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Introduction to Semi-supervised learning

 Clustering (unsupervised learning) is applicable in many real 

life scenarios 

 there is typically a large amount of unlabeled data available.

 The notion of good clustering is strictly related to the 

application domain and the users perspectives.

 The use of user input is critical for

 the success of the clustering process

 the evaluation of the clustering accuracy. 

 User input is given as

 Labeled data or Constraints

Μαρία Χαλκίδη, Παν. Πειραιώς
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Motivating semi-supervised learning (I)

 Data are correlated. To recognize clusters, a distance function 

should reflect such correlations.

 Traditional clustering methods fail leading to meaningless results

in the case of high-dimensional data

 lack of clustering tendency in a part of the defined subspaces or

 the irrelevance of some data dimensions (i.e. attributes) to the 

application aspects and user requirements

Learning approaches that use 

labeled data/constraints + unlabeled data 

have recently attracted the interest of researchers



a user may want the

points in B and C to 

belong to the same 

cluster

(a) (b)

(c)

 The right clustering may depend 

on the user’s perspective.

 Fully automatic techniques are 

very limited in tackling this 

problem
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Patterns in Feature Space
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 When can we use constraints?

TOO EASY

Don‟t need 

constraints

JUST RIGHT

Constraints 

effective

TOO HARD

Can‟t use 

constraints
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Clustering under constraints

 Use constraints to

 learn a distortion/distance function

Points surrounding a pair of must-link/cannot-link

points should be close to/far from each other

guide the algorithm to a useful solution

 Two points should be in the same/different clusters
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Defining the constraints
 A set of points X = {x1, …, xn} on which sets of constraints

have been defined. 

 Must-link constraints

 S: {(xi, xj) in X }: xi and xj should belong to the same cluster

 Cannot-link constraints

 D: {(xi, xj) in X} : xi and xj cannot belong to the same cluster

 Conditional constraints

 δ-constraint: the distance between any pair of points in two different 

clusters to be at least δ

 ε-constraint: Any node x should have an ε-neighbor in its cluster
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Clustering with constraints: Feasibility issues

 Constraints provide information that should be satisfied.

 Options for constraint-based clustering

 Satisfy all constraints

 Not always possible: A with B, B with C, C not with A.

 Satisfy as many constraints as possible

Any combination of constraints involving cannot-link constraints is 

generally computationally intractable (Davidson & Ravi, ISMB 2000), 

A

B

C
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Feasibility under Must-link(ML) and Cannot-link(CL) 

constraints

ML(x1,x3), 
ML(x2,x3), 
ML(x2,x4),
CL(x1, x4)

Form the clusters implied by the ML={CC1 … CCr}
constraints  Transitive closure of the ML constraints

Construct Edges {E} between Nodes based on CL

Infeasible: iff h, k : eh(xi, xj) : xi, xj CCk 

x1 x2
x3 x4 x5

x6

x1 x2
x3 x4 x5

x6

x1 x2
x3 x4 x5

x6

*S. Basu, I. Davidson, tutorial ICDM 2005
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Feasibility under ML and 

S’ = {x  S : x does not have an  neighbor}={x5, x6}

Each of these should be in their own cluster

Compute the Transitive Closure on ML={CC1 … CCr}

Infeasible: iff i, j : xi CCj, xi  S’  

ML(x1,x2), 
ML(x3,x4), 
ML(x4,x5)

ε-constraint: Any node x should have an ε-neighbor in its 

cluster (another node y such that D(x,y) ε)

x1 x2
x3 x4 x5

x6

x1 x2
x3 x4 x5

x6

*S. Basu, I. Davidson,turorial ICDM 2005
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Clustering based on constraints

 Algorithm specific approaches
 Incorporate constraints into the clustering algorithm

 COP K-Means (Wagstaff et al, 2001)

 Hierarchical clustering (I. Davidson, S. Ravi, 2005)

 Incorporate metric learning into the algorithm

 MPCK-Means (Basu et al 2003)

 MPCK-Means with local weights (Bilenko et al 2004)

 HMRF K-Means (Basu et al 2004)

 Learning a distance metric (Xing et al. ’02)

 Kernel-based constrained clustering (Kulis et al.’05, 

Yan et al. 2006)
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COP K-Means (I)
[Wagstaff et al, 2001]

 Semi-supervised variant of K-Means

 Constraints: Initial background knowledge 

 Must-link & Cannot-link constraints are used in the 

clustering process 

 Generate a partition that satisfies all the given constraints

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. 

In ICML, pages 577–584, 2001.
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COP K-Means (II)

 When updating cluster assignments,

 we ensure that none of the specified constraints are violated. 

 Assign each point di to its closest cluster Cj. This will succeed unless a constraint 

would be violated. 

 If there is another point d= that must be assigned to the same cluster as di, but that is already in 

some other cluster, or 

 there is another point d≠ that cannot be grouped with di but is already in C, then di cannot be 

placed in C. 

 Constraints are never broken. If a legal cluster cannot be found for di, the empty 

partition (fg) is returned.

The algorithm takes in 
a data set (D)

•a set of must-link 
constraints (Con=)

•a set of cannot-link
constraints (Con≠).

K-Means 
Clustering 
based on 
constraints

Clustering satisfying 
user constraints
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Example: COP-K-Means

Height

Weight

x1

x2

X1, x2  ML

X1, x3 CL

X3,x5 CL

X2, x5 ML

x3

x5
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Hierarchical Clustering based on constraints
[I. Davidson, S. Ravi, 2005]

 Question: Can we create a dendrogram for S so 

that all the constraints in C are satisfied? 

Instance: A set S of nodes, the (symmetric) 

distance d(x,y)≥0 for each pair of nodes x and y 

and a collection C of constraints

Davidson I. and Ravi, S. S. “Hierarchical Clustering with Constraints: Theory and Practice”, In PKDD 2005
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Constraints and Irreducible Clusterings

 A feasible clustering C={C1, C2, …, Ck} of a set S is irreducible if no 

pair of clusters in C can be merged to obtain a feasible clustering with 

k-1 clusters.

 X={x1, x2, …, xk}, 

Y={y1, y2, …, yk}, 

Z={z1, z2, …, zk}, 

W={w1, w2, …, wk}

 CL-constraints

{xi, xj}, i≠j

{wi, wj}, i≠j

{yi, zj}, ij, j k

 Feasible clustering with 2k clusters: 

{x1, y1}, {x2, y2}, …, {xk, yk}, {z1, w1}, {z2,w2}, 

…, {zk, wk}

But then get stuck

 Alternative is: 

{x1, w1, y1, y2, …, yk}, {x2, w2, z1, z2, …, zk}, 

{x3, w3}, …, {xk, wk}

If mergers are not 
done correctly, the 

dendrogram may stop 
prematurely
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Using constraints for hierarchical clustering
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MPCK-Means
[Basu et al 2003]

 Incorporate metric learning directly into the 

clustering algorithm

 Unlabeled data influence the metric learning process

 Objective function

 Sum of total square distances between the points and 

cluster centroids

 Cost of violating the pair-wise constraints

S. Basu, M. Bilenko, R. Mooney. “Comparing and Unifying Search-Based and Similarity-Based Approaches to Semi-Supervised Clustering”. Proceedings 

of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, 2003
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Unifying constraints and Metric learning
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MPCK-Means approach
Initialization:

 Use neighborhoods derived from constraints to initialize clusters

Repeat until convergence:

1. E-step:

 Assign each point x to a cluster to minimize

 distance of x from the cluster centroid + constraint violations

2. M-step: 

 Estimate cluster centroids μli as means of each cluster

 Re-estimate parameters A (dimension weights) of DA to minimize 

constraint violations

0
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Probabilistic framework for Semi-

Supervised Clustering [Basu et al 2004]

 Hidden Markov Random Fields:

Unified probabilistic model that

 incorporate pair-wise constraints along with an 

underlying distortion measure
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Bayesian Approach: HMRF 

 Goal of constrained 

clustering: maximize 

P(L,X) on HMRF

 P(L,X) = P(L)P(X|L)

l1

l2

l4
l5

l3

l6

x1

x2

x4
x5

x3

x6

Observed data

Hidden MRF

Hidden RVs 
of cluster 
labels: L

P(L): Probability 
distribution of hidden 
variables

P(X/L): Conditional 
probability of the 
observation set for a given 
configuration

S. Basu, M. Bilenko, R. Mooney. “A Probabilistic Framework for Semi-Supervised Clustering”. in Proceedings of 
the 22th KDD Conference, August 2004
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Constrained Clustering on HMRF [Basu et al 2004]
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MRF potential

 Generalized Potts potential:
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HMRF-KMeans: Objective Function
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Learning a distance metric based on user 

constraints

 In semi-supervised clustering the requirement is :

 learn the distance measure to satisfy user 

constraints.

 Learning a distance measure  different weights are 

assigned to different dimensions

 Map data to a new space where user constraints are 

satisfied
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 Goal: Learn a distance metric between the points 

in X that satisfies the given constraints

 The problem reduces to the following optimization 

problem :





ML)x,x(
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given that

Distance Learning as Convex Optimization
[Xing et al. ‟02]

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-
information. In NIPS, December 2002.
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Learning Mahalanobis distance

Mahalanobis distance =

Euclidean distance parameterized by matrix A

)yx(A)yx(||yx|| T2

A    

Typically A is the covariance matrix, but we can also 

learn it given constraints
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Example: Learning Distance Function

Cannot-link

Must-link

Space 
Transformed by 
Learned Function
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The Diagonal A Case

 Considering the case of learning a diagonal A

 we can solve the original optimization problem using 

Newton-Raphson to efficiently optimize the following 
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Use Newton Raphson Technique: 

x’ = x – g(x)/g’(x)

g(A’)=A-g(A).J-1(A)
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Full A Case: Alternative Formulation

 Equivalent optimization problem

2
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Optimization Algorithm - Full A Case

 Solve optimization problem using combination of

 gradient ascent: to optimize the objective

 iterated projection algorithm: to satisfy the constraints

Minimizing a quadratic 
objective subject to single 
linear constraint  O(n2)

Gradient 
step

Project A 
into sets 
C1 and C2

Space of all positive 
semi definite matrices
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Semi-supervised clustering: 
Global vs local weights learning

 Weights of dimensions are trained to 

minimize the distance between must-linked instances

and maximize cannot-linked instances

 Limitation:

Assume a single metric for all clusters

preventing clusters from having different shapes
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Locally Adaptive Clustering

yxyx wwww 1111   ),,(  xyyx wwww 2222   ),,( 

Each cluster is characterized by different attribute weights

(Friedman and Meulman 2002, Domeniconi 2002)
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Semi-supervised clustering using local 
weights

 Solution:

 Allow a separate weight matrix, Ah, for each cluster h

 Cluster h is generated by a Gaussian with covariance 

matrix Ah
-1

 Generalized version of K-Means using different weights 

per cluster:
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MPC-KMeans with local weights
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Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating Constraints and Metric Learning in Semi-Supervised Clustering. In proceedings of the 

21st International Conference on Machine Learning (ICML-2004), Banff, Canada, July 2004. 

(xli, x  li) is the maximally separated pair of points in the dataset according to the li-metric metric.
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Kernel-based learning methods- Main Idea

 Kernel Methods work by:

embedding data in a vector space, P

 looking for (linear) relations in such space

 Much of the geometry of the data in the embedding space 

(relative positions) is contained in all pairwise inner products

 Kernel trick: K(x, y) =θ(x)·θ(y)

The distance computation in P can be efficiently performed in input 

space, I.

X  φ(χ) 

f(  )

f(  )

f(  )
f(  )f(  )

f(  )

f(  )
f(  )

f(.)
f(  )

f(  )

f(  )

f(  )
f(  )

f(  )

f(  )

f(  )
f(  )

f(  )

Feature space, POriginal space, I
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Kernel based Semi-supervised clustering

The user gives constraints 

The appropriate kernel is 

created based on constraints
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A non-linear transformation, φ

• maps data to a high dimensional space

• the data are expected  to be more separable

• a kernel function k (x, y) computes φ(x)φ(y)

[Kulis et al.’05]
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Kernel for HMRF-KMeans with squared Euclidean distance
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Semi-Supervised Kernel-KMeans
[Kulis et al.’05]

 Algorithm:

 Constructs the appropriate kernel matrix from data and 

constraints

 Runs weighted kernel K-Means 

 Input of the algorithm: Kernel matrix

 Kernel function on vector data or

 Graph affinity matrix

 Benefits:

 HMRF-KMeans and Spectral Clustering are special cases

 Fast algorithm for constrained graph-based clustering

 Kernels allow constrained clustering with non-linear cluster 

boundaries
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Adaptive Kernel-based Semi-supervised 
Clustering [Yan, Domeniconi, ECML06]

 Kernel function affects the quality of clustering 

results

 Critical problem: 

 learn kernel‟s parameter based on the data and the given 

constraints (must- and cannot-link)

 Integrate constraints into the clustering objective function

 Optimize the kernel parameter iteratively during the clustering 

process. 

B. Yan, C. Domeniconi. An Adaptive Kernel Method for Semi-Supervised Clustering. ECML 2006, Berlin, Germany
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Adaptive-SS-Kernel-KMeans
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Algorithm: Adaptive-SS-Kernel-KMeans

 Initialize clusters using the given constraints; 

t=0

 E-step: Assign each data point xi to a cluster πc
(t) 

so that Jkernel_obj is minimized

 M-step(1): Re-compute Bcc
(t)

 


Cjj xx jj

C

cc xxKB


 ', '2
),(

1

 M-step(2): Optimize the kernel parameter using the 

gradient descent according to the rule:

 t=t+1 




obj_nelker)old()new(
J
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Clustering based on constraints &

cluster validity criteria

 Different distance metrics may satisfy the same number 

of constraints

 One solution is to apply a different criterion that 

evaluates the resulting clustering to choose the right 

distance metric

 A general approach should:

 Learn an appropriate distance metric to satisfy the 

constraints

 Determine the best clustering w.r.t the defined distance 

metric.



Semi-supervised learning framework
[Halkidi et.al, IEEE ICDM 2005]

Learn the space where 

the best partitioning

according to the user 

constraints can be 

defined

Constraints

Data set

Original space

Semi-supervised 

learning Framework

Must-link constraints

S: {(xi, xj) in X }: xi and xj should belong to the same cluster

Cannot-link constraints

D: {(xi, xj) in X} : xi and xj cannot belong to the same cluster
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Initializing dimension weights based 

on user constraints

 Learn the distance measure to satisfy user constraints

(must-link and cannot-link).

 Different weights are assigned to different dimensions

 Learn a diagonal matrix A using Newton-Raphson to 

efficiently optimize the following equation [Xing et al, 2002]
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Best weighting of data 

dimensions

 W: set of different weightings defined for a set of d data 

dimensions.

 Wj  W best weighting for a given dataset

 if the clustering of data in the d−dimensional space defined by

Wj = [wj1, . . . , wjd] (wji > 0)

optimizes the quality measure:

QoCconstr(Cj) = optimi=1,...,m{QoCconstr(Ci)}

given that Cj is the clustering for the Wj weighting vector.
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Defining dimension weights

 Clustering quality criterion (measure) : evaluates a 

clustering, Ci, of a dataset in terms of

 its accuracy w.r.t. the user constraints (ML & CL) 

 its validity based on well-defined cluster validity criteria. 

QoCconstr(Ci) = w·AccuracyML&CL(Ci) + ClusterValidity(Ci)

% of constraints 

satisfied in Cj
Ci’s cluster 

validity.

significance of the 

user constraints 

w.r.t. the cluster 

validity criteria
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Cluster Validity criteria

 S_Dbwvalidity of clustering results in terms of objective criteria

ClusterValidity(Ci) = (1+S_Dbw(Ci))
−1

Our approach aims to optimize the following form:

QoCconstr(Ci) = w·AccuracyS&D(Ci)+ ClusterValidity(Ci)(1+S_Dbw(Ci))
−1)

S_Dbw(c) = Scat(c) + Dens_bw(c)
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S_Dbw definition: Inter-cluster Density (ID)
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Dens_bw: Average density in the area among clusters in relation 

with the density of the clusters
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S_Dbw definition: Intra-cluster variance

Average scattering of clusters:
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Hill climbing procedure: Defining dimension weights

 Initialize dimension weights to satisfy S and D,

Wcur = {Wi | i = 1, . . . , d}

 Clcur clustering of data in space defined by Wcur.

 For each dimension i

1. Updated Wcur.  Increase or decrease the i-th dimension of Wcur

2. Clcur Cluster data in new space defined by Wcur.

3. Quality(Wcur)  QoCconstr(Clcur)

 If there is improvement to Quality(Wcur) Go to step 1

 Wbest,  weighting resulting in „best‟ clustering (correspond to maximum 

QoCconstr(Clcur))



Define dimension weights, W, 

based on constraints

Optimize weights based on 

user constraints and validity 

criteria (Hill climbing)

Present 

results to 

user

User 

constraints

Cluster data in the 

new space

Final clustering

Original data

An iterative semi-

supervised learning 

approach
[Halkidi et.al, ICDM 2005]

User constraints

M. Halkidi, D. Gunopulos, N. Kumar, M. Vazirgiannis, C. Domeniconi. “A Framework for Semi-supervised Learning based on Subjective and Objective 

Clustering Criteria”. in the Proceedings of ICDM Conference, Houston, USA, November 2005
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Data projected to 
the learned space

Data projected to 
the original space

must-link

cannot-link

clustering results in the 

new space
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Clustering Accuracy on UCI datasets.

UCI repository

Protein(d=20), Ionosphere(d=34),Soybean(d=35), Iris(d=4), Spam(d=57), Diabetes(d=8)

The clustering accuracy was 

averaged over 10 runs using

randomly selected constraints 
(must-link=5% and cannot-link=6% of 

points). 

Our approach achieves on average

12%, 9% and 6% higher clustering 

accuracy than the Naive

K-Means, the Xing et al.’s approach 

and MPCK-Means, respectively.
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Conclusions & Further research 

directions

Promising areas in clustering research

Semi-supervised learning

Learning similarity measures

Dimensionality reduction

Nonlinearly separable clusters
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 Promising techniques

Model selection techniques

 learn the best model for your data (regression, 

MLE,..) 

 Advanced similarity measure learning 

 local weight learning

 kernel learning 

Conclusions & Further research directions
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