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Introduction to Semi-supervised learning

m Clustering (unsupervised learning) is applicable in many real
life scenarios

there is typically a large amount of unlabeled data available.

m The notion of good clustering Is strictly related to the
application domain and the users perspectives.

m The use of user input is critical for
the success of the clustering process
the evaluation of the clustering accuracy.

m User input is given as
Labeled data or Constraints
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Motivating semi-supervised learning (I)

B Data are correlated. To recognize clusters, a distance function
should reflect such correlations.

m Traditional clustering methods fail leading to meaningless results
in the case of high-dimensional data

lack of clustering tendency in a part of the defined subspaces or

the irrelevance of some data dimensions (i.e. attributes) to the

application aspects and user requirements

!

‘Learning approaches that use
labeled data/constraints + unlabeled data
have recently attracted the interest of researchers
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- The right clustering may depend
on the user’s perspective.

-> Fully automatic techniques are
very limited in tackling this

problem
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Patterns in Feature Space

m \When can we use constraints?

|
+F

-
" E=n
L L

it

S +Eﬁ'—+

iy

TOO EASY

Don’t need
constraints

2/17/2010

ﬁi+f

JUST RIGHT

Constraints
effective

Mapia XaAkidn, MNav. Meipaiwg

TOO HARD

Can’t use
constraints




"
Clustering under constraints

m Use constraints to

learn a distortion/distance function

m Points surrounding a pair of must-link/cannot-link
points should be close to/far from each other

guide the algorithm to a useful solution

m Two points should be in the same/different clusters
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Defining the constraints

m A set of points X = {Xy, ..., X,} on which sets of constraints
have been defined.

m Must-link constraints
S: {(x;, X;) In X }: x; and x; should belong to the same cluster
m Cannot-link constraints

D: {(x;; X)) In X} : x; and x; cannot belong to the same cluster

m Conditional constraints

O-constraint: the distance between any pair of points in two different
clusters to be at least &

g-constraint: Any node x should have an &-neighbor in its cluster
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Clustering with constraints: Feasibility issues

m Constraints provide information that should be satisfied.

m Options for constraint-based clustering

Satisfy all constraints

m Not always possible: A with B, B with C, C not with A.
munm C
A ‘l-“

m Satisfy as many constraints as possible

Any combination of constraints involving cannot-link constraints is

generally computationally intractable (Davidson & Ravi, ISMB 2000),
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Feasibility under Must-link(ML) and Cannot-link(CL)
constraints

o o o o o o

Form the clusters implied by the ML={CC, ... CC_}
constraints 2 Transitive closure of the ML constraints

ML(x1,x3),

ML(x2,x3),
] ] ] ] ] ] ML(x2,x4),
Xy X X3 X4 X Xg CL(X1, X4)

Infeasible: iff 3h, k : e,(Xx;, X;) : Xx;, x;e CC,
*S. Basu, I. Davidson, tutorial ICDM 2005
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Feasibility under ML and ¢

g-constraint: Any node x should have an &-neighbor in its
cluster (another node y such that D(x,y)< &)

S"={x €S : x does not have an ¢ neighbor}={x5, Xs}
Each of these should be in their own cluster

@] (@) o o ° °

Xl X2 X3 X4 X5 X6 / \
ML(XlIxz)l
ML(X3,X4),
Compute the Transitive Closure on ML={CC, ... CC_} ML(4Xs)

o o o o o o

Xl X5 X3 X4 Xc X6

Infeasible: iff 3/, j : x;,e CC,, x; € S’

*S. Basu, I. Davidson, turorial ICDM 2005
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Clustering based on constraints

m Algorithm specific approaches

Incorporate constraints into the clustering algorithm
m COP K-Means (Wagstaff et al, 2001)
m Hierarchical clustering (1. Davidson, S. Ravi, 2005)
Incorporate metric learning into the algorithm
m MPCK-Means (Basu et al 2003)
m MPCK-Means with local weights (Bilenko et al 2004)
m HMRF K-Means (Basu et al 2004)

m Learning a distance metric (Xing et al. *02)

m Kernel-based constrained clustering (kuilis et al.’05,
Yan et al. 2006)
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COP K-Means (l)
[Wagstalff et al, 2001]

m Semi-supervised variant of K-Means
m Constraints: Initial background knowledge

m Must-link & Cannot-link constraints are used in the

clustering process

Generate a partition that satisfies all the given constraints

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge.
In ICML, pages 577-584, 2001.

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



"
COP K-Means (II)

The algorithm takes in K-Means 7 ™~
a data set (D) Clustering y Q \\\
/

based on

constraints (\
\
- \ /
ea set of must-link N O S
N 7

constraints (Con_.) T\

Y

A 4

Clustering satisfying
user constraints

¢a set of cannot-link
constraints (Con.,.).

B When updating cluster assignments,
we ensure that none of the specified constraints are violated.

m Assign each point d; to its closest cluster C;. This will succeed unless a constraint

would be violated.

If there is another point d_ that must be assigned to the same cluster as d;, but that is already in
some other cluster, or
there is another point d, that cannot be grouped with d; but is already in C, then d, cannot be
placed in C.

m Constraints are never broken. If a legal cluster cannot be found for d;, the empty
partition (f) is returned.
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Example: COP-K-Means

X1, x2 2> ML
Height X1, x3 ->CL
* X3,x5 >CL
X2, x5 >ML
X2 . . o o o
PY Xl [ J ¢ ([ ]
o @Ennnn - TRRREEN] )
X3
°
° e ¢ °
. .
) ° . ¢ ® ® e .
° X5
W;ight
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Hierarchical Clustering based on constraints
[I. Davidson, S. Ravi, 2005]

Instance: A set S of nodes, the (symmetric)
distance d(x,y)=0 for each pair of nodes x and y
and a collection C of constraints

v

m Question: Can we create a dendrogram for S so

that all the constraints in C are satisfied?

Davidson I. and Ravi, S. S. “"Hierarchical Clustering with Constraints: Theory and Practice”, In PKDD 2005
2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



"
Constraints and Irreducible Clusterings

m A feasible clustering C={C,, C,, ..., C,} of a set S is irreducible if no
pair of clusters in C can be merged to obtain a feasible clustering with

k-1 clusters.

If mergers are not
done correctly, the
dendrogram may stop

B X={X,, X5 «euy X}, ~ prematurely

Y:{y11 Yas =eey Yk}’ %/

m Feasible clustering with 2k clusters:
Z={z,, 2,, ..., Z,},

{X1: Y1} {X2s Yobs -0 X Yidh 225 Wi}, {25,005},
W={w,, W,, ..., W, } oo {21 W

m Cl-constraints But then get stuck

V{Xi, Xj}, 17 m Alternative is:
V{Wi, WJ}’ |¢J {X1, Wi, Y1, Yo, s Yih {Xoo Wy, 24, 25, .., 24,

iy, 2 i, j <k | P e
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Usina constraints for hierarchical clusterina

Constraineddgglomerative(5, ML CL) returns Dendrograms, i = Emin ... kmax

Notes: In Step 3 below, the term “mergeable clusters™ 15 used to dencte a pair of clusters whose
merger does not violate any of the given CL constraints. The valvue of £ at the end of the loop 1n
Step 5 gives the value of knin.

1.

hanli

Construct the transitive closwre of the ML constraints (see [4] for an algorithm) resulting 1n
r comnected components My M, .. M
If two points {x, y} are both a CL aud ML constramt then output “INo Solution™ and stop.
[etS, =5 — |U M) Let ke = 74 |51
Construct an initial feasihle clustening with £, clusters consisting of the r clusters My,
. My and a singleton cluster for each point in 51, Set { = bmax.
while (there exists a pair of mergeable clusters) do
(a) Select a patr of clusters € and Oy, according to the specified distance criterion.
(b) Merge £ mto Uy, and remove O (The result 13 Dendrogram:—1.)
)yt =t—1
endwhile

Fig. 2. Agglomeratrve Clustering with ML and CL Constraints

2/17/2010
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MPCK-Means

[Basu et al 2003]

m Incorporate metric learning directly into the
clustering algorithm

Unlabeled data influence the metric learning process

m Objective function

Sum of total square distances between the points and

cluster centroids

Cost of violating the pair-wise constraints

S. Basu, M. Bilenko, R. Mooney. “Comparing and Unifying Search-Based and Similarity-Based Approaches to Semi-Supervised Clustering”. Proceedings
of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, 2003
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Unifying constraints and Metric learning

/'

Generalized K-
means distortion
function

‘]mpckm = Z;(HXi _zuli Hz B Iog(det(A)) +
X; € A

=

j

Violation must-link

constraints
2

fo (X, X)) =Hxi — X,

2/17/2010

Penalty
functions

Violation cannot-link
constraints

fo(x,,x,)=|x" —x" —Hxi —X,

', x "' )is the maximally separated pair of
points in the dataset

Mapia XaAkidn, MNav. Meipaiwg
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MPCK-Means approach

Initialization:
Use neighborhoods derived from constraints to initialize clusters

Repeat until convergence:
1. E-step:
Assign each point x to a cluster to minimize

= distance of x from the cluster centroid + constraint violations
2. M-step:
Estimate cluster centroids y; as means of each cluster

Re-estimate parameters A (dimension weights) of D, to minimize

constraint violations
A=(D (X —p)x; —pi)' -

xXjeX
oJ mpckm __ R - Zwij(xi = Xj) (X _Xj)Tl(li #1;)+
8A i (xi,Xj)eML
+ D WX = X;)(x; _Xj)Tl(li le))_l
(Xi,Xj)eCL
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PrOgaBI‘IStIC !ramework for Semi-

Supervised Clustering [Basu et al 2004]

m Hidden Markov Random Fields:

Unified probabilistic model that

Incorporate pair-wise constraints along with an

underlying distortion measure

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



Bayesian Approach: HMRF
Observed data

P(X/L): Conditional
probability of the
observation set for a given
configuration
P(L): Probability
distribution of hidden
variables

Hi RV .

o;‘:;lf:ter s m Goal of constrained

labels: L clustering: maximize

P(L,X) on HMRF

m P(L,X) = P(L)-P(X|L)

Hidden MRF

S. Basu, M. Bilenko, R. Mooney. “A Probabilistic Framework for Semi-Supervised Clustering”. in Proceedings of
the 22th KDD Conference, August 2004
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Constrained Clustering on HMRF [Basu et al 2004]

Pr(L)_—exp[ ZZ )./‘ Constraint

i potentials

(e

i configuration

Cluster
Pr(X|L)= —exp[ ZD( ot )] distortion

___________________________________________________________________________________________________________________________

Joint

probability I}r(‘L,X):Pr(X | L)—Pr(L)
' —IogPr(L,X)z(ZD(Xi’M.)+sz(i’j)}\

Overall
objective of
constrained

clustering
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MRF potential

B Generalized Potts potential:

Cost of violating
must/cannot link
constraint

\( DA(X X)) it 1 =1, (x;, X J)eML\

N\
~DA (X, %)) if 1 =1,(x;,x;)eCL

V(i, j) = {w,;[D

A, max

0 otherwise

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg

Vo



" JEE— |
HMRF-KMeans: Objective Function

Must Link
violation:
zisl\;:lgft?: n constraint-based

JHMRF :{Z:Sies DA (X, MIJ"'J

Amax DA( Xi ’Xj

Cannot Link

violation: Penalty scaling
constraint- function:
based distance-based
-log P(X]|L)
-log P(L)
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Learning a ﬁlstance metric based on user

constraints

m In semi-supervised clustering the requirement is :

learn the distance measure to satisfy user
constraints.

m Learning a distance measure - different weights are
assigned to different dimensions

Map data to a new space where user constraints are
satisfied

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



"
Distance Learning as Convex Optimization
[Xing et al. '02]

m Goal: Learn a distance metric between the points
In X that satisfies the given constraints

m The problem reduces to the following optimization
problem :

. 2
min , ZHXi —xjHA
(Xi,x;)eML

given that

ZHXi _XjHA >1 A>0

(Xi ,Xj)ECL

E. P. Xing, A. Y. Ng, M. 1. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-
information. In NIPS, December 2002.
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Learning Mahalanobis distance

Mahalanobis distance =
Euclidean distance parameterized by matrix A

I x—Yyllza=(x—y) A(x—Y)

Typically A is the covariance matrix, but we can also
learn it given constraints

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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The Diagonal A Case

m Considering the case of learning a diagonal A

m we can solve the original optimization problem using
Newton-Raphson to efficiently optimize the following

T 3 N D2
(xi,xj)eCL

(Xi ,XJ)EML

Use Newton Raphson Technique:

X" = x = g(x)/g'(x)
g(A)=A-g(A).J"*(A)
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Full A Case: Alternative Formulation

m Equivalent optimization problem

mgx g(A) = ZH Xi = X; ”A

(si,sj)eCL

st. F(A)= D lIx;—x%;lla<1 : C,
(si.sj)eML

A=0 . C,

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



Optimization A|gorithm - Full A Case

m Solve optimization problem using combination of

gradient ascent: to optimize the objective
iterated projection algorithm: to satisfy the constraints

Minimizing a quadratic
objective subject to single
linear constraint > 0(n?2)

Space of all positive
semi definite matrices

\ 4
Iterate
Iterate /’— Project A
A:=argming {||A" - A||p: A" € () }/ into sets
A:=argming {||A" — Al|p : A" € (5} C, and G,

until A converges

A=A+a(Vag(Ad)) v, pe— Gradient
' t
until convergence Step

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



Semi-supervised clustering:
Global vs local weights learning

m \Weights of dimensions are trained to

minimize the distance between must-linked instances

and maximize cannot-linked instances

m Limitation:
Assume a single metric for all clusters

preventing clusters from having different shapes

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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Locally Adaptive Clustering

Each cluster is characterized by different attribute weights
(Friedman and Meulman 2002, Domeniconi 2002)
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Semi-supervised clustering using local
weights

m Solution:
Allow a separate weight matrix, A, for each cluster h

Cluster h is generated by a Gaussian with covariance
matrix A,

Snkens = > [~ |, ~toalaet(a, )

XiEX

m Generalized version of K-Means using different weights
per cluster:

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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MPC-KMeans with local weights

K-Means Must Link violation:
distortion constraint-based

Impckm = ZSES(HX —H, H —Iog(det(A, j Z;QWU
2 Wi

(Xi ,Xj)ECL
Cannot Link
violation: Penalty
constraint- function:
based distance-based
1 5 1

Far(xi,x5) = gl = xl[a,, + glxi - 31/

) f
_f.:'[?‘[{,?“[gj = ”xf _}"':E “A.: _”:!'E'F _x.i'”A..!
', x'',)is the maximally separated pair of points in the dataset according to the /—metric metric.

Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating Constraints and Metric Learning in Semi-Supervised Clustering. In proceedings of the
21st International Conference on Machine Learning (ICML-2004), Banff, Canada, July 2004.
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Kerne‘-gasea ‘earning methods- Main ldea

m Kernel Methods work by:
embedding data in a vector space, P
looking for (linear) relations in such space

m  Much of the geometry of the data in the embedding space
(relative positions) is contained in all pairwise inner products
m Kernel trick: K(x, y) =o(X)-o(y)

The distance computation in P can be efficiently performed in input
space, I.

A A

R om) \
Original space, Iy 5 o (x) Feature space, P

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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Kernel based Semi-supervised clustering

[Kulis et al.’05]

A non-linear transformation, ¢
e maps data to a high dimensional space
e the data are expected to be more separable
e a kernel function k (x, y) computes @(x)-®p(y)

The user gives constraints

0.8+

The appropriate kernel is
created based on constraints

06F Lob

0.4/

J({“}:—l):i Z||<|>(xi)—mc||2— 2 W+ > wy

c=1 X;emn, Xj,XjeML Xj,X;eCL 0.2+
l;i=I; ;i =l
i i

H(I)(X.) — mi’H =A. +B_—-D,_ 0 0.2 0.4 0.6 0.8
A, =0(x)-d(x) =1 B - ‘nl‘ e B0 >¢<x>—‘ KO X)
D, —Zx o O0%) - O(X, )——Zm K(X;,X;)

| |
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Kernel for HMRF-KMeans with squared Euclidean distance

Center of Points in
cluster c cluster /;
K 2
JHMRF:ZZ”Xi_mc” T Z + z
c=1 x;eX; (si,sj)eML (si.sj)eC
s.t.lj=I; s.t.lj=I;

Input Constraint | ]
S':::;_ ';;(ty S':::z_ ';;(ty Cluster size
weighted
. penalties
<L Sh(wr
S, =X, -X,, mput simj]z.lrity matrix ,
where W :+Wij1f(xi,xj)eML
vo—w,if (X,,X,)eCL
Trace(ZTK 2), Now define a matrix Z such that Z., the column c

of “Z, is equal to z/(z." z.)1/2.
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Semi-Supervised Kernel-KMeans

[Kulis et al.’05]

m Algorithm:

Constructs the appropriate kernel matrix from data and
constraints

Runs weighted kernel K-Means
m [nput of the algorithm: Kernel matrix

Kernel function on vector data or
Graph affinity matrix

m Benefits:
HMRF-KMeans and Spectral Clustering are special cases
Fast algorithm for constrained graph-based clustering

Kernels allow constrained clustering with non-linear cluster
boundaries

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



Kaaptlve Eernel-based Semi-supervised

Clustering [Yan, Domeniconi, ECMLO6]

m Kernel function affects the quality of clustering
results

m Critical problem:

learn kernel’s parameter based on the data and the given
constraints (must- and cannot-link)

Integrate constraints into the clustering objective function

Optimize the kernel parameter iteratively during the clustering
process.

B. Yan, C. Domeniconi. An Adaptive Kernel Method for Semi-Supervised Clustering. ECML 2006, Berlin, Germany

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



Adaptive-SS-Kernel-KMeans

Distance from the
cluster centroid

ya \

Jkernel_obj [: ZsieS (H(I)(Xu) o ch) 2

ust Link violation:
constraint-based

3w (D) o) - 60x,)])

s.t.l;=l; Cannot Link
violation:
constraint-
based

j ‘ (I)(Xi) o (I)(XJ)H

Penalty function:
distance-based

H(I)(X.) - mi)H =A,+B,—-D,

Aii - (I)(X') .d)(x') :1 Bcc = ‘ 1‘2 ij,x]-.enc d)(XJ) d)(xj) = ‘ 1‘2 ij,
T, T,
2 2
Dic = —ijenc (I)(Xi) ) (I)(Xj) = —ijenc K(Xi 1 Xj)
a as

Mz’ 12 /2
Gaussian Kernel: k(x,z") = e lle==11"/¢

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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Algorithm: Adaptive-SS-Kernel-KMeans
m Initialize clusters using the given constraints;
t=0
m E-step: Assign each data point x; to a cluster "
SO that Jkermel obj IS minimized

m M-step(1): Re-compute B,
. Zx-,x-.ezrc K(Xj’xj')

= 2
‘”C‘

m M-step(2): Optimize the kernel parameter using the
gradient descent according to the rule:

cC

(new) (old)

OJ
G =G P
m t=t+1 oc

kernel _obj

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



|
d|us!er|ng Basea on constraints &

cluster validity criteria

m Different distance metrics may satisfy the same number
of constraints

m One solution is to apply a different criterion that
evaluates the resulting clustering to choose the right
distance metric

m A general approach should:

Learn an appropriate distance metric to satisfy the
constraints

Determine the best clustering w.r.t the defined distance
metric.

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



Semi-supervised learning framework

[Halkidi et.al, IEEE ICDM 2005]

Data set
Original space

Semi-supervised
learning Framework

Learn the space where
the best partitioning
according to the user
constraints can be
defined

o

05 Cluster 3
Cluster 2
Nl
Cluster 1 e
n-‘/
-05 -

Constraints Must-link constraints

Cannot-link constraints

Cluster 1

" Cluster2
RSt

" Cluster3

20

20

05 40

S:{(X;, X)) in X }: x;and x; should belong to the same cluster

D: {(x;, X;) in X} : x;and x; cannot belong to the same cluster



"
Initializing dimension weights based
on user constraints

m Learn the distance measure to satisfy user constraints

(must-link and cannot-link).

m Different weights are assigned to different dimensions

m Learn a diagonal matrix A using Newton-Raphson to

efficiently optimize the following equation [Xing et al, 2002]

= Dhosf o] s
(Xi,Xj)eD

(Xi,Xj)eS

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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Best weighting of data
dimensions

m W: set of different weightings defined for a set of d data

dimensions.
m W, e W best weighting for a given dataset
if the clustering of data in the d—dimensional space defined by
W, = [wjy, . .., Wig] (w; > 0)
optimizes the quality measure:

given that C; is the clustering for the W; weighting vector.

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg
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Defining dimension weights

m Clustering quality criterion (measure) : evaluates a

clustering, C,, of a dataset in terms of

Its accuracy w.r.t. the user constraints (ML & CL)
its validity based on well-defined cluster validity criteria.

QoC,,.(C) = w-Accuracyy, s (C) + Cluste#rVaIidity(Ci)

significance of the L % of constraints
user constraints satisfied in C, ~ | Ci’s cluster
w.r.t. the cluster

validity.

validity criteria

2/17/2010 Mapia XaAkidn, Mav. Meipaiwg



" JEE
Cluster Validity criteria

m S Dbw —>validity of clustering results in terms of objective criteria

S _Dbw(c) = Scat(c) + Dens_bw(c)

ClusterValidity(C) = (1+S_Db\vv(Ci))'1

Our approach aims to optimize the foIIowinm

QoC.,,.:+(C:) = w-AccuracyS&D(C;)+ (1+S_Dbw(C))™)
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S Dbw definition: Inter-cluster Density (ID)

Dens__bw: Average density in the area among clusters in relation
with the density of the clusters

1 c | _c density(u;)
Dens_bw(c) = c.(c—l)i; jZl:max{denSitY(Vi)’denSitY(Vj)} |

I#]

n” -
_ 0, if d(x,u) > stdev
= z f(x,u) =
densiu ) =) iU et {1, otherwise

where n; = number of tuplesthat belongto the clustersc; and c;,ie.,x, eciuc; S

stdev
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S Dbw definition: Intra-cluster variance

Average scattering of clusters:

LS Jolvi)

Scat(c) = —=
[o(X)|
1 Y
where cf = —Z(XE — Xp)
n k=1

—Pp. . . v _ 1 n
where x isthe p, dimensionof X -ﬁzkzlxk,vxk e X

nN:

ot =3 v) /1

k=1
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Hill climbing procedure: Defining dimension weights

m [nitialize dimension weights to satisfy S and D,
W, ={W|i=1,...,d}

m Cl| , € clustering of data in space defined by W_.

cur
m For each dimension i

Updated W_,. € Increase or decrease the i-th dimension of W,
CICUF
Quallty(WCUF) é QOCCOI’]SU(CICUF)

m If there is improvement to Quality(W,,) Go to step 1

< Cluster data in new space defined by W

m W, € weighting resulting in ‘best’ clustering (correspond to maximum
QOCCOHSU’(CICUI‘))




An iterative semi-

Define dimension weights, W,

Original data > based on constraints Su p ervis ed | earnin g
H approach
Optimize weights based on [Ha”('d' et.al, ICDM h005]
» user constraints and validity
criteria (Hill climbing)
User constraints v
Cluster data in the
new space
|
Present
results to
user
@
User ﬁ%\j\(l\ é | clusteri )
- inal clustering
constraints \(‘\1/2@4: &

M. Halkidi, D. Gunopulos, N. Kumar, M. Vazirgiannis, C. Domeniconi. “A Framework for Semi-supervised Learning based on Subjective and Objective
Clustering Criteria”. in the Proceedings of ICDM Conference, Houston, USA, November 2005
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Clustering Accuracy on UCI datasets.
1
must=5%, canhot=6"%
04 ;
' N\
505" .
2 St
ED,? . :
Zo6 | \
< : 3
3" ] : %
N\ \
| %
- N N\
Frotein  lonosphere  Soybean Iris Spam Diabetes
W K-Means B K-Means+metric[27] BMPCK-Means @k-Means+our approach

UCI repository

The clustering accuracy was
averaged over 10 runs using

randomly selected constraints
(must-link=5% and cannot-link=6% of
points).

Our approach achieves on average
12%, 9% and 6% higher clustering
accuracy than the Naive

K-Means, the Xing et al.’s approach
and MPCK-Means, respectively.

Protein(d=20), lonosphere(d=34),Soybean(d=35), Iris(d=4), Spam(d=57), Diabetes(d=8)




"
Conclusions & Further research
directions

Promising areas In clustering research

Semi-supervised learning
Learning similarity measures
Dimensionality reduction

Nonlinearly separable clusters
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Conclusions & Further research directions

m Promising techniques

Model selection techniques

m learn the best model for your data (regression,
MLE,..)

Advanced similarity measure learning

m local weight learning
m kernel learning
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