube dimensions so as to include spatial asphtiinones, and of

cube measures so as to represent space regions and/or calculate numerical data. After Hegesalrk
models have been proposed in the literatiming at extending the classical data warehouse models
with spatial concepts and the OLAP tools with spatial operators (SOLAP). However, despite the
complexity of spatial data, current SDWs typically contain objects with simple geometric extents.
Moreove, while a SDW model is assumed to consist of a set of representation concepts and an algebra
of SOLAP operators for data navigation, aggregation and visualization, approaches proposed in

literature often privilege either the concepts or the algebra; apipes that address both are rare.

Further, research in SDW modeling can be classified as addressing application requirements at either
the logical data level or the conceptual data level. Mainstream solutions rely on the (logical level)
relational data mael [BMHO1], [SHKO0O]. Relatively few developments fogewon SDW conceptual
aspects[JKP+04], [MZ04b], [BTMO05], [TPG+01]} The analysis presented [Riz03] asserts the
moderate interest of the research community in conceptual multidimensional modeling. However, a
significant perceratge of data warehouses fail to meet their business objefiz3]. A major reason

for failure is poor or inappropriate design, mainly due to a lack of establBWédiesign methods

[RGO0] ard DW conceptual data mode]RGO0OQ]. Similarly, the authors ofMZ06] state that the
proposed models either provide a graphical representation based oiRtheé&el or UML notations

with few formal definitions, or provide formal definitions without any usgented graphical sport.

Focusing on spatial modeling, existing approaches do not rely on standard data models for the
representation of the spatial aspects. The spatiality of facts is commonly represented through a
geometric element, instead of an OGC (Open Geospatiab@ms) spatial feature, i.e., an object that

has a semantic value in addition t® $patial characterizatig®pe01]

Extending classical DW models to deal with tigdadata requires allowing both dimensions and
measures to hold spatial and topological characteristics. Indeed dimensions and measures should be
extended with spatiality in order to enrich the query formulation and the visualization of the results.
Howeer adding spatiality to both dimensions and measures is not enough. SDWs have further specific
requirements that have been studied in the state of the art, suéteeentlkinds of spatial dimensions

and measures, multiple hierarchies in dimensions,igbadontainment relationships between
dimensions levels, nenormalized hierarchies, many to many relationships between measures and
dimensions and the modeling of me@suas complex entitigBTMO05], [BMHO1], [JKP+04].
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3.5.1.1. Spatial dimensions

When adding spatiality to dimensions, most of the proposals follow the appsobyg Stefanovic etl.
[SHKOO]la nd B ®d 8Mid01]ahat diatihguistthree types of dimension hierarchies based on the
spatial references of the hierarchy members:-gmometric, geometrito-nongeometric and fully
geometric spatial dimensions. The rggometric spatial dimension uses nominal spatial reference (e.g.
name 6 cities and countries) and is treated as any other descriptive dimgR&01], [RBP+05].

The two other types denote dimensions where the members of lower or all levels have an associated
geometry. In the fully geometric spatial dimension, all members of all the levels are spatially
referenced while in the geomettiz-nongeometric spatial diension, members are spatially

referenced up to a certain dimension level and then becomgeaonetric.

More loosely, Malinowski et a[MZ04b] extend this classification and consider that a dimension can

be spatial even in the absence of several related spatial levels. In their proposal, a spatial level is
defined as a level for which thepglication needs to keep its spatial characteristics, meaning its
geometry as this is represented by standard spatial data types (e.g. points, fEigimaipws them to

link the spatial levels of a dimension through topological relationships thatbetiseen the spatial
components of their members (contains, equals, overlaps, etc). Based on this, they define a spatial
hierarchy as a hierarchy that includes at least one spatial level. In this connection, a spatial dimension is
a dimension that includes least one spatial hierarctds such, a spatial dimension is a dimension that
contains at least one spatial level; otherwise it is a thematic dimension. An advantage of this modeling
perspective is that fierent spatial data types are associated with levels of a hierarchy. For
example, assuming the hierarchser < city < countypoint type is associated teser, region tocity,

and set of regions toounty

Dimensions and their organization into hierarchies are kept very simple in traditionapenadianal

data warehouses. Levels of traditional +spatial dimensions are usually organized into containment
hierarchies such adistrict < city < county < country However when dealing with spatial data, two
spatial values may not only be eithdisjointed or one contained into the other, rather they may
overlap. For instance, if we add the dimension leedll before thedistrict level, a cell might overlap

two districts. To better address application requirements, a larger spectrum of possible hierarchies is
being explored. Jensen et @IKP+04] propose a conceptual model that supports dimensions with full

or partial contamment relationships (sefigure 3-26). The dimension hierarchiesm contain levels

that may be linked by full or partial containment relationships. For the members of a level linked by a
partial containment relationship to members of another level, the degree of containment must be

specified (e.g. 80% of this cell ism@ined in this district).

Support for multiple hierarchies in a single dimension is also an important requirement proposed by the
models of Jensen et §1KP+04] and Malinowski et al[MZ06]. It means that multiple aggregation

paths are possible in a dimension (e.g. cells can be aggregated in districts or directly in counties).
According to these models, multiple aggregation paths enable better handling of the imprecision in
gueries caused by partial containment relationships. Putting this idea into our example, they argue that

the result of the aggregation of cells into countyyrgave better results than aggregating cells into
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district, then into city and then into county. The models of Jensen[éK&+04] and Malinowski et al.

[MZ06] support nomormalized hierarchy i.e., hierarchies whose members may have more than one
corresponding member at the higher level or no corresponding member (e.g. a cell may be related to
two districts whereas a district may be related to no cells). Fjriallthe model of Malinowski et al.
[MZz06], simple hierarchies can be characterized as: symmetrical (i.e. all levels of the hierarchy are
mandatory), asymmetrical, geaéred (i.e. including a generalization/specialization relationship
between dimension members), pstrict (same as nenormalized) and nerovering (i.e. some levels

of the hierarchy can be skipped when aggregating).

L All )
—

- T Full containment onby
=—==== Partial or full containmeant

I:hle'_ addrei ;:;.l
—<

Figure 3-26: Hierarchy with full and partial containment relationship (fridP+04]).

3.5.1.2. Spatial measures

Similarly to spatial dimensions, when adding spatiality to measures, most of the proposals distinguish
two types of spatial measur¢gdSK98], [RBMO01], [RBP+05]: spatial measures represented by a
geometry and associated with a geometric opeitat aggregate it along the dimensions, a humerical

value obtained using a topological or a metric operator.

When represented by a geometry, spatial measures consist of either a set of coordinfBasvibin
[MZ04b], [PTO1], [RBMO1], [RBP+05] or a set of pointeréo geometric objects as ifBHKOO].
Finally, Bimonte et al[BTM05] and Malinowski et al[MZ 04b] advocate the definition of measures as
complex entities. IfBTMO05], a measure is an object containing several attributes (spatial or not) and

several aggregation functions (eventually-haat functions). In a similar way, Malinowski et al.
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[MZ04b] define measures as attributes of aary fact relationship between dimensions. This fact
relationship can be spatial, if it links at least two spatial dimensions, and be associated with a spatial

constraint such as, for instance, spatial containment.

An important issue related to spatial measures concerns the level of detail they are described with.
Indeed spatial data are often available and described according to various levels of detailnfo,insta

the same spatial object can be defined as an area according to a precise level of detail and as a point
according to a less detailed one. This is of particular importance with trajectories where the position of
the objects is subject to imprecisionamiani et al[DS06] propose a model allowing to define spatial
measures at different spatial granularities. This model, called MuSD, allows to represent spatial
measure and dimensions in terms of OGC features. A spatial measure can represent the location of a
fact at multiple levels of spatial granularity. Such mghanular spatial measures can either be stored

or they can be dynamically computed by applying a sebafsening operators. An algebra of SOLAP
operators including special operators that allow the scaling up of spatial measures to different

granularities is proposed [pS06].

Another requirement highlighted by Jensen et[#P+04] and Bimonte et al[BTMO05] concerns
relationships between measures and dimensions. Indeed while most of the models only propose to
define oneto-one relationships between measures and dimensions, they addefiairg many-to-

many relationships, which would alloassociatingthe same measure with several members of a

dimension.

3.5.2. Spatiotemporal Data Warehousing

Research on extracting semantically rich information from raw spi@eedependent data has focused

on spatial and spatiotemporal data warehouses. As wedJi@alto treat trajectory warehouses as a
branch of spatiotemporalvarehousing[GKM+09], the two subsequent sections present existing
approaches in the area cateagiog the research efforts into, on the one hand, conceptual and logical
modeling methodologies, and, on the other hand, implementation issues regarding aggregation

techniques as the quintessence of the data warehousing concept.

3.5.2.1. Aggregation functions andh¢ir implementation
A related research issue that has recently gained increasing interest and is relevant for the development
of comprehensive SDW data models concerns the specification and efficient implementation of the

operators for spatial and spatiwtgoral aggregation.

Spatial aggregation operations summarize the geometric properties of objects and as such constitute the
distinguishing aspect of SDW. Nevertheless, despite the relevance of the subject, a standard set of
operators (like for example tH&QL operators SUM, AVG, MIN) has not been defined yet. In fact,

when defining spatial, temporal and spatiotemporal aggregates some additional problems have to be

faced, which do not show up for traditional data.

In particular, while for traditional databes only explicit attributes are of concern, the modeling of the
spatial and temporal extent of an object makes use of interpreted attributes and the definition of

aggregations is based on granularities.
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A first comprehensive classification and formalization of spatiotemporal aggregate functions is

presented by Lopez et LT05]. The operation of aggregation is defiresla function that is applied

to a collection of tuples and returns a single value. To generate the collection of tuples to which the
operation is applied, the authors distinguish three kinds of methods: group composition, partition

composition and slidig window composition.

Recall that a (temporal/spatial) granularity createdisgreteimage, in terms ofgranules of the
(temporal/spatial) domain. Given a spatial granula@fyand a temporal granularit@’ , a spatic
temporal group compositioforms goups of tuples sharing the same spatial and temporal value at
granularityG® x G' . An aggregate function can then be applied to each group. On the other hand,
spatiotemporal partition compositiaa used when a finer level of aggregation is required avalves

at least two granularities. The first one, which is the coarser, defines collections of tuples (the
partitions). To each partition,sliding window compositiois performed. Instead of generating a single
aggregate value for each partition, an raggte value for every tuple in the collection at the finer
granularity is computed. In order to slide through all tuples in the collection, a spatiotemporal sliding

window is used.
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Figure 3-27: (a) Region®f interest, (b) A data cube example

In addition to the conceptual aspects of sptimporal aggregation, another major issue regards the
development of methods for the efficient computation of this kind of operations to manage high
volumes of spatioteporal data. In particular, techniques are developed based on the combined use of
specialized indexes, materialization of aggregate measures and computational geometry algorithms,
especially to support the aggregation of dynamically computed sets of gpgjtats [PTK+02],

[TPO5], [RZY+03], [ZTO05]. Papadias et dIPTK+02], [TPO5] propose an approach based on two types

of indexes: dost indexwhich manages the region extents asdociates to these regions an aggregate
information over all the timestamps in the base relation, and smrasurendexeqone for each entry

of the host index), which are aggregate temporal structures storing the values of measures during the
history. For a set of static regions, the authors defineatijgregate RB-tree (aRB-tree), which adopts
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an Rtree with summarized information as host index, andtee® containing time&arying aggregate

data, as measure index.

To illustrate this concept, considigie regionsR;, R, R; andR, in Figure3-27(a) and suppose that the
number of phone calls initiated iff;f Ts] inside such regions is recorded asasw@e in the fact table
depicted inFigure3-27(b).

Then Figure 3-28 shows the corresponding aREe. This structure is well suited for the efficient
processing ofvindow aggregate querigs.e., for the computation of the aggregated measure of the
regions wilich intersect a given window. In fact, for nodes that are totally enclosed within the query
window, the summarized measure is already available thus avaésgendinghese nodes. As a

consequence the aggregate processing is made faster.

Figure 3-28 The aRBtree

For instance, let us compute the number of phone calls inside the shadedFageiaeiB-27(a) during

the time interval Ty; Ts]. SinceRs is completely included in the window query there is no need to
further exploreR; andR, once one accesses therBe forRs. The first entry othe root of this Btree
contains the measure for the intervg{;[Ts], which is the value we are interested in. Instead, in order
to obtain the sum of phone calls in the interdial [T3] for R; one has to visit both an entry of the root

of the Btree fao Ry and also one leaf (the colored nodegigure 3-28). Tao et al[TKC+04] showed

that the aRBree can suffer from thdistinct counting problemi.e., if an object remains in the query
region for several timestamps during the query interval, it will be counted multipds tn the result.

To cope with this problenfTKC+04] proposed an approach which combines spatiotemporal indexes
with sketches, a traditional approximate countieghnique based on probabilistic countjfg/85].

The index structure is similar to the aBe: an Riree indexes the regions of interest, whereas the B
trees recordhe historical sketches of the corresponding region. However, this index differs from aRB
trees in the querying algorithms since one can exploit the pruning power of the sketches to define some

heuristics allowingeducingquery time.
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