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Why Statistics Is Not Sufficient

 Hypothesize-and-test paradigm is extremely labor-

intensive.

 Extremely large and growing families of interesting spatio-

temporal hypotheses and patterns in ecological datasets. 

 Classical statistics deals primarily with numeric data 

whereas ecological data contains many categorical 

attributes.

 Types of vegetation, ecological events and geographical 

landmarks. 

 Ecological datasets have selection bias in terms of being 

convenience or opportunity samples.

 Not traditional statistical idealized random samples from 

independent, identical distributions.  

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



Benefits of Data Mining

 Data mining provides earth scientist with tools that allow 

them to spend more time choosing and exploring 

interesting families of hypotheses.

 By applying the proposed data mining techniques, some 

of the steps of hypothesis generation and evaluation will 

be automated, facilitated and improved.

 Association rules provide a “new” framework for detecting 

relationships between events.

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 
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Preprocessing

 Must remove seasonality to obtain the “interesting” data.

 12 month moving average

 Smoothes as well as removes seasonality

 Discrete Fourier Transform

 Monthly Z Score 

 Subtract of monthly mean and divide by monthly standard 

deviation

 Singular Value Decomposition
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Removing Seasonality from Atlanta TS

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



Minneapolis Atlanta Sao Paolo

Minneapolis 1.0000 0.0492 0.0906

Atlanta 0.0492 1.0000   -0.0154

Sao Paolo 0.0906 -0.0154 1.0000

Correlations between time series

Seasonality Accounts for Much Correlation

Correlations between time series

Minneapolis Atlanta Sao Paolo

Minneapolis 1.0000 0.7591 -0.7581

Atlanta 0.7591  1.0000   -0.5739

Sao Paolo -0.7581   -0.5739  1.0000

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 
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Clustering for Zone Formation

 Interested in relationships between regions, not “points.”

 For land, clustering based on NPP or other variables, e.g., 

precipitation, temperature.

 For ocean, clustering based on SST (Sea Surface 

Temperature).

 When “raw” NPP and SST are used, clustering can find 

seasonal patterns.

 Anomalous regions have plant growth patterns which

reversed from those typically observed in the hemisphere in

which they reside, and are easy to spot.

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



K-Means Clustering of 
Raw NPP and Raw SST 

 K-Means, Number of Clusters=2

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



Climate Indices

 http://www.cgd.ucar.edu/cas/catalog/climind/

 A Climate Index is a time series of SST, SLP etc

 Climate Indices capture teleconnections

 The simultaneous variation in climate related processes 

over widely separated points on Earth

http://www.cgd.ucar.edu/cas/catalog/climind/


 Find the nearest neighbors of each data point.

 In this case data points are time series. 

 Redefine the similarity between pairs of points in terms of 

how many nearest neighbors the two points share.

 Calculate the density at each point by summing the 

similarities of its nearest neighbors. 

 Identify and eliminate noise and outliers, which are points 

with low density.

 Identify core points, which are points with high density.

 Build clusters around the core points.

Shared Nearest Neighbor (SNN) Clustering

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



 The use of a shared nearest neighbor definition of 

similarity removes problems with varying density, while the 

use of core points handles problems with shape and size.

 Finding clusters of different shapes and sizes, especially 

in the presence of noise is a difficult clustering problem.

 Earth Science data is noisy

 Find the number of clusters automatically. 

SNN Clustering - Advantages

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



SLP Clusters 

26 SNN Clusters of SLP (1982-1993) 
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SNN Density of SLP Time Series Data
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Teleconnections (1/3)

Cluster viewer 

showing land 

regions with 

positive or 

negative 

correlation > 0.2 

with highlighted 

ocean cluster.



Cluster viewer 

showing 

clusters 

correlated 

(> 0.45) to a 

New Zealand 

land point)

Notice cluster 

off the coast of 

western 

Mexico, which 

is negatively 

correlated.

Teleconnections (2/3)



Cluster viewer 

showing land 

points (Temp) 

correlated 

(> 0.34) to a 

cluster off  the 

coast of 

western 

Mexico.
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Types of Spatio-Temporal Association Patterns

Type of Pattern Description

Intra-zone non-sequential relationships among events in the same grid cell or zone, 

ignoring the temporal aspects of the data.

Intra-zone sequential temporal relationships among events occurring within the 

same grid cell or zone.

Inter-zone non-sequential relationships among events happening in different grid cells 

or zones, ignoring temporal aspects of the data.

Inter-zone sequential temporal relationships among events occurring at different 

spatial locations.

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 
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temporal Patterns
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Map agrees with hypothesis that Prec-Hi Fpar-Hi  NPP-Hi occurs 

mostly in shrubland and other type of grassland regions (support  3).

& Shrublands

Land Cover

Intra-zone non-sequential Patterns (1/4)

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



 Solar-Hi  NPP-Hi tends to occur in very cloudy (light limited) areas, like 

the Pacific NW and Canada/Alaska (support  3).

Support Count

Intra-zone non-sequential Patterns (2/4)

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



Prec-Lo Solar-Hi  NPP-Lo tends to occur in drought-prone areas of 

tropical and sub-tropical zones, and areas of major forest fires (support  2).

Support Count

Intra-zone non-sequential Patterns (3/4)

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 



 Temp-Hi  NPP-Hi tends to occur in the forest regions of the northern 

hemisphere (support  4). 

Support Count

Land Cover

Intra-zone non-sequential Patterns (4/4)

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn) 
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 Introduced in S. Shekar et al, SSTD 2001

 Problem: Given a set of boolean spatial features

 find subsets of co-located features, e.g. (fire, drought, vegetation)

 Data - continuous space, partition not natural, no reference feature

 Classical data mining approach: association rules

 But, Look Ma! No Transactions!!! No support measure!

 Approach: Work with continuous data without transactionizing it!

 Co-location patterns may reveal

 Hunter – Chase relationships between species

 Set of required conditions for certain kinds of species to breed

 Correlation between the presence of certain pollutants and human, 

animal deceases

Co-Location Mining (1/5)

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Answers:                          

and  

Can you notice co-location patterns from the following sample dataset?

Co-Location Mining (2/5)

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Can you find co-location patterns from the following sample dataset?

Co-Location Mining (3/5)

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Spatial Co-location

A set of features frequently co-located

Given

A set T of K boolean spatial feature 
types       T={f1,f2, … , fk}

A set P of N locations P={p1, …, pN } in a 
spatial frame work S, pi P is a 
vector <instance-id, feature type,loc>

A neighbor relation R over locations in S

A min-prevalence threshold and a 

min conditional probability threshold

Find

Tc = subsets of T frequently co-located

Reference Feature 

Centric

Window Centric Event Centric

Co-Location Mining (4/5)

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Co-Location Mining (5/5)

Instance ID Location Feature Type

1 (0,0) A

2 (1,2) C

… … …

A C

(3,1) (4,1)

(3,1) (4,2)

(2,3) (1,2)

(2,3) (3,3)

Table instance of  

co-location {A,C}

Initial Records

Participation index
Participation ratio pr(fi, c) of feature fi in co-location 
c = {f1, f2, …, fk}: fraction of instances of fi with
feature {f1, …, fi-1,  fi+1, …, fk} nearby

Participation index (c)= Πpr(fi, c)}

Conditional Probability

Pr.[ {c2} in N(L) | c1 at L ]

Algorithm

Hybrid Co-location Miner

Participation ratio pr(C, {A,C})=4/4=1

(i.e 4 (distinct) out of 4 instances of C 

participate in {A,C})

Participation ratio pr(A, {A,C})=2/4



Outline

 Introduction

 Mining Large Scale Environmental Data

 Preprocessing

 Clustering

 Association Rules

 Mining Medium and Low Scale Ecological Data

 Co-location Mining

 STAMM

 PLUMS

 Regression Trees, Neural Networks, Clustering

 Sensor Networks for Environmental Applications

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



 Citation: Su et al, Ecological Modeling 174 (2004) 421-431 

 Problem: Identify the effect of environmental factors on the 

behavior of living organisms

 Select a set of environmental factors under study

 Place values to corresponding cell of a grid

 The behavior of a living organism is considered as an ecological event 

(EE)

 Approach: Built a Spatiotemporal Assignment Mining Model

 Extracts Ecological Association Rules (EARs)

 EE always appears at the left side of the rule

 Use of Apriori algorithm to extract EARs

STAMM (1/4)



 Step 1: Place a grid on the area of study

 Step 2: For each focus cell identify its neighborhood based on 

prior knowledge

STAMM (2/4)



 Step 3: Construct Ecological Decision Table (EDT)

STAMM (3/4)



 We may include relative spatial relations of environmental 

factors

 Step 4: Run Apriori on EDT

 Obtain EARs of the form

 (ID, θ) ∧ (T, t1) ∧ (AU, 8) ∧ (AF, 5) ∧ (BU, 12) ∧(BF, 17) ∧ (BR− BF, 
15) → (D,Y)

 (chlorophyll,R) ∧ (Position,A) → (fish, assembling)

STAMM (4/4)
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 Problem: predict nesting site in marshes

 given vegetation, water depth, distance to edge, etc. 

 Data - maps of nests and attributes

 spatially clustered nests, spatially smooth attributes

 Classical method: logistic regression, decision trees, bayesian 

classifier

 but, independence assumption is violated ! Misses auto-

correlation !

 Spatial auto-regression (SAR), Markov random field bayesian 

classifier

 Open issues: spatial accuracy vs. classification accurary

 Open issue: performance - SAR learning is slow!

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt

Location Prediction – PLUMS (1/3)



Given:

1. Spatial Framework

2. Explanatory functions:

3. A dependent function

4. A family       of function mappings:

Find: A function 

Objective:maximize

classification_accuracy 

Constraints: 

Spatial Autocorrelation exists

},...{ 1 nssS 

RSf
kX :

}1,0{: SfY

}1,0{...  RR

yf̂

),ˆ( yy ff



Nest locations Distance to open water

Vegetation 

durability

Water depth

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt

Location Prediction – PLUMS (2/3)
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k

New measure:

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt

Location Prediction – PLUMS (3/3)
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 Case Study 1: Lagoon of Venice

 Use of Regression Trees to study the effect of agricaltural activities 

to excessive algal growth

 Similar Story: Danish Lake Glumose

Regression Trees,Neural Nets,Clustering(1/3) 



 Case Study 2: French Lake Preloup

 Use of feed-forward neural networks to predict the distribution of 

fish based on soil characteristics

Regression Trees,Neural Nets,Clustering(2/3) 



 Other…

 Use of K-means to cluster Australian rivers based on 286 

catchments 

[www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-

003.pdf]

 Various clustering algorithms have been tested to extract groups of 

rivers sharing common flow characteristics in Colorando, Oregon, 

Washington

[Stephen et al, Predicting streamflow regime metrics for ungauged 

streams in Colorado, Washington, and Oregon, Journal of 

Hydrology, Volume 325, Issues 1-4, 30 June 2006, Pages 241-

261]

Regression Trees,Neural Nets,Clustering(3/3) 

http://www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-003.pdf
http://www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-003.pdf
http://www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-003.pdf


Issues…

 Study the evolution of environmental, ecological patterns

 SNN clusters may survive, split, merge etc 

 How do teleconnections evolve as SNN clusters change?

 Co-location occurrences may survive or be replaced in different 

time windows, but also they may move one by one or in groups as 

time passes

 How EAR rules change over time? How to detect sequential 

patterns or seasonalities in the behavior of living organisms?

 Extraction of the “interesting” co-location or EAR rules?

 Co-location and EAR rules in Neighborhood Hierarchies, 

automatically - dynamically identified neighborhoods, fuzzy 

neighborhoods?

 Semi-supervised methods tailored for Ecological Data ?
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Why?

 Certain areas of interest may not be easily approachable 

or even hostile for humans to install infrastructures

 ….the installation of mazes of cables and devices in such 

scenarios require excessive infrastructure and 

administrative costs

 Even when this is achieved, subjects of study tend to alter 

their natural behavior due to the presence of observation 

devices



Introduction

 Motes are capable of monitoring a wide variety of ambient 

conditions including:

 Temperature, humidity, pressure, lighting

 Soil makeup

 Noise levels

 Presence of certain kinds of objects as well as location, size, 

direction of movement, speed etc 

 Wireless Sensor Networks utility:

 Scatter cheap, tiny motes in an area of interest

 Perform querying operations

 Obtain reports of physical quantities and species under study

 Support sampling procedures, decision making processes etc 



Mote & Network Features

 Mote Features

 Low Power Supply, Low Power, Low Power...

 Low processing capabilities

 Constrained memory capacity

 Network Features

 Wireless, multi-hop communication using ISM radio zones 

(433MHz – 2,4GHz)

 Ad-hoc network topologies



Sensor Net Sample Apps

Habitat Monitoring Case Studies: 

Storm petrels on great duck 

island, microclimates on James 

Reserve.

Research Projects: 

 Cougar

 Dataspace

 Ocean Drifters:

 ARGO

 NEPTUNE

Source:  Portis et al, Seasonality of the NAO, AGU Chapman Conference, 

2000.



Challenges

 Given sensor readings at different points in the ocean, 

how to

 Perform typical aggregate queries? 

Group by…Having…?

 Identify clusters moving in space and time?

 Extract co-location patterns and study their evolution?

 Continuously report the boundary of undergoing phenomena?

 Continuously detect and report topological relations of undergoing 

phenomena?



Thank you!

Q&A
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