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Preface 

 

Due to the large amount of patterns that are extracted from databases with 

data mining techniques, their complexity and heterogeneity, the need for 

Pattern Management in a unified way is emerging. A Pattern Base 

Management System (PBMS) supporting operations over patterns, like 

storage, retrieval and comparison has a wide range of applications in every 

scientific domain. 

In this thesis we deal with the definition of a pattern representation 

model for a PBMS and with the very important problem of comparing crisp 

and fuzzy clustering patterns. We propose new clustering similarity 

measures and we define a novel algorithm for intuitionistic fuzzy clustering. 

The new measures are integrated into the PANDA comparison framework 

and we present real-world applications and experiments. We present a 

prototype PBMS, PatternMiner, an integrated and expandable environment 

for pattern management. Furthermore, we deal with the problem of pattern 

evaluation and we propose the use of ontologies to provide experts valuable 

semantics about the extracted patterns on a specific knowledge domain. 

 

Evangelos E. Kotsifakos 
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1 Introduction 

Data mining comprises a step of the knowledge discovery process and it 

mainly deals with methodologies for extracting knowledge artifacts, i.e. 

patterns, from large data repositories (Figure 1-1). Association rules, 

clusters, decision trees, are some well known patterns coming from the data 

mining area. Patterns can also be found in other areas, such as Mathematics 

(e.g. patterns in sequences, in numbers, in graphs, in shapes etc.), 

Geometry, Signal Processing etc. (Vazirgiannis et al., 2003). An important 

issue raise here: the manipulation and management of the patterns in a 

unified way, either they have been evaluated or not. 

 

 

Figure 1-1 The KDD process 

Currently, the majority of the available data mining tools support the 

visualization of patterns, and in the best case storage in relational tables. 

Combined with the characterization of patterns as complex, compact and 

rich in semantics representation of data (Rizzi et al., 2003), this issue raises 

the challenge for efficient pattern management. In analogy to a Database 

Management System (DBMS), a Pattern Base Management System (PBMS) 

manipulates patterns as a DBMS manipulates data. A PBMS can be used for 

representing, storing, querying, indexing and updating patterns. Moreover, 

advanced operations over patterns can be defined, such are pattern 

comparison and change monitor over time. Patterns are extracted from raw 

data and thus there exists a connection between the patterns and the data 
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that they have been extracted from and so, a change at raw data might 

suggest a change to the related patterns. 

In general, basic operations over patterns (as the output of data mining 

algorithms) are: 

- Storing the patterns extracted from the same dataset, using different 

parameters of a data mining task. 

- Querying for previously extracted patterns using a lot of different 

search criteria, such as the initial dataset used, the date/time of the 

extraction process, the parameters used or even some properties/ 

values of the output. 

- Comparing patterns extracted from the same dataset, extracted either 

with different parameters, either at different date/time. 

- Monitoring pattern changes over time. 

Pattern comparison is an advanced and important operation over patterns in 

a variety of real world applications as it provides a high level data 

comparison process. Comparing raw data is very time-consuming and 

requires a lot of processing power and I/O operations. Using patterns as 

compact representation of raw data, a pattern comparison process reflects 

the comparison of the underlying data but requires much less time and 

resources. 

The definition of similarity operators/ measures over patterns results in a 

variety of interesting applications, that are, as discussed in (Ntoutsi, 2008): 

1. Similarity queries 

2. Monitoring and change detection 

3. Dataset comparison 

4. Evaluating data mining algorithms 

5. Privacy aware data mining 

6. Mining from distributed data sources 

7. Discovering outlier or unexpected patterns 
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To efficient manage patterns and support the operations described above, a 

unified pattern representation model has to be defined, supporting advanced 

query and comparison operations. 

In this thesis we adopt the PANDA (PAtterns for Next-generation DAtabase 

systems) (PANDA, 2005) project approach in data representation and 

management. The PANDA project deals with the problem of the unified 

pattern management and comparison. We define new functions for crisp and 

fuzzy cluster comparison and we present experiments on real-world 

applications such as content-based image retrieval and classification. We 

study the representation and management of clustering patterns focusing on 

the comparison of crisp and fuzzy clustering patterns as applications of 

frequent itemset and decision tree pattern management have been mostly 

discussed and presented in (Ntoutsi, 2008). 

We present a PBMS prototype, PatternMiner, an XML-based integrated 

environment for pattern extraction, storage, retrieval and comparison. We 

also use the PBMS concept to facilitate the classification of a large amount of 

astronomical data, galaxy spectrums in particular. 

Furthermore, we deal with the evaluation of the patterns extracted from data 

mining process in order to extend the PBMS concept to include one more 

step of the data mining process, that of the pattern evaluation (Figure 1-1). 

In this context, we study the use of ontologies that describe the domain 

knowledge, to evaluate patterns extracted from a large database. 

While in this thesis we deal with the comparison of clusters, we use 

association rules patterns in our study for pattern evaluation with ontologies 

and decision trees in the classification of the astronomical data to point out 

the wide area of use of a PBMS. 

1.1 Thesis organization 

This thesis is organized as follows: 

In chapter 2 we deal with the pattern representation and querying issues. 

We define a model for pattern representation, based on the pattern concepts 

of PANDA project and we provide definitions and examples for all the 

concepts that we will deal with in this thesis. Our mainly discussion on 

chapter 2 is to point out, through a qualitative evaluation, which is the best 
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representation model for a pattern-base, the relational, the object relational 

or the semi-structured (XML) model. In this study we use a custom XML 

schema to describe a pattern, based on the PANDA project approach while 

the scope is not to build a pattern-base to be used in our prototype, but to 

conclude whether an XML model is performing better for a pattern-base.  

Chapters 3 and 4 deals with cluster comparison. In chapter 3 the case of 

crisp clustering is studied, a comparison measure is proposed based on the 

Expectation-Maximization clustering algorithm (Dempster et al., 1977) and 

two different content-based image retrieval applications, that use the PBMS 

concept and the proposed comparison measures, are presented. Chapter 4 

deals with intuitionistic fuzzy clustering. The theory of intuitionistic fuzzy 

sets is presented and a variation of the Fuzzy C-Means algorithm (Bezdek, et 

al., 1984) is proposed, that uses a novel similarity measure for intuitionistic 

fuzzy data. The proposed scheme is evaluated through an image 

classification application. 

In Chapter 5 we present an application of the PBMS concept for 

classification of astronomical data, a real-world case scenario of the GAIA 

project of the European Space Agency.  

In Chapter 6 we present the PBMS prototype, PatternMiner and the study of 

the pattern evaluation process with the use of ontologies. 

PatternMiner uses PMML (PMML, 2009) XML documents, enhanced to 

include all the necessary information to support all the PBMS operations 

such as pattern comparison and monitoring. 

The pattern evaluation study is based on seismological data and the SUMO 

(2009) ontology of geology. 

Chapter 7 summarizes the contributions of this work and discusses the 

open issues for future work. 
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2 Pattern Representation and Querying 

This chapter highlights the basic notions of patterns, as an output of data 

mining process, as well as semantically rich representation of raw data in 

general. We describe the PANDA pattern definition model and other related 

work. By pointing out the need of a Pattern Base Management System 

(PBMS), we study three different pattern physical representation approaches 

in a pattern-base, the relational, the object-relational and the semi-

structured (using XML). The scope of this study is to point out the best 

representation (and structure) model for a PBMS. Through a qualitative 

evaluation we conclude with the most proper representation approach for 

patterns, the semistructured, XML model. While we conduct our 

experiments using Oracle’s DBMS, we will use the best representation model 

(semistructured) to build a PBMS from scratch (chapter 5). 

2.1 Introduction 

Nowadays, databases are huge, dynamic, with data from different 

application domains and a lot of different and complex patterns can be 

extracted from them. In order for someone to be able to exploit the 

information these patterns represent, an efficient and general-purpose 

Pattern Base Management System (PBMS) for handling (storing / processing 

/ retrieving) patterns is becoming necessary for a lot scientific areas apart 

from data mining (Rizzi et al., 2003). Scientists of every field have their 

special needs for pattern creation and management and a PBMS approach 

would be the solution to the custom-per-problem application that they have 

to build. 

To outline the problem of pattern management and the need for a PBMS, 

consider there is a large dataset and the K-Means clustering algorithm has 

to be applied. Using a set of user-defined parameters, a data mining tool 
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results in a number of k clusters. The output is presented in some form of 

text describing in general the center of every cluster and the distribution of 

data in every cluster. Depending the data mining tool in use, the format of 

the output is different. Even if there is the option to save the output, user 

cannot search for previous clusterings using as search criteria the 

parameters or the dataset that have been used. Moreover, user cannot 

combine or compare in any case different clusterings of the same dataset.  

 

Figure 2-1 The output of the K-means algorithm in WEKA data mining tool 

kMeans 

====== 

Number of iterations: 4 

Within cluster sum of squared errors: 80.4216834631 833 

Cluster centroids: 

Cluster 0 

 Mean/Mode:    68.0345   10.5172    6.5172    6.8621    10.4483   
18.069    19.0345   27.8621  101       296.5862  25 4.2069  249.2759  
389.0345  388.3793  337.3103  302.1034  282.8621  2 46.9655  223.9655  
223.3448  194.4483  161.8621   97.8276   71.7931   57.4138   35.8276   12         
2         0.3103    0.1379    0         0      

 Std Devs:    260.2523   28.8551   16.0326   15.3034    22.5556   
38.0863   33.7104   49.6529  185.6823  459.7586  28 8.1144  206.0688  
381.6582  346.0339  194.6038  168.1244  171.1642  1 57.144   169.7554  
210.7751  204.1347  184.5747  127.573   104.3912   87.4894   57.857    
25.9986    6.2393    1.0387    0.5158    0         0      

Cluster 1 

 Mean/Mode:  1958.4     161.1 5     86.1      77.7      91.8     
104.95     88.15     98.85     84.8      78.35     79.7      99.25    
125.85    114.4      87        68.4      65.55     67.95     79.2      
84.95     87.85     81.05     55.85     42.1      3 4        35.7      29.7      
21.3       5.75      0.2       0         0      

 Std Devs:   1507.5583   99.3109   54.0369   47.7715    59.9733   
83.4856   75.985   109.9293  101.0714   94.0863  10 5.6305  128.4617  
185.1507  169.1525  100.3615   74.6151   71.832    71.6075   89.7661  
118. 888   125.2615  122.393    94.5985   76.8313   63.8 699   67.1488   
56.7396   40.8232   11.7109    0.6156    0         0     

=== Clustering stats for training data === 

Clustered Instances 

0      29 ( 59%) 

1      20 ( 41%) 
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Figure 2-1 and Figure 2-2 shows the output of the K-means and the J48 

classification algorithm in WEKA data mining tool, respectively. Note the 

very specific format that the output is presented. 

 

Figure 2-2 The output of the J48 classification algorithm in WEKA data mining tool 

Moreover, data mining tasks that can be applied to a dataset, includes not 

only clustering but, in most cases, classification and association rule 

mining. Examples of the output of these tasks are presented in Figure 2-3. 

More specifically, examples of the three more common data mining pattern 

types are presented, association rules, clusters and decision trees. In the 

case of association rules, the structure of the rule is obvious (head and 

body), while the measures of the rule (confidence and support) are also 

clearly presented. In the case of clustering, four clusters (groups of data 

based on density/ proximity) are shown and, in the case of the decision tree, 

=== Classifier model (full training set) === 
 
J48 pruned tree 
 
------------------ 
Bcolumn 39 = '(-inf-23.995]' 
|  Rcolumn 10 = '(-inf-9.675]' 
|   |   Rcolumn 1 = '(-inf-0.185]': 4 (12583.0) 
|   |   Rcolumn 1 = '(0.185-inf)' 
|   |   |   Bcolumn 40 = '(-inf-22.275]' 
|   |   |   |   Bcolumn 38 = '(-inf-22.575]' 
|   |   |   |   |   Bcolumn 44 = '(-inf-0.725]': 2 (2.0) 
|   |   |   |   |   Bcolumn 44 = '(0.725-inf)': 4 ( 6.0) 
|   |   |   |   Bcolumn 38 = '(22.575-inf)': 4 (439 .0/1.0) 
 
 
[...] 
 
 
=== Summary === 
 
Correctly Classified Instances  26625    92.1759 % 
Incorrectly Classified Instances  2260    7.8241 % 
Kappa statistic       0.8712 
Mean absolute error      0.0586 
Root mean squared error     0.172  
Relative absolute error     18.9389 % 
Root relative squared error    43.7147 % 
Total Number of Instances   28885   
 
=== Confusion Matrix === 
 
   a          b         c          d     <-- classi fied as 
 1231   1585      0          0   |   a = 1 
 125    10377   51        16   |   b = 2 
   0      194     1304        2   |   c = 3 
   0       65       222   13713 |   d = 4 
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a sample tree that classifies astronomical data based on the proper attribute 

is presented. 

Each one of these has different output and representation, making more 

complex the problem of pattern management. 

− buys(x, “chips”) � buys(x, “beers”) [confidence: 0.5%, support: 60%] 

− major(x, “CS”) ^ takes(x, “DB”) � grade(x, “A”) [confidence: 1%, support: 75%] 

Association rules 

 

clustering 

 

decision tree (classification) 

Figure 2-3 Examples of the output of three most common data mining taks 

2.2 Related Approaches 

Current database systems do not support storage and management of the 

patterns extracted from data with data mining tools. The area of pattern 

representation and management is recent, and there are only few efforts. 

PMML (PMML, 2009), SQL/MM (SQL/MM, 2001), CWM (CWM, 2007), 

JDMAPI (JDMAPI, 2007), PQL (PQL, 2007) are standards and systems 

developed for storing data mining and statistical patterns. PMML (stands for 

Predictive Model Markup Language) proposed by the data mining Group 

(DMG) is the most popular approach. Using XML documents it provides a 

quick and easy way for applications to define predictive models and share 

these models between PMML compliant applications. PMML defines a variety 

of specific mining patterns (such as decision trees, association rules, neural 

networks etc.) but does not support custom pattern types. PMML version 3.2 

provides more patterns and some functions for data preprocessing (PMML, 

2009). A review of these approaches in relation to pattern management can 
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be found in (Catania & Maddalena, 2006). These approaches deal with 

common data mining patterns and do not provide pattern management 

functionalities. 

The above approaches concentrate mostly on the definition of data mining 

and statistical models-patterns and the exchange of a set of patterns with 

specific characteristics between applications rather than on the creation of a 

general system for the representation and management of different pattern 

types. Pattern storage and querying techniques as well as pattern-to-data 

mapping are not among their capabilities. 

During the last years two research projects, CINQ (CINQ, 2005) and PANDA 

(PANDA, 2005), defined the problem of pattern storage and management and 

proposed some solutions. CINQ aimed at studying and developing query 

techniques for inductive databases, i.e. databases that store the raw data 

along with the patterns produced by these data collections. On the other 

hand, PANDA aimed to the definition and design of a PBMS for the efficient 

representation and management of various types of patterns that arise from 

different application domains (not only from data mining). Patterns will 

reside and be managed (indexing, querying, retrieving) in the PBMS just like 

primitive data reside and are managed in the DBMS. Different types of 

patterns will be efficiently managed (generality) and new pattern types will be 

easily incorporated (extensibility) in the PBMS. A critical decision regarding 

to the PBMS is whether it should be build from scratch or as an additional 

layer on top of a DBMS. Building the PBMS on top of a DBMS restricts its 

capabilities, as the architecture of the DBMS has to be followed. 

The area of pattern representation and management is recent, and there are 

only few efforts. PMML (PMML, 2009), SQL/MM (SQL/MM, 2001), CWM 

(CWM, 2007), JDMAPI (JDMAPI, 2007), PQL (PQL, 2007) are standards and 

systems developed for storing data mining and statistical patterns.  

Recently a prototype PBMS that was based on the PANDA pattern model, 

called PSYCHO, has been presented (Catania, Maddalena & Mazza, 2005). 

PSYCHO manages different types of patterns in a unified way and it is 

developed with specific tools over the object-relational Oracle DBMS.  
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Figure 2-4 PSYCHO architecture 

PSYCHO architecture is shown in Figure 2-4. The system is composed of 

three distinct layers. The physical layer contains both the Pattern Base that 

stores patterns and the Data Source that stores raw data from which 

patterns have been extracted. The middle layer, called PBMS Engine, 

supports functionalities for pattern manipulation and retrieval (pattern 

storage and querying). The external layer corresponds to a set of user 

interfaces (a shell and a GUI) from which the user can send requests to the 

engine and import/export data in other formats. 

In this chapter, however, we follow the latter approach (i.e. working on top of 

a DBMS) in order to study which is the best representation model for a 

PBMS. Towards this aim, we examine three well known DBMS approaches: 

the relational, the object-relational and the semistructured (XML) model. 

2.3 Representing Patterns in a Pattern Base Management 

System 

From the aforementioned approaches, we adopt the PANDA project approach 

as it tries to incorporate all kinds of patterns. The pattern concept is the 

cornerstone of the PBMS. A pattern is a compact and rich in semantics 

representation of raw data. A pattern-base is a collection of persistently 

stored patterns. A PBMS is a system for handling patterns, defined over raw 
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data and organized in pattern-bases, in order to efficiently support pattern 

matching and to exploit pattern-related operations generating nontrivial 

information (Theodoridis et al, 2003). A PBMS treats patterns just like a 

DBMS treats raw data. 

In order to efficiently manage patterns, a PBMS should fulfill some 

requirements (Theodoridis et al, 2003): 

• Implementation Complexity: The Pattern-base should be easy to 

implement, without the use of very complex data types and management 

operations (insert, update, query etc).  

• Constraint implementation: The PBMS should implement the constraints 

defined in the logical pattern model as well as validate patterns in line 

with these constraints.  

• Exploitation of patterns special characteristics: The PBMS should take into 

account the special features of patterns so as to improve several 

operations, like indexing and query processing. 

• Query Effectiveness: The PBMS should allow simple, yet efficient query 

construction. Users should be able to query for every pattern element 

using short and simple queries 

• Pattern Validation: The PBMS should be able to validate patterns 

according to their pattern-type definition and reject patterns without the 

proper structure. 

• Extensibility: The PBMS must be extensible to accommodate new kinds of 

patterns introduced by novel and challenging applications. 

• Generality: The PBMS must be able to manage different types of patterns 

coming from different application domains. 

• Reusability: PBMS must include constructs encouraging the reuse of 

what has already been defined. 

The PANDA consortium has defined a logical model for the PBMS (Rizzi et al. 

2003), which consists of three basic entities: pattern type, pattern and class 

defined as follows: 

Definition 2-1. (Pattern Type): A pattern type is a quintuple pt = (n, ss, ds, 

ms, f), where n is the pattern type name, ss is the structure schema that 
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describes the structure of the pattern type (in an association rule for 

example the structure consists of head and body), ds is the source schema 

that describes the dataset from which patterns of this pattern type are 

constructed, ms is the measure schema that defines the quality of the 

source data representation achieved by patterns of this pattern type and f is 

the formula that describes the relationship between the source space and 

the pattern space. 

 � 

An example of the association rule pattern type is presented below: 

n: AssociationRule 

ss: TUPLE(head: SET(STRING), body: SET(STRING)) 

ds: BAG(transaction: SET(STRING)) 

ms: TUPLE(confidence: REAL, support: REAL) 

f: head U body ⊆ transaction 

Definition 2-2. (Pattern): A pattern p, is an instance of a pattern type pt, 

and has the corresponding values for each component. 

An example of an association rule pattern, instance of the AssociationRule 

pattern type defined above, is the following: 

pid: 413 

s: (head={‘Boots’}, body={‘Socks’, ’Hat’}) 

d: ‘SELECT SETOF(article) AS transaction FROM sales  GROUP BY transactionId’ 

m: (confidence=0.75, support=0.55) 

e: {transaction: {‘Boots’, ‘Socks’, ‘Hat’} ⊆ transaction} 

Definition 2-3. (Class): A class c, over a pattern type pt, is defined as a 

triple c = (cid, pt, pc) where cid is the unique identifier of the class, pt is the 

pattern type and pc is a collection of patterns of type pt. 

 � 

A class is defined for a given pattern type and contains only patterns of that 

type. Each pattern must belong to at least one class. The relationships 

between the three basic entities of a PBMS, i.e. pattern types, patterns and 

classes, are shown in the Figure 2-5 below: 
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Figure 2-5 Relationships between pattern types, patterns and classes 

Patterns in the PANDA framework can be either simple or complex. Simple 

patterns are extracted from raw data using the data mining process (clusters 

of raw data), while complex patterns are composed from simple ones (eg. a 

clustering on a set of clusters – clusters of clusters). In a complex pattern 

the structure component describes simple patterns and the measure 

component is either null either an aggregated measure depending the 

measures of the simple patterns. In the following section we present 

examples of simple and complex patterns. 

Having defined the basic notions of a PBMS and the pattern structure and 

properties and after the examples of the pattern types, we will discuss the 

different options for the physical representation of patterns in the pattern-

base. 

2.3.1 Examples of common pattern types 

In this section we present the three basic pattern types that we will deal with 

in this thesis, their PANDA model based representation and examples of 

their instances. 

Frequent Itemsets – Association Rules 

Association Rules represent associations/ relations between data items and 

they are based in Frequent Itemset Mining (FIM) (Agrawal et al, 1993). FIM 

find great application in retail stores where association rules based on 

frequent itemsets are extracted to assist store management, advertising and 

so on. 

Itemsets can be expressed as patterns using the PANDA representation 

model in the following way: 
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Itemset = 

(SS: {String}, 
MS: sup: (Real)) 

 

While a set of itemsets can be expressed as a complex pattern as shown 

below: 

 
SetOfItemsets = 

(SS: { Itemset}, 
MS:  ⊥ ) 

 

Association Rule patterns have two parts, head and body of the rule, which 

are sets of items, i.e. itemsets, while they are characterized by both 

measures support and confidence. Thus their PANDA model representation 

would be the following: 

 
AssociationRule = 

(SS: (head: Itemset, body: Itemset) 
MS: (sup: (Real), conf: (Real))) 

 

Note that we only define the structure and measure component of the 

patterns as the other three components are trivial and they are application 

dependant (the name, the data schema and the function component). 

Clusters 

Clusters are a very common pattern type, as clustering algorithms are 

performed very often in a large variety of applications. Commonly, clusters 

are either spherical or density based, depending the clustering algorithm. 

A spherical (a Euclidean e.g.) cluster, such as the ones obtained from the k-

means algorithm, can be modeled through a center and a radius, which form 

the structure schema of the cluster. For the measure schema, one could 

consider the cluster support, i.e., the fraction of objects that fall into the 

cluster, and the average intra-cluster distance: 

 
EuclideanCluster =  
  (SS : (center: (Real), radius: (Real)), 
  MS: sup: (Real)) 

  

An example of such a pattern would be: 
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Cluster1 =  
 (SS : (center = 0.1, radius = 0.77), 
 MS: sup = 0.15) 

 

Density-based clusters are produced by algorithms, like the Expectation-

Maximization algorithm (Dempster et al., 1977), that uses distributions to 

group data points. A density-based pattern could be modeled using the 

mean and the standard deviation of the distribution for the pattern structure 

component and the support (the fraction of data points that fall into the 

cluster), as the measure component: 

 

DensityBasedCluster =  
   (SS : (mean: (Real), stdDev: (Real)), 
   MS: sup: (Real)) 

An example-instance of such a pattern would be: 

DensCluster =  
  (SS : (mean = 15.5, stdDev = 3.6), 
  MS: sup = 0.33) 

 

Note that in most cases we have to deal with multi-dimensional datapoints 

and thus all the components are expressed as vectors.  

Decision Trees 

Decision trees are very popular data classification method and they provide 

an easy to understand classification model. 

The leaf nodes of the tree are the classes that data points are classified, 

while the paths of the tree are constraints that “push” the data to the leaf 

nodes. Decision trees can be described using the PANDA representation by 

describing these constraints for all the attributes  

 
Path =  
 (SS : [(ValueFrom: Real, ValueTo: Real)]N

1, 
 MS: sup: Real) 
 
DecisionTree =  
  (SS : {Path}, 
  MS: ⊥) 
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An example of the decision tree pattern (from a three attribute dataset) 

would be the following: 

 
aPath =  
 (SS : [(0, 8),(4, 6),(1, 2)], 
 MS: sup: 0.17) 

 

aDecisionTree = 

  (SS : {Path}, 

  MS: ⊥) 

In this thesis we will deal with association rule patterns, density-based 

clusters as well as decision tree patterns in different applications. 

2.4 Physical Representation in a Pattern-Base 

For the representation and storage of the contents of a pattern-base, we 

examine three traditional DBMS approaches: the relational, the object-

relational and the semistructured (XML) model using the entities presented 

in the previous section.  

Next, we present each approach and give some representative queries that 

point out the advantages and disadvantages of each one. This comparison 

aims to examine the applicability of the logical model in current DBMS 

technology and is based on qualitative rather than quantitative criteria. The 

primary goal is to examine whether a PBMS can be built based on each of 

the three models presented, and which one is the more efficient on 

supporting the patterns special characteristics. 

2.4.1 Relational Approach  

Our main concern during the design and implementation of the pattern-base 

was to satisfy the three basic requirements of the logical model: generality, 

extensibility and pattern characteristics exploitation (Theodoridis et al, 

2003). The relational schema is depicted in Figure 2-6: 
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Figure 2-6 The relational schema of the pattern-base 

Various pattern types are stored in the table patternTypes, patterns are 

stored in the table patterns and pattern classes are stored in table classes. 

The table patternClasses relates patterns with classes (a class contains one 

or more patterns of the same type and every pattern belongs to at least one 

class). 

Below we present some representative queries. The queries will be first 

described in natural language and then in SQL-like syntax: 

 

RQ1) Find the structure of the association rules belonging to class 

Association_Rule_1. 

select patterns.structure from classes  

inner join patternclasses on classes.cid = patternc lasses.cid  

inner join patterns on patternclasses.pid = pattern s.pid  

where (classes.cname='Association_Rule_1');  

 

RQ2) Return the ‘head’ and ‘body’ parts of the structure of patterns that they 

belong to class Association_Rule_1. 

Select Substr(structure,1,instr(structure,'body')-2 ) as head, 

Substr(structure,instr(structure,'body')) as body f rom classes  

inner join patternclasses on classes.cid = patternc lasses.cid  
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inner join patterns on patternclasses.pid = pattern s.pid  

where (classesr.cname='Association_Rule_1'); 

 

RQ3) Return the confidence measure from all the association rules. 

Select Substr(measure,1,instr(measure,'confidence') -2) as confidence, from  

patterns; 

 

The relational approach is characterized by simplicity and ease of 

implementation. However, it has a lot of disadvantages that arise from the 

fact that this approach does not take into account the underlying structure 

of pattern components (structure, measure, etc.) and treats them as simple 

texts/ strings. This fact makes querying a complex, time consuming and 

mostly ineffective process.  

2.4.2 Object-Relational Approach 

The object-relational model (Stonebraker, 1997; Stonebraker et al., 1999) 

manages to deal with the basic drawback of the relational model, by defining 

different objects and attributes for each pattern component and exploiting 

inheritance. In that way it is less complex and more efficient since querying 

is simpler.  

The basic idea of the object-relational model (a part of it) is depicted in 

Figure 2-7. At the root of the object relational model stands the Pattern 

entity, which contains generic information about the pattern, such as the 

pattern identifier, the pattern formula and the pattern source. At the next 

level of the tree, the Pattern is specialized, according to the pattern type it 

belongs to, for example to association rules patterns, to clusters patterns 

etc. These entities differ according to their structure and measure 

components but they also have some attributes in common, those inherited 

by the Pattern entity. For example, object Association Rule Pattern contains 

every attribute from object Pattern and it also has the attribute Structure 

that consists of a head and a body. This object can be further specialized 

based on the measure component. As it appears in Figure 2-7, in the object 

Association Rule Pattern 1 the Measure component consists of confidence and 

support, whereas in the object Association Rule Pattern 2 the Measure 

component consists of coverage, strength, lift and leverage. 
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Figure 2-7 The basic idea of the object-relational approach 

Below we present some representative queries for the object-relational 

model: 

ΟQ1) Find the structure of patterns association rule patterns. 

select p.id, treat(value(p) as hr.assrule_pattern). structureschema from 

hr.tbl_patterns p;  

 

ΟQ2) Find the body of the structure of association rule patterns 

select p.id, value(e), value(f)  from hr.tbl_patter ns p, 

table(treat(value(p) as hr.assrule_pattern).structu reschema.head) e, 

table(treat(value(p) as hr.assrule_pattern).structu reschema.body) f; 

 

ΟQ3) Find the confidence of the measure of association rule patterns. 

select p.id, treat(value(p) as 

hr.assrule_pattern_1).measureschema.confidence as 

confidence from hr.tbl_patterns p;  

 

The object-relational approach overcomes some of the relational approach 

limitations due to the capability of modeling complex entities as objects. It 

also exploits the similarities among objects through inheritance. The object-

relational model is more flexible and efficient from the relational model but, 

on the other hand, it requires exact definition of any new object and of its 

components.  

2.4.3 Semi-structured (XML) approach 

Unlike traditional databases, in an XML base the format of the data is not so 

rigid. This property is valuable in our case since patterns come from 

different application fields having thus different characteristics. For the XML 
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implementation, we have to create an XML schema for each pattern type. 

Patterns of a specific pattern type will be the XML documents (instances) of 

the XML schema of this type.  

 

Figure 2-8 The association_rule.xsd 

 

 

Figure 2-9 association_rule.xml 

<assoc_rules ptype="association_rule"> 

 <pattern id="1"> <name>rule 1</name> 

  <structure> 

   <head> 

    <s_clause> 

     <attrib_name>buys</attrib_name> 

     <attrib_value>scarf</attrib_value> 

    </s_clause> 

   </head> 

   <body> 

    <s_clause> 

     <attrib_name>buys</attrib_name> 

     <attrib_value>gloves</attrib_value> 

    </s_clause> 

   </body> 

  </structure> 

  <source>SELECT * FROM orders</source> 

  <measure> 

   <m_clause> 

    <measure_name>support</measure_name> 

    <measure_value>0.35</measure_value> 

   </m_clause> 

   <m_clause> 

    <measure_name>confidence</measure_name> 

    <measure_value>0.75</measure_value> 

   </m_clause> 

  </measure> 

<expression> 

{buys="hat",buys="cap",buys="gloves"} 

</expression> 

 </pattern> 
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For example, the association rules pattern type is described through the 

schema “association_rule.xsd” (Figure 2-8), whereas the XML document 

“pattern-association_rules.xml” (Figure 2-9) contains patterns of the 

association rule pattern type schema. 

Below we present some representative queries for the XML model in ORACLE 

XML-SQL syntax: 

XQ1) Find the structure of the association rule patterns belonging to class 

“class1”. 

Select  

extract(value(y),'//pattern[@id="'||extract(value(e ), 

'pid/text()')||'"]/structure') as structures from a ssoc_rules y, classes x, 

TABLE(XMLsequence(extract(value(x), 

'class[@name="class1"]//pids/pid'))) e where 

existsNode(value(y),'//pattern[@id="'||extract(valu e(e),'pid/text()')||'"]/s

tructure') = 1 

 

XQ2) Return the ‘head’ and ‘body’ parts of the structure of patterns that they 

belong to class Association_Rule_1. 

select 

extract(value(y),'//pattern[@id="'||extract(value(e ),'pid/text()')||'"]//s_c

lause') as pattern_name from assoc_rules y, classes  x, 

TABLE(XMLsequence(extract(value(x),'class[@name="cl ass1"]//pids/pid'))) e 

where 

existsNode(value(y),'//pattern[@id="'||extract(valu e(e),'pid/text()')||'"]//

s_clause') = 1; 

 

XQ3) Find the confidence of the measure of association rule patterns. 

select (extractvalue(value(val),'//text()')) as con fidence from assoc_rules 

a,  

TABLE(xmlsequence(extract(value(a),'//m_clause[meas ure_name="confidence"]/me

asure_value'))) val 

 

XQ4) Find all the different measures(inside the measure component) of the 

association rules. 

select distinct extractValue(value(r), '//m_clause/ measure_name/text()') as 

measures from assoc_rules y, classes 

x,TABLE(XMLsequence(extract(value(x),'//pids/pid')) ) e, 

TABLE(XMLsequence(extract(value(y),'//pattern[@id=" '|| 

extract(value(e),'pid/text()')||'"]//m_clause'))) r ; 
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With XML pattern-base, the definition of a new pattern type is easy 

(extensibility). Furthermore, it is possible to create a proper XML schema for 

a pattern type, general enough to include every variation of patterns of this 

type (generality). The XML schema affects also the effectiveness of querying. 

Queries like XQ4 “find all the different measures of the association rules”, 

can be easily implemented, unlike the relational and object-relational 

approaches. 

2.4.4 A Qualitative Comparison 

In this section we present the criteria for the comparison of the three 

alternative representations and the conclusions we reached. 

# 1. Pattern-base Implementation Complexity  

All the three models we presented can be easily implemented. The simplest 

model is the relational, where both the pattern-base construction and insert 

operations can be performed in an easy and fast way. The object relational 

model is slightly more difficult since it requires the definition of different 

objects for each pattern type (and each of its variations). Insert operations 

are also more difficult as it should be different for each pattern type and its 

variations. Finally, the difficulty of the XML model is the fact that its success 

depends straightforward on the quality (generality) of the XML schema for 

each pattern type. However, after creating the proper schema insert 

operations can be easily performed. Furthermore, if this schema is general 

enough, variations of patterns belonging to a specific pattern type can be 

easily supported through this pattern type schema. 

# 2. Constraint Implementation  

The basic constraints imposed by the logical model (Rizzi et al., 2003) are the 

following: (a) every pattern is an instance of one pattern type, (b) every 

pattern belongs to at least one class, (c) a pattern class should contain only 

patterns of the same pattern type. 

These constraints can be easily implemented in the relational model through 

the foreign key constraints. In the object relational model these constraints 

are supported directly by the definition of the pattern type, for example it is 

impossible to assign a cluster into the association rule pattern type. In the 
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XML model, finally, the implementation of constraints are supported by the 

DBMS with mechanisms that associate XML documents.  

# 3. Pattern Characteristics Exploitation  

According to the logical model (Rizzi et al., 2003), every pattern consists of 

five basic components: name, structure, source, measure and formula. 

However, different pattern types differentiate on some of these components, 

e.g. in structure or measure. If we exploit the special characteristics of each 

pattern type we can improve operations like indexing and querying. The 

relational model does not exploit the underlying structure of patterns as it 

considers every pattern component as a string, whereas, both object-

relational and XML models take into account the special characteristics of 

pattern component according to the pattern type.  

# 4. Query Effectiveness 

The pattern-base does not aim only at the storage of patterns but mainly at 

their easy management, so the effectiveness of querying is an important 

criterion. From the representative queries we gave above for each 

implementation, it is obvious that in the relational model query construction 

is a complex and time consuming process (it is all about string manipulation 

formulas). The rest two models exploit the underlying pattern structure, 

thus queries are expressed more easily.  

# 5. Extensibility 

Extensibility is the ability to incorporate a new pattern type in the pattern-

base; the easier this process is the more extensible the system is. The 

relational model is very extensible; a new pattern type is simply a new record 

in the table pattern types. The object-relational model requires the creation 

of new objects for every new pattern type and its components (the same 

stands also for the variations of a pattern type). That means that more than 

one association rule schema maybe required to incorporate the differences in 

the structure of each association rule. In the XML model a new schema is 

required for each new pattern type, but on the other hand, since this 

schema exists and is general enough, variations of patterns of this type can 

be easily incorporated without any modification.  

# 6. Pattern validation 



 46 

The validity check during insert/ update operations in the pattern-base is 

critical. With the term validity we mean that each pattern in the pattern-

base should follow its pattern type definition. The above criteria is violated in 

the relational model, whereas it stands for both XML and object relational 

models because of the XML schemas and the objects’ definition respectively.  

# 7. Reusability 

The reusability criterion is satisfied by object relational and the XML 

pattern-bases, since the relational approach does not support inheritance or 

the definition of semi-structured documents as the other two approaches do. 

# 8. Generality 

All three approaches do satisfy this criterion, as in every one it is possible to 

define every kind of pattern-type, although it is more complex in the 

relational approach. 

The conclusions of the evaluation are summarized in Table 2-1below: 

Table 2-1 Comparison table of the three possible representation models for a 
pattern-base 

 Relational 

pattern-

base 

Object-

relational 

pattern-base 

XML 

pattern-

base 

Implementation Complexity High Medium High 

Constraint Implementation Yes Yes Yes 

Pattern characteristics 

exploitation  
No Yes Yes 

Query effectiveness Low Medium Medium 

Pattern validation No Yes Yes 

Extensibility High Medium High 

Reusability No Yes Yes 

Generality Yes Yes Yes 
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From the above table it is clear that the XML pattern-base implementation is 

the best among the three choices.  

At this point, it should be clarified that the pattern validation issue 

mentioned here, refers to the XML document validation, in order to ensure 

that the pattern, represented in the XML document, has the proper 

structure, as it is defined by the PANDA framework.  

2.5 Synopsis 

In this chapter we introduced concepts related to “patterns” and their 

representation models for a pattern-base in order to incorporate them into a 

Pattern Base Management System (PBMS). Since patterns are compact and 

rich in semantics representations of raw data (Theodoridis et al., 2003), they 

share some common characteristics, but they are also differentiated 

according to the type they belong to. Moreover, there are also variations 

between patterns of the same type. As patterns are of great importance in 

many applications, the need of a Pattern Base Management System (PBMS) 

is emerging. 

The logical model of a PBMS defined in (Rizzi et al. 2003), includes three 

basic concepts. The Pattern-Type, the Pattern and the Class. A pattern-base 

should efficiently support these concepts, thus the appropriate 

representation model had to be defined. As it has been shown, patterns 

nature requires a data-oriented approach whereas traditional databases 

follow a structure-oriented direction. For the pattern representation problem 

a semi-structured model is more appropriate than a relational or an object-

relational schema. Using XML for the implementation of the pattern-base, we 

could achieve to build a more complete and general PBMS.  

Other approaches have been proposed but their target is not an integrated 

and general pattern-base management system. Among the possible 

representation standards, the PMML is the most promising.  But, although 

PMML is an XML-based language and tends to support more and more 

pattern types, a more general aspect should be adopted in a PBMS. Patterns 

should be defined per application or scientific area, so the system will be 

open to user extensions. Pattern querying and data-to-pattern mapping are 

issues that PMML is not currently taking into account, though important in 

order to create a more complete PBMS.  



 48 

PMML can be used to represent data mining patterns and can be enhanced 

with metadata to support features that would be essential for a PBMS. In 

chapter 5, a more detailed description of the PMML schema and the required 

metadata is provided. 

Having defined the appropriate representation model (XML schemata and 

documents), we can deal with more complex pattern operations and 

functions, like pattern comparison and validation. Those advanced 

operations are of great importance in many real-world applications. In the 

following chapters we deal with the comparison of crisp and fuzzy clusters, 

to extend the PANDA comparison framework with clustering comparison 

algorithms. Until now, no comparison function has been defined for the EM 

or the Fuzzy-C-means clustering patterns.  
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3 Pattern Comparison – the case of Crisp 

Clustering 

In this chapter we present the methods and algorithms that patterns can be 

compared to facilitate high level comparison of raw data. We focus on 

clustering patterns extracted with the EM clustering algorithm (Dempster et 

al., 1977). These clusters are represented by distributions and thus a proper 

function of comparing distributions is also presented. As a case study, we 

provide two real-case scenarios of image comparison through clustering 

patterns comparison to present the potential use of the pattern comparison 

framework. 

3.1 Introduction 

We focus on clustering patterns comparison and more specifically on 

clusters extracted with the EM clustering algorithm (Dempster et al., 1977) 

as there is no function defined for the comparison of clusters represented by 

distributions in the PANDA framework (that will be presented in section 3.2). 

EM (Expectation-Maximization) is a well known and widely used clustering 

algorithm that can find number of distributions of generating data and build 

“mixture models”. It identifies groups that are either overlapping or varying 

sizes and shapes. EM algorithm performs maximum likelihood estimation for 

samples in mixture model. EM uses probability of cluster membership 

instead of a distance metric, and samples are not assigned to 1 cluster, but 

partially to different clusters (proportionally to distribution). EM is much 

more general than just “clustering”, it finds number of distributions 

generating data and builds “mixture models”. 
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In order to compare clusters described by distributions, we have to compare 

the distributions themselves. Towards this end, we use the Cohen’s d 

(Cohen, 1988) distance function.  

The general comparison process is supported by the functions of the PANDA 

comparison framework (Ntoutsi et al., 2007). In this chapter we define new 

comparison functions over the PANDA framework, extending it to support 

EM clustering patterns and we present real-life applications, while Ntoutsi 

(2008) presents applications dealing mostly with the comparison of frequent 

itemset and decision trees patterns.  

3.2 Pattern Similarity Definition 

PANDA framework (Ntoutsi et al., 2007) provides the functions to compare 

simple and complex patterns. Simple patterns are extracted from raw data 

using the data mining process (clusters of raw data), while complex patterns 

are composed from simple ones (eg. a clustering on a set of clusters – 

clusters of clusters). Using the algorithms of the PANDA framework, we can 

compare patterns of the same pattern type (i.e. clusters with clusters, or 

association rules with association rules etc.). 

Due to the compact and rich in semantics representation of patterns, PANDA 

can be used to compare patterns with large degree of complexity. PANDA 

framework uses the 2-component property to compare two patterns. The 

basic notion of this property is that the majority of patterns can be 

sufficiently described by the structure and the measure component. 

The similarity is expressed as a distance dis, where the minimum distance 

indicates the maximum best matching, between two patterns p1, p2 of the 

same type can be computed by combining, by means of an aggregation 

function faggr, the distance between both the structure s and the measure m 

components (Ntoutsi et al., 2007): 

dis(p1, p2) = faggr(disstruct(p1.s, p2.s), dismeas(p1.m, p2.m)) (3-1) 

where pi.s and pi.m denote the structure and the measure respectively of the 

pattern pi.  
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The dot in this notation denotes that the variable on the right is a member of 

the pattern instance on the left, according to the notation used in object-

oriented modeling.  

If both the patterns to be compared have the same structure component, the 

dissimilarity function only takes into account the distance between the 

measure components. 

Efficient definition of the structure and measure of patterns extracted from 

the raw data, as well as appropriate selection of aggregation logic and 

distance functions to assess the respective distances, are of great 

importance for every single and different application. 

Next, we will describe the methodology of comparing clustering patterns 

based on the concepts presented above. 

In section 2.3 we have defined the pattern type concept as a quintuple pt = 

(n, ss, ds, ms, f). In order to define comparison functions for clusters and 

other patterns, the ss and ms parts are needed. The three other parts are 

not used for the comparison function and thus in the following we are not 

dealing with them. To simplify the notation and the description of the 

comparison functions, we redefine the pattern type concept as a pair PT = 

<SS, MS>, where SS defines the pattern space by describing the structure 

schema of the pattern type, while the measure schema MS quantifies the 

quality of the source data representation achieved by patterns of this pattern 

type. Note, that from this point forward we will refer to these two parts of the 

pattern type except if a more detailed pattern-type description is needed. 

As an example, consider a pattern type representing Euclidean-distance, 

spherical-like clusters in a D-dimensional space. The structure of such a 

pattern type may be modeled by specifying the cluster center (a D-

dimensional vector) and a radius (a real value). The measure for a cluster 

might be, for instance, its support, that is, the fraction of the data points 

represented by the cluster. As such: 
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As already mentioned in previous chapter, a pattern type PT is called 

complex if its structure schema SS includes another pattern type, otherwise 

PT is called simple. Thus, a EuclideanCluster is a simple pattern type, 
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whereas a clustering extracted e.g. by a partitioning clustering algorithm is 

considered a complex pattern type since it can be modeled as a set of 

clusters with no measure component: 
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In this notation, if PT is a pattern type then p = < s, m> is an instance of PT, 

where s, m are the corresponding structure and measure values of the 

pattern. With respect to the previous example, a possible instance of a 3-D 

EuclideanCluster could be: 
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According to PANDA framework, as mentioned above, the distance dis 

between two simple patterns p1, p2 is computed by the function (3-1). 

On the other hand, the distance between two complex patterns is defined as 

the aggregate distance between their constituent patterns, according to a 

coupling that associates constituent patterns (this is a recursive definition 

since a complex pattern could be composed of other complex patterns, and 

so on).  

PANDA framework provides a number of distance, matching and aggregation 

functions. More on the PANDA framework and the functions it supports can 

be found in (Ntoutsi et al., 2007; Ntoutsi, 2008). Following the comparison 

method that PANDA framework describes, we define our methodology, the 

distance measures and the aggregation functions that will be used to 

compare EM clustering patterns. 

3.3 Comparison of Clustering Patterns 

In order to compare clustering patterns we should describe the whole 

process, from cluster creation to cluster matching and comparison. The 

similarity of the patterns depends on the structure and measure 

components and thus, the details of the clustering patterns and their 

representation should be analyzed.  

The methodology of extracting and comparing clustering patterns involves 

the following steps: 



 53 

1. Feature extraction from raw data 

2. Application of the appropriate Data mining – Clustering algorithm  

3. Pattern Instantiation 

4. Computation of Pattern Similarities 

In detail, 

1. Feature extraction from raw data 

The first step is to extract the features from the raw data, that will be 

clustered. Raw data could be a text or an image for example. 

In the latter case, the image is raster scanned with a sliding window of user-

defined size, sampling image blocks at a given sampling step. The sampling 

step may allow consecutive blocks to overlap. For each block, a set of N 

features fi, i = 1, …, N, is calculated to form a single feature vector F. The 

number of feature vectors produced for each image depends on the size, the 

dimensions of the sliding window and the sampling step. For image data, 

color, texture and shape are the three major classes of image features 

commonly used. The output of the feature extraction step is a set of vectors 

with N features. 

2. Application of the appropriate Data mining – Clustering 

algorithm  

In the next step, the low-level feature vectors are clustered using mixture 

models that model the data by a number of Gaussian distributions. A cluster 

corresponds to a set of distributions, one for each dimension of the dataset. 

Each distribution is described in terms of mean and standard deviation. A 

probabilistic approach to assigning feature vectors to clusters is used. 

For 1-dimensional datasets, a mixture is a set of c Gaussian probability 

distributions, representing c clusters. The parameters of a mixture model is 

determined by the Expectation Maximization (EM) algorithm (Dempster et al., 

1977). With c Gaussians, the probability density function of a variable X is 
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where ppi >0, 1
1

c

ii
pp

=
=∑ , and d is the dimension of the feature vector. The set 

of model parameters θ{ppi, µi, Σi}, i = 1, …, c, consists of the prior 

probabilities ppi of the Gaussian i, the mean vector µi and the covariance 

matrix Σi for the Gaussian i, respectively. The EM algorithm is used to 

estimate the maximum likelihood L of θ given a set of features {x1,…,xN}: 
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(3-3) 

The model parameters are initialized with random values. The algorithm 

starts by calculating the probabilities that a vector should belong to each 

distribution. These probabilities are used to compute a new estimate for the 

parameters. The whole process is repeated until the parameters converge to 

a constant or almost constant estimate. The algorithm results in a set of 

distributions, a vector of pairs of means µ and standard deviations σ, each of 

which corresponds to a feature, and outputs the size of the cluster (the 

number of vectors that belong to the cluster). The vector of means µ of the 

distributions for every feature represents the centroid of the cluster. 

The EM algorithm exhibits many advantages over other clustering 

algorithms. Combining EM with the v-fold cross-validation algorithm (Stone, 

1974) the number of clusters in the output of the algorithm can 

automatically be determined. The v-fold cross-validation technique works by 

partitioning the data into v equally-sized segments. Starting with one 

cluster, EM is performed v times holding out one segment at a time for test 

purposes and the likelihood is averaged over all the results. Next, EM is 

performed over two clusters and if the likelihood increases, the number of 

clusters is set to two and the process is repeated until the estimated 

likelihood begins to decrease (Witten and Frank, 2005). 

Furthermore, the EM algorithm is more general than e.g. K-means (Hartigan, 

1975), as it can find clusters of different sizes and ellipsoidal shapes. Most 

importantly, the distributions representing the clusters at the output of the 

EM algorithm can be easily utilized for pattern instantiation by the PANDA 

framework. 
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3. Pattern Instantiation 

The clusters resulting from the EM algorithm are represented and handled 

according to the PANDA formalization presented in Section 3.2. Hence, given 

a clustered Object (of data) comprising of M simple patterns Pi, i = 1,…,M, 

and with respect to the output of the EM algorithm, a pattern Pi represents a 

pattern of the data:  
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More specifically, the structure schema SS of a Pattern is represented by the 

pair (µ, σ) of the distribution Dj for each of the N features (j=1, ..., N) in 

pattern Pi, respectively. Correspondingly, the measure schema MS of a 

Pattern is represented by two values, the prior probability (pp) and the 

Scatter Value (SV) of Pi. Formally, the prior probability pp is defined as the 

fraction of the feature vectors of the Object that belong to pattern Pi. 

Intuitively, pp is equivalent with the support measure widely used in data 

mining models.  In this case, it provides an indication of the size of the 

Object. On the other hand, SV is a measure of the cohesiveness of the data 

items in a cluster with respect to the centroid of the cluster, and it is a 

commonly used intrinsic measure of the quality of a cluster (Littau, 2003). 

Formally, the scatter value SV of an object is defined as: 
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(3-4) 

where xk are the feature vectors that belong to pattern Pi and iPc  is the 

corresponding centroid, which is also a vector having the same 

dimensionality as xk, and its value in each dimension is computed as the 

average from the corresponding features values belonging to pattern Pi. A low 

scatter value indicates good scatter quality, but it should be noted that this 

is a relative measure of quality, since it depends on the number of items in 

the cluster. 

In this context, an Object is considered as a complex pattern: 
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consisting of a set of simple patterns, which follow the definition in Eq. 4. 

4. Computation of Pattern Similarities 

Aiming at the estimation of the similarity between two Objects (defined as 

complex patterns), we first have to define the distance over the structures 

and the measures of two simple patterns P1 and P2. Since complex patterns 

are decomposed into a number of simple patterns, in comparing two objects, 

O1 and O2, we need a way to associate component patterns of O1 to 

component patterns of O2. To this end, the coupling type constrains the way 

component patterns can be associated (i.e., matched). Below, we first 

propose an effective way to measure the distance between two simple 

patterns, and then we present (see Eq. (3-12)) our choice for coupling them. 

The distance between the measures of two patterns is proposed to be defined 

as the absolute difference of the scatter values each one weighted by the 

corresponding prior probability of the patterns, normalized by the sum of the 

two scatter values. Formally: 
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(3-5) 

Intuitively, equation (3-5) quantifies the inter-pattern divergence between the 

cohesiveness of two clusters. It should be noted that this definition overrides 

the inefficiency of the relativeness of the scatter value with respect to the 

number of items in the cluster, as each scatter value is weighted by the 

fraction of the feature vectors of the image that belong to pattern Pi. 

Regarding the structural similarity between P1 and P2, we search for a 

measure that evaluates the closeness of two sets of distributions, as P1 and 

P2 are. Further decomposing the problem, we should first define a method of 

computing the similarity between two distributions D1 and D2. To achieve 

this, we use the standardized difference d between two distributions, as 

defined by Cohen (1988). Cohen's d is defined as the absolute difference 

between the means of the distributions, divided by the root mean square of 

the two standard deviations.  
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(3-6) 

Cohen’s distance d is a non-negative real number interpreting the overlap 

between two distributions. If d is zero, the distributions are identical. Low d 

indicates quite similar distributions whereas high d indicates quite 

dissimilar distributions. If both standard deviations are zero, the absolute 

difference between the means is used as the distance between the 

distributions. 

 

Figure 3-1 Graphical representation of the similarity between two distributions 
using the Cohen's d measure 

Cohen’s distance is the vehicle to automate and materialize the intuitive 

overlap between two distributions. Having this, we define that the structural 

distance between two sets of distributions (i.e. two patterns P1 and P2) 

should be the result of an aggregate function gaggr (Eq. (3-7)), which 

interrelates the different distance scores achieved by each pair of 

distributions: 
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(3-7) 

where d is Cohen’s distance and δ is a normalization factor of the domain of 

values of the gaggr function (gaggr: [0,1] → [0,1]), which intuitively corresponds 
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to the Cohen’s d score over which two distributions are considered totally 

dissimilar (i.e. they do not overlap). In this connection, gaggr function can be 

any mapping that initially performs a feature selection process and 

subsequently applies the aggregation function upon the selected features. 

Examples of such functions include: (a) the minimum function gmin (i.e. 

selection of the most similar distributions) (b) the average function gavg (i.e. 

selection of the average among the distances computed for each pair of the N 

features) and (c) the average of the k Nearest Distributions function gavg_kND 

(i.e. selection of Nk ≤ most similar pairs of distributions). In the last case, the 

k parameter may not be given explicitly, yet it can be defined implicitly by 

relaxing the δ parameter. Formally: 
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where function kND returns the k most similar distributions. 

To this point, we have defined dismeas and disstruct (Eq. (3-5) and (3-7), 

respectively) between two patterns. In the sequel, we aggregate these 

distances by using a wise weighted sum function. Formally, the distance 

dis(P1, P2) between two patterns P1 and P2 is defined as:  

2
21212121 ) ,()) ,(1() ,() ,is( PPdisPPdisPPdisPPd measstructstruct ⋅−+=  

(3-11) 

The intuition behind our choice is that the more similar are the structures, 

the more the measure distance should contribute to the total distance score. 

This implies that if structures are totally different, the distance should be 1, 

irrespective of the measure. This choice further implies that we give 
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emphasis on the structural similarity. This is additionally strengthened by 

multiplying the factor 1– disstruct (i.e. the similarity between the structures of 

the patterns) with a smaller value than the actual measure distance dismeas. 

Recall that dismeas takes values in the domain [0,1], so by taking its square 

we denote the relaxing of the dismeas contribution.  

Having defined the distance between simple patterns, to compare two 

Objects O1 and O2 (i.e. two complex patterns) we adopt the coupling 

methodology between the different patterns of each object as follows: 
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where M and K is the respective number of constituent simple patterns of 

each object with respect to the output of the EM algorithm. Various coupling 

types can be applied in the context of the PANDA framework (Bartolini et al., 

2004), but the all-by-all matching expressed by Eq. (3-12) avoids bias 

towards specific patterns. The final outcome is the average of all possible 

matchings. 

The best coupling type to compare two clusterings, is subject to discussion, 

and it is depending on the application. The possibilities are explained below. 

In Figure 3-2, two clusterings are represented. Clustering A has 3 clusters 

while clustering B has 4 clusters. 

In order to compare the two clusterings, the following couplings can be 

made: 

Case 1. Compare each cluster of the Clustering A with each cluster of 

Clustering B. 

In this coupling each and every pair of matchings are made and the best 

matching for every Cluster is kept. All the matching values are aggregated at 

the end of the process (using probably the mean). 
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Figure 3-2 Comparing two clusterings Clustering A and Clustering B 

Case 2. Compare each cluster of the Clustering A with each cluster of 

Clustering B but do not allow duplicate matches. 

In that case if cluster A.1 for example has the best (higher value) match with 

say B.1, those clusters are not checked again. In the following, cluster A.2 

will be checked with B.2, B.3 and B.4 and the best match will be kept.  

Case 2a. This procedure may be followed from the opposite direction, that is, 

to check each cluster of Clustering B for its best match with clusters from 

Clustering A. A matrix can be constructed and the best matchings may be 

kept. 

Case 2c. It is obvious that in case there are two clusterings with different 

number of clusters, like our example, not every cluster will match with 

another cluster. 

A possible solution to this case is to sort the two clusterings from the largest 

to the smallest cluster, provided that larger clusters should match better 

with each other and thus leaving the smallest clusters unmatched. 

Case 2c. Another way to overcome this issue, is to allow duplicate matches, 

while not compute every possible combination – that would be the first case 

presented. 

Dataset A Dataset B 

Cluster Creation 

Clustering A Clustering B 

Cluster A.1 

Cluster A.2 

Cluster A.3 

Cluster B.1 

Cluster B.2 

Cluster B.3 

Cluster B.4 

Clustering Comparison 
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Which is the best coupling type depends on the application and the expert 

user. 

The concepts and the methodology described in this section can be used in 

many real life applications to categorize and to compare patterns extracted 

from a variety of raw data. In the two sections that follow, two studies for 

comparing clusterings extracted from images, are presented. Both studies 

use an image database and clustering techniques to categorize features 

extracted from these images. The aim of these studies is to create a content-

based image retrieval methodology. 

The methodology involves four steps: a) feature extraction from each of the 

stored and the query images, b) clustering of the extracted feature vectors 

per image, c) pattern instantiation of the clusters, and d) computation of 

pattern similarities. The registration of a new image in the database involves 

the first three of the four steps described for image retrieval (a, b, and c). 

The first study (Iakovidis et al., 2007) uses cultural heritage images 

originating from the database of the Foundation of Hellenic World (FHW, 

2009) while the second study (Iakovidis et al., 2006) uses radiographic 

images from the IRMA (Image Retrieval in Medical Applications) dataset 

(Lehmann, 2003). 

3.4 Application I: Comparing Clusters of medical images 

One of the primary tools used by physicians is the comparison of previous 

and current medical images associated with pathologic conditions. As the 

amount of pictorial information stored in both local and public medical 

databases is growing, efficient image indexing and retrieval becomes a 

necessity.  

In the last decade the advances in information technology allowed the 

development of Content-Based Image Retrieval (CBIR) systems, capable of 

retrieving images based on the similarity their features have with the 

features of one or more query images. Some of these systems are QBIC 

(Faloutsos et al., 1994), VisualSEEK (Smith & Chang, 1996), Virage 

(Hampapur et al., 1997), Netra (Ma & Manjunath, 1999), PicSOM 

(Laaksonen et al., 2000), SIMPLicity Wang et al., 2001), CIRES (Iqbal & 
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Aggarwal, 2002), and FIRE (Deselaers et al., 2004) . More than fifty CBIR 

systems are surveyed in (Veltcamp & Tanase, 2000).  

The benefits emanating from the application of content-based approaches to 

medical image retrieval range from clinical decision support to medical 

education and research (Müller et al., 2004). These benefits have motivated 

researchers either to apply general-purpose CBIR systems to medical images 

(Deselaers et al., 2004) or to develop dedicated ones explicitly oriented to 

specific medical domains. Specialized CBIR systems have been developed to 

support the retrieval of various kinds of medical images, including High 

Resolution Computed Tomographic (HRCT) images (Shyu et al., 1999), 

breast cancer biopsy slides (Schnorrenberg et al., 2000), Positron Emission 

Tomographic (PET) functional images (Cai et al., 2000), ultrasound images 

(Kwak, 2002), pathology images (Zheng et al., 2003) and radiographic images 

(El-Naqa et al., 2004).  

Common ground for most of the systems cited above is that image retrieval 

is based on similarity measures estimated directly from low-level image 

features. This approach is likely to result in the retrieval of images with 

significant perceived differences from the query image, since low-level 

features usually lack semantic interpretation. This has motivated 

researchers to focus on the utilization of higher-level semantic 

representations of image contents for content-based medical image retrieval. 

Recent approaches include semantic mapping via hybrid Bayesian networks 

(Lin et al., 2006), Semantic Error-Correcting output Codes (SECC) based on 

individual classifiers combination (Yaoa et al., 2006), and a framework that 

uses machine learning and statistical similarity matching techniques with 

relevance feedback (Rahman et al., 2007). However, these approaches 

involve supervised methodologies that require prior knowledge about the 

dataset and introduce constraints to the semantics required for the image 

retrieval task.  

A state-of-the-art CBIR approach has been presented in (Greenspan & 

Pinhas, 2007). It utilizes a continuous and probabilistic image 

representation scheme that involves Gaussian mixture modelling (GMM) 

along with information-theoretic image matching via the Kullback–Leibler 

(KL) measure. The results reported in (Greenspan & Pinhas., 2007) show 
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that this approach is very effective for radiographic image retrieval; however, 

its efficiency for large image retrieval tasks still remains a challenge. 

In this study, we propose an unsupervised approach for efficient content-

based medical image retrieval that utilizes similarity measures, defined over 

higher-level patterns that are associated with clusters of low-level image 

feature spaces. The proposed approach combines the advantages of the 

clustering-based CBIR methodologies (Stehling et al., 2001; Carson et al., 

2002; Yixin Chen et al., 2005) with a semantically rich representation of 

medical images. Moreover, unlike related CBIR approaches that exploit 

multi-dimensional indexing techniques, such as R-trees (Faloutsos et al., 

1994), (Petrakis and Faloutsos, 1997), iconic index trees (Wu & 

Narasimhalu, 1994), and meshes of trees (Jeng & Hsiao, 2005), the efficiency 

of the proposed approach is hardly affected by increasing the dimensionality 

of the low-level feature representation.  

The major contributions of this study are the following: 

� We define a novel representation of medical images treated as rich-in-

semantics complex patterns. Each complex pattern comprises a set of 

simple patterns representing clusters of image regions associated with 

anatomic specimens in an unsupervised way. The pattern 

representation of clusters involves both structural descriptors and 

quality measures. 

� We propose a novel scheme for the assessment of the similarity 

between complex patterns (i.e. medical images) for CBIR purposes. 

� We conduct a comprehensive set of experiments over a publicly 

available set of radiographic images, in order to thoroughly evaluate 

our approach and demonstrate its effectiveness and efficiency in 

comparison to state-of-the-art techniques. 

3.4.1 The proposed methodology 

The proposed content-based medical image retrieval scheme is outlined in 

Figure 3-3. It involves four steps: a) low-level feature extraction from each of 

the registered and the query images, b) clustering of the extracted feature 

vectors per image, c) pattern instantiation of the resulted clusters, and d) 

computation of pattern similarities. The registration of a new image into the 
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database involves steps a, b, and c, whereas step d is processed during the 

retrieval task. 

 

Figure 3-3 Outline of the proposed content-based image retrieval methodology. The 
black arrows indicate the data flow for image retrieval, whereas the grey arrows 

indicate the data flow for the registration of a new image. 

In the case of radiographic medical image retrieval, local grey level intensity 

and texture features have proved to discriminate best the depicted 

specimens. Such features include raw pixel values used along with an image 

distortion similarity model, local feature histograms, and local relational 

features (Deselaers et al., 2004b), (Setia  et al., 2006). Recently, in 

(Greenspan and Pinhas, 2007) it was shown that highest retrieval precision 

can be achieved by combining intensity and texture contrast along with the 

corresponding spatial coordinates. However, the introduction of spatial 

information into the feature vectors makes them dependent on the patients’ 

position. Although patients are usually positioned in a standard way during 

the acquisition of a radiograph, there are still many cases in which this is 

not practically feasible. For example, this is the case with the acquisition of 

radiographs of critically ill patients using portable radiographic devices 

(Bongard and Sue, 2002) and with the acquisition of radiographs of upper or 

lower extremities (Karkanis et al., 2003). 

In this study, we adopt a standard, multiscale statistical approach for the 

representation of the radiographic image regions that preserves local 

features, and does not depend on spatial coordinates. It is based on the 2-

dimensional Discrete Wavelet Transform (2D-DWT), an efficient, yet effective 

transformation that has proved useful in a variety of medical image 

processing and analysis applications, including CBIR (Müller et al., 2004), 
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(Mallat, 1999, Wang et al., 1998, Karkanis et al., 2003, Wang, 2001). It 

enables coding of image texture into detail (higher frequency) coefficients, 

whereas image intensity information can be extracted from its approximation 

(lower frequency) coefficients (Mallat, 1999). A compact representation of the 

distributions of the approximation and the detail coefficients can be obtained 

by first–order statistical approximation. 

However, it should be noted that this study focuses on the utility of the 

proposed pattern similarity scheme rather than on the selection of an 

optimal feature set for a particular image retrieval task. 

According to the pattern instantiation scheme described in section 3.3, in 

the current application, a Specimeni is instantiated for each pattern Pi 

representing a physical anatomic specimen in a medical image:  
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In this context, a medical image MI is considered as a complex pattern: 
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consisting of a set of simple patterns (i.e. specimens). 

Clustering and pattern similarity computation schemes also follow the 

schemes described in section 3.3. 

In the next section the results of the experimental studies are presented.  

3.4.2 Experimental Results 

A number of experiments was performed with radiographic images from the 

IRMA (Image Retrieval in Medical Applications) dataset (Lehmann, 2004), 

which is often used as a reference for medical image retrieval tasks. It 

currently contains 10,000 arbitrarily selected anonymous radiographic 

images taken randomly from patients of different ages, genders and 

pathologies during medical routine. The images are categorized into 116 

classes according to the IRMA code (Lehmann et al., 2003). This code 

comprises of four fields:  a) the imaging modality; b) direction of the imaging 

device and the patient; c) the anatomic body part that is examined; and d) 

the system under investigation. The particular dataset comprises only of 
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plain x-ray images of various directions (such as anteroposterior and 

mediolateral), anatomic body parts (such as cranium, spine, arm, elbow and 

chest) and systems under investigation (such as musculoskeletal, 

gastrointestinal and uropoietic). The IRMA code information of each image is 

provided as ground truth along with the dataset. Other patient data and 

pathology information are unavailable. All radiographic images are in 8-bit 

greyscale format and have been downscaled to fit into a 256×256-pixel 

bounding box maintaining the original aspect ratio. 

From the available dataset a subset of 90% of the images was registered in 

the database, whereas a non-overlapping subset of 10% of the images was 

used for querying the pattern-base. Each image was sampled in blocks using 

overlapping sliding windows. The details of the feature extraction method 

used include a 3-level biorthogonal spline wavelet decomposition of each 

sampled block and the estimation of the first two wavelet moments from 

each band. This process results in a 20-dimentional feature vector per block. 

The determination of the sampling parameters was based on preliminary 

experiments seeking for the maximum average distance (Eq. 11) between 

complex patterns MI of the different categories comprising the registered 

dataset. The sampling parameters tested before each CBIR experiment 

include sliding windows of 32×32, 64×64 and 128×128 pixels. In all cases, 

the maximum average distance was obtained with windows of 64×64-pixels. 

Variation of the overlap (0%, 25%, 50% and 75%) between the sampled 

blocks did not affect this result. Increasing the overlap provides better 

localization of the patterns but produces many more sampled blocks, 

affecting the efficiency of both the feature extraction and the pattern 

instantiation tasks. Thus, a 50% overlap, i.e. a 32-pixel step, was used as a 

compromise between localization and efficiency.  

In the following, we present qualitative results of the pattern instantiation 

realized via clustering, and measure the performance of the proposed 

scheme, in terms of effectiveness and in terms of efficiency. 

Pattern Instantiation via Clustering 

The feature vectors extracted from each image were clustered using an 

implementation of the EM algorithm available in the WEKA data mining tool 

(Witten and Frank, 2005) using the 10-fold cross-validation algorithm to 
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determine the number of clusters. Each cluster was represented by a pattern 

Specimeni, i = 1, ..., M (see Eq. 4), and each image was represented by a 

complex pattern MI (see Eq. 6). Figure 3-4a illustrates three radiographic 

images from breast, abdomen and hand categories (from left to right). The 

respective clusterings obtained are illustrated in Figure 3-4b. The different 

grey levels in Figure 3-4b indicate the different specimen patterns found in 

the images. Figure Figure 3-4c illustrates projections of the 20-dimensional 

feature vectors to a 3-dimensional space constructed according to the 

centroid-preserving projection technique (Kopanakis and Theodoulidis, 

2003). It can be observed that the clustering produced is quite meaningful in 

terms of semantics, i.e. the breast and the perceived differences in its 

structure are clearly depicted, the region of the abdomen is well defined and 

separated from the upper part of the body, and the palm is differentiated 

from the fingers. However, for the fingers the algorithm assigned two 

specimens instead of one, but this can be attributed to the large size of the 

sampled blocks as compared with the gap between the fingers. 

 

   

 (a)  

   

 (b)  

   

 (c)  

Figure 3-4 (a) Original radiographic images, (b) clustering output, and (c) three 
dimensional visual representation of the feature spaces.  
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Effectiveness 

The patterns from the registered radiographic images were used to build a 

pattern-base (see Figure 3-3). In order to quantitatively assess the 

effectiveness of the proposed pattern similarity scheme, we evaluate its 

capability to retrieve images by adopting the popular recall and precision 

measures, where recall is defined as the ratio of the relevant images 

retrieved over the total relevant images in the database, and precision is 

defined as the ratio of the relevant images retrieved over the total number of 

images retrieved, relevant or not. To enable comparisons with other medical 

image retrieval methodologies using a standard single-figure measure, the 

Area Under the interpolated precision-recall Curve (AUC) is estimated (Davis 

and Goadrich, 2006). 
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(b) (c) 

Figure 3-5 Average precision vs. recall using gavg_kND, gavg and gmin aggregation 

functions for (a) all, (b) chest, and (c) cranium, categories. 

The proposed scheme was tested using the three alternative aggregation 

functions gaggr. The results, in terms of average precision vs. recall estimated 
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for all 116 categories, are illustrated in Figure 3-5a. Indicatively, in Figure 

3-5b and Figure 3-5c we present the precision vs. recall charts for two 

independent categories of chest and cranium radiographs. It is evident that 

best retrievals are achieved by using the average of the k Nearest 

Distributions function σavg_kND.  

Figure 3-5a shows that for a recall of 90% the average precision achieved 

using σavg_kND is almost 45%, and the corresponding AUC estimated is 74%. It 

is worth noting that these results could only marginally improve upon a 

denser sampling scheme. Compared with a simple method that uses global 

grey level histograms as features and histogram intersection as an 

appropriate dissimilarity measure (Swain, M.J. and Ballard, 1991), the 

average precision for 90% recall is approximately 10%, and the 

corresponding AUC reaches only 17%. The AUC obtained with the proposed 

scheme using local grey level histogram information reaches 34%. The 

corresponding precision vs. recall curves are illustrated in Figure 3-6.  

The precision reported in (Greenspan and Pinhas, 2007) for 90% recall 

seems to be comparable with the one achieved with the proposed approach; 

however, the dataset from which that precision is estimated is significantly 

smaller comprising only 1,500 radiographs from 17 categories. In order to 

derive comparable estimates between the two CBIR approaches a retrieval 

experiment was run with the proposed scheme on a subset of the available 

data generated according to the guidelines provided in (Greenspan and 

Pinhas, 2007). The AUC estimated for the proposed approach on this subset 

reached 78%, whereas the AUC estimated from (Greenspan and Pinhas, 

2007) is approximately 66%.  
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Figure 3-6 Comparative precision vs. recall chart. 
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Two example retrievals using gavg_kND are illustrated in Figure 3-7. The first 

image of each sequence is the query image, and the rest are the nine 

retrieved images requested. Figure Figure 3-7a shows that all the retrieved 

images belong to the same category. Figure Figure 3-7b shows that two of 

the retrieved images belong to a different class than that of the query image. 

However, the main difference between the two categories is hardly 

perceivable and located in the region of pelvis (lower part of the image at the 

centre). Similar observations are valid for queries performed using 

radiographic images from other categories. 

 

     

     

  (a)   

     

     

  (b)   

Figure 3-7 (a) A query requesting nine chest images similar to the upper-left image 
(1,1):  All retrieved images belong to the same category; (b) A query requesting nine 
abdomen-gastrointestinal system images similar to the upper-left image (1,1): all 

retrieved images belong to the same category, except (1,4) and (2,5), which belong to 
abdomen- uropoietic system. (Notation (i, j) indicates the positioning of an image at 

the i-th row, j-th column in the figure.) 

Efficiency 

In this subsection, we measure the efficiency of the proposed medical image 

similarity scheme that involves pattern comparisons, in comparison with the 

performance of the conventional scheme that involves exhaustive 

comparisons of the feature vectors. A vector comparison in the conventional 

approach is considered equivalent to a pattern comparison in the proposed 
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scheme. The experiments were performed on a workstation with Intel 

Pentium M1.6 processor, 1 GB RAM and 60 GB hard disk. 

We have chosen the sequential, exhaustive scan as the yardstick for our 

method, as other common methods such as R-trees are sensitive to the high 

dimensionality of the feature vectors, which is usual in CBIR applications 

(e.g. a dimensionality of 64 in (Weber, 1998) and at least 2×N=40 in our 

case, where N is the number of features in a pattern). The performance of 

these approaches degrades rapidly as dimensionality increases. For 

instance, it has been shown that even for a dimensionality of as low as 5, the 

R*-tree behaviour in similarity search is problematic (Weber, 1998). The 

main reason is that with the growth of the dimensionality the overlap in the 

internal nodes of the tree increases, and, as such, its discrimination ability 

decreases. 

The speedup factor between the conventional and the proposed approach as 

a function of the number of blocks per image is illustrated in Figure 3-8. It 

can be observed that the advantage of the proposed approach increases with 

the number of blocks per image (e.g. by increasing the sampling step), and 

for a few hundreds of blocks per image it requires almost three orders of 

magnitude fewer comparisons than the conventional approach.  
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Figure 3-8 The speedup factor between the conventional and the proposed approach 
as a function of the number of blocks per image. 

On the other hand, in (Greenspan and Pinhas, 2007) a speedup of two 

orders of magnitude compared to the conventional approach is reported. 

Moreover, in the same study it is noted that the GMM-KL framework is not 

yet capable of coping with large image retrieval tasks that extend more than 

6,000 images due to the computational load involved with the KL measure. 
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We further estimated the average processing time (CPU plus I/O time) for the 

comparison of a pair of images. For the above experimental setting the 

proposed pattern similarity scheme requires always less than 0.1 msec. The 

average time required for the mixture model parameters converge to a 

constant or almost constant estimate is 0.22±0.04sec. 

3.5 Application II: Comparing clusters of cultural images 

Content-Based Image Retrieval (CBIR) of cultural heritage images is an 

emerging field of research bridging society, culture and information 

technology (Chen et al., 2004). Querying by example databases of paintings, 

sculptures, photographs, and documents of historical value from different 

civilizations, would facilitate both educational and research and enable the 

exploration of unknown inter and intra cultural associations.      

Recently, studies targeting especially to the retrieval of cultural heritage 

images have appeared. Most of these studies propose methods based on 

color image features (Ardizzone et al., 2004), (Valle et al., 2006). More 

sophisticated approaches include the utilization of wavelet domain feature 

descriptors in conjunction with mixtures of stochastic models for the 

retrieval of Chinese paintings (Jia & Wang, 2004). 

Common ground for most of the systems cited above is that image retrieval 

is based on similarity measures estimated directly from low-level image 

features, whereas it involves multidimensional, usually exhaustive, nearest 

neighbor searching over the whole set of the available feature vectors. 

However, such an approach can be time consuming with large image 

databases. 

Research on improving the efficiency of the image retrieval process has 

mainly focused on image indexing techniques by utilizing data structures, 

such as R-trees (Faloutsos et al., 1994), (Petrakis & Faloutsos, 1997), feature 

index trees (Grosky & Mehrotra, 1990), iconic index trees (Wu & 

Narasimhalu, 1994), and meshes of trees (Jeng & Hsiao, 2005). Other 

approaches to improving efficiency, include clustering of the image feature 

spaces (Stehling et al. 2001), (Zhang R. & Zhang Z, 2002), and utilization of 

alternative similarity measures, usually dependent on feature sets (Berman 

& Shapiro, 1997), (Stehling et al., 2002). 
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3.5.1 The Proposed Methodology 

The proposed CBIR approach is outlined in Figure 3-9. It involves four steps: 

a) feature extraction from each of the stored and the query images, b) 

clustering of the extracted feature vectors per image, c) pattern instantiation 

of the clusters, and d) computation of pattern similarities. The registration of 

a new image in the database involves the first three of the four steps 

described for image retrieval (a, b, and c).  

 

Figure 3-9 Outline of the proposed pattern-based CBIR approach. The solid arrows 
indicate the data flow for image retrieval, whereas the dashed arrows indicate the 

data flow for the registration of a new image. 

Each of the images stored in the database, as well as the query image is 

raster scanned with a sliding window of user-defined size and sliding step. 

The sliding step may allow windows to overlap between each other. For each 

window N features fi, i=1,2, N are calculated to form a single feature vector F. 

The number of feature vectors produced for each image depends on the size, 

the dimensions and the step of the sliding window. 

Aiming to illumination invariant representation of the images we have 

considered Local Binary Pattern (LBP) distributions as features. LBP features 

are calculated from the weighted mean of pixel values over a small 

neighborhood, in which each pixel is considered separately. The LBP 

features were supplemented by an orthogonal measure of local contrast 

according to which the average of the gray levels below the center pixel is 

subtracted from that of the gray levels above (or equal to) the center pixel 

(Ojala et al., 1996). Comparative studies have demonstrated that the use of 
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LBP along with contrast distributions may result in higher classification 

accuracy than the Gabor and wavelet features, with a smaller computational 

overhead (Maenpaa & Pietikäinen, 2004), (Iakovidis et al., 2005).   

Feature extraction is followed by clustering using the Expectation 

Minimization (EM) algorithm (Dempster et al., 1997). The EM algorithm is a 

widely-used statistical clustering method. It performs clustering by 

estimating the mean and standard deviation of each cluster, so as to 

maximize the likelihood of the observed data. 

According to the scheme described in section 3.3, given a clustering of an 

image comprising M clusters Ci, i=1,2,..,M, a pattern objecti is instantiated 

for each cluster Ci representing an object depicted in a cultural heritage 

image:  









=

Real):(:

),[Real]]:tdDev[Real],:[[:(: N
1

ppMS

smeanDSS
objecti

 

where mean and stdDev are the mean and the standard deviation of the 

distribution Dj for every one of the N features (j=1,2,..,N) in cluster Ci, 

respectively, and pp is the prior probability of Ci. Here prior probability is 

defined as the fraction of the feature vectors of the image that belong to 

cluster Ci. Intuitively, prior probability pp is equivalent with the support 

measure widely used in data mining models.  In our case, in addition to the 

qualitative aspect of the prior probability, it also provides an indication of 

the size of the object. 

In this connection, an image is considered as a complex pattern defined by 

(3-13), consisting of a set of simple clusters each one of them represented by 

the mean and standard deviation values of a distribution. 
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(3-13) 

Aiming at the definition of the similarity of two images (i.e., complex 

patterns), we have first to define the similarity between the measures and 

the structures among two clusters C1 and C2 (i.e., simple patterns). This 

similarity is expressed as the distance between two images and the 

components of the distance computation are analyzed below. 
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In the current application, a slight different approach from the one described 

in section 3.3 has been followed. The differences lie in the measure distance, 

the structure distance and the final aggregation function. 

The distance between the measures of two clusters is computed using the 

Euclidean distance as in Eq.(3-14). 

ppCppCCCdismeas . - .) ,( 2121 =
 (3-14) 

Rephrasing the problem of defining the structural distance between C1 and 

C2 we need to find a measure for evaluating the closeness of two sets of 

distributions, as C1 and C2 are. Further decomposing the problem, we 

should first define a method of computing the distance between just two 

distributions D1 and D2. To achieve this, we use the standardized difference 

Cohen’s d between two distributions as it has been defined by Cohen 

(Cohen, 1988) and is shown in Eq. (3-6).  

This is a means to automate and materialize the intuitive overlap between 

two distributions. Having this, we let the structural distance between two 

sets of distributions (i.e. two clusters C1 and C2) be the average among the 

distances computed for each pair of the N features: 

NDDdisCCdis
N

j
jjstruct ∑

=

=
1

21
21 ),() ,(

 
(3-15) 

We aggregate the distances between the qualitative dismeas and the structural 

disstruct distances between the clusters by using the following aggregation 

function faggr, which gives the same weight to either of the above distances, 

while further weights the overall distance by the mean of prior probabilities 

of the clusters, as a bias towards similar and concurrently big clusters. 
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(3-16) 

Having defined the similarity between clusters (i.e., simple patterns), to 

compare two images I1 and I2 (i.e., complex patterns) we need to determine 

the coupling methodology between the different clusters of each image. 

Though various coupling types can be applied in the context of the PANDA 

framework (Bartolini et al., 2004), we adopt the matching of Eq.(3-17), 
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allowing each cluster of the first image to match more than one cluster of the 

second, and vice versa.  

( ) ( )),(
1

,
1 1

221
21∑∑

= =

=
M

i

M

j

I
j

I
i CCdis

M
IIdis

 
(3-17) 

3.5.2 Experimental Results 

The experiments aim to demonstrate the efficiency of the proposed pattern-

based approach to CBIR over the approach used by conventional CBIR 

systems. Cultural heritage images originating from the database of the 

Foundation of Hellenic World (FMW, 2009) comprise the dataset used in the 

experiments. The images span five classes, namely ancient monuments, 

coins, photo portraits, drawings, and marbles. These include both color and 

grey level images of different sizes, inconsistently acquired from different 

sources. All images have been converted to 8-bit grey level format and have 

been downscaled to fit into a 256×256 bounding box. 

    

Figure 3-10. Sample images from the cultural image database used in the 

experiments. 

A total of 5,000 regions were sampled from the available images using 

128×128-pixel windows with a 96-pixel overlap. The feature vectors 

extracted from each image were clustered by means of the EM algorithm 

implemented in the WEKA data mining tool (Witten et al., 2005). A binary 

clustering approach was followed, considering that the images contain one 

or more objects of interest of the same kind (e.g. one or two coins), and 

background information.   

For each cluster a pattern objecti, i=1,2 was assigned, and each image was 

represented by a complex pattern image. The collection of patterns 

originating from the images registered in the database was used to build the 

pattern-base. Subsequent queries were executed to evaluate the 

performance of the proposed approach.  
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The performance of the proposed pattern-based approach to CBIR in 

comparison with the conventional, exhaustive approach is illustrated in 

Figure 3-11, in terms of the number of comparisons between the query and 

the registered data. It can be observed that the proposed approach achieves 

approx. 156 times less comparisons.  
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Figure 3-11 Number of comparisons between the query and the registered data for the 
conventional and the proposed approaches. 

The retrieval performance of the proposed CBIR approach with the LBP and 

contrast distributions was estimated 80.4%. The respective performance 

obtained using standard 3-level Discrete Wavelet Transform (DWT) energy 

features was 62.2%.   

3.6 Synopsis 

In this chapter we described the very important process of pattern 

comparison focusing on clustering patterns. Pattern comparison is an 

advanced operation, based on the representation model of patterns and 

especially on the structure and measure components of patterns. The 

efficiency of the pattern comparison result depends not only on the 

effectiveness of the pattern schema (structure and measure component 

definition) but also on the distance, similarity and the aggregation functions 

that are used. 

Using the PANDA framework for pattern comparison (Ntoutsi, 2008), we 

defined all the functions needed to compute the similarity of clustering 

patterns extracted from the EM clustering algorithm. Since clusters 

extracted with the EM algorithm are described by distributions, the Cohen’s 

d (Cohen, 1988) distance function has been implemented. 

We defined a methodology for the comparison of various types of 

data/objects (e.g. images), that includes four steps; (a) feature extraction 
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from raw data, (b) clustering of the extracted features, (c) Pattern 

Instantiation and (d) Computation of Pattern Similarities. In order to 

compare two objects, we have to compare the clusters (patterns) that are 

found in it. A high similarity value between the clusters would suggest a 

higher similarity for the initial objects. The similarity between two patterns 

of the same type is defined as the combined similarity of their structure and 

measure components. A clustering consists of a number of clusters/patterns 

and the similarity between two clusterings is defined by aggregating the 

similarities of their clusters. By finding the similarity between two 

clusterings, we find the similarity of the objects that those clusterings 

represent. 

We also presented two studies of real-world image comparison cases, 

through pattern comparison. Both cases follow the same methodology but 

differ in the similarity and aggregation functions. Experimental results have 

shown that our methodology and the defined functions are performing well 

in these applications. 
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4 Pattern Comparison – the case of Fuzzy 

Clustering 

In the previous chapter we dealt with the comparison of crisp clustering 

patterns. In this chapter we deal with the clustering of intuitionistic fuzzy 

data and the comparison of the extracted clusters. Fuzzy data have a 

membership degree for their features, while intuitionistic fuzzy data have a 

membership degree as well as a non-membership degree for their features. A 

third value, the hesitancy, is introduced to define the degree of uncertainty. 

In a lot of real-world applications the concept of uncertainty appears in 

various ways; data imprecision due to sampling and/or measurement errors, 

uncertainty in querying and answering, fuzziness by purpose during pre-

processing for preserving anonymity, and so on. Intuitionistic fuzzy 

clustering provides an advanced technique for clustering and classifying that 

kind of data. 

In this chapter we present the theory of intuitionistic fuzzy sets, we define a 

distance measure for intuitionistic fuzzy data and we present a modification 

of the Fuzzy C-Means (FCM) algorithm (Bezdek, et al., 1984) that 

incorporates this measure. We provide an experimental study of clustering 

images represented as intuitionistic fuzzy data (using fuzzy histograms). The 

clustering is used for the classification of images in predefined classes. 

The PBMS concept is used here to represent the fuzzy data and the output of 

the clustering algorithm in the pattern-base. The output of the intuitionistic 

Fuzzy Clustering algorithm, stored in the pattern-base can be used for 

future reference, to classify new images to the classes already stored in the 

pattern-base. Using the proposed similarity measure for intuitionistic fuzzy 

data, new objects can be easily classified in the predefined classes.  
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4.1 Introduction 

Clustering approaches based on fuzzy logic (Zadeh, 1965), such as Fuzzy C-

Means (FCM) (Bezdek, et al., 1984) and its variants (Yong, 2004; 

Thitimajshima, 2000; Chumsamrong, et al., 2000) have proved to be 

competitive to conventional clustering algorithms, especially for real-world 

applications. The comparative advantage of these approaches is that they do 

not consider sharp boundaries between the clusters, thus allowing each 

feature vector to belong to different clusters by a certain degree (the so-called 

soft clustering in contrast to hard clustering produced by conventional 

methods). The degree of membership of a feature vector to a cluster is 

usually considered as a function of its distance from the cluster centroids or 

from other representative vectors of the cluster. 

A major challenge posed by real-world clustering applications is dealing with 

uncertainty in the localization of the feature vectors. Considering that 

feature values may be subject to uncertainty due to imprecise 

measurements and noise, the distances that determine the membership of a 

feature vector to a cluster will also be subject to uncertainty. Therefore the 

possibility of erroneous membership assignments in the clustering process is 

evident. Current fuzzy clustering approaches do not utilize any information 

about uncertainty at the constitutional feature level.  

In this chapter we introduce a modification to the FCM. The novel variant of 

the FCM algorithm assumes that the features are represented by 

intuitionistic fuzzy values, i.e. elements of an intuitionistic fuzzy set. 

Intuitionistic fuzzy sets, (Atanassov, 1986, 1989, 1994a, 1994b, 1999) are 

generalized fuzzy sets (Zadeh, 1965) that can be useful in coping with the 

hesitancy originating from imperfect or imprecise information (Vlachos and 

Sergiadis, 2006). The elements of an intuitionistic fuzzy set are characterized 

by two values representing their belongingness and non-belongingness to 

this set, respectively. In order to exploit this information for clustering we 

define a novel distance metric especially designed to operate on intuitionistic 

fuzzy vectors. 

For example, in the set A={x, 0.4, 0.2}, x is the element of the set, value 0.4 

represents the membership of x to the set and the value 0.2 represents the 

non-membership of x to set Α. It can be noticed that the sum of these values 
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(0.4+0.2) is less than one, indicating that there is a hesitancy of value 0.4 

(=1-0.4-0.2) for which we do not know if the element x belongs or not to set 

Α. In the following we will present the theory and the comparison of such 

sets. 

The plethora and importance of the potential applications of intuitionistic 

fuzzy sets have drawn the attention of many researchers that have proposed 

various kinds of similarity measures between intuitionistic fuzzy sets. 

Example applications include identification of functional dependency 

relationships between concepts in data mining systems, approximate 

reasoning, pattern recognition and others. Similarity measures between 

intuitionistic fuzzy sets have been proposed by Chen (1995, 1997) with SC 

measure, by Hong & Kim (1999) with SH, by Fan & Zhangyan (2001) with SL, 

and Li et al. (2002) who proposed the SO measure. Dengfeng & Chuntian 

(2002) proposed the SDC measure, Mitchell (2003) proposed a modification of 

the SDC measure, the SHB measure, Zhizhen & Pengfei (2003) proposed three 

measures ,  and p p p
e s hS S S  and three more measures have been proposed by 

Hung & Yang (2004), the 1 2 3, ,  and HY HY HYS S S . Li et al. (2007) provide a detailed 

comparison of these measures, pointing out the weaknesses of each one. 

Some measures, such as SC , SH , SL , SHB and 
1 2 3, ,  and HY HY HYS S S  focus on the 

aggregation of the differences between membership values and differences 

between the non-membership values while others apply distances such as 

Minkowski, for SDC, or Hausdorff, for 
1 2 3, ,  and HY HY HYS S S  in order to calculate 

the degree of similarity of the fuzzy sets. SDC,  and p p
s hS S  focus also on the 

difference between membership values and non-membership values. 

As regards the effectiveness of these measures, some of them, such as SC 

and 
1 2 3, ,  and HY HY HYS S S  do not satisfy the properties of a similarity metric 

defined between intuitionistic fuzzy sets, whereas all of the above mentioned 

measures fail in specific cases that Li et al. (2007) mention with counter-

intuitive examples. 

4.2 Intuitionistic Fuzzy Data Clustering 

In order to represent intuitionistic fuzzy data and to be able to define a 

proper comparison measure to be used in the PBMS, we have to provide the 



 82 

theory of fuzzy and intuitionistic fuzzy sets. In the following sections an 

overview of the intuitionistic fuzzy set theory is presented. The similarity 

measures are defined and we propose an appropriate clustering scheme. 

Then we define the representation of the fuzzy data in the pattern base and 

the application that PBMS can support. 

4.2.1 Intuitionistic Fuzzy Sets 

The theoretical foundations of fuzzy and intuitionistic fuzzy sets are 

described in (Zadeh, 1965; Atanassov, 1986). This section briefly outlines 

the related notions used in this study. 

Definition 4-1 (Zadeh, 1965). Let a set E be fixed. A fuzzy set on E is an 

object A
~

 of the form 

{ }, ( )AA x x x Eµ= ∈%
%

  

where : [0,1]A Eµ →%  defines the degree of membership of the element Ex∈  to 

the set EA ⊂
~

. For every element Ex∈ , 0 ( ) 1A xµ≤ ≤% . � 

Definition 4-2 (Atanassov, 1986; Atanassov, 1994). An intuitionistic fuzzy 

set A is an object of the form 

{ }, ( ), ( )A AA x x x x Eµ γ= ∈
   

where : [0,1]A Eµ →  and : [0,1]γ →A E  define the degree of membership and 

non-membership, respectively, of the element Ex∈  to the set EA ⊂ . For 

every element Ex∈ , it holds that 0 ( ) 1A xµ≤ ≤  , 0 ( ) 1γ≤ ≤A x  and 

0 ( ) ( ) 1A Ax xµ γ≤ + ≤  (4-1) 

For every Ex∈ , if ( ) 1 ( )γ µ= −
A A

x x , A represents a fuzzy set. The function 

( ) 1 ( ) ( )A A Ax x xπ µ γ= − −   

represents the degree of hesitancy of the element Ex∈  to the set EA ⊂ . 

� 

For every two intuitionistic fuzzy sets A and B the following operations and 

relations are valid (Atanassov, 1986; Atanassov 1994) 
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iff , ( ) ( )  and  ( ) ( )A B A BA B x E x x x xµ µ γ γ⊂ ∀ ∈ ≤ ≥
  

ABBABA ⊂⊂=   and  iff   

{ }, ( ), ( )C
A AA x x x x Eγ µ= ∈

 

( ) ( ){ },min ( ), ( ) ,max ( ), ( )A B A BA B x x x x x x Eµ µ γ γ∩ = ∈
 

( ) ( ){ },max ( ), ( ) ,min ( ), ( )A B A BA B x x x x x x Eµ µ γ γ∪ = ∈
 

( ) ( )1 1
@ , ( ) ( ) , ( ), ( )

2 2A B A BA B x x x x x x Eµ µ γ γ
 
= + ∈ 
   

1 1 1

1 1
@ , ( ) , ( )

i i

n nn

i A A
i i i

A x x x x E
n n

µ γ
= = =

     
= ∈    

     
∑ ∑

  

Definition 4-3 (Dengfeng and Chuntian, 2002). Let S be a mapping 

]1,0[)(IFSs)(IFSs →× EE , where IFSs(E) denotes the set of all intutionistic fuzzy 

sets in E. S(A, B) is said to be the degree of similarity between )(IFSs EA∈  and 

)(IFSs EB∈ , if S(A, B) satisfies the following conditions: 

P1. ]1,0[),( ∈BAS   

P2. BABAS =⇔=1),(   

P3. ),(),( ABSBAS =   

P4. ( , ) ( , ) and ( , ) ( , ) if , IFSs( )S A C S A B S A C S B C A B C C E≤ ≤ ⊆ ⊆ ∈  � 

Representing the data of a real-world clustering problem by means of 

intuitionistic fuzzy sets, is a challenging issue providing the opportunity to 

investigate the effectiveness of the intuitionistic fuzzy theory in practice. 

4.2.2 Intuitionistic Fuzzy Data Comparison Measures 

In this section we propose a novel similarity measure between intuitionistic 

fuzzy sets, based on the membership and non-membership values of their 

elements. Given an intuitionistic fuzzy set A we define two fuzzy sets, namely 

, ( )A AM EΓ ∈ F  where ( )EF  is the set of all fuzzy subsets of an element Ex∈ . The 

membership and non-membership of these sets is defined as 

{ ( )},  { ( )} A A A AM x x x Eµ Γ γ= = ∀ ∈ . In this connection, A can be described by the 

pair ( , )A AM Γ . 
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Definition 4-5. Considering two intuitionistic fuzzy sets A=(MA, ΓA), B=(MB, 

ΓB), where , , , ( )A B A BM M EΓ Γ ∈ F , and considering E as a finite universe 

1 2{ , ,..., }nE x x x=  we define the similarity measure Z1 between the intuitionistic 

fuzzy sets A and B by the following equation: 

1 1
1

( , ) ( , )
( , )

2
A B A Bz M M z

Z A B
+ Γ Γ

=
 

(4-2) 

 

Where 

1

1

1

min( ( ), ( ))
,     

( , )
max( ( ), ( ))

1,                                      

n

i i
i
n

i i
i

A x B x
A B

z A B
A x B x

A B

=

=

 ′ ′
′ ′ ∪ ≠′ ′ =  ′ ′




′ ′∪ =

∑

∑
Ø

Ø  

(4-3) 

 

with , ( )A B E′ ′∈ F .  

In order to accept Z1 as a similarity metric we need to prove that z1 satisfies 

the properties defined in Definition 4-3. It is straightforward to prove that 

properties P1, P2 and P3 are satisfied by z1. We supply the proof for property 

P4. 

Lemma. For all , , ( )A B C E′ ′ ′∈F , where ( )EF  is the set of all fuzzy subsets of 

an element Ex∈  and considering E as a finite universe 1 2{ , ,..., }nE x x x= , if 

''' CBA ⊆⊆  then 1 1 1 1( , ) ( , )  and  ( , ) ( , ) z A C z A B z A C z B C′ ′ ′ ′ ′ ′ ′ ′≤ ≤ . 

Proof: By A B C′ ′ ′⊆ ⊆  it implies that ( ) ( ) ( )i i i iA x B x C x x E′ ′ ′≤ ≤ ∀ ∈  and 

 

1 1
1

1 1

min( ( ), ( )) ( )
( , )

max( ( ), ( )) ( )

n n

i i i
i i
n n

i i i
i i

A x C x A x
z A C

A x C x C x

= =

= =

′ ′ ′
′ ′ = =

′ ′ ′

∑ ∑

∑ ∑
,  

1 1
1

1 1

min( ( ), ( )) ( )
( , )

max( ( ), ( )) ( )

n n

i i i
i i
n n

i i i
i i

A x B x A x
z A B

A x B x B x

= =

= =

′ ′ ′
′ ′ = =

′ ′ ′

∑ ∑

∑ ∑
, 
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1 1
1

1 1

min( ( ), ( )) ( )
( , )

max( ( ), ( )) ( )

n n

i i i
i i
n n

i i i
i i

B x C x B x
z B C

B x C x C x

= =

= =

′ ′ ′
′ ′ = =

′ ′ ′

∑ ∑

∑ ∑
. Thus, 

1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )
,   

( ) ( ) ( ) ( )

n n n n

i i i i
i i i i
n n n n

i i i i
i i i i

A x A x A x B x

C x B x C x C x

= = = =

= = = =

′ ′ ′ ′
≤ ≤

′ ′ ′ ′

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

 

hence, 1 1 1 1( , ) ( , )  and  ( , ) ( , ) z A C z A B z A C z B C′ ′ ′ ′ ′ ′ ′ ′≤ ≤  

Since , , ( )A B C IFSs E∈  and A B C⊆ ⊆  we have 

( ) ( ) ( ) and ( ) ( ) ( ) , 1,2,...,A B C A B C ix x x x x x x E i nµ µ µ γ γ γ≤ ≤ ≥ ≥ ∀ ∈ =
, 

therefore, 1 1( , ) and ( , )A B A Bz M M z Γ Γ  satisfy all properties P1-P4 and so Z1 also 

satisfies these properties. Thus, Z1 is a similarity metric.  � 

To demonstrate the proposed measure a simple numeric example is given 

below.  

Example. Assuming three sets , , ( )A B C IFSs E∈  with A={x, 0.4, 0.2}, B={x, 0.5, 

0.3}, C={x, 0.5, 0.2} we want to find whether B or C is more similar to A. 

Using the equations (4-2) and (4-3) we compute the similarity of B and C to 

set A. 

1

0.4 0.2
0.5 0.3( , ) 0.733

2
Z A B

+
= =

 , 
1

0.4 0.2
0.5 0.2( , ) 0.9

2
Z A C

+
= =

 

So, we conclude that C is more similar to A than B. 

The proposed intuitionistic similarity measure uses the aggregation of the 

minimum and maximum membership values in combination with those of 

the non-membership values. Although it is very simple to calculate, it is 

sensitive to small value changes and it deals well with all the counter-

intuitive cases in which other measures fail. Most of the similarity measures 

reviewed in Section 3.1, fail to evaluate to a valid intuitionistic value for 

specific cases. Some of them evaluate to 0 or 1 suggesting that the compared 

sets are either totally irrelevant or identical, while it is obvious that this is 

not true, and some other measures result in a high similarity value for 

obviously different sets. More specifically, in Table 4-1 we present all the 

counter-intuitive cases that Li, Olson and Qin (2007) have defined and the 

other measures fail, along with the calculation of the proposed measure for 

those cases.  
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Table 4-1 Proposed and other similarity measures with counter-intuitive 

cases 

No Measure Counter-intuitive 

cases 

Measure Values Proposed 

measure value 

I. SC , SDC 
{( , 0,0)},

{( , 0.5,0.5)}

A x

B x

=

=
 

SC(A,B)=SDC(A,B)=1 Z1=0 

II. SH, SHB,
p

eS  

{( ,0.3,0.3)},

{( ,0.4,0.4)},

{( ,0.3,0.4)},

{( ,0.4,0.3)}

A x

B x

C x

D x

=

=

=

=
 

SH (A,B)=SHB(A,B)=
p

eS (A,B)=0.9 

SH (C,D)=SHB(C,D)=
p

eS (C,D)=0.9 

Z1(A,B)= 

Z1(C,D)=0.75 

III. SH, SHB,
p

eS  

{( ,1,0)},

{( ,0,0)},

{( ,0.5,0.5)}

A x

B x

C x

=

=

=
 

SH (A,B)=SHB(A,B)=
p

eS
(A,B)=0.5 

SH (B,C)=SHB(B,C)=
p

eS
(B,C)=0.5 

Z1(A,B)=0.5, 

Z1(B,C)=0 

 

IV. SL and 
p

SS  

{( ,0.4,0.2)},

{( ,0.5,0.3)},

{( ,0.5,0.2)}

A x

B x

C x

=

=

=
 

SL(A,B)=
p

SS
(A,B)=0.95 

SL(A,C)=
p

SS
(C,D)=0.95 

Z1(A,B)=0.73 

Z1 (A,C)=0.9 

V. 
1 2 3, ,HY HY HYS S S

 

{( ,1,0)},

{( ,0,0)}

A x

B x

=

=
 

1 2 3( , ) ( , ) ( , ) 0HY HY HYS A B S A B S A B= = =
 

Z1 (A,B)=0.5 

VI. 
1 2 3, ,HY HY HYS S S

 

{( ,0.3,0.3)},

{( ,0.4,0.4)},

{( ,0.3,0.4)},

{( ,0.4,0.3)}

A x

B x

C x

D x

=

=

=

=
 

1 1( , ) ( , ) 0.9HY HYS A B S C D= =
2 2( , ) ( , ) 0.85HY HYS A B S C D= =
3 3( , ) ( , ) 0.82HY HYS A B S C D= =

 

Z1(A,B)= 

Z1(C,D)=0.75 

VII. 
1 2 3, ,HY HY HYS S S

 

{( ,0.4,0.2)},

{( ,0.5,0.3)},

{( ,0.5,0.2)}

A x

B x

C x

=

=

=
 

1 1( , ) ( , ) 0.9HY HYS A B S A C= =
2 2( , ) ( , ) 0.85HY HYS A B S A C= =
3 3( , ) ( , ) 0.82HY HYS A B S A C= =

 

Z1(A,B)=0.73, 

Z1 (A,C)=0.9 

 

 

In case (I) of Table 4-1 measure values SC(A,B) and SDC(A,B) imply that A and 

B are totally similar. In cases (II) and (IV) other measures result in a rather 

big similarity value� our measure is not that optimistic. Moreover, in case (IV) 

it is obvious that sets A is more similar to C than to B (A and C have the 

same non-membership value), something that other measures do not take 

into account. In (III), while B and C are totally different, measures 
p

H HB eS ,S ,S  

give a similarity value of 0.5. On the contrary in (V) measures 
1 2 3, ,HY HY HYS S S  

give a similarity value of 0 even if the non-membership value of both A and B 

is the same, suggesting a level of similarity between the two sets. In (VI) and 
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(VII) measures 
1 2 3, ,HY HY HYS S S  result in a rather high similarity value and in (VII) 

they do not recognize that A is more similar to C than to B, due to the same 

non-membership value of A and C. 

The above indicate the intuitiveness of the proposed measure, which 

satisfies all the properties of a similarity metric and does not fail in cases 

that other measures fail. Furthermore, the proposed measure is easy to 

calculate and does not use exponents or other functions that significantly 

slow down the calculations. 

4.2.3 Clustering Intuitionistic Fuzzy Data 

Most clustering methods assume that each data vector belongs only to one 

cluster. This is rational if the feature vectors reside in compact and well-

separated clusters. However, in real-world applications clusters overlap, 

meaning that a data vector may belong partially to more than one clusters. 

In such a case and in terms of fuzzy set theory (Zadeh, 1965), the degree of 

membership of a vector xk to the i-th cluster uik is a value in the interval 

[0,1]. Ruspini (1969) introduced this idea which was later applied by Dunn 

(1973) to propose a clustering methodology based on the minimization of an 

objective function. In (Bezdek, et al., 1984) Bezdek introduced the Fuzzy C-

Means (FCM) algorithm which uses a weighted exponent on the fuzzy 

memberships. 

FCM is an iterative algorithm and its aim is to find cluster centroids that 

minimize a criterion function, which measures the quality of a fuzzy 

partition. A fuzzy partition is denoted by a ( c x N )-dimensional matrix U of 

reals [ ] Nkciuik ≤≤≤≤∀∈ 1 and 1 ,1,0 , where c and N is the number of clusters 

and the cardinality of the feature vectors, correspondingly. The following 

constraint is imposed upon uik: 

∑∑
==

<<=
N

k
ik

c

i
ik Nuu

11

0 ,1

 

(4-4) 

Given this, the FCM objective function has the form: 

 

( ) ( )∑∑
= =

=
c

i

N

k
ik

m
ikm duVUJ

1 1

2,
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where V is a ( p x c )-dimensional matrix storing the c centroids, p is the 

dimensionality of the data, dik is an A-norm measuring the distance between 

data vector xk and cluster centroid vi, and [ )∞∈ ,1m  is a weighting exponent. 

The parameter m controls the fuzziness of the clusters. When m 

approximates 1, FCM performs a hard partitioning as the k-means algorithm 

does, while as m converges to infinity the partitioning is as fuzzy as possible. 

There is no analytical methodology for the optimal choice of m. 

Bezdek, Ehrlich and Full (1984) proved that if m and c are fixed parameters 

and kk II
~
 ,  are sets defined as: 

{ }
{ }





=

=≤≤=
≤≤∀

          ,\,...,2,1 

,0 ;1   
  ,1 ~

kk

ikk

IcI

dciiI
Nk

  

then ( )VUJm ,  may be minimized only if: 

( )

( )
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∉
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=
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−
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≤≤
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,      ,

    1

1
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1
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k

Ii
kik

k

kc

j

mjk

mik

ik

Nki
ci

IIiu

Ii

I

d

d

u
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(4-5) 

and 

( )

( )
.    

1

1

1

∑

∑

=

=

≤≤
=∀

N

k

m
ik

k

N

k

m
ik

i
ci

u

xu

v

 

(4-6) 

By iteratively updating the cluster centroids and the membership degrees for 

each feature vectors, FCM iteratively moves the cluster centroids to the 

"right" location within the data set. In detail, the algorithm that results in 

the optimal partition is the Picard algorithm which is described below: 

Algorithm 4-1. FCM algorithm 

Step 1: Determine c (1 < c < N), [ )∞∈ ,1m  and initialize V(0), 1←j , 

Step 2: Calculate the membership matrix U(j), using equation (4-5), 
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Step 3: Update the centroids’ matrix V(j), using equation (4-6) and U(j), 

Step 4: If ε>−+
F

jj UU 1  then 1+← jj  and go to Step 2. 

 

The parameter ε makes the algorithm to converge when the improvement of 

the fuzzy partition over the previous iteration is below a threshold, while 

F
  ⋅  denotes the Frobenious norm. 

The FCM algorithm minimizes intra-cluster variance, but shares the same 

problems with k-means (MacQueen, 1967). It does not ensure that it 

converges to an optimal solution, while the identified minimum is local and 

the results depend on the initial choice of the centroids. 

FCM tries to partition the dataset by just looking at the feature vectors and 

as such it ignores the fact that these vectors may be accompanied by 

qualitative information which may be given per feature. For example, 

following the idea of intuitionistic fuzzy set theory, a data point xk is not just 

a p-dimensional vector 1
( ,..., )

pk kx x  of quantitative information, but instead it 

is a p-dimensional vector of triplets 1 1 1
[( , , ),..., ( , , )]

p p pk k k k k kx xµ γ µ γ , where for each 

lkx  measurement there exists qualitative information which is provided via 

the intuitionistic membership 
lkµ  and non-membership 

lkγ  of the current 

data point to the feature l. It is evident that the FCM algorithm does not 

utilize intrinsically such qualitative information. In the application scenario 

of clustering images, a feature l may correspond to color information. 

Obviously, it would be of advantage if the clustering methodology could take 

into account the degree of membership and the degree of non-membership, 

regarding (for instance) how much red the image is, and how sure we are 

about our belief. 

The main reason that FCM is unable to effectively utilize such intuitionistic 

vectors is that its distance function operates only on the feature vectors and 

not on the qualitative information which may be given per feature. In this 

study, we propose a different perspective by substituting the distance 

function with the intuitionistic fuzzy set distance metric introduced in 

Section 4.2.2. Using the proposed distance function the fuzzy c-means 

objective function takes the form: 
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( ) ( )∑∑
= =

−=
c
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(4-7) 

The minimization of (4-7) can be achieved term by term: 

( ) ( )∑
=

=
N

k
k

IFS
m UVUJ

1

, ϕ
 

(4-8) 

Where 

( ) ( )∑
=

≤≤
−=∀

c

i
IFSik

m
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Nk
vxuU

1
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     ϕ
 

(4-9) 

The Lagrangian of (4-9) with constraints from (4-4) is: 

( ) ( )
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(4-10) 

where λ is the Lagrange multiplier. Setting the partial derivatives of ( )λ,UkΦ  

to zero we obtain: 

( )
01

,
     

1
1

=−=
∂

Φ∂
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=
≤≤

c

i
ik

k

Nk
u

U

λ
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(4-11) 

And 

( ) ( ) 0
,

     1

1
1

=−−=
∂
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∀ −
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(4-12) 

Solving (4-12) for zku  we get: 

( ) m
IFSzk

m
zk vx

m
u −

−
−








= 1

11

1

λ

 

(4-13) 

From (4-11) and (4-13) we obtain: 
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(4-14) 

The combination of (4-13) and (4-14) yields: 
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(4-15) 

Similarly with  ( )VUJ m , , ( )VUJ IFS
m ,   may be minimized only if: 
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(4-16) 

while the centroids are computed by (4-6). 

It should be clarified that iku  corresponds to the membership of the k-th 

intuitionistic fuzzy vector to the i-th cluster and has nothing to do with the 

internal intuitionistic fuzzy memberships of the vector. Furthermore, as our 

distance function between two vectors is computed solely upon the 

intuitionistic fuzzy memberships and non-memberships of the vectors, after 

the computation of the centroids by equation (4-6) and before the next 

iteration, where the iku  memberships to the new clusters are updated, there 

is a need for an additional step which estimates the intuitionistic fuzzy 

memberships and non-memberships of the new (virtual) centroids. In other 

words, it is necessary to deduce the membership li
µ  and non-membership 

li
γ  values of each feature l that corresponds to the l-th dimension of the i-th 

centroid. At each iteration and for every centroid we extract the membership 

degree li
µ of centroid vi as the average of the membership degrees of all the 

intuitionistic fuzzy vectors that belong to cluster i. Similarly, we extract the 

non-membership degrees 
li
γ . More formally, if Pi is a set defined as: 
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(4-17) 

then the intuitionistic fuzzy set ivIFS  for centroid vi is defined as: 

k
Pk

v IFSIFS
i
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∈∀≤≤

=∀ @     
ci1

 
(4-18) 

From (Atanassov, 1994) we obtain: 
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(4-19) 

Given the above discussion, the modified FCM algorithm that clusters 

intuitionistic fuzzy data is subsequently described: 

Algorithm 4-2. Intuitionistic Fuzzy C-Means (IFCM) algorithm for clustering 

intuitionistic fuzzy data 

Step 1 Determine c (1 < c < N), [ )∞∈ ,1m  and initialize V(0) by 

selecting c random intuitionistic fuzzy vectors, 1←j , 

Step 2: Calculate the membership matrix U(j), using (4-16), 

Step 3: Update the centroids’ matrix V(j), using (4-6) and U(j), and 

compute membership and non-membership degrees of V(j)  using 

(4-19) 

Step 4: If ε>−+
F

jj UU 1  then 1+← jj  and go to Step 2. 

 

In comparison to the literal FCM algorithm the clustering scheme presented 

in Algorithm 4-1, introduces (a) a different initialization tactic of the V matrix 

as in our case centroid vectors are intuitionistic fuzzy vectors (step 1), (b) a 

new way of the calculation of the membership degrees of a vector to a 

cluster, taking into account both membership and non-membership values 

of the intuitionistic fuzzy vectors (step 2) and (c) a method to update the V 

matrix at each iteration based solely on the theory of the intuitionistic fuzzy 

sets (step 3).  
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Time complexity of FCM is O(n f c2 i) where n is the number of data points, f 

is the number of dimensions, c the number of clusters and i the number of 

iterations (Hore, Hall, and Goldgof, 2007). The proposed algorithm 

complexity does not differ from that of the FCM algorithm as there are no 

new steps in the procedure and the existing steps do not add any 

complexity. 

4.2.4 Representing Fuzzy Clusters in the Pattern-base 

The intuitionistic fuzzy data can be represented in the pattern-base as 

simple patterns, while the output of the iFCM algorithm can be stored as 

complex pattern as it has been described in chapter 3. An image object can 

be represented as a complex pattern: 









⊥

=
:

,}{:

MS

objectSS
image

 

Regarding the representation of the cluster centroids, we have to define the 

structure and measure components, in order to be able to perform the 

comparison between the different objects. The fuzzified (image in this case) 

data, are represented by four components. The data value and the 

intuitionistic fuzzy values, membership, non-membership and hesitancy. 

The last component, hesitancy, does not need to be specified as it can be 

calculated using the membership and non-membership values, according to 

the intuitionistic fuzzy sets theory. The structure component for every object 

will be only represented by the data value vector, X, while the measure 

component will include the intuitionistic fuzzy value vectors M for 

membership values and Γ for non-membership values. 

Thus,  
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Supporting the intuitionistic fuzzy clustering with the PBMS concept a lot of 

useful applications are enabled. In Figure 4-1 we present the methodology of 

the application that classify images into classes. 
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The extracted features from the available images are fuzzified and the iFCM 

clustering algorithm is used to classify them into classes. The clustering 

results represent the cluster centroids and they are stored in the pattern 

base, using the PBMS representation as it is shown below. The proposed 

scheme can be also used to classify images that do not already exist in the 

image-base. In this case the features from the new image are extracted and 

the same fuzzification method is applied. The output will be then compared 

to the cluster centroids that are stored in the pattern-base, using the 

similarity measure that has been defined in section 4.2.2. The new image 

will be classified to the cluster with the centroid that is more similar to the 

image using the similarity measure Z1 as defined in 4.2.2. 

 

Figure 4-1 Classification of images using intuitionistic fuzzy clustering and the 
Pattern-base 

The similarity measure Z1 between the intuitionistic fuzzy sets A and B is 

defined by the following equation: 
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with , ( )A B E′ ′∈ F . 

The similarity measure is incorporated in the PANDA framework and in that 

case it is applied between the membership and non-membership vectors of 

every object. 

4.3 Application: Image Classification Using Intuitionistic 

Fuzzy Clustering 

In this section we present an experimental study of clustering intuitionistic 

fuzzy data. We define a proper intuitionistic fuzzy representation of images 

and use the proposed similarity measure to cluster images. In the available 

dataset there is a specific number of classes and thus, we use the clustering 

as a classification method to evaluate the results. 

This study aims at evaluating the proposed similarity measure as long as the 

iFCM algorithm in general. This application does not include the 

classification of new images using the classification results, as this 

methodology has been already presented in sections 3.4 and 3.5. 

4.3.1 Intuitionistic fuzzy representation of data 

The proposed intuitionistic fuzzy clustering requires that each data element 

x of a universe E, belongs to an intuitionistic fuzzy set EA ⊂  by a degree 

( )A xµ  and does not belong to A by a degree ( )A xγ . The data elements can be of 

any kind. For the purposes of this study, which focuses to the clustering of 

image data we extend the definition of the intuitionistic fuzzy representation 

of a grayscale digital image (Vlachos and Sergiadis, 2005), for the 

representation of a color digital image. 

Definition 4-6. A color digital image P of a×b pixels size, composed of ξ 

channels Pk, k=1,2,…, ξ, digitized in q quantization levels per channel, is 

represented as the intuitionistic fuzzy set  

{ }, ( ), ( ) , 1,2,..., , 1,2,..., , 1,2,...,k k k k
ij ij ij ij kk

P i a j b kΦ ΦΦ = ∈ = = =θ µ θ γ θ θ ξ
 

(4-20) 

where 
k
ijθ  is the value of kP  at the position (i, j), and ( )k

ijµ θΦ  and ( )k
ijγ θΦ  define 

the membership and the non-membership of 
k
ijθ  to kP , respectively.  
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As a membership function ( )µ θΦ , we consider the probability of occurrence 

of [ ]0, 1qθ∈ −  in an image channel 

( )
( )

h

a bΦ =
⋅

θ
µ θ

, [ ]0, 1qθ∀ ∈ −
 

(4-21) 

where 

{ }( ) ( , ) ; 1,..., ; 1,..., , 1, 2,...,k
k ijh i j P i a j b kθ θ θ ξ= ∈ = = = =

, � 

is the crisp histogram of the pixel values in the channel, and 
⋅
 represents 

the cardinality of the enclosed set. The probability distribution described by 

Eq. (4-21) comprises a first-order statistical representation of the image 

channel that is easy to compute, and it is invariant to the rotation and 

translation. 

Considering that real-world digital images usually contain noise of various 

origins, and imprecision in the channel values, the degree of belongingness 

of an intensity value θ in an image channel as expressed by µΦ(θ) is subject 

to uncertainty. In order to model this situation, we introduce a penalty factor 

p(θ) to µΦ(θ)  so that θ belongs less to the image channel if h(θ) diverges more 

from the fuzzy histogram ( )h θ% . The fuzzy histogram, originally proposed by 

Jawahar and Ray (1996), is defined as 

{ }( ) ( , ) ( ); 1,..., , 1,..., , 1, 2,..,k
k ijh i j P i a j b kθθ µ θ ξ= ∈ = = =%

%

 
(4-22) 

With 

( ) max 0, 1
x

xθ

θ
µ

ψ

 −
= −  

 
%

 

(4-23) 

where parameter ψ controls the span of the fuzzy number : [0,1]Rθ →%  

representing a fuzzy intensity level θ. This means that a pixel of a given 

channel value will contribute not only to its specific bin, but also to the bin 

count of the neighbouring bins in the histogram. Thus, the fuzzy histogram 

becomes smoother and more insensitive to noise than the corresponding 

crisp histogram as ψ increases.  

According to the proposed formulation the non-membership of θ to an image 

channel can be expressed as 
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( ) 1 ( ) ( )pγ θ µ θ θΦ Φ= − ⋅  
(4-24) 

The penalty factor p(θ) is chosen to be proportional to the distance between 

the crisp h(θ) and the fuzzy histogram ( )h θ% , so that Eq. (4-1) is satisfied  

( )
( ) ( )

( )
max ( ) ( )

h h
p

h h
θ

θ θ
θ λ

θ θ

−
= ⋅

−

%

%

 

(4-25) 

where [ ]1,0∈λ  is constant and the denominator facilitates normalization 

purposes. The physical meaning of this non-membership function is that the 

non-belongingness of an intensity value θ  to an image channel increases by 

a factor that is proportional to the coarseness of the crisp histogram. So, as 

the noise levels in the image channel increase, the crisp histogram becomes 

coarser and the hesitancy in the determination of the intensity value θ  

increases.   

The membership and the non-membership defined by equations (4-21) and 

(4-24) over the values of the image channels, will be considered to form 

feature vectors.  

As shown in section 4.2.4, the cluster representation is (cluster centroid): 
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while every image is a complex pattern of objects – multi-dimensional vectors 

of the image fuzzified characteristics represented as: 
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Every fuzzified image and the clusters centroids are stored in the pattern-

base to facilitate future classification. 

4.3.2 Experimental Results 

Comprehensive experiments have been conducted for the evaluation of the 

performance of the proposed clustering algorithm, in comparison with the 

well established FCM. The application scenario for the experimental 

evaluation involves clustering of a 400 image collection spanning four 
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equally distributed classes of different color themes including amphorae, 

ancient monuments, coins, and statues (Figure 4-2).  

 

    

Class A Class B Class C Class D 

(a) (b) (c) (d) 

Figure 4-2 Example images from the four classes used in the experiments, (a) 
amphorae, (b) ancient monuments, (c) coins, and (d) statues. 

The images have been provided by the Foundation of Hellenic World, which 

maintains a publicly available repository of texts, images and multimedia 

data collections of Greek historical items and art (FHW). They are of different 

sizes and have been inconsistently acquired from different sources, and they 

have been digitized in 256 quantization levels per RGB channel and have 

been downscaled to fit into a 256×256 bounding box. 

The methodology followed for the experiments is depicted in Figure 4-1. 

Based on the observation that color is a discriminative feature for most of 

the available image classes, each image was represented by an intuitionistic 

fuzzy set according to (4-20), using only chromatic information so as to be 

approximately independent from intensity variations. In order to decorrelate 

the intensity from the chromatic image components, the images have been 

transformed to the I1I2I3 color space according to the following equation 

(Ohta et al., 1980) 
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 (4.1) 

In this color space, the I1 component explains the highest proportion of the 

total variance and represents intensity, whereas I2 and I3 correspond to the 

second and the third highest proportion respectively and carry chromatic 

information. A very useful property of this space is that image regions of 

different colors can be easily discriminated by simple thresholding 

operations. In other words, the histograms produced by the values of its 
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color components exhibit peaks corresponding to regions of different colors 

in the image. 

Among the chromatic components of I1I2I3 we selected I2 as the most 

discriminating for the color regions comprising the available images. This is 

in agreement with (Ohta et al., 1980) which suggests that the discrimination 

power of I2 could only marginally increase with the contribution of I3. 

Moreover, we observed that the image channel corresponding to the I3 

component exhibit a low dynamic range of values, having a single-peak 

histogram that varies slightly between images belonging to different classes.  

Examples of membership and non-membership functions used for the 

intuitionistic fuzzy representation of color images are illustrated in Figure 

4-3. The values of the parameters used in Equations (4-23) - (4-25) for the 

estimation of the membership and of the non-membership functions are λ = 

1 and ψ = 5. 

The horizontal axes represent the values of I2 normalized within the range [0, 

255], whereas the vertical axes have been rescaled in order to improve the 

visibility of the graphs. The graphs focus on the regions of the membership 

and non-memberhip functions for which the variance is higher. The lines 

that intersect the frame of the graphs extending beyond the visible area join 

to peak membership and non-membership values. 

In Figures 4-4a, 4-4c and 4-4d, the highest of the two peaks correspond to 

the white background regions of the images, whereas the lower peaks 

correspond to the depicted objects. Similarly, in Figure 4-3b the highest 

peak corresponds to the marble of the ancient monument and the lower 

peaks correspond to the sky region. As regards the non-membership 

functions, an intuitive interpretation could be given by considering their 

correlation with the corresponding membership functions. The correlation is 

usually less around the peaks that correspond to less homogenous image 

regions. For example in Figure 4-3b, the absolute correlation between the 

membership and the non-membership function estimated for the region of 

the ancient monument is 70%, whereas for the region of sky is 82%. 

Similarly, the absolute correlation between the membership and the non-

membership functions in Figures 4-4a, 4-4b and 4-4c, for the homogenous 

white background regions reaches 96.5%. 
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Clustering experiments were conducted with all possible class combinations, 

using a) the proposed clustering algorithm with the intuitionistic fuzzy data, 

b) FCM with crisp I2-histogram data, and c) FCM with fuzzy I2-histogram 

data. In all the experiments, the same parameters (ε=0.00001, m=2.0) and 

initialization conditions were used. The clustering performance was 

evaluated in terms of classification accuracy, algorithm iterations and 

absolute execution time. Classification accuracy was computed as in the 

original FCM algorithm, by assigning an image to the cluster with the higher 

degree of membership value. 
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Figure 4-3 Membership and non-membership functions corresponding to the images 
of Figure 4-2.  
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Figure 4-4 Comparative results of using the proposed clustering algorithm with the 
intuitionistic fuzzy data, and of using the FCM with the crisp and with the fuzzy 
data as input: (a) classification accuracy, (b) number of iterations required for the 
clustering algorithms to converge, and (c) execution time required in seconds. 
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The experiments were executed on a PC with Intel Pentium M at 1.86 GHz, 

512 MB RAM and 60 GB hard disk. The results are summarized in Figure 

4-4.  

Figure 4-4 shows that in all the experiments the accuracy achieved by the 

proposed algorithm was higher than the accuracy obtained by FCM for four 

or three classes. The maximum accuracies achieved with the proposed 

algorithm are 74.4% and 93.3% for four and for three classes respectively.  

These percentages reduce to 64.4% and 79.2%, in the case of FCM 

clustering with fuzzy data. The results of the clustering experiments 

performed with data from two classes show that the accuracy of the 

proposed algorithm can be considered comparable with or higher than, the 

accuracy obtained by FCM. However, this could be attributed to a smaller 

contribution of the non-membership values to the representation of the 

images of the particular classes. The maximum accuracy obtained by both 

algorithms reached 100% in two cases (BC and BD).  

Comparing the two algorithms in terms of efficiency, Figure 4-4b and Figure 

4-4c show that the proposed algorithm has a considerable advantage over 

FCM, as it requires less algorithm iterations and in most cases less time to 

reach convergence. The average improvement in absolute execution time is 

63±27%. 

4.4 Synopsis 

In this chapter, in contrast to chapter 3, we focused on an Intuitionistic 

Fuzzy Clustering scheme, that can be also supported by the PBMS concept 

using the proper representation. An application similar to the one presented 

in chapter 3 is described to classify images in predefined classes. The 

definition of a novel similarity measure and of a new Intuitionistic Fuzzy 

Clustering algorithm is presented in detail. 

Clustering approaches organize a set of objects into groups whose members 

are proximate according to some similarity function defined on low-level 

features, assuming that their values are not subject to any kind of 

uncertainty. Furthermore, these methods assume that similarity is 

measured by accounting only the degree in which two entities are related, 

ignoring the hesitancy introduced by the degree in which they are unrelated. 
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Challenged by real-world clustering problems we proposed a novel fuzzy 

clustering scheme of datasets produced in the context of intuitionistic fuzzy 

set theory. More specifically, we introduced a novel variant of the Fuzzy C-

Means (FCM) clustering algorithm that copes with uncertainty in the 

localization of feature vectors due to imprecise measurements and noise and 

a novel similarity measure between intuitionistic fuzzy sets, which is 

appropriately integrated in the clustering algorithm. We also introduced an 

intuitionistic fuzzy representation of color digital images as a paradigm of 

intuitionistic fuzzification of data. 

To evaluate our approach, we described an intuitionistic fuzzification of color 

digital images upon which we applied the proposed scheme. The 

experimental evaluation of the proposed scheme shows that it can be more 

efficient and more effective than the well established FCM algorithm, 

especially as the number of clusters increases, opening perspectives for 

various applications. 

The whole intuitionistic fuzzy clustering process is supported by the PBMS 

concept, enabling thus advanced classification applications. 
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5 Other Applications of the Pattern Base 

Management System 

In this chapter we deal with real world problems, such as the content-based 

image retrieval (CBIR) problem, or the classification of astronomy data, 

galaxy spectrum in particular. 

We have already presented applications of the PBMS concept for CBIR, thus 

we only summarize the approach. In the case of classifying galaxy spectrum 

data, we present a real world problem that we dealt in the content of our 

collaboration with the department of Astrophysics of the University of 

Athens. 

5.1 Introduction 

As it has been shown in sections 3.4 and 3.5, the PBMS can be used as a 

very functional component of a CBIR, which utilizes clustering techniques to 

find similar images. Figure 5-1 shows the approach proposed in section 3.5. 

The red dashed rectangle bounds the part of the system that can be replaced 

by the PBMS. 

As it is shown in Figure 5-1 the PBMS replaces the core of the CBIR. Every 

image is represented by patterns, and thus the comparison of the patterns, 

reflects the comparison of images. Patterns are stored in XML documents 

and their comparison is easier and faster. 
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Figure 5-1 Outline of the pattern-based CBIR approach and the part that is replaced 
by the PBMS. 

5.2 An application of PBMS for Categorizing Astronomical 

data  

In the content of our collaboration with the department of Astrophysics of 

the University of Athens we came across the problem of finding the best 

model to categorize astronomical data. This task is part of the work package 

«Unresolved galaxy classifier» of the GAIA (2009) project of the ESA. The aim 

of this package is to “study, develop and test algorithms which provide 

optimal estimates for unresolved galaxies (classification of the galaxy 

spectrum), based on the assumption that the object is restricted to this 

class” (GAIA, 2009). 

Using synthetic as well as real data (galaxy spectrums), different 

classification models and algorithms has to be tested. The best model will 

finally be used in the a system that will collect (galaxy) data from the GAIA 

space-telescope and will automatically classify every observed galaxy in pre-

defined classes (the galaxy morphological type), saving a lot of time from the 

experts.  

In order to find the best classification algorithm i.e. the algorithm and the 

parameters that give the more accurate classification, given a real and a 

synthetic dataset for training and testing, domain experts have to run a large 
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number of experiments with various algorithms. The output of these 

experiments has to be evaluated and the best classification model will be 

defined. 

Three different algorithms have been used; the J.48 (a variation of the C4.5 

for WEKA) and the Naïve Bayes classification algorithm from the WEKA data 

mining tool and the Support Vector Machine model from the R tool (R-

project, 2009). J4.8 has been chosen as a variation of the very popular and 

successful decision tree C4.5 algorithm, while Naïve bayes is an also popular 

and successful classification algorithm that assumes attribute 

independence. SVM models (Cristianini, 2000) has been used by the 

astronomers to conduct the classification experiments. 

Without using the PBMS concept, the experts had to manually extract and 

store the output of the algorithms to the file system. The comparison of the 

output results is in this case a manual task, with the expert browsing 

through the file system to find the files containing the output results, in 

order to compare them. The whole task requires a lot of organization effort 

from the users/experts and is very time consuming and confusing. They 

have to run the experiments, store the output into the file system, marking 

in a separate file the parameters used for every run, and other metadata 

such as the dataset used or the date and time of the algorithm execution. 

After the classification, experts have to manually evaluate each output and 

compare it with every other, using the files stored in the file system, a very 

time consuming and laborious task. 

Using the PBMS this task is simplified. The user can run the classification 

algorithm of the data mining tool, and the output along with the required 

metadata will be stored into the pattern-base with a user-defined, easy to 

remember name. At any time the user can retrieve a specific classification 

output by posing the right query statement to see the accuracy of the 

pattern/model or its metadata. 

Some more complicated but very useful queries can be used, such as: 

− Retrieve the algorithm and the run parameters that gave the best 

classification accuracy using the dataset “A”. 

− Retrieve the dataset that has the worst accuracy when the naïve 

bayes algorithm is used for the classification. 
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Figure 5-2 Use of the PBMS concept to run multiple classification experiments 

Figure 5-2 depicts the way that multiple classification experiments can be 

conducted using a pattern-base to store each time the classification output 

and retrieving it in order to compare it with newer classification experiments. 

All the steps of the above process can be performed using the PBMS. 

In order to use the PBMS for these experiments, an XML model has to be 

defined that describes the output of the classification algorithm. This is 

required if the PBMS does not already supports the specific algorithms and 

of course will be available for other future applications. 

The decision trees produced as the output of the classification algorithm are 

represented using the model presented in section 2.3: 

aPath =  
 (SS : [(ValueFrom: Real, ValueTo: Real)]N

1, 
 MS: sup: Real) 
 
aDecisionTree =  
  (SS : {Path}, 
  MS: ⊥) 

 

The results of the three different classification algorithms – stored in the 

pattern based can be easily compared through the PBMS. The experts can 

then decide which model they will use. In Figure 5-3 a part of the 

classification tree is shown. The classification attribute is the galaxy 

morphological type. 
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Figure 5-3 A part of the classification tree built from the J4.8 algorithm, showing the 
B (Blue spectrum area) and R (Red spectrum area) columns and the different classes 

depending on the values of the spectrum. 

The four morphological types that galaxies can be categorized in the current 

study are: Early, Spiral, Irregular and Starburst. Sample images of these 

types of galaxies are shown below. 

 

Figure 5-4 Early type galaxy 



 110 

 

Figure 5-5 Spiral galaxy 

 

Figure 5-6 Irregular type galaxy 

 

Figure 5-7 Starburst type galaxy 
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We ran experiments using the J4.8 and the Naïve Bayes algorithm of WEKA 

and compared the results with those of the best SVM model from the R tool 

using the PBMS concept of storing every output in a common pattern-base. 

Before proceeding to the experiments and the evaluation of the classification 

algorithms, the spectrum data had to be discretized in bins of equal width 

and equal frequency. The number of bins is subject for experiment and had 

the value of 2 to 10. 

Table 5-1 The various Classification Experimentation cases 

Number of bins 

2 to 10 

Discretization method 

equal width equal frequency 

Classification algorithm 

J48 Naive Bayes 

 

All the different experimentation cases are described in Table 5-1. In every 

case the following parameters are taken into account: 

1. The number of the data discretization bins. 

2. The discretization method (equal width or equal frequency). 

3. The classification algorithm (Naive Bayes, J48). 

 

The figures below present the classification accuracy results for the two 

algorithms for 2 to 10 bins. More specifically, Figure 5-8 presents the 

classification for data discretized using equal frequency bins, whie Figure 

5-9 presents the classification for data discretized using equal width bins.  
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Figure 5-8 Classification results for J4.8 and Naive Bayes algorithms using equal 
frequency discretization bins 

J4.8 performs always better with a classification accuracy of at least 95% 

and an average 97.25%, while naïve bayes only reaches at a maximum of 

75.01%. In both cases though, the maximum accuracy is succeeded in the 

at the 10 bins discretization. 
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Figure 5-9 Classification results for J4.8 and Naive Bayes algorithms using equal 
width discretization bins 

In the equal width discretization method experiment, the J4.8 also performs 

better with an average of 95.78% in contrast with the 70.68% of the naïve 

bayes. Maximum classification accuracy for J4.8 is in that case 97.79% and 

for the Naïve Bayes is 73.66%. 
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Comparing the classification accuracy for each algorithm separately and for 

both equal frequency and width discretization methods, we conclude that 

the equal frequency discretization method gives better results for both 

algorithms as shown in the figures below. 
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Figure 5-10 Classification results for J4.8 comparing equal frequency and width 
discretization methods 
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Figure 5-11 Classification results for Naïve Bayes comparing equal frequency and 
width discretization methods 

Furthermore, we conducted experiments for the recall of both algorithms 

and for all four galaxy morphological types. Recall is the ratio that expresses 

the number of correctly classified galaxies of one class (type) to the total 

number of galaxies belonging to this class. In Figure 5-12 the recall for all 

the morphological types is presented, in the case of the J4.8 algorithm and 

the equal frequency discretization method. For the Spiral and Starburst 

galaxies the recall is very high for all number of bins. For the Irregular 
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galaxy type, an average of 90% recall is succeeded while in the early galaxy 

type, the recall percentage is low for two and three bins but it raises in the 

cases of six or more bins reaching 92%. 
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Figure 5-12 Recall ratio of all morphological types for the J4.8 algorithm and equal 
frequency discretization method. 
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Figure 5-13 Recall ratio of all morphological types for the J4.8 algorithm and equal 
width discretization method. 

Figure 5-13 presents the recall percentages for all the morphological types is 

presented, in the case of the J4.8 algorithm and the equal width 

discretization method. Like in the equal frequency case, J4.8 managed to 

classify with great success Spiral and Starbursts galaxies. The recall for the 



 115 

Irregular type varies from 72.6%, for three bins to 91.7 % for seven bins. 

Regarding the early type recall is even lower from the previous case (of equal 

frequency) but it raises for five or more bins. 

Respectively, Figure 5-14 and Figure 5-15 present recall percentages for all 

four types of galaxies when classification is performed with the Naïve Bayes 

and for equal frequency and equal width discretization method. Recall for all 

types is low enough, showing the weakness of Naïve Bayes algorithm in 

correctly classify the galaxies in their types. 
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Figure 5-14 Recall ratio of all morphological types for the Naïve Bayes algorithm and 
equal frequency discretization method. 

All the experiments have been conducted in a Pentium M 2 GHZ PC with 1 

Gbyte of RAM. In Figure 5-16 the execution time (in seconds) for both 

algorithms and for both equal frequency and width discretization methods 

are shown for two to ten bins.  
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Figure 5-15 Recall ratio of all morphological types for the Naïve Bayes algorithm and 
equal width discretization method. 
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Figure 5-16 Execution time for J4.8 and Naive Bayes algororithms for equal 
frequency and equal width discretization methods 

Naïve Bayes is a lot faster from J4.8 algorithm, while J4.8 is faster when it 

performs on the equal frequency discretized data, except in the case of two 

and three bins. 

The output and the accuracy of the algorithms presented have been 

compared with that of the best SVM classification method performed with 

the R tool from the astronomers. SVM achieved a 92.2% classification 

accuracy. In Table 5-2 the classification accuracy for all algorithms and 

variations are presented. 
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Table 5-2 Classification accuracy of all three algorithms and for every variation of 
the experiments 

Algorithm – 

discretization 

method 

Total 

classification 

accuracy 

Accuracy 

for Early 

type 

Accuracy 

for Spiral 

type 

Accuracy 

for 

Irregular 

type 

Accuracy for 

Starburst 

type 

Naive Bayes - equal 

frequency 71,43% 83,05% 49,63% 88,35% 83,75% 

Naive Bayes- equal 

width 70,60% 78,75% 50,85% 84,46% 82,38% 

J48 - equal frequency 97,25% 85,16% 98,25% 91,01% 99,60% 

J48 - equal width 95,78% 76,18% 97,48% 87,08% 99,38% 

SVM 92,20% - - - - 

 

It is obvious that the J4.8 algorithm performs better with the equal 

frequency discretization method. The fact that it is much slower than Naïve 

Bayes is not important as the classification in the current project will be 

performed off-line. Figure 5-17 presents the classification accuracy for all 

the algorithms, showing the superiority of the J.48 algorithm, while SVM 

classification has almost the same good results. 

 

Figure 5-17 Classification accuracy for all algorithms 

All the experiments and the output of the classification algorithms, as well 

as the classification decision tree produced, will be used in the GAIA project. 

The use of the PBMS concept in applications where a lot of different 

experiments with various data mining algorithms and parameters are 

necessary is a powerful tool. All the experiments can be stored, recalled and 
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compared through the PBMS in an transparent and integrated way to the 

user.  

5.3 Synopsis 

In this chapter we presented a PBMS application scenario to facilitate the 

classification of astronomical data, showing the added-value for the domain 

experts of the application areas. The results of this application will be used 

to the GAIA ESA project, for the automatic classification of galaxies from a 

new space telescope. 
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6 PatternMiner – A Pattern Base Management 

System prototype 

6.1 Introduction  

In this chapter we present PatternMiner, a Pattern Base Management 

System prototype, while we further study the pattern evaluation issue, for 

patterns extracted from the data mining process, in order to extend the 

PBMS to include the pattern evaluation step. PatternMiner, is an integrated 

environment for pattern management and mining that deals with the whole 

lifecycle of patterns. 

Moving one step forward from the mining, storage and comparison of the 

patterns, we study the problem of pattern evaluation using ontologies, to 

facilitate the difficult and time consuming task of the experts of pattern 

evaluation. We describe the problem and present a preliminery study in 

which we use domain ontology to filter association rules extracted from 

seismological data. 

6.2 PatternMiner PBMS 

In this section we present PatternMiner, a Pattern Base Management System 

prototype that is based on the theory described in the previous chapters. It 

is based on an XML pattern-base and uses XML documents to represent 

patterns, Xquery to retrieve documents. Pattern representation is based on 

the logical model defined on the PANDA framework, which is also used for 

pattern comparison tasks. Enhanced PMML schemata are used to represent 

the various patterns. PatternMiner is open source system and uses the 

WEKA data mining engine for pattern extraction. 
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The system architecture is presented and a demo is described followed by 

other potential applications.  

PatternMiner, is an integrated environment for pattern management and 

mining that deals with the whole lifecycle of patterns from their generation 

(using data mining techniques) to their storage and querying, putting also 

emphasis on the comparison between patterns and meta-mining operations 

over the extracted patterns. This is in contrast to existing tools that deal 

with specific aspects of the pattern management problem, mostly 

representation and storage. Pattern comparison (comparing results of the 

data mining process) and meta-mining are high level pattern operations that 

can be applied in a variety of applications, from database change 

management to image comparison and retrieval. PatternMiner can also 

detect changes of clusterings extracted from dynamic data and thus, to 

provide insight on the dataset and to support strategic decisions without 

facing interoperability or incompatibility issues as if using different 

applications for each task. PatternMiner follows a modular architecture and 

integrates the different Data Mining components offering transparency to the 

end user. 

PatternMiner adopts the PANDA framework concept for defining patterns 

and pattern-types and uses enhanced PMML schemata to implement this 

concept, offering interoperability with various systems supporting PMML. 

No other PBMS or even another system with similar functions has been 

proposed, a review of all related approach can be found though in (Catania & 

Maddalena, 2006). 

6.2.1 Implementation technologies and requirements 

PatternMiner, as an integrated environment, should be transparent to the 

user and hide all the different components that are interconnected, 

providing all the functionality through its interface. 

PatternMiner uses open source software, and is very easy to be upgraded or 

expanded. 

In this section we describe the choices made for the implementation 

technologies and the special requirements that have been addressed. 

Programming language 
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We choose the JAVA programming language to implement the PatternMiner 

tool for the following reasons. 

WEKA data mining tool is an open source program, developed in JAVA and 

thus it is possible to use specific packages to load the data files, or to run 

the required algorithms and filters. 

Furthermore, PatternMiner should offer a user-friendly interface. JAVA 2 

GUI provides a flexible tool to implement complex interfaces. Java object-

oriented properties provides also the possibility to put data and methods 

together, thus follow a modular approach. 

Data mining engine  

The data mining engine is responsible for the extraction of patterns 

according to user defined criteria, like dataset selection, pre-processing, 

mining algorithms and their parameters. We employ for this task WEKA, 

since it is an open source tool and offers a variety of algorithms for different 

mining tasks (including classification, clustering, and association rule 

extraction) as well as preprocessing capabilities over the data. Apart from the 

GUI version of the program, the Command line version allows to load files 

and execute algorithms from every other program using the provided API. 

The WEKA data mining tool has been tested from a lot of users and is very 

reliable. Every other data mining tool can be used, as long as its output is in 

PMML format. 

Pattern representation Schema/ Model 

For the pattern representation issue in the database, XML documents are 

used as they perform better from other approaches (Kotsifakos et al., 2005) 

and for the pattern comparison functions the PANDA framework (Ntoutsi, 

2008) has been chosen.  

In section 2.4.3 we outlined an XML schema that supports the PANDA 

representation model for patterns. For compatibility reasons with other 

database systems we adapted the PMML model to fit PANDA representation.  

The pattern model according to PANDA framework is based on the 

quintituple pt = (n, ss, ds, ms, f). The PMML model for every pattern-type 

can be enhanced with metadata tags to include all the five parts of the 

pattern model as long as other useful information, such as the algorithm 
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and the parameters used for the pattern extraction, the time of the 

extraction etc. 

In this section a more detailed description on the use of PMML in the 

patternMiner system will be made. The appropriate extensions to the PMML 

schema to implement the PANDA representation model are also will be 

presented. 

PMML supports only pre-defined pattern-types (or models). Models that are 

supported in version 3.2 (PMML, 2009) are: Association Rules, Clusters, 

Trees, Neural networks, Series and more complex types such as Text and 

Support Vector Machines. With PMML, some quality measures related to the 

patterns can be represented. Furthermore, the relation between the patterns 

and the subset of input data (that the pattern represents) is also stored. The 

pattern extraction time is stored, too. 

PMML structure includes:  

1 Header. Includes general information about the pattern, such as the 

application created it, date and time of creation and a short 

description. 

2 Data Dictionary. Defines the input data attributes for the patterns, 

their type and their value range.  

3 Transformation Dictionary. PMML defines various kinds of simple 

data transformations: 

Normalization: map values to numbers, the input can be continuous 

or discrete. 

Discretization: map continuous values to discrete values. 

Value mapping: map discrete values to discrete values. 

Functions: derive a value by applying a function to one or more 

parameters 

Aggregation: summarize or collect groups of values, e.g., compute 

average.  

Transformation Dictionary is an optional element. 

4 *Model. Defines the specific information for each pattern type such 

as the data mining technique and the algorithm used for the pattern 
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extraction, the input data attributes used and other pattern-type 

specific information, like the frequent itemsets for an association 

rule model, or the clusters and their characteristics for a clustering 

model. Where * is the data mining technique name. 

4.1 Mining Schema. Each model contains one mining schema, which 

lists the fields used in the model. These fields are a subset of the 

fields in the Data Dictionary. The mining schema contains 

information that is specific to a certain model, while the data 

dictionary contains data definitions that do not vary with the 

model. For example, the Mining Schema specifies the usage type of 

an attribute, which may be active (an input of the model), predicted 

(an output of the model), or supplementary (holding descriptive 

information and ignored by the model). 

4.2 Model Statistics. The Model Statistics component contains basic 

univariate statistics about the model, such as the minimum, 

maximum, mean, standard deviation, median, etc., of numerical 

attributes. 

PMML supports Model Composition. Simple models can be used as 

transformations. PMML offers the possibility to combine multiple 

conventional models into a single new one, using individual models as 

building blocks. This can result in models being used in sequence, where the 

result of each model is the input for the next one. This approach, called 

model sequencing, is not only useful for building more complex models, but 

can also be put to good use for data preparation. Another form of model 

composition is also supported: the result of a model can be used to select 

which model should be applied next.  For example, a decision tree can now 

have an embedded regression model in each leaf node. 

Both model sequencing and model selection can be combined to develop 

quite complex models. 

PMML supports functions that can be used to perform preprocessing steps 

on the input data. A number of predefined built-in functions for simple 

arithmetic operations like sum, difference, product, division, square root, 

logarithm, etc., for numeric input fields, as well as functions for string 

handling, such as functions for trimming blanks or choosing substrings. 
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In PMML there is also a Model verification mechanism for model verification 

that increases the compatibility of models between different vendors' 

applications consuming PMML. A verification model provides a mechanism 

for attaching a sample data set with sample results so that a PMML 

consumer can verify that a model has been implemented correctly.  This will 

make model exchange a lot more transparent for users and inform them in 

advance in case compatibility problems might arise.   

Except the default information that PMML stores for every model, during the 

model (pattern) insertion to the XML pattern-base, for each pattern three 

metadata elements are added: 

• dateCreated: the date and time that the pattern has been inserted to 

the pattern-base. 

• dataFileName: the file name (including the path) of the file containing 

the source data.  

• modelName: pattern name as user defines it.  

In every PMML document a tag “extension” has been created containing 

necessary information for the clustering pattern. More specifically: 

The Prior Probability and the scatter value of the cluster, with extension 

name «Prior probability» and «Scatter value» respectively. 

The percentage of the instances that belong to each cluster of the complex 

pattern, with extension name «Clustered Instances». 

By the time this dissertation was written, a new version of the PMML 

standard had been announced.  

Version 4.0 of PMML adds the following new features: 

- support for time series models; 

- support for multiple models, which includes support for both 

   segmented models and ensembles of models; 

- improved support for preprocessing data, which will help simplify 

   deployment of models; 

- new models, such as survival models; 
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- support for additional information about models called model explanation, 

which includes information for visualization, model quality, gains and lift 

charts, confusion matrix, and related information. 

This new version of PMML is a major update of PMML Version 3.2, which 

was released in May, 2007. 

Pattern Storage and retrieval system 

As it has been shown in section 2.4 the XML model is more proper to 

represent and manage patterns. A native XML database, thus, it would be 

the best choice for the storage of the patterns, having the following 

advantages: 

• XML data are inserted into the database without the need of extra 

preprocess. Patterns are stored directly as XML documents. 

• Every character (including the space and other special characters) of 

the XML document remains unchanged after the insertion into the 

database. 

• Queries in the XML database return the whole document or part of 

them, preserving the hierarchical structure of the documents. 

Furthermore, data exchange is far more easy and requires no transformation 

of the documents in different structures. 

For a native XML database we choose ORACLE Berkeley DB XML (2009). 

Berkeley DB XML stores XML documents in logical groups “Containers”, that 

are identical to “Collections” in other XML databases. Users can define 

various properties for each container, including the option for document 

validation, storing whole documents or specific parts and index creation. 

In the current application patterns are grouped based on the data mining 

technique used to extract them. So, there are three basic “containers”: 

AssociationRules.dbxml, Clustering.dbxml και Trees.dbxml. 

Berkeley DB XML can also store non-XML documents as well as XML 

document meta-data. Metadata are user-defined couples “property-value” 

and they can be retrieved as child elements of the root element, while they 

do not really appear in the stored XML documents. 
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Berkeley DB XML supports the XQuery language to address queries to the 

database and it supports indices on the XML data to speed-up the query. 

Berkeley DB XML supports command line and provides APIs for C++, Java, 

Tcl, Perl, Python and PHP. There are also available third-party APIs for other 

languages. It supports UNIX, Linux, Windows and Mac OS X. 

6.2.2 System architecture 

The PatternMiner architecture is depicted in Figure 6-1. In the core of the 

system lies the PatternMiner engine which arranges the communication 

between the different peripheral components (Data Mining engine, Pattern 

Base, Pattern Comparison module, Meta-mining module) and also provides 

the end user interface.  

 

Figure 6-1 PatternMiner architecture 

Pattern extraction: The Pattern Extraction component is responsible for the 

extraction of patterns according to user defined criteria, like dataset 

selection, pre-processing, mining algorithms and their parameters. We 

employ for this task WEKA (Witten and Frank, 2005), since it is an open 

source tool and offers a variety of algorithms for different mining tasks 

(including classification, clustering, and association rule extraction) as well 

as preprocessing capabilities over the data.  

Pattern representation: Pattern representation is not a simple task mainly 

because one can find a great variety of pattern types (decision trees, 
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clusters, etc.) of varying complexity. The need for pattern representation in 

KDD has been recognized by both research and industrial communities and 

several representation approaches have been proposed. The most popular 

choice is PMML (2009), an XML-based language that provides a quick and 

easy way to define data mining and statistical models using a vendor-

independent method and share these models between PMML compliant 

applications. The structure of the models in PMML is described by an XML 

Schema; different models have their own schemes. The term “model” in 

PMML is equivalent to the term “pattern type” in our approach. In 

PatternMiner, as we described in the previous section, we use the PMML 

standard for the representation of patterns, enhanced to fully match the 

PANDA framework concepts, and thus, we convert the output of the Data 

Mining engine component into PMML format. 

Pattern storage: Since patterns are represented as XML documents 

(through PMML), a native XML database system is used for their storage in 

the Pattern Base. In particular, we employ the open source Berkeley DBXML 

(Oracle Corp. Berkeley DB XML, 2009), which comprises an extension of the 

Berkeley DB with the addition of an XML parser, XML indexes and the 

XQuery data query language. Berkeley DBXML stores XML documents into 

logical groups, called Containers (the Collections in other native XML 

database systems). Users can define various properties for each container 

(whether to store the whole document or parts of it, which indexes to create, 

etc.). Apart from XML documents, non-XML documents as well as metadata 

for the XML documents can be stored. Metadata are user-defined in the form 

“property-value” and easily retrieved. 

Pattern querying: PatternMiner provides a basic environment for querying 

the pattern base. The user defines the pattern set to be queried, and imposes 

his/her query in the XQuery language (Xquery 1.0, 2003). Regarding the 

supported query types, the user can retrieve either the whole pattern or any 

component of the pattern (either the structure or the measure component) 

and of course, to impose constraints over these components. PatternMiner 

creates the proper connection to the pattern base and captures the result in 

order to return it to the user. The result is shown in the screen while it is 

also saved in the file system. 
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Pattern comparison: One of the most important operations on patterns is 

that of pattern comparison. Defining dissimilarity operators for patterns 

could be used to express similarity queries, including k-nearest neighbor 

queries (i.e. find the k-most similar pattern(s) to a query pattern) and range 

queries (i.e. find the most similar pattern(s) to a given pattern within a given 

range). Dissimilarity could be also employed in order to monitor and detect 

changes upon patterns extracted from a dynamic environment (Spiliopoulou 

et al., 2006). Recognizing the importance of dissimilarity assessment in 

pattern management, we distinguish the comparison process from the 

querying process and we implement it separately through the Pattern 

comparison module. The comparison is carried out on the basis of PANDA 

(Bartolini et al., 2004; Ntoutsi et al., 2007), a generic and flexible framework 

for the comparison of patterns defined over raw data and over other patterns 

as well. Comparison utilizes both structure and measure components of 

patterns. The user defines the patterns as well as the way that they should 

be compared, i.e. how the different components of PANDA are instantiated. 

The output is a dissimilarity score accompanied with a justification, a report 

actually of how the component patterns have been matched. In our 

experiments and for the needs of some real case studies (Iakovidis et al., 

2006) we enhanced the PANDA framework by adding a couple of new cluster 

comparison algorithms. 

Meta-mining: Due to the large amount of extracted patterns, several 

approaches have lately emerged that apply Data Mining techniques over 

patterns instead of raw data, in order to extract more compact information. 

The Meta-mining module takes as input a set of different clustering results 

extracted from the same dataset (through different clustering algorithms or 

different parameters) or from different datasets (through from the same 

generative distribution) and applies Data Mining techniques over them, in 

order to extract meta-patterns. So far, the meta-mining component focuses 

on meta-clustering (Caruana et al., 2006), i.e. grouping of clustering results 

into groups of similar clusterings. The user has full control of the clustering 

process by choosing the similarity function and the clustering algorithm. 

Pattern Monitoring: While PatternMiner is a tool for managing all types of 

patterns, at the current moment we have implemented a Cluster Monitoring 

technique that is based on the theory and algorithm described in 
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(Spiliopoulou et al., 2006). In this approach, the transitions of clusters 

extracted upon an accumulating dataset are traced and modeled. Clustering 

occurs at specific timepoints and a “data ageing” function can be used to 

assigns lower weights to all or some of the past records. The set of features 

used for clustering may also change during the period of observation, thus 

allowing for the inclusion of new features and the removal of obsolete ones. 

PatternMiner assumes re-clustering rather than cluster adaptation at each 

timepoint, so that both changes in existing clusters and new clusters can be 

monitored. Transitions can be detected even when the underlying feature 

space changes, i.e. when cluster adaptation is not possible. Terms like 

cluster match, cluster overlap, cluster transition and lifetime of a cluster are 

core notions of cluster monitoring. This module exploits the clusterings that 

are stored in the pattern-base and employs the query and comparison 

capabilities of the system. 

6.2.3 A PatternMiner Demo 

In this section we present a demo of the PatternMiner system, that has been 

also presented in (Kotsifakos et al., 2008a, 2008b) 

6.2.3.1 Demo presentation 

To make clear the potential use and the value of PatternMiner, we consider a 

supermarket as a simple case study and its manager as the end user. 

Among other pattern types, the manager is interested in discovering the 

products that customers tend to buy together, i.e. association rules.  Except 

for knowing the product associations at each month, the manager also 

wants to know how these associations change from month to month: are 

there any new associations, did some old association disappeared, did some 

association became stronger (higher confidence) or weaker. Also, he/she 

wants to discover groups of months with similar associations, so as to decide 

some strategy for each group instead of each month. This process involves 

storage of the patterns discovered at each month, querying, comparison and 

meta-mining operations over them. Existing Data Mining tools do not 

address all these issues. On the contrary, PatternMiner provides the 

manager with all this information in an easy and transparent way. We 

describe below how each component works for this supermarket scenario. 
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Pattern extraction and storage: The user defines the data source, the Data 

Mining algorithm and its parameters, e.g. in our case the supermarket 

database, the association rule algorithm and the minimum support and 

confidence parameters. The extraction takes place in the Data Mining engine 

and the results are converted into PMML format before being stored in a 

user-specified container in the XML pattern base (as well as in a file on the 

hard disk). In Figure 6-2 the pattern extraction and storage screen is 

depicted for the case of association rule patterns. Using PMML, the exchange 

of patterns between different applications is possible without the need for 

special import-export tools.  

 

Figure 6-2 The association-rule extraction screen 

Pattern querying: The user defines the pattern set to be queried and the 

query itself, in Xquery language. PatternMiner engine creates the connection 

to the pattern base, executes the query and returns the results to the user 

(and also saves them to a file). A sample query is shown in Figure 6-3, 

described in both natural language and Xquery.  
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Figure 6-3 A sample query in natural language and in XQuery 

Pattern comparison: The user defines the patterns to be compared as well 

as the comparison parameters. In our example, the manager asks for the 

comparison of association rule patters extracted from the supermarket data 

of the two previous months, in order to inspect whether and how the buying 

behavior has been changed. The patterns are retrieved from the Pattern-

base. Then, the manager configures PANDA by choosing the appropriate 

comparison function from the candidate functions implemented for each 

pattern type. It should be noticed that in the PANDA framework there are 

several comparison functions implemented, and the user, depending on the 

application can decide or test what function better fits his/her application. 

The results are returned to the manager, who can detect any changes in the 

sales-patterns and decide whether these changes were expected (based on 

company’s strategy) or not (indicating some suspicious or non-predictable 

behavior). Based on the results, the manager can decide future strategies 

regarding offerings, supply etc. 

The manager can also extract clusters of customers based on their buying 

habits or their demographics. Comparing such clusters of customers can 

reveal buying patterns over the year, and thus the manager can decide 

about the supplies. In Figure 6-4 the clustering comparison tab is shown. 

Query (natural language):   

Retrieve the association rules from the  super_market 

dataset that have  a support value greater than 0.2. 

Query (XQuery): 

declare namespace a = "http://www.dmg.org/PMML-3_1" ; 

collection ("AssociationRules.dbxml") 

[dbxml:metadata ("dbxml:dataFileName")= 

"C:\PatternMiner\data_files\ supper_market.arff"] 

/a:PMML /a:AssociationModel /a:AssociationRule 

[@support>0.2] 
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Figure 6-4 Pattern Comparison Tab in PatternMiner 

Meta-mining: The user defines the pattern sets to be used as input to the 

Meta-mining module (e.g. sets of rules extracted at each month of 2007), 

selects the clustering algorithm/ parameters, as well as the similarity 

measure between sets of rules. The input sets are clustered into groups of 

similar sets of rules (e.g. March and April could be placed to the same group, 

since they depict similar buying behavior), which can be also stored in the 

pattern base for future use. The manager can exploit these results in order 

to decide similar strategies for months belonging to the same cluster. 

Cluster Monitoring: User defines the dataset from which the clusters have 

been extracted. A list of all the clusterings that have been carried out over 

the specific dataset is available to the user, sorted by the extraction time. 

The supermarket manager wants to observe the customer profiles over time. 

Choosing the appropriate dataset (supermarket.arff), PatternMiner returns 

all the different clusterings that have been created from that dataset, along 

with the clustering algorithm and the extraction time. The manager chooses 

two or more clusterings and runs the cluster monitoring process. This 

process results in a matrix showing the clusters of the first clustering and 

their changes over time (new clusters, clusters that no longer exists, 

shrinked or expanded clusters etc). The output represents the graph 

depicted in Figure 6-5 (Spiliopoulou et al., 2006). 
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Figure 6-5 Graphical representation of cluster monitoring output 

6.2.3.2 Discussion 

PatternMiner is an integrated environment for pattern management that 

supports the whole lifecycle of patterns from their generation to their 

retrieval, and also offers sophisticated operations over patterns, like 

comparison and meta-mining. PatternMiner follows a modular architecture 

that employs state-of-the-art approaches at each component. The different 

building blocks are implemented in JAVA. 

Several improvements can be carried out: First, the existing components can 

be enhanced. For example, the querying component could support more 

query types, like k-nearest neighbor queries, range queries and also the 

query processing could be more efficient by employing appropriate index 

structures. Also, the Meta-mining module and cluster monitoring can be 

extended so as to support more pattern types, like decision trees, association 

rules, sequences.  

Except for the scenario we described, other potential applications include 

pattern validation, monitoring/ change detection, comparison of patterns 

extracted from different sites in a distributed environment setting, etc. 

6.3 Extending PBMS to support pattern evaluation using 

ontologies  

In the Knowledge Discovery from Data (KDD) process, Data Mining 

techniques are used to find patterns from a large collection of data (Data 

Mining step in Figure 1-1). The role of the domain experts in this process is 

crucial. Their knowledge is used in early stages to prepare data (i.e. to decide 

for the data cleaning and preparation) and to choose the appropriate 
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parameters for the data mining algorithms. Their contribution is also 

necessary for the evaluation and interpretation of the extracted patterns that 

lead to the generation of knowledge (Fayyad, Piatetsky-Shapiro, & Smyth, 

1996).  

In essence, extracted patterns are used from domain experts to explore new 

relations on data, evaluate theories on the field of interest, and discover 

unknown and hidden knowledge that will lead to new experiments and 

theories. However, some of the extracted patterns are considered trivial and 

some others insignificant, according to the domain knowledge. To evaluate 

extracted patterns experts have defined a lot of different, either objective or 

subjective interestingness measures based mostly on statistical properties of 

the patterns. Nevertheless, analyzing and assessing the usefulness of 

discovered patterns is a laborious task and is considered a hard problem 

(Piatetsky-Shapiro, 2000). 

The issue raised here is related to the incorporation of the existing domain 

knowledge in the Data Mining process, and especially in the pattern 

evaluation phase. Several statistical and interestingness measures have 

been proposed for the evaluation of patterns (Piatetsky-Shapiro, 1991; 

Freitas, 1999; Silberschatz & Tuzhilin, 1996; Piatetsky-Shapiro, & Matheus, 

1994). These measures are applied either before or during the data mining 

process. In the first case, they are used to reduce the number of patterns 

that will be extracted and to speed up the data mining process, while in the 

evaluation phase, they are used to clean up the patterns considered 

insignificant.  

Nevertheless, no such measure for pattern evaluation is efficient enough as 

the domain expertise itself. Domain experts can better evaluate the patterns 

and decide whether they are trivial or not. It is the user who will distinguish 

interesting rare occurrences of patterns from statistical noise using his/her 

background knowledge (Pohle, 2003). In order to automate the pattern 

evaluation process, we need to incorporate the domain knowledge in it. It is 

generally acceptable that domain knowledge can be represented efficiently 

using ontologies (Pohle, 2003). An ontology is a specification of a 

conceptualization, a description of the concepts and relationships that can 

exist for an agent or a community of agents (Gruber, 1993). 
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We argue that domain knowledge expressed with ontologies could function 

as a filter in the evaluation phase of the KDD process. Patterns extracted 

from data mining algorithms would be first evaluated with respect to the 

ontology. Patterns that contradict to knowledge widely accepted according to 

the ontology provided (hereafter, called “noisy”) will be marked as possibly 

invalid. Whereas, acceptable patterns, will be further evaluated by the 

domain expert and, if recognized as useful knowledge, the ontology could be 

updated to incorporate these new patterns (of course, domain experts might 

reconsider the ontology by adding/removing relations, associations etc). In 

this case, priority is given to patterns considered interesting, at the same 

time not conflicting with well established beliefs. This approach could reduce 

the cost in terms of running time of the data mining algorithm and the effort 

of the domain expert to evaluate the discovered patterns. Note that “noisy” 

patterns are marked as invalid and are not being discarded unless user 

wishes so. Thus the danger to drop really useful knowledge is quite limited. 

Towards the purpose of incorporating the domain knowledge in the 

evaluation phase of the Knowledge Discovery process, we propose the use of 

ontologies that describe the field of interest to evaluate data mining results. 

In the following sections we will discuss the various challenges and problems 

that have to be faced considering a real case study from the seismology 

domain. 

6.3.1 Data Mining Using Domain Knowledge 

Until recently, although the importance of knowledge management was 

widely known, limited research has been devoted to intelligent pattern 

analysis and the accumulation of discovered knowledge with prior knowledge 

(Pohle, 2003). Regarding the use of domain knowledge in the data mining 

process only a few related approaches can be found. Domain knowledge can 

be applied in the data mining process in three different ways. In the 

preprocessing step (to prepare the data to be mined), during the data mining 

process (data mining algorithm is using the domain knowledge to decide 

about the next step), or after the data mining process (to evaluate the 

extracted patterns). 

Considering the first way, X. Chen et al. (2003) propose using an ontology as 

a concept hierarchy to prepare demographic data for association rule 
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mining. In some tuples of the demographic database there are values from a 

lower level of the hierarchy while in other tuples, in the same column, there 

are values from higher levels of the hierarchy (for example the value 

“basketball” and the value “recreation sports” that are found at different 

levels in an interests hierarchy). By replacing the values of lower level with 

values at a higher level (raising), the authors show that the rule support is 

increasing and thus, more rules can be found. 

Several papers can be found about how some interestingness measures 

(either objective or subjective) are used to evaluate extracted patterns. 

Objective interestingness measures are based in statistical functions. In 

(Piatetsky-Shapiro, 2000) basic principles of objective rule interestingness 

measures are defined, while in (Freitas, 1999) a comparison of objective 

interestingness criteria can be found. In contrast with objective 

interestingness measures, subjective measures try to take into account 

individual conditions of the human analyst. A general discussion can be 

found in (Silberschatz & Tuzhilin, 1996), while (Piatetsky-Shapiro, & 

Matheus, 1994) and (Padmanabhan, & Tuzhilin, 1998) attempt to address 

this problem. All these approaches provide a way to evaluate patterns but do 

not make use of the domain knowledge.  

There are also few attempts using domain knowledge to improve evaluation 

of extracted patterns. Domain knowledge in the form of concept hierarchies 

can be used to improve Web mining results (Pohle & Spiliopoulou, 2002), 

while an interestingness analysis system that requires the user to express 

various types of existing knowledge in terms of a proprietary specification 

language is presented in (Liu, Hsu, S. Chen, & Ma, 2000). These approaches 

do use domain knowledge, but their disadvantage is that they require the 

user to previously provide his/her knowledge in a specified and narrow form, 

according to the application each time.  

In order to incorporate domain knowledge in data mining and to allow 

conceptual model sharing in domains, the use of ontologies is necessary 

(Maedche, Motik, Stojanovic, Studer, & Volz, 2003). An application of using 

ontologies before, during and after the data mining process is the one 

presented by Hotho, Maedche, Staab and Zacharias (2002), in which authors 

use ontologies and Information Extraction technologies to improve text 

mining algorithms and pattern interpretation. 
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Our methodology uses ontologies to improve the pattern evaluation step and 

querying the pattern base. During the evaluation step, the system based on 

the provided ontology and parameters that have been defined from the 

domain expert, filters the patterns and marks as “noisy” patterns that 

contradict to domain knowledge. Domain expert can then discard or further 

evaluate them. The system will also use the filtering mechanism to prevent a 

naïve user to query the pattern base for “noisy” patterns. 

6.3.2 Problem Description 

Various examples indicating the need for integration of domain knowledge 

and data mining can be found, however, dealing with scientific data is more 

efficient mainly because domain experts in these areas know their data in 

intimate detail (Fayyad, Haussler, & Stolorz, 1996). In this section, we 

present a real case study of mining seismological data to illustrate the use of 

a PBMS and ontologies in an integrated environment for pattern 

management and evaluation. 

6.3.2.1 A Case Scenario From The Seismological Domain 

Let us consider a seismological database containing historical data about 

earthquake events (Theodoridis, Marketos, & Kalogeras, 2004). Such a 

database would include information about the event (magnitude, latitude / 

longitude coordinates, timestamp and depth), the geographical position of 

both the earthquake epicenter and the affected sites that partitions world in 

disjoint polygons), as well as details about the fault(s) related with the event. 

Additionally, our database includes demographical and other information 

about the administrative partitions of countries, details about the geological 

morphology of the areas of various countries and macroseismic information 

(intensity, etc) (Theodoridis, Marketos, & Kalogeras, 2004).  

Seismologists use the database to store the data, a data warehouse to 

aggregate and analyze them, a knowledge base to store documents collected 

by various sources, and a tool to define ontologies to represent the domain 

area. Furthermore, they are interested in discovering hidden knowledge. 

Patterns produced by the KDD process are evaluated and stored in a PBMS. 

Obviously, if the above “islands of information” are not integrated under a 

single tool then the maximum value of the stored information could not be 
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utilized. The researcher is interested in posing a number of questions, 

perhaps having no idea about which tool to use to get the answers. Some 

query examples are: 

 - Query 1: Find the average magnitude and the max depth for the 

earthquakes happened in the North Adriatic Sea (or in a particular 

geographical area) for the decade 1994-2004.  

- Query 2: Is there any information about the earthquake maximum 

recorded intensity when I know that the depth of the epicenter is over 

60 km and the geology of the site is characterized as rocky?  

- Query 3: Find similarities in shock sequences (a main shock that 

follows pre-shocks and is followed by intensive aftershocks) happened 

in Greece during 2004. 

 Query 1 can be easily answered by a data-warehouse using the average and 

the max function on the appropriate earthquake data. Query 2 can also be 

easily answered using a decision tree. In case such a decision tree model 

(pattern) has not been already stored in the PBMS then an appropriate 

classification algorithm can be applied on the data. Query 3 is more 

challenging since it requires the incorporation of more advanced domain 

knowledge: a) the specification of the similarity measure and b) the definition 

of the shock sequence by the domain expert. 

It is clear that Query 3 requires a lot of pre-processing work to be done by 

the seismologist in collaboration with a database analyst. Hierarchies and 

rules about seismological concepts and data have to be defined before a data 

mining algorithm is applied. Furthermore, even when patterns are produced 

and stored in the PBMS some more post-processing work (similar to the pre-

processing step) has to be done in order to extract the appropriate 

information. The seismologist may have already represented the required 

knowledge using ontologies, their integration into the PBMS could resolve 

the above problems. 

On the other hand, other queries , such as: 

- Query 4: Find any relation between earthquake magnitude and 

average temperature of the area around the epicenter during a related 

time period.  
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- Query 5: Find any relation between earthquake magnitude and 

season of the year. 

can also be posed by a naïve (i.e. non-expert) user and answered applying 

data mining tasks while semantically unacceptable (for example, 

seismologists do not recognize any relation between either earthquake 

magnitude and surface temperature or earthquake magnitude and season of 

the year). Although, the data mining engine could return results regarding 

these relations, a domain expert would definitely discard them. 

Nevertheless, such a filtering is nowadays done manually at a post-

processing step. Exactly this is the contribution of the integrated ontology-

enabled PBMS we propose: to filter out “noisy” patterns efficiently (i.e. online 

without the need of post-processing) and effectively (i.e. with a quality 

guaranteed by the ontology-filter). 

6.3.2.2 Domain Knowledge Using Ontologies 

One of the challenges in incorporating prior knowledge in the Knowledge 

Discovery process is the representation of the domain knowledge. Ontologies 

are useful in providing the formalization of the description of a domain. They 

are considered as the explicit specification of a conceptualization (Guarino & 

Giaretta, 1995). Using ontologies, hierarchies of concepts, constraints and 

axioms can be defined. In other words, ontologies provide a domain 

vocabulary capturing a shared understanding of terms.  

To represent the seismological domain, we choose the Suggested Upper 

Merged Ontology (IEEE Standard Upper Ontology) (Niles & Pease, 2001), the 

Mid-Level Ontology (Niles & Terry, 2004) and, finally, an ontology for 

representing geographical information all available at (SUMO, 2009). An 

upper ontology is limited to concepts that are meta, generic, abstract or 

philosophical, and hence are general enough to address (at a high level) a 

broad range of domain areas. Concepts specific to particular domains are 

not included in an upper ontology, but such an ontology does provide a 

structure upon which ontologies for specific domains (e.g. medicine, finance, 

engineering, etc.) can be constructed. A mid-level ontology is intended to act 

as a bridge between the high-level abstractions of the SUMO and the low-

level detail of the domain ontologies which in our case is the geography 

ontology. The following schema is based on the above ontologies (Figure 6-6).  
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Figure 6-6 A subset of the SUMO for seismology 

Obviously, the above figure does not represent the “Universe of Discourse”, 

but is a part of the geography ontology related to seismology. It is clear that 

using ontologies, horizontal relationships between concepts can be defined 

(Pohle, 2003). For instance, in the domain of seismology there is such a 

relationship between seismology and geology (faults). This is important as 

the patterns that are stored for each domain in the PBMS, can be combined 

offering more complete querying and visualization capabilities to the user. 

Regarding association rule mining, a general rule that can be used to 

evaluate patterns with ontologies, is that patterns should associate 

attributes that belong to the same class or to subclasses of the same class. 

Reasonably, association of attributes belonging in different classes (in the 

ontology-hierarchy graph) or in classes that are several nodes away in the 

ontology diagram might result in false associations of irrelevant (according to 

domain knowledge) attributes. Edge-distance and other approaches have 

been already proposed for searching semantic similarity between objects in 

an ontology. Such measures can be used to assess the relation between two 

attributes. This implies that the user can select the level of relevance 

between the attributes, defining the maximum distance that a class can 

have from another in the ontology graph. 

The task of defining the rules that will be used to filter the patterns to be 

extracted involves the study of the ontology as well as the study of the 

pattern type and the results that users anticipate. Ontology components are 

classes, attributes and relations between them. Classes have subclasses and 
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each class may have a number of attributes. Usually classes for related 

concepts, belong to the same parent class while not related concepts are 

under different classes. The whole class and subclass diagram, define a kind 

of hierarchy with various levels of detail. For example, classes 

“VolcanicEruption” and “Earhtremor” (Figure 6-6) lie at the same level, while 

their subclasses “volcanicGasRelease” and “AfterShock” lie at lower level. 

As each pattern has different structure, filters for every pattern type have to 

be defined. Specifically for the Association Rule pattern type, we define the 

Association Rule Filter. Each part of the rule contains attributes (depth, 

magnitude etc) that are related in the relational model, but also related in 

some way in the ontology. Thus, we can define for each rule a distance 

metric between the main earthquake class (earth tremor) and the nodes of 

the attributes contained in the rule. The shorter this distance is, the more 

the attributes are semantically related. In fact, we can define two approaches 

to measure this distance: in the so-called “Risky” approach, we consider the 

maximum distance between the nodes of the attributes and the main 

earthquake class, whereas in the “Not Risky”, we consider the minimum 

distance between them. Obviously, the attributes of the earthquake class 

have distance=0 and thus there are not included in this calculation. 

A user selects the level of semantic relevance by specifying the maximum 

distance of the nodes from the main earthquake class. For instance, one 

may be interested in finding relationships not just between the attributes on 

an earthquake but also between them and geological faults. Thus, the level 

of semantic relevance has to be increased so as to include the appropriate 

node.  

With the above described process, a subgraph of the ontology that contains 

the attributes under consideration is constructed. Attributes of the produced 

rules are validated against this ontology subgraph. If all are included in the 

subgraph then the association rule that contains them is considered as 

semantically valid. Otherwise, if some of the attributes are not in the 

subgraph, the rules containing them are marked as “noisy”. Note that the 

system does not reject “noisy” rules (although there is such an option) as 

they might contain previously unknown knowledge about the relations of 

some attributes, and thus domain expert’s attention is required. Some rules 
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can lead to new interesting relations and domain experts may reconsider the 

ontology. 

6.3.3 Preliminary Validation Study 

In this section, we use the example from seismology domain and the 

ontology defined in section 6.3.2.2 to describe system functionality. The 

system performs a validation test before the data mining process, checking if 

the user defined parameters make sense. For example, a user could ask the 

system to perform the Apriori algorithm to find associations between the 

“magnitude” and the “date” of an earthquake. As mentioned in section 

6.3.2.1 this association is not acceptable by the seismology domain and thus 

the system will suggest the user to change the parameters. If the user does 

not specify the attributes that he/she wants to search for associations, the 

system will perform the data mining algorithm using all attributes but, when 

generating the frequent itemsets, it will discard itemsets that contain values 

from attributes not related in the ontology. In this way, the time consuming 

phase of frequent itemset generation will be improved and no irrelative 

association rules will be generated. Of course, this is not always desirable as 

some interesting rules might not be generated. In this case the user should 

decide for these rules. So, it is given as option to the user either to enable 

the system to automatically discard them or just to mark the “noisy”ones for 

further evaluation. In the latter case, the user decides which rules are 

interesting and should be stored to the pattern base.  

Another case is when a user is posing a query to the pattern base to retrieve 

patterns for example “fetch association rule patterns that contain both 

“season” and “depth” attributes and the support of the rule is greater than 

0.3”. Such rules are not valid according to the domain knowledge and thus 

the system notifies the user that it is rather impossible to find rules like 

those in the pattern base.  

In our first experiments, we ran the Apriori data mining algorithm 

implemented in WEKA (Witten & Frank, 2005) to extract some association 

rules using real macroseismic data collected by the Greek Institute of 

Geodynamics (Seismo-Surfer). Attributes such as earthquake depth, 

intensity, site, date and season of the year are some of the attributes of the 

table that contains 10336 tuples for the earthquake events during the 20th 
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century. Table 6-1 lists 25 out of 70 rules extracted by Apriori confidence 

threshold = 30% and support threshold = 10%.  

 

Table 6-1 Association rules extracted from seismological data 

id Association Rule Conf. Supp. 

1 intensity ≥5 → distance ≤80 74% 19% 

2 weekDay=Tuesday, 11 ≤depth ≤20 → season=Summer  71% 10% 

3 weekDay=Tuesday → season=Summer 71% 17% 

4 weekDay=Monday → season=Spring  68% 10% 

5 season=Summer → 11≤depth ≤20  65% 21% 

6 weekDay=Saturday → 21≤depth ≤50 62% 12% 

7 depth ≥50 → season=Spring  60% 11% 

8 distance ≥150 → intensity ≤3  59% 15% 

9 weekDay=Tuesday, season=Summer → 11≤depth ≤20 57% 10% 

10 weekDay=Tuesday → 11≤depth ≤20 57% 14% 

11 11≤depth ≤20 → season=Summer  57% 21% 

12 season=Autumn → 11≤depth ≤20 55% 14% 

13 season=Summer → weekDay=Tuesday  54% 17% 

14 intensity ≤3 → distance ≥150  54% 15% 

15 distance ≤80 → intensity ≥5  52% 19% 

16 distance ≥150 → 1000<population ≤4000 48% 13% 

17 3<intensity ≤4 → 80<distance<150  48% 15% 

18 season=Summer, 11 ≤depth ≤20 → weekDay=Tuesday  48% 10% 

19 weekDay=Tuesday → 1000<population ≤4000 46% 11% 

20 season=Spring → 21≤depth ≤50 46% 14% 

21 intensity ≤3 → 1000<population ≤4000 46% 13% 

22 21≤depth ≤50 → season=Spring  45% 14% 

23 500<population ≤1000 → distance ≤80  43% 11% 

24 season=Spring → 1000<population ≤4000 43% 13% 

25 80<distance<150 → 1000<population ≤4000 43% 15% 
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Out of these 25 rules, the domain expert marked only five rules (ids 1, 8, 14, 

15, 17) as interesting and all others as “noisy” because they describe a 

correlation between attributes/classes that is meaningless in the domain of 

seismology. The system needs a threshold parameter to be defined in order 

to mark some rules as “noisy”. This threshold is the maximum path distance 

from the main “earth tremor” node/class. When this threshold is defined, 

the system retrieves the subgraph of the ontology defined by the “earth 

trermor” node and all the nodes with path distance less or equal to the 

threshold. Every rule that has attributes belonging to that subgraph, will be 

considered interesting while all others will be marked as “noisy”. 

Trying to detect a reasonable threshold in order for the system to retrieve the 

rules that will match the expert’s evaluation, we varied threshold value from 

1 to 5 and computed the rules marked as “noisy” by the system. This is 

illustrated in Figure 6-7. 
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Figure 6-7 Threshold and rules rejected by the system and the seismologist 

According to this experiment we conclude that with threshold 3 the system 

matches expert choices. As such, this threshold can be used by the user for 

the next running of Apriori or can even be stored as meta-data for the 

specific dataset and KDD process for future data mining.  

With the procedure described above we can measure the percentage of the 

rules that will be marked as “noisy” by the system and by the expert, but we 

do not know if these are the same rules i.e. if the rules marked by the 

system are the same with the rules marked by the domain expert (precision). 
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While in our particular experiment we had a perfect match, it is not sure 

that we will have a perfect match each time. 

6.3.4 Discussion 

Using ontologies in the data mining process is an area of recent research 

and its applications could be many. Apart from geosciences, every field that 

has a well defined ontology can use the integrated framework to improve the 

KDD process. For example in the domain of B2B marketplaces, finding 

associations between products is more efficient when using the hierarchies 

defined in the product ontology. Although there is not currently universally 

accepted product ontology, efforts are made to integrate different product 

ontologies (Omelayenko, 2000) towards this end. 

In order to be able to use ontologies in KDD process and to have the results 

available to domain experts, ontologies have to be defined in a common way. 

There are a lot of efforts for ontology matching (Doan, Madhavan, Domingos, 

& Halevy, 2003) and ontology integration (Cui, Jones, & O’Brien, 2002), 

(Pinto & Martins, 2001) and this illustrates the need for an ontology creation 

standard. In this way, exchange and comparison of ontologies describing 

different domains could be possible. Until now, only several domain specific 

ontologies and tools have been developed. 

6.3.5 Extending PatternMiner prototype to support pattern 

evaluation 

The extended system we propose provides both naïve users and domain 

experts functionalities for efficient pattern management and pattern 

evaluation using an ontology discarding the non-useful patterns and thus 

improving the performance of the data mining tasks and the query 

answering over the pattern base. The system is able to evaluate patterns 

before, during and after the data mining process, as well as every time user 

poses a query to the pattern base. The system architecture is depicted in 

Figure 6-8. The ontology validation extension is not integrated into the 

PatternMiner system, and thus it is shown separately. 



 146 

 

Figure 6-8 The proposed ontology-enhanced PBMS architecture 

Independent from data mining engine, the PBMS stores the extracted 

patterns in an XML pattern base. The pattern model used is enhanced to 

support pattern temporal validation and semantically related pattern 

classes. Our extended model defines four logical concepts. Pattern type, 

pattern, class and superclass. 

More specifically, each pattern type contains metadata information about: 

• the data mining algorithm applied to extract the patterns it represents 

and its parameters,  

• the date and time of the data mining process, 

• the validity period, 

• the data source, 

• the mapping function, and finally,  

• information about the structure and the measures of the patterns it 

represents. 

Patterns are instances of pattern types. In our XML architecture, pattern 

types are the XML Schema for a pattern (XML document). At this point 

notice that in the current application, a more PANDA-specific XML schema is 

used instead of an enhanced PMML model to represent patterns. This shows 

that our system does not restrict users to use PMML documents, but every 

well-formed pattern schema that has the basic requirements of the PANDA 

model, can be used. 

The pattern document contains metadata about the data mining process as 

well as the patterns extracted by that process. For example, an association 
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rule pattern instance and its pattern type are shown in Figure 6-9 and 

Figure 6-10, respectively. 

 

 

 

Figure 6-9 Association rule patterns, XML example 

 

<pt_assocRule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="assocRule" 
pt_descr="association rules" pt_id="1" xsi:noNamespaceSchemaLocation="pt_assocRule.xsd"> 
 <pt_metadata> 
  <algorithm>apriori</algorithm> 
 <parameters>min_support=0.1,min_conf=0.4,rules=10</parameters> 
  <source>select * from earthquakes</source> 
  <date>2006/04/12 13:03:34</date> 
  <validity>2006/06/12 13:03:34</validity> 

  <mapping_function>{{‘depth’, ‘magnitude’, ‘season’} ⊆ transaction} 
 </mapping_function> </pt_metadata> 
 <patterns> 
  <pattern p_id="1"> 
   <structure> 
    <body> 
     <attrib>depth</attrib> 
     <attrib_value>0-1</attrib_value> 
    </body> 
    <head> 
     <attrib>magnitude</attrib> 
     <attrib_value>(3,4]</attrib_value> 
    </head> 
   </structure> 
   <measures> 
    <measure_name>support</measure_name> 
    <measure_value>0.18</measure_value> 
    <measure_name>confidence</measure_name> 
    <measure_value>0.67</measure_value> 
   </measures> 
  </pattern> 
  <pattern p_id="2"> 
   <structure> 
    <body> 
     <attrib>season</attrib> 
     <attrib_value>Autumn</attrib_value> 
    </body> 
    <head> 
     <attrib>magnitude</attrib> 
     <attrib_value>(3-4]</attrib_value> 
    </head> 
   </structure> 
   <measures> 
    <measure_name>support</measure_name> 
    <measure_value>0.18</measure_value> 
    <measure_name>confidence</measure_name> 
    <measure_value>0.58</measure_value> 
   </measures> 
  </pattern> </patterns> </pt_assocRule> 
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Figure 6-10 Pattern Type Association Rule XSD diagram 

Apart from the pattern type and pattern concepts, class is defined as a set of 

semantically related patterns of the same pattern type. A class is defined by 

the user to group patterns that have a common meaning and belong to a 

specific pattern type. Each pattern may belong to more than one different 

class. For example a user could define a class containing association rules 

related to seismic activity in the summer of 2003. This class would contain a 

lot of patterns that may belong to different association rule mining result 

sets but it will have the same meaning for the user. Figure 6-11 illustrates 

the pattern base logical model. 

 

Figure 6-11 Pattern Base logical model 
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Furthermore, the concept of superclass is defined, which is a set of classes, 

probably of different pattern types. Thus, patterns belonging to different 

pattern types can be grouped together. For instance, a user might want to 

group all association rules related to seismic activity in the summer of 2003 

and the clusters of faults that gave earthquakes of magnitude M>3 during 

the same time period. The link between the two types would be the 

magnitude of earthquakes. In other words, we are interested in studying the 

relation between earthquakes and geological faults, thus the grouping of 

classes of different pattern types is necessary. 

 

Figure 6-12 Class and Superclass relation 

Ontologies are stored in external files and are written in OWL (Horrocks & 

Patel-Schneider, 2003).  

Since the ontology represents the domain of interest, it has to be well 

designed. In this way, pattern evaluation can be more accurate and may give 

useful results to domain experts. 

Using PatternMiner and domain ontologies the whole KDD process is 

covered. The extracted patterns can be evaluated before storing them in the 

pattern base (or in any other time later), where query posed by the user can 

be evaluated before running in the pattern-base. Queries containing 

concepts that according to the ontology are irrelevant could be discarded – 

notifying - the user decreasing in this way the processing time and load of 

the system. 
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6.4 Synopsis 

In this chapter we presented PatternMiner an open source Pattern Base 

Management System, PatternMiner, which integrates data mining tasks with 

pattern storage and management providing advanced pattern operations 

such as pattern comparison and pattern monitoring over time. PatternMiner 

consists of the following components: WEKA data mining engine, Oracle 

XMLDB pattern base and PANDA comparison, metamining and monitoring 

framework. We described the system architecture and its components. We 

presented a short demo of the system with a its basic functions providing 

some of the system screenshots. 

Finally we presented a way to extend PBMS concept an PatternMiner 

prototype to incorporate domain knowledge through the use of ontologies, in 

order to integrate the pattern evaluation step of the KDD process providing 

the end-users a more powerful tool of pattern extraction, manipulation and 

evaluation. 

As shown from the application scenarios, PatternMiner can provide an 

integrated environment for extracting, storing and comparing patterns of 

every kind, saving valuable time from the experts. 
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7 Conclusions 

In this chapter we summarize the contributions of this thesis and we 

suggest topics for future work. 

 

7.1 Thesis Contributions 

Due to the huge amount of data that is nowadays collected and stored in 

databases in every scientific or commercial domain, data mining applications 

and techniques are used more often in order to discover hidden information, 

groups and associations. The amount of patterns though that are extracted 

from these databases are also huge and in a lot of cases its management is 

not an easy task. End users cannot cope with all the different type of 

patterns that are produced with a variety of software over heterogeneous 

data sources. 

Facing this challenge, we deal with the management of patterns in a Pattern 

Base Management System (PBMS). A PBMS treats patterns the way a DBMS 

treats raw data and using a pattern-base and a pattern-representation 

specific query language. Patterns are rich in semantics compact 

representation of raw data and they can be simple or complex (defined over 

simple patterns). The variety of existing pattern types is big but all patterns 

share common characteristics in the way that they are defined. The unified 

pattern management along with advanced operations over patterns, such as 

pattern comparison, results in a variety of interesting applications. In 

particular, cluster comparison, in the case of this thesis, can be used to 

classify or retrieve images in the context of a Content-based image retrieval 

system. 
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Another important issue when dealing with patterns that have automatically 

extracted using data mining techniques is their evaluation, as not all 

patterns extracted are important or interesting to the end-users. The 

evaluation of extracted patterns is an important but also difficult task. 

Although, using a unified pattern management system along with domain 

knowledge ontologies this task can be supported by software. 

In this thesis, we dealt with the above issues of pattern management. In 

particular: 

- We studied the most proper representation model for a pattern-base, 

based on the pattern definition of the PANDA project. Through a 

qualitative evaluation of three models, the relational, the object-

relational and the semi-structured (XML) model, we concluded that 

the XML model is more appropriate for a pattern-base as it is very 

extensible and provides query effectiveness among other 

characteristics. 

- We dealt with the comparison of crisp clusters, defining new similarity 

measures for density-based clusters, produced by the EM algorithm.. 

We defined a methodology for the comparison of various types of 

data/objects (e.g. images), that includes four steps; feature extraction 

from raw data, clustering of the extracted features, Pattern 

Instantiation and Computation of Pattern Similarities. We evaluated 

these measures and methodology in content-based image retrieval 

applications with very satisfactory results. 

- We dealt also with the comparison of Fuzzy Clusters and in particular 

with intuitionistic fuzzy clustering. More specifically, we introduced a 

novel variant of the Fuzzy C-Means (FCM) clustering algorithm that 

copes with uncertainty in the localization of feature vectors due to 

imprecise measurements and noise and a novel similarity measure 

between intuitionistic fuzzy sets, which is appropriately integrated in 

the clustering algorithm. We also introduced an intuitionistic fuzzy 

representation of color digital images as a paradigm of intuitionistic 

fuzzification of data. To evaluate our approach, we described an 

intuitionistic fuzzification of color digital images upon which we 

applied the proposed scheme. The experimental evaluation of the 

proposed scheme shows that it can be more efficient and more 
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effective than the well established FCM algorithm, especially as the 

number of clusters increases, opening perspectives for various 

applications. 

- We presented PatternMiner, an open-source PBMS prototype, that 

provides an integrated environment for pattern management using 

modules for pattern extraction, storage, retrieval and comparison. 

WEKA data mining tool has been chosen to provide the algorithms for 

pattern extraction. Enhanced PMML XML documents are used to 

store patterns in the XMLDB pattern-base and the extended PANDA 

comparison framework is used to support operations based on 

pattern comparison.  

- We studied the use of ontologies to support the pattern evaluation 

step of the Knowledge Discovery process. Ontologies represent the 

domain knowledge and in this way can be used to evaluate patterns 

extracted with data mining algorithms. We proposed a methodology to 

support this task and we presented a preliminary validation study, 

while we analyzed the way that PatternMiner prototype can be 

extended to support the ontology-based pattern evaluation process. 

7.2 Future work 

Dealing with issues such as pattern management, pattern comparison and 

evaluation, various research challenges arise. More specifically: 

- Future perspectives of the work presented in 3, in combination with 

the pattern evaluation scheme, include the integration of the proposed 

scheme with ontology-based information extraction and data mining 

techniques for the retrieval of medical images using heterogeneous 

data sources. By storing the semantically rich patterns along with 

low-level features in a unified way according to the PANDA framework 

will enable the extension of the CBIR methodologies with knowledge 

representation techniques for semantic processing and analysis. 

- Future perspectives of the work presented in 4 include the systematic 

evaluation of the proposed scheme in comparison with other 

clustering schemes for the clustering of various kinds of datasets after 

appropriately representing them in terms of intuitionistic fuzzy sets 
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theory; it is worth noting that currently, no reference intuitionistic 

fuzzy dataset is available to benchmarking clustering algorithms. 

A challenging issue is the enhancement of the proposed clustering 

scheme so as to take into account not only the membership, but also 

the non-membership of each data vector to a cluster. 

- Regarding the PatternMiner prototype, new components can be added, 

like a visualization module for better interpretation of the results or a 

pattern monitoring module for monitoring and change detection over 

patterns extracted from a dynamic population.  

- Integrating ontologies to the data mining process is not an easy task 

and a lot of issues have to be addressed. Things are complicated due 

to the fact that scientists and companies create ontologies according 

to their needs instead of adopting a universal ontology. There is a 

large number of ontology languages most of them designed for the 

semantic web like RDF (Beckett, 2004), SHOE (Luke & Heflin, 2000), 

DAML, DAML+OIL (Harmelen et al., 2001), OWL (McGuinness, & 

Harmelen, 2005). New ontologies are constructed for various fields 

and applications without centralized guidance and common 

agreement. This is getting even more complex as recent studies have 

indicated semantic and syntactic conflicts between these languages, 

especially between DAML+OIL and OWL (Horrocks & Patel-Schneider, 

2003) (Patel-Schneiderand & Fensel, 2002). Therefore, building a 

system that uses ontologies in the data mining process requires 

choosing a specific ontology language to support.  

- Another important theoretical issue concerns the evaluation of 

various pattern types using ontologies. It is very hard to define 

general rules that apply to all pattern types. We have defined filters 

for association rule mining but depending on the application, filters 

for each pattern type separately have to be defined in order to build a 

system to support the majority of pattern types.  
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