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Why Statistics Is Not Sutticient

Hypothesize-and-test paradigm is extremely labor-
Intensive.

o Extremely large and growing families of interesting spatio-
temporal hypotheses and patterns in ecological datasets.

Classical statistics deals primarily with numeric data
whereas ecological data contains many categorical
attributes.

o Types of vegetation, ecological events and geographical
landmarks.

Ecological datasets have selection bias in terms of being
convenience or opportunity samples.

o Not traditional statistical idealized random samples from
Independent, identical distributions.
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Benetits of Data Mining

Data mining provides earth scientist with tools that allow
them to spend more time choosing and exploring
Interesting families of hypotheses.

By applying the proposed data mining techniques, some
of the steps of hypothesis generation and evaluation will
be automated, facilitated and improved.

Association rules provide a “new” framework for detecting
relationships between events.

Input Data Data
Data Preprocessing ’ Mining

N X

Feature Selection
Dimensionality Reduction
Normalization

Data Subsetting

) Postprocessing = Information

Filtering Patterns
Visualization
Pattern Interpretation
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Preprocessing

Must remove seasonality to obtain the “interesting” data.
o 12 month moving average
Smoothes as well as removes seasonality
o Discrete Fourier Transform
Monthly Z Score

Subtract of monthly mean and divide by monthly standard
deviation

o Singular Value Decomposition
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Seasonality Accounts for Much Correlation
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Correlations between time series Correlations between time series
Minneapolis Atlanta Sao Paolo Minneapolis Atlanta Sao Paolo
Minneapolis 1.0000 0.7591 -0.7581 Minneapolis 1.0000 0.0492 0.0906
Atlanta 0.7591 1.0000 -0.5739 Atlanta 0.0492 1.0000 -0.0154
Sao Paolo -0.7581 -0.5739 1.0000 Sao Paolo 0.0906 -0.0154 1.0000
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Clustering for Zone Formation

Interested in relationships between regions, not “points.”

For land, clustering based on NPP or other variables, e.qg.,
precipitation, temperature.

For ocean, clustering based on SST (Sea Surface
Temperature).

When “raw” NPP and SST are used, clustering can find
seasonal patterns.
o Anomalous regions have plant growth patterns which
reversed from those typically observed in the hemisphere in

which they reside, and are easy to spot.
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K-Means Clustering ot
Raw NPP and Raw SST

K-Means, Number of Clusters=2
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Climate Indices

A Climate Index is a time series of SST, SLP etc
Climate Indices capture teleconnections

o The simultaneous variation in climate related processes
over widely separated points on Earth

Climate Analysis - climate /- global
Section

d:.'lli-l]‘.'l'liCS division
Data Catalog F Ty g g National Center for Atmosphenc Research
CAS Home | Publications | Current Rese ] eatured Topics | Staff | Links | CGD | ESSL |

Climate Indices

North Atlantic Oscillation (NAO) Index from Hurrell (1995): Science 269:676-679

Winter (December through March) index of the NAQO based on the difference of normalized sea level pressures (SLP) between Lisbon, Portugal and Stykddsholmur, Iceland. Other seasons, annual
averages, daily values, and PC-based NAO indices are also available from Jim Hurrell's Climate Indices page.

North Pacific (NP) Index from Trenberth and Hurrell (1994): Climate Dynamics 9:303-319

Area-weighted sea level pressure over the region 30N-65N, 160E-140W.

Atlantic Multi-decadal Oscillation (AMO) from Trenberth & Shea (2006): Geophysical Research Letters 33, 112704, doi:10.1029/2006GL026894 (updated)

Southern Oscillation Index (SOI) from Trenberth (1984): Mornthly Weather Review 112:326-332

The Southern Oscillation Index (SOI) presented here is computed using monthly mean sea level pressure anomalies at Tahiti (T) and Darwin (D). The SOI [T-D] is an optimal index that combines the
Southern Oscillation into one series. These SOI values are slightly different than those calculated by the Climate Prediction Center due to the normalization used. The [T+D] series is a measure small
scale and/or transient phenomena that are not part of the large scale Southern Oscillation.

Nifio Regions 3 and 3.4 SST Indices from Trenberth, K. E. (1997) The Definition of El Nifio. Bulletin of the American Meteorological Societv, 78, 2771-2777. Figures and indices (SST
anomalies) are current through December 1999,

= http://www.cqd.ucar.edu/cas/catalog/climind/
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Shared Nearest Neighbor (SNN) Clustering @ﬂ

Find the nearest neighbors of each data point.
o In this case data points are time series.

o Redefine the similarity between pairs of points in terms of
how many nearest neighbors the two points share.

Calculate the density at each point by summing the
similarities of its nearest neighbors.

ldentify and eliminate noise and outliers, which are points
with low density.

|dentify core points, which are points with high density.
Build clusters around the core points.

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn)



SNN Clustering - Advantages

The use of a shared nearest neighbor definition of
similarity removes problems with varying density, while the
use of core points handles problems with shape and size.

Finding clusters of different shapes and sizes, especially
In the presence of noise is a difficult clustering problem.

o Earth Science data is noisy

Find the number of clusters automatically.

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn)



‘ SLP Clusters

90
A ﬁ\

60 -
5 Ty
5%

A d ¢

30 .,
- L“

latitude
o

-30}

'H

\"

i R : ]
1 ‘d‘ JI.- 'J'; e { :
o b

= 90

-60

80 150 20 0 60 30 0

longitude

30 60 90 120 150 180

60 -

latitude
o

-30¢

-60

-90
-180 -150 -120 -90

60 -30 0
longitude

30 60 90 120 150 180

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn)



Teleconnections (1/3)
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Teleconnections (2/3)
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Teleconnections (3/3)
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Types of Spatio-Temporal Association Pattems%‘“'@u

Type of Pattern

Description

Intra-zone non-sequential

relationships among events in the same grid cell or zone,
ignoring the temporal aspects of the data.

Intra-zone sequential

temporal relationships among events occurring within the
same grid cell or zone.

Inter-zone non-sequential

relationships among events happening in different grid cells
or zones, ignoring temporal aspects of the data.

Inter-zone sequential

temporal relationships among events occurring at different
spatial locations.

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn)
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Intra-zone non-sequential Patterns (1/4)

PREC-HI FPAR-HI ==> NPP-HI

Desent
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 Map agrees with hypothesis that Prec-Hi Fpar-Hi — NPP-Hi occurs
mostly in shrubland and other type of grassland regions (support > 3).
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Intra-zone non-sequential Patterns (2/4)

SOLAR-HI ==> NPP-HI

70 i

9oL I I I I I I I I
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180 Support Count

[ Solar-Hi — NPP-Hi tends to occur in very cloudy (light limited) areas, like
the Pacific NW and Canada/Alaska (support > 3).

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn)



Intra-zone non-sequential Patterns (3/4)

PREC-LO SOLAR-HI ==> NPP-LO
T T T T

90

70 - |
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-180 -140 -100 -60 -20 20 60 100 140

180 gypport Count

Prec-Lo Solar-Hi — NPP-Lo tends to occur in drought-prone areas of
tropical and sub-tropical zones, and areas of major forest fires (support > 2).

V. Kumar: Mining Earth Science Data (http://www-users.cs.umn.edu/~kumar/nasa-umn)



Intra-zone non-sequential Patterns (4/4)

TEMP-HI ==> NPP-HI
T T

Desert
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L Temp-Hi — NPP-Hi tends to occur in the forest regions of the northern
hemisphere (support > 4).
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Co-Location Mining (1/5)

Introduced in S. Shekar et al, SSTD 2001

Problem: Given a set of boolean spatial features
o find subsets of co-located features, e.g. (fire, drought, vegetation)
o Data - continuous space, partition not natural, no reference feature

Classical data mining approach: association rules
o But, Look Ma! No Transactions!!! No support measure!

Approach: Work with continuous data without transactionizing it!

Co-location patterns may reveal
o Hunter — Chase relationships between species
o Set of required conditions for certain kinds of species to breed

o Correlation between the presence of certain pollutants and human,
animal deceases

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Co-Location Mining (2/5)

L1Can you notice co-location patterns from the following sample dataset?

Co-location Patterns — Sample Data
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Co-Location Mining (3/5)

(Can you find co-location patterns from the following sample dataset?
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Co-Location Mining (4/5)

Spatial Co-location
A set of features frequently co-located
Given

A set T of K boolean spatial feature
types T={f,,f5, ..., i}

A set P of N locations P={p;, ..., py }in a
spatial frame work S, p;e P is a
vector <instance-id, feature type,loc>

A neighbor relation R over locations in S
A min-prevalence threshold and a

(a)

Reference Feature
Centric

min conditional probability threshold P I B - S B S 5
Find A B BT F A 1\ """""""""""""""""""
T. = usubsets of T frequently co-located 3 Bis 3
2 c c 2 C 7
! AD C 1
0 |A° 0 |A-"
6 1 2 3 4 5 6o 1 2 3 4 5
(b) (c)

Window Centric

Event Centric

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Co-Location Mining (5/5)

............................................................

Participation index

Initial Records

Participation ratio pr(f;, c) of feature f,in co-location
c ={f,, f,, ..., fi}: fraction of instances of f, with

feature {f, ..., f., f.q, ..., fi} nearby

Participation index (c)= lNpr(f;,, c)}
Conditional Probability
PrJ{c2} inN(L)|clatL]
Algorithm

Instance 1D Location Feature Type
1 (0,0 A
2 (1,2) C
Table instance of
co-location {A,C} A C
(3,1) (4,1)
(3,1) (4,2)
(2,3) (1,2)
(2,3) (3,3)

Participation ratio pr(C, {A,C}H)=4/4=1
(i.e 4 (distinct) out of 4 instances of C

participate in {A,C})

Hybrid Co-location Miner

Participation ratio pr(A, {A,C})=2/4
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STAMM (1/4)

Citation: Su et al, Ecological Modeling 174 (2004) 421-431

Problem: Identify the effect of environmental factors on the

behavior of living organisms

o Select a set of environmental factors under study

o Place values to corresponding cell of a grid

o The behavior of a living organism is considered as an ecological event
(EE)

Approach: Built a Spatiotemporal Assignment Mining Model

o Extracts Ecological Association Rules (EARS)

o EE always appears at the left side of the rule

o Use of Apriori algorithm to extract EARS




' STAMM (2/4)

= Step 1: Place a grid on the area of study

= Step 2: For each focus cell identify its neighborhood based on
prior knowledge




' STAMM (3/4)

= Step 3: Construct Ecological Decision Table (EDT)

U sl ] e e 212
F|R | 1 s 17 ]... . (22|17 32]... e e [ Y|

Do P P T T e cee | oee | 3B ...

| L

Neighborhood - " B T, Behavior T,
{a) b) c) (d)

4 ... |... vew | P18 ...

3 1...1... e |- 330

. wan wna I AT —an e e e . - aa . e P wna - R .
Research area A T B T> Behavior Ts
(e) () (g) (h)

6 I 8 1 5 7 6 12 22 17 32 38 Y
6 b 4 5 2 8 3 18 33 57 43 33 N




STAMM (4/4)

We may include relative spatial relations of environmental
factors

ID T Ay Apo By .. Bpo Ap-Ay Ap-Ar .. Br-By Br-Br D
F T 8 6 12 38 -3 2 5 15 Y
F T 4 3 18 33 -2 6 39 -0 N

Step 4: Run Apriori on EDT
Obtain EARs of the form

a (ID, 8) A (T, t) A (Au, 8) A (AF, 5) A (Bu, 12) A(BF, 17) A (Br— Bk,
15) — (D,Y)

o (chlorophyll,R) 2 (Position,A) — (fish, assembling)
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Location Prediction — PLUMS (1/3)

Problem: predict nesting site in marshes
o given vegetation, water depth, distance to edge, etc.

Data - maps of nests and attributes
o spatially clustered nests, spatially smooth attributes

Classical method: logistic regression, decision trees, bayesian
classifier

o but, independence assumption is violated ! Misses auto-
correlation !

o Spatial auto-regression (SAR), Markov random field bayesian
classifier

o Open issues: spatial accuracy vs. classification accurary
o Open issue: performance - SAR learning is slow!

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Location Prediction — PLUMS (2/3)

Given:
1. Spatial Framework S ={Sy,- St T e s
2. Explanatory functions: 1x, -9 =R 2 Sl
3. A dependent function f, :S—>{01} -} ‘5‘:.5: : | e
4. A family 3 of function mappings: | 4
Rx..xR—->{01} T
Find: A function f,e3 Nest locations ~ Distance to open water

Objective:maximize f f)
classification_accuracy yry

Constraints:

20 30 40 50 &0 70 B0 an ﬂm_203:0 4:ﬂ 5:0 6:ﬂ Hﬂ
Vegetation Water depth
durability

Spatial Autocorrelation exists

S. Shekar: www.cs.umn.edu/~shekhar/talk/ucgis.ppt



Location Prediction — PLUMS (3/3) ﬂ%a!

P Legend
A PP A PlA ® = estlocation
— A = actual nest in pixel
PP New measure:
L B P = predicted nest in pixel
A A A A A A

ADNP(A, P) = > dist(A,, A .nearest(P))
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Regression Trees,Neural Nets,Clustering(1/ 3@5

= Case Study 1: Lagoon of Venice
o Use of Regression Trees to study the effect of agricaltural activities

to excessive algal growth

< 114.01

< 5.86 ~ 5.86

ABio(t+1) = ABio(t+1) = ABio(t+1) =
49.3 & 78.6 —55.5 £ 124.0 15.9 £ 311.0

< 111.0 = 111.0
MABio(t+1) = ABio(t+1) =
0.39 £ 8.33 3.21 &+ 30.4

= Similar Story: Danish Lake Glumose




Regression Trees,Neural Nets,Clustering(2/ 3&

Case Study 2: French Lake Preloup

o Use of feed-forward neural networks to predict the distribution of
fish based on soil characteristics

[ 0+ roach
O+ perch
O+ rudd

0+ gudgeon
O+ pike

_ adult perch

—4




Regression Trees,Neural Nets,Clustering(3/ 3%!

= Other...

o Use of K-means to cluster Australian rivers based on 286
catchments
[www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-

003.pdf]
o Various clustering algorithms have been tested to extract groups of

rivers sharing common flow characteristics in Colorando, Oregon,
Washington

[Stephen et al, Predicting streamflow regime metrics for ungauged
streams in Colorado, Washington, and Oregon, Journal of
Hydrology, Volume 325, Issues 1-4, 30 June 2006, Pages 241-
261]



http://www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-003.pdf
http://www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-003.pdf
http://www.maths.anu.edu.au/research.reports/mrr/02/003/MRR02-003.pdf

Issues...

Study the evolution of environmental, ecological patterns
o SNN clusters may survive, split, merge etc
o How do teleconnections evolve as SNN clusters change?

o Co-location occurrences may survive or be replaced in different
time windows, but also they may move one by one or in groups as
time passes

o How EAR rules change over time? How to detect sequential
patterns or seasonalities in the behavior of living organisms?

Extraction of the “interesting” co-location or EAR rules?

Co-location and EAR rules in Neighborhood Hierarchies,
automatically - dynamically identified neighborhoods, fuzzy
neighborhoods?

Semi-supervised methods tailored for Ecological Data ?
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Sensor Networks for Environmental Applications




Why?

Certain areas of interest may not be easily approachable
or even hostile for humans to install infrastructures

....the installation of mazes of cables and devices in such
scenarios require excessive infrastructure and
administrative costs

Even when this is achieved, subjects of study tend to alter
their natural behavior due to the presence of observation
devices




Introduction

Motes are capable of monitoring a wide variety of ambient
conditions including:

o Temperature, humidity, pressure, lighting
o Soil makeup
o Noise levels

o Presence of certain kinds of objects as well as location, size,
direction of movement, speed etc

Wireless Sensor Networks utility:
Scatter cheap, tiny motes in an area of interest
Perform querying operations
Obtain reports of physical quantities and species under study
Support sampling procedures, decision making processes etc




Mote & Network Features

= Mote Features
Low Power Supply, Low Power, Low Power...

) @

Low processing capabilities
Constrained memory capacity
= Network Features

Wireless, multi-hop communication using ISM radio zones
(433MHz - 2,4GHz)

Ad-hoc network topologies &,\_/,




Sensor Net Sample Apps

Habitat Monitoring Case Studies:
Storm petrels on great duck
island, microclimates on James
Reserve.

Research Projects:

o Cougar

o Dataspace

o Ocean Dirifters:
o ARGO
o NEPTUNE

E=

Source:
2000.



Challenges

Given sensor readings at different points in the ocean,
how to

Q

Perform typical aggregate queries?

Group by...Having...?

Identify clusters moving in space and time?

Extract co-location patterns and study their evolution?
Continuously report the boundary of undergoing phenomena?

Continuously detect and report topological relations of undergoing
phenomena?




‘ Thank you!
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