From Trajectories

to Semantic Mobility Networks -
Hands-On SBO survey dataset

UNIPI-InfoLab-TR-2015-02, Technical Report Series
Information Management Lab (InfoLab)
Department of Informatics

University of Piraeus

Stelios Sideridis
Nikos Pelekis
Yannis Theodoridis

March 2015

Table of Contents

From Diaries and GPS logs to Semantic Mobility TImelinescccvveiviiiieiiniiiie e, 4
THE “GPS data’ ...ttt ettt e st e et e st e e s b e e s bt e e e bt e s an e e e nnreeea 4
The Semantic Trajectory Databaseoucuiiiiiiiiie e aaeee s 7

Semantic reconstruction in Hermes MODooiiiiiiiiiiiiiiiiiie e 10
THE DHAMIES ettt ettt e sa bt e e bt e e e b b e e e b et e e bt e e e bt e e e bt e e s b e e e e b e e e eareesnnees 12
The SEMaANtIC TraJeCtory CUDEoii et e e e s e e e e s aaees 17
On the classification/prediction of episOdes’ tagScceeceeriieiieiieeiiecee e e 19
EXPIOring SBO SUIVEY dataSetceiiicuiiieeiiiiee ettt e e e s e s e e s s e e e e s naeee e e nanees 20

Querying the Semantic Trajectory Databasecccueiiiiciiiie e 20

Analyzing the Semantic Trajectory Database/Cube.........cccceovieeeuveeeceeiecieeeee e 34

R T EIINCES .ttt e et e e e e et e e e e et e e s e e e e s e et e aereaea e s e eanaereeaaaereeenaarennnaaaanes 41

From Diaries and GPS logs to Semantic Mobility Timelines

This document describes the SBO survey dataset, its transformation to semantic mobility timelines
(NOTE: in the sequel, we may use the term semantic trajectory (episode) but we mean semantic
mobility timeline (semantic trajectory, respectively)), as defined by (Pelekis et al. 2013). The report also
includes a case study upon this unique dataset that also stands as a hands-on experience describing the
framework of a data-type system for semantic trajectories with its associated query language, as
envisioned in (Pelekis et al. 2013).

All the work has been done by extending the HERMES MOD environment (URL:
http://infolab.cs.unipi.gr/hermes/).

The initial dataset is composed of two sources of data. The ‘GPS data’, which are GPS records per user
derived from their gps-enabled devices; and ‘Diaries’ in which each user documented semantic
information about his/her trips. A trip for a user is a movement from a point A to another point B for a
specific purpose. This document focuses on a subset from the above sources that corresponds to 186
users who documented their trips.

The ‘GPS data’

The total number of unprocessed (raw) gps records is 7698808, meaning an average of 41391.44 gps
records per user. These gps records covering a period of 730 days, from 13-4-2006 to 14-4-2008.Each
gps record is tagged with a number showing the trip in which the gps record belongs to. The gps records
were already tagged with trip numbers. The total number of trips is 3474 meaning an average of 18.677
trips per user. Moreover every gps record has a gps validity letter (‘A’ for valid gps records and ‘V’ for
not valid, validity had to do with the number of satellites being at least 3 for signal stability.

These gps records were processed to produce trajectories as follows:

We take into account only valid gps records so we have 7599702 gps records to process. Then a simple
reconstruction algorithm was used to group gps records into trajectories (meaningful subsequences of
gps records) per user. In detail, a new trajectory for the user is created when a spatial or a temporal
threshold is exceeded, when examining successive gps records. Obviously these thresholds identify
corresponding spatial or temporal gaps between successive gps records. The used parameters were
5000 meters for spatial threshold, and 4 hours for temporal threshold. This simple algorithm orders in
time gps records for each user. Then iterates through these gps records and if space or time constraint
between two consecutive gps records is met then a new trajectory is formed. Additionally, any
consecutive gps records that have the same spatial position (or temporal, more rarely) are discarded.

The above is executed through the following procedure code (its explanation follows in the next
section):

begin
sem_reconstruct.reconstructtrajectories(‘belg_users_gps’, 4326, ‘sem_mpoint’, 5000, 14400);
end;

http://infolab.cs.unipi.gr/hermes/

The algorithm outputted 1709 trajectories consisting of 3542205 gps records, meaning that we had
many consecutive gps records that had the same spatial position. From those trajectories only 1698
were valid (i.e. those having more than one gps records) corresponding to 3542194 gps records. This
gives an average of2086.0977 points per trajectory. Total number of segments is 3540496. The above
trajectories give an average of 9.129 trajectories for each user. The total length of the 1698 trajectories
is 50313133.007449 meters meaning an average of 29630.82038 meters per trajectory. The average
speed for the 1698 trajectories is 7.000565 m/s.

Those trajectories cover a rectangle space with Minimum Bounding Rectangle (MBR): [(2.598423,
49.926288), (5.878673, 52.351493)].

The following diagrams give a more graphical/statistical description of the produced raw trajectory

database.
450
200 avdg. 29.63082
350 std: 37.50661
o
=300
@m 250
=
2200
F 150
‘-'100 m ||||| \ | | | | .|l|| || 1] h Ll
50_ ||| |l|| ||||
0
iy =R B R\ N e B B B~ Gl = R o B - AR i o G A
DN AN aRg o8 m N N0 QMO0 oMM
\—c\—cNmmqmmwwhwwmaa::gmmgﬂﬂg
trajectory
90
<0 avg: 2.354805
std: 3.905839
70
o
£ 60
=
o 50
-
= 40
o
E 30
=,
20
10 J : N |||||I|] N P T || | | | ||||
0
TEINMERY LRI YIRS RY RN ST QMmO O
O N RN~ T OB m T - =R = R L I R)
trajectory

1
450

6971
9/51
— ETST
0SpT m
18€T
beeT
1971
— 8611
GETT
= 2/0T
6001
9v6
€88
078
52
69
1€9 u
896
506
e
6/€
9re
€57
= 06T N
| 1zr
9
T

T
400

avg: 25.20204
std: 24,0588

|
.
T
350

T
300

250

trajectory

200

150

100

L

50

_
o o o o o o o o
=t ™~ o o sl =t ~ o o o o o O o O O 9O
-l — — (=] [£] P~ [{a) L = m ™~ -l

160

avg_speed (km/hours) duration (hours)

length (km)

The Semantic Trajectory Database

Before describing the ‘Diaries’ dataset and the way we processed it, let us first describe the Semantic
Trajectory Database, and the required data types that were used in our schema. A semantic trajectory is
considered as a time-ordered set of objects called episodes. Each episode is characterized as a MOVE
when the person of the trajectory is moving from a place to another or as a STOP when the person is
considered stationery. Additionally, each episode has semantic information about the person's activity
during the episode. Also there is a link between each episode and the corresponding raw sub-trajectory
(sequences of <x, y, t>). The word sub-trajectory emphasizes the fact that the whole person's trajectory
is broken into sub-trajectories (episodes).

EPISODES

BELG_SEM_TRAJS TS
SEM_TRAJECTORY | SEMTRAJ_ID
SEM_TRAJECTORY_TAG
[sem_rrasecromy 7 SBID
[SEM_EPISODE TAB | SEM_EPIS ODE : [Set] |

ACTIVITY_TAG
DEFINING_TAG
SEM_EPISODE | EPISODE_TAG

Mee -~

TLINK

L (oot maxpoint
= MINPOINT

[oo
TRAIID

SUBTRALID

SUB_MPOINT

BELG_SUB_MPOINTS

A

ISUB_MO\/ING_POINT SUBCRMOVIBIE - BT

Legend:

SRID
MOVING_POINT | TRAI_ID

DatabaseT able DataType | | u_TaB

I
|

Figure 1: Semantic Trajectory Database Schema

In the above diagram we see two object tables 'BELG_SEM_TRAIJS' and 'BELG_SUB_MPOINTS' along with
the definitions of the objects, holding all the produced information. Every object has already a number
of useful methods that will be continuously expanded.

e SUB_MOVING_POINT: has all the methods of MOVING_POINT object (i.e. the trajectory
datatype in HERMES) plus a method getsemmbb() which returns its MBB as a SEM_MBB object.
e SEM_MBB has the following methods:

o sem_mbb(geomsdo_geometry, period tau_tll.d_period_sec): This function takes as input
a geometry object (other than point or line) and a time period. It constructs a sem_mbb
instance that is returned. Default constructor also has two parameters so be careful.

o area(srid): returns the spatial area of the MBB
o duration(): returns the temporal area of the MBB
o getrectangle(srid): returns the MBR as an MDSYS.GEOMETRY object

o intersects(inmbbsem_mbb): This function takes as input another sem_mbb object. It
checks whether the intersection between the two sem_mbb objects in all dimensions
(i.e. x, y, t) is the empty set or not. If not, it returns true otherwise it returns false.

e SEM_EPISODE:

o duration(): returns the temporal area of the episode

sim_episodes(e sem_episode, dbtable varchar2, indxprefix varchar2:=null, lamda
number:=0.5, weight number_array:=(0.333,0.333,0.333)): This function takes as input
another sem_episode object, a dataset table for calculating required global values, an
optional index prefix if such an index (i.e. STB-tree) has been built, an optional value for
the A (i.e. lamda) parameter and an optional 3 number array for the w (i.e. weight)
parameter. It returns a number that defines the distance between this episode object
and the input episode e.

e SEM_TRAJECTORY

O

O

num_of_stops(): returns the number of STOP episodes it contains
num_of_moves(): returns the number of MOVE episodes it contains

num_of _episodes(tag varchar2, distinct varchar2): This function takes as input a "tag"
string (less than 1000 chars) of the form "tagl+tag2+....+tagn" (i.e. implying a
concatenated set of (sub-)strings), and a "distinct" string that can be either "yes" or "no"
(i.e. implying a boolean flag). It returns the number of episodes (distinct or not,
depending on the use of the flag) of the semantic trajectory that includes tags LIKE the
given ones. In this case, “LIKE” implies pattern-matching per input tag#.

getMBB(): returns the MBB of the semantic trajectory
sem_stops(): returns the STOP episodes as a nested table object
sem_moves():returns the MOVE episodes as a nested table object

episodes_with(tag varchar2) return sem_episode_tab: This function takes as input a
"tag" string (less than 1000 chars) of the form "tagl+tag2+....+tagn" (i.e. implying a
concatenated set of (sub-)strings). It returns a nested table of those episodes that have
tags LIKE the given ones. In this case, “LIKE” implies pattern-matching per input tag#. In
case where an episode matches multiple times with some input tags, thisis returned
only once. A null collection is returned when none episode is found.

confined_in(geomsdo_geometry, period tau_tll.d_period_sec, tag varchar2): This
function takes as input a spatial geometry, a temporal period and a "tag" string (less
than 1000 chars) of the form "tagl+tag2+....+tagn" (i.e. implying a concatenated set of
(sub-)strings). It returns a sem_trajectory object, whose episodes are overlapping: a)
spatially with the “geom” parameter, b) temporally with “period” parameter and
textually with the “tag” parameter. If one or more of the three paramaters is null, then
the function assumes that no confinement is requested in the corresponding dimension,
as such it continues with the rest. In other words, if (for instance) the “geom” is null
then the function uses it as the user gave the MBR of the whole semantic trajectory.
Similarly, if the “period” is null then the function uses it as the user gave the period of
the whole lifespan of the semantic trajectory. If “tag” is null, it is like the user requests
for all possible tag matchings (i.e. like giving the “%"” wild character as input) If none
such episode is found, then a semantic trajectory is returned with an empty nested
table of episodes.

sim_trajectories (trsem_trajectory, dbtable varchar2,indxprefix varchar2:=null, lamda
number:=0.5, weight number_array:=(0.333,0.333,0.333)): This function takes as input
another sem_trajectory object, a dataset table for calculating required global values, an
optional index prefix if such an index (i.e. STB-tree) has been built, an optional value for

the A (i.e. lamda) parameter and an optional 3 number array for the w (i.e. weight)
parameter. It returns a number that defines the spatio-textual distance between this
semantic trajectory object and the input semantic trajectory.

Note that with a slight modification each episode may hold multiple values on its semantic fields (e.g.
episode_tag and activity tag, or even a sequence of probabilities). With this Semantic Trajectory
Database (STD) in hand, we can pose many useful queries and apply many algorithms that contain any
combination of spatial, temporal and semantic predicates. For the moment we have implemented the
following variations of range queries:

e stb _range_episodes(episodeType, geometry): returns episodes of type episodeType (e.g. STOP
or MOVE) that intersect the given geometry.

e stb _range_episodes(episodeType, temporalPeriod): returns episodes of type episodeType (e.g.
STOP or MOVE) that intersect the given temporal period.

e stb _range_episodes(episodeType, geometry, temporalPeriod): returns episodes of type
episodeType (STOP or MOVE) that intersect a geometry and a temporal period.

e stb _range_episodes(fromGeometry, toGeometry, temporalPeriod): returns MOVE episodes that
started (ended) from (to) the fromGeometry (toGeometry) geometry, respectively, inside the
given temporal period.

e stb_range_episodes(from_stopsem_episode, to_stopsem_episode,
via_movesem_episode, stbtreeprefix varchar2) return sem_episode_tab: This method returns
MOVE episodes. It takes as input arguments three episodes. The returned MOVE episodes obey
to the input parameters, that is, they begin from the from_stop episode, they end to the to_stop
episode and they have similar attributes as the via_move episode. Input episodes can be null,
meaning that the corresponding constraint is not applied. For example, if the from_stop episode
is null, then this method would return all move episodes from the dataset that ended to the
to_stop episode, after having moved according to the via_move episode. Moreover, each input
episode can have its text or its spatio-temporal attributes set to null, meaning again that no
corresponding constraint is applied. For example,the from_stop episode parameter can have its
spatiotemporal attribute (sem_mbb) set to null and the to_stop episode can have all or some of
its text attributes (i.e. defining_tag, episode_tag or activity_tag) set to null, while the via_move
is null. In this case, the method returns MOVE episodes that began from the from_stop episode,
where only text constraints are applied (e.g. Home, eating), went to the to_stop episode, where
only spatiotemporal and some text constraints are applied (e.g.areaX, Work), using any in-
between existing MOVE episode in the dataset.

e stb_patterns (inputepisodes, inputchars, stbtreeprefix) return integer_nt: This method returns
integers corresponding to semantic trajectory identifiers that follow a spatio-temporal-textual
pattern. The returned semantic trajectories follow the movement pattern described by the
arguments inputepisodes and inputchars. The argument inputepisodes holds the sequence of
episodes in time order that constitute the pattern to be examined (e.g. episodel, episode2,
episode5). Each episode in the sequence may have its textual attributes or its spatiotemporal
attributes set or not (null), meaning that an attribute must be taken or not into account when
current episode is examined. Additionally, between two consecutive episodes in the input
sequence, others episodes that need not to be examined may exist. This is realized with the use
of the inputchars argument, which is an array of characters each of which can be either ‘>’ or **’.

This array is synchronized with the array of episodes (i.e. inputepisodes), as it implies whether
two given episodes should be consecutive or not (i.e. others are in-between them). More
specifically, when the >’ character is found, then the two episodes must be consecutive in the
returned trajectory, while when the ‘*’ character is present, then between the two episodes
other episodes may exist.

The above range queries can be run efficiently in our STD as we have defined and implemented a
specialized index for semantic trajectories named STB-tree (Pelekis and Theodoridis, 2013).

Semantic reconstruction in Hermes MOD

In order to support semantic reconstruction in Hermes, we have developed a special library (package),
called sem_reconstruct (for semantic reconstruction), which supports this goal and is composed of the
following procedures and functions:

e reconstructtrajectories(sourcetblgps, srid, targettblmpoints, spacegapmet, timegapsec): This
procedure takes as input a table with gps points which should have at least columns about user
id, longitude, latitude and timestamp and reconstructs trajectories (that will be stored in
targettblmpoints table with srid as its spatial reference system) by producing a new trajectory
whenever a space gap and a time gap pair of thresholds between succesive gps points are
exceeded.

e belgdiariestosemtrajs: This procedure is made particularly for SBO-survey dataset. It takes input
from the imported excel files and produces semantic trajectories and the corresponding sub
trajectories.

e stopfinderinputfile(o_id, traj_id, mpoint, subtraj_id): This procedure takes as input a trajectory
mpoint with its object_id, trajectory_id and an optional sub-trjectory_id. It outputs a .dat file in
the 10 directory (where user must have read-write rights) in the form that is required by T-
Optics Stop detection algorithm. It can be called multiple times inside a pl/sql loop block, to
output many trajectories (as will be exemplified in the subsequent section) .

e stopfinder(dir, conf): This procedure calls the T-Optics (i.e. stopfinder) algorithm (Zimmerman et
al. 2009).

e rawtrajs2semtrajs(inputtblstopseqs, inputtblmpoints, outputtblsubmpoints,
outputtblsemmpoints): This procedure takes as input a table of Stops found from T-optics
algorithm, a table name of raw trajectories on which T-Optics run and two output tables for sub-
trajectories and semantic trajectories, respectively. It transforms raw trajectories to semantic
trajectories based on the T-Optics findings.

e stops2semtrajs(inputtblstopseqs, inputtblsemmpoints, outputtblsubmpoints,
outputtblsemmpoints): This procedure takes as input a table of Stops found from T-optics
algorithm and a table name of semantic trajectories upon the MOVE episodes of which the T-
Optics run. There are also two output tables for sub-trajectories and semantic trajectories,
respectively. It modifies the given semantic trajectories and returns again semantic trajectories
based on the T-Optics findings on the MOVE episodes of the initial ones.

pois_probability (mbb, srid, is4visualize, poitable, out bestpoitag): Finds (and visualizes) POls,
each of which is annotated with a probability of being the POI that a Stop activity took place.
The returned POls are within some given MBB. The function also returns the bestpoitag
parameter with the tag that corresponds to the POI having the biggest probability.

nn_pois(mbb, k, isdvisualize): Find the K -Nearest-Neighbor (K-NN) Points-Of-Interest (POI) w.r.t.
the centroid of the MBR of an episode.

annotate_episodes(semtrajs, poitable): This procedure takes a table of semantic trajectories and
a table of POls as input and then updates tags of episodes for each semantic trajectory.

The ‘Diaries’

Diaries are in the form of trips with semantic information for each trip. This information is spread into a
number of excel files. The dataset contains 881 trips for the 186 users. This gives an average of 4.73655
trips per user or 2.93 trips per user per day. If we group those trips per user and per day then we get 300
groups of trips. Moreover each trip has a connection with the trip number found in ‘GPS data’ source for
each user, thus we can match gps records with trips in the diaries. Additionally, for every trip there is
semantic information about origin and destination, the activity at destination and the used
transportation mean.

Those diaries were processed to produce semantic trajectories as follows:

Procedure ‘diaries to semantic trajectories’ combine initially, information from the above sources and
for each user iterates through his trips. A diary trip is considered a MOVE episode, so STOP episodes
must be inserted before and after that trip. Semantic trajectories are created each time a new user or a
new day is met (also when there is discontinuity between trip numbers). The above procedure results in
creating 300 semantic trajectories, which is 1.6129 semantic trajectories in average per user.
Additionally, by combining information from the ‘GPS data’ source, for every episode it builds a
corresponding trajectory (a sub-trajectory if you like). This can be done, as we know for each trip (MOVE
episode) the beginning and ending gps record ids. In the following figure the distribution of the number
of users w.r.t. number of trips is shown.

70
60
50
40
30
70 14 15

59

num of users

10 + —4 i 33— — 1 1T 2
0] T T T T T T T T T T T T T
12 3 4 5 6 7 8 9 101112 13 14 15 16
num of trips

The total number of episodes is 2062 (881 MOVE and 1181 STOP episodes), an average of 6.87333
episodes for each semantic trajectory. There exist 14 categories for STOP episode activities (due to
different purposes at destination) and 10 for MOVE episode activities (due to different transportation
means). Below we see how the number of trips per activity is distributed.

300 280

200 - 174

For STOP episodes the distribution of activities (STOP purposes) and the distribution of transportation
mean for MOVE episodes, are shown in the following two figures.

3509 326
300 -
250 -
150 .
100 52 53
50 - 18 16 28 7 28

280

42

P

o]
o]
o
o)
o
~

=
o
o
[1EY
M
=
=
=
=
oal
w
w

The following chart shows the distribution between (origin, destination) types of MOVE episodes.

Home->
Work/School Work/School->
others-> Home 15% Family/friends/a
15% cquaintances
1%
/ Family/friends/a
cfluaintances->

Work/School->
Home
15%

6%

Honpe-> Home

ork/School->
Work/School
5%

cquaintances

5%
others-> Home-> others
Work/School 14%
2% Family/friends/a

. . others-> others .
Family/friends/a Work/School-> 10% cquaintances->

cquaintances-> others Family(friends/a
others 3% cquaintances
2% 3%

Each episode has a corresponding sub-trajectory (either STOP or MOVE episode). Those sub-trajectories,
2062 in number, have a total of 1050492 segments (509.4529 in average per sub-trajectory) which are
separated in 196675 for STOP episodes and 853817 for MOVE episodes. That gives an average of
166.5326 segments for STOP episodes and of 969.1452 segments for MOVE episodes. Below is a table
with statistics about STOP and MOVE episodes.

STOP MOVE
Distance Covered (meters) 2224655.2036 14445367.99321
Average 1883.70466 16396.558
Duration (seconds) 29576280 1016626
Average 25043.4208 1153.9455
Average Speed (m/s) 0.22406 12.9139

The above described semantic trajectory database is based solely on users’ diaries. To put differently,
the destination of a trip corresponds to an ActivitySTOP, as there is a declared purpose for this. The next
step is to include incident STOP episodes into the semantic trajectories found from the above
procedure. Towards this direction, we have employed the T-Optics algorithm (Zimmermann et al. 2009).
T-Optics is a “STOP-finder” algorithm that takes as input one raw trajectory and outputs sequences of
successive points from that trajectory that form areas where the object is considered stationery. Thus in
our setting, when T-Optics is applied on a raw trajectory it discovers sub-trajectoriesthat correspond to
STOP episodes. Giving as input to T-Optics all trajectories that correspond to MOVE episodes from the
semantic trajectories, we discover intermediate STOP areas. In other words, we break each MOVE
episode to more than one MOVE episodes, if the T-Optics algorithm identifies intermediate STOP areas.
The number of semantic trajectories in the database is still 300 but now these consist of 4634 episodes
in total (2530 STOPs and 2104 MOVEs). Similarly the corresponding sub-trajectories have a total of
1050492 segments (226.69 in average per sub-trajectory),which are separated in 226747 for STOP
episodes and 823745 for MOVE episodes.

The above procedure takes place in a series of steps. First, for each MOVE episode we output
corresponding trajectories to a T-Optics format, by calling the following procedure:

declare
begin
for cur in (select b.object _id,b.traj_id,b.mpoint
from stopfinder_mpoints b) loop
sem_reconstruct.stopfinderinputfile(cur.object_id,cur.traj_id,cur.mpoint,null);
end loop;
end;

Then we call the T-Optics algorithm on the directory (mydir) where we outputed the previous files:

declare

mydir varchar2(2000);

begin
select directory_path into mydir from dba_directories where directory_name="'10";
sem_reconstruct.stopfinder(mydir,'config.ini');--procedure

end;

where the file config.ini is the configuration file needed by the algorithm.

qi com@jml
1 eps=100
minTime=20

coluwms=%X,Y, T
nunberColumns=3
delimiter=
dataset=
header=vyes
cartesian=no

L N B« I Y S ¥ o}

output=

fury
[

output3top=/stop.csv
11 DrderedList%
12 alphs=50
Figure 2: Configuration file for T-Optics stop detection algorithm

The algorithm outputs a file per trajectory consisting of points belonging to stops (a trajectory may have
multiple stops). These files are imported in the HERMES MOD. For every point of a stop the trajectory
identifier and the stop identifier must be known. Finally, we call the following procedure to transform
the original semantic trajectories to new semantic trajectories based on T-Optics results:

declare
begin
sem_reconstruct.stops2semtrajs('stops_found', 'in_trajs’,'out_submpoints','out_semtrajs’)
end;
STOP MOVE
Distance Covered (meters) 2337682.39476 14332340.8021
Average 923.9851 6811.949
Duration (seconds) 29698205 894701
Average 11738.4209 425.2381
Average Speed (m/s) 1.7534 10.93021

The number of POIs (Point Of Interest) in the ‘Diaries’ source is 638 and are categorized in 4 categories
(Home,Work/School,Family/friends/acquaintances,others). These POIs are spread across 289
municipalities (NOTE that for us, a municipality is simply the MBR of all points inside a municipality, as
we do not have such a spatial database). The following figures show the distribution of POls.

200
.E 161
=]
£ 150 -
=
=2
= |
E 100 71
S 50
g 19
= 759 343 112 21
0 - | B T T T 1
1 2 3 4 5 6 7 8 9 1011 12 13 14
num of POIs
300
243
250
» 200 177
[=]
-4
‘16 150 135
£
g 100 83
4} T T T
Thuis Familie/Kennissen Andere Werk/School
POl category

The Semantic Trajectory Cube

Having designed such a database for semantic trajectories we move one step further to introduce a data
warehouse for semantic trajectories. As we saw the main entities of a semantic trajectory are their stop
and move episodes. Quite naturally those two entities become our facts in the new data warehouse
scheme.

The new data warehouse schema (see Figure 2) is a constellation scheme consisting of five dimensions
and two fact tables. The dimensions are space, time, user’s profile, stop-semantics and move-semantics.
Note that this relational representation of the DW corresponds to an instantiation of a Semantic
Mobility Network (Graph), as this is defined by (Pelekis et al. 2013).

SEM_DW._TIME_DIM
SEM_DWW_SPACE_DIM
PK |TIME_ID
PK [POI_ID SEM_DW_MOVE_SEMS_DIM
TIMEPOINT T — - =
HOUR K
HOU Fol2E0 PK |MOVE_SEMS_ID
MONTH ey ROUTE_TYPE
YEAR STATE MOVE_MODE
QUARTER COUNTRY MOVE_ACTIVITY
DAYOFWEEK A A
SEM_DW_PERIOD_DIM | 4
-
PK |PERIOD_ID
SEM_DVW_STOP_SEMS _DIM
TIMEPERIOD — = =
RUSHHOUR PK |STOP SEMS ID
PART?:DAY STOR. NAME SEM_DW_MOVES_FACT
STOP_TYPE < PK,FK3 |PERIOD ID
! STOP_ACTIMITY = PK,FK1 |FROM STOP SEMS ID
FK1 | POI_ID < PK,FK4 |TO STOP SEMS ID

PK,FK1 |PERIOD_ID

PK,FK5 [USER PROFILE ID
SEM_DW_STOPS_FACT PK,FK2 |MOVE SEMS ID
PK,FK2 |STOP_SEMS_ID

NUM_OF_SEM_TRAJECTORIES
NUM_OF_USERS

PK,FK3 [USER_PROFILE_ID NUM OF ACTIMITIES
NUM_OF_SEM_TRAJECTORIES 2&8—?5;&”5%{&%&50
NUM_OF_USERS SEM_DW_USER_PROFILE_DIM AVG_SPEED
ﬁSE‘-SSaﬁ?B\,G'T'ES oz AVG_ABS_ACCELERATION

| —p»PK |USER PROFILE ID < RADIUS_OF_GYRATION
RADIUS_OF_GYRATION CROSST
CROSST DEVICE_TYPE
GENDER
BIRTHDAY
PROFESSION
MARITAL_STATUS

Figure 3: The Semantic Trajectory Data Warehouse schema

Measures in the above scheme are basic measures that can be easily extended. Such a DW mayenable
the following kinds of analysis:

. who made a stop? when and where? what did she do during her stop?

. who made a movement? When and from/to where? How did she move and what did she do
during her motion?

All these have been implemented in HERMES MOD where we deal with issues concerning the ETL
process as well as other issues related to OLAP operations in the cube. Let us explain the above schema
in more detail. First we define two base cells (bc) one for each fact table. For stops-fact-table we define
bcgpcomposed of three dimensions (time, user-profile and stop-semantics) and for moves-fact-table we
define bc,..es composed of five dimensions (time, user-profile, move-semantics, from-stop-semantics
and to-stop-semantics). These two base cells are the basis for splitting our multidimensional space of

semantic trajectories and form the base cuboid of our lattice. As an example, we discuss three basic
measures named num-of-sem-trajectories which is calculated by counting all distinct semantic
trajectories that found inside a base cell, num-of-users which is the number of different objects that are
found inside the cell and num-of-activities which is the number of distinct activities of the moving
objects in the base cell.

Let’s describe the produced (so far) APl of HERMES with which the user can manage the above DW
scheme:

e sdw.createSDW(sourceTablePrefix) where parameter is a prefix for the necessary
database objects that will be created. In different words, this procedure creates a graph (with
the described relational representation), which is one of the graphs in the lattice of our
semantic mobility cube, according to (Pelekis et al. 2013).

Similarly, with procedure sdw.dropSDW (sourceTablePrefix) user can drop the created data
warehouse scheme.

To load dimensions, the user invokes procedure:

e sdw.loaddimensions (sourceTablePrefix, poitable, rawtable,
intervalsecs) where the user must provide the DW prefix, the source for POls for splitting
the space dimension, the source for the minimum and maximum timestamp of the data
(rawtable) and the interval between two times for splitting the temporal dimension.

Then when all dimension tables are filled in, the user can invoke ETL procedures to load data into the
fact tables, from a semantic trajectory database. The ETL procedures are divided in two categories, one
for loading every cell of the fact table for all semantic trajectories in STD and another for loading every
semantic trajectory into the cells of the fact tables. Moreover for efficiency reasons these ETL
procedures make use of the STB-TREE index already defined in STD. Thus for the first category user can
call procedure:

e sdw.cellstopsload(sdwTablePrefix, stbtreenodes, stbtreeleafs)where
parameters define the DW tables, the STB-TREE nodes table and STB-TREE leaves table.

which load the stops-fact-table. Loading the moves-fact-table can be loaded by calling the procedure:

e sdw.cellmovesload (sdwTablePrefix, stbtreenodes, stbtreeleafs)where
parameters define the DW tables, the STB-TREE nodes table and STB-TREE leaves table.

If the user wants to use the second approach for the ETL process, that is to load every semantic
trajectory in the cells of the fact tables, then user can call the following procedure to load stops-fact-
table:

e sdw.semtrajstopsload(sdwTablePrefix, semtrajs) where the first parameter
defines the DW scheme and the second the table where semantic trajectories are stored.

Similarly to load the moves-fact-table user can call procedure:

e sdw.semtrajmovesload (sdwTablePrefix, semtrajs) where the first parameter
defines the DW scheme and the second the table where semantic trajectories are stored.

After successful loading of the fact tables, the user must invoke two other procedures which compute
some auxiliary measures that will be used later on the OLAP operations. These are:

e sdw.updateauxiliarystops (sdwTablePrefix) forthe stops-fact-table, where the
parameter defines the DW scheme.

and

e sdw.updateauxiliarymoves (sdwTablePrefix) forthe moves-fact-table, where the
parameter defines the DW scheme.

On the classification/prediction of episodes’ tags

In order to support classification/prediction tasks taken into advantage of the synchronized nature of
this unique dataset, we may transform each episode to a multi-dimensional vector (as such producing a
feature space), with dimensions derived properties from the episode such as: (1) the distance covered
by the moving object in the episode, (2) episode’s duration, (3) episode’s top speed, (4) episode’s
average speed, (5) speed variation, (6) road type, (7) starting POI type, (8) end POI type, (9) episode’s
area (10) episode’s radius of gyration, etc. The classification label of such a vector may be the tags
annotating that episode (e.g. STOP, MOVE, CAR, WALK etc. The list of features can be easily extended
with new features that may aid the discrimination process of the classifier.

The classification model is built from episodes features for the available semantic trajectories (training
set). For the moment, features are calculated by the following procedure:

e std.calcfeatures (outputtblfeatures, intblsemtrajs) where the first
parameter is the table to hold episodes properties and second parameter gives the input table
of the available semantic trajectories..

Exploring SBO survey dataset

This section includes a case study upon the above described unique dataset that also stands as a hands-
on experience upon the data-type system for semantic trajectories with its associated query language
(Pelekis et al. 2013), the API of which we presented in the previous sections.

Querying the Semantic Trajectory Database

1. Find NN POl inside an episode
Description:

Find the K-Nearest-Neighbor (K-NN) Points-Of-Interest (POI) w.r.t. the centroid of the MBR of an
episode. The returned POI (visualized in the subsequent figure) should be inside the MBR. Depending on
this topological filter, the function may return less than (if any) K neighbors.

Code:
DECLARE
sembb sem mbb := sem mbb (sem st point (5.503502, 50.953662,
tau tll.d timepoint sec (2006, 5, 1, 5, 00, 00)), sem st point (5.727093,
51.026928, tau tll.d timepoint sec (2007, 6, 1, 5, 00, 00)));
BEGIN
sem reconstruct.nn pois (sembb, 10, 'TRUE');
COMMIT;
END;

S A%

N R Ve Widn e o s | e S
N G aWorkiSchool .NAME satgs ‘originks
o L WG AR ' %o

L 8

2}

PR f"‘ﬁ ‘{/
2ROI AWork/School SNAME dwerk

2. Probability of POIS within episode MBB

Description:

This function finds the POI that exist inside the MBR of an episode and for each of them it returns the
probability of being the POl where the moving object performed an activity. The probability is inverse
proportional to the distance of the POI from the centroid of the episode’s MBR.

Code:
DECLARE

sembb sem mbb := sem mbb (hermes.sem st point (4.415422, 51.218345,
tau tll.d timepoint sec (2007, 9, 4, 6, 27, 17)), hermes.sem st point

(4.634043, 51.24343, tau tll.d timepoint sec (2007, 9, 5, 5, 44, 37)));
outtag varchar2 (50);
BEGIN
sem reconstruct.pois probability (sembb, 4326, 'TRUE', ‘belg pois’,
outtagqg) ;
COMMIT;
END;

bability 25

CENTROID

3. Count STOP and MOVES of semantic trajectories
Description:
This function counts the number of Stops and Moves for all semantic trajectories in the table.

Code:

SELECT o_id,
semtraj id,

VALUE (t).num of stops () num of stops,
VALUE (t).num of moves () num of moves,
(VALUE (t).num of stops () + VALUE (t).num of moves ()) AS num of episodes

FROM belg sem trajs t
ORDER BY 4 DESC;

D-Query Resulk *
5) By soL | Fetched 50 rows in 0,282 seconds

o0 | semrraio |[{ mum_oF stos |§ wuM_oF_moves ([§ MUM_OF_EPISODES
1 127728 1 11 10 21
2 128116 1 10 g 19
3 121150 1 10 9 19
4 126836 1 5 17
5 15058 1 5 7 15
6 211191 1 5 7 15

4. Visualize a semantic trajectory

Description:

This operation visualizes a given semantic trajectory, i.e. the MBRs of its episodes and the corresponding
raw sub-trajectories.

Code:
DECLARE
semtraj sem_trajectory;
void INTEGER := 123043;
vsemtrajid INTEGER = 1;
BEGIN

SELECT VALUE (s)
INTO semtraj
FROM belg sem trajs s
WHERE o_id = void AND semtraj id = vsemtrajid;

visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE');
END;

5. Sum of MOVE durations per transportation mode
Description:

This query finds the summation of the durations of the MOVE episodes per transportation mode, for a
given semantic trajectory.

Code:

SELECT SUM (value(s) .duration(). m Value) duration,
defining tag, activity tag, COUNT (defining tag) num of episodes
FROM TABLE (SELECT t.episodes with ('MOVE')
FROM belg sem trajs t
WHERE t.o _id = 5238 AND t.semtraj id = 1) s
GROUP BY defining tag, activity tag;

DURATION [DEFINING_TAG |[§ ACTIVITY TAG ||| NUM_OF EPISODES
1 3860 MOVE bus 2

6. MOVEs duration with that of some MOVEs having specific tags

Description:

Identify those MOVE episodes whose duration is less than the average duration of MOVE episodes
whose activity is ‘working’. This function demonstrates how one can filter episodes with multiple tags.

Code:

SELECT VALUE (ext s).DURATION ().m value DURATION,
defining tag,
activity tag

FROM TABLE
(SELECT t.episodes with ('MOVE')
FROM belg sem trajs t
WHERE t.o id = 5238
AND t.semtraj id = 2
) ext s
WHERE (VALUE (ext s) .DURATION ().m value) <
(SELECT AVG (VALUE (s) .DURATION ().m value)
FROM TABLE

(SELECT t.episodes with ('working")
FROM belg sem trajs t

WHERE

t.o_id = 5238

AND t.semtraj id =2
AND t.episodes with ('MOVE') IS NOT NULL

) S

7. Confine a semantic trajectory in temporal dimension as well as by filtering its textual

DURATION || DEFINING_TAG |[§ ACTIVITY_TAG

1 1022 MOVE subway,/underground
2 1016 MOVE by foot

3 2620 MOVE bus

4 3211 MOVE CAr - passenger

component

Description:

Code:

a) SELECT

Restrict a given semantic trajectory inside a temporal period and then return only the STOP

episodes that the user was working.

This query is a variant of the previous one that restricts a given semantic trajectory inside a
temporal period and then returns either STOP or WORKING episodes.

*

FROM TABLE (

SELECT b.confined in (NULL,
tau tll.d period sec (
tau tll.d timepoint sec (2007, 10, 22,
tau tll.d timepoint sec (2007, 10, 22,
), 'STOP') .episodes with ('working')
FROM belg sem trajs b
WHERE b.o_id = 216828
AND b.semtraj id = 2

Visualization

DECLARE
vsrid INTEGER := 4326;
i INTEGER := 0;
void INTEGER := 216828;
vsemtrajid INTEGER := 2;
sb mps mp_ array := mp_array ();
semtraj sem trajectory;

BEGIN
FOR rc IN
(SELECT DEREF (tlink) .sub mpoint sub mpoint
FROM TABLE

(SELECT b.confined in (NULL, tau tll.d period sec
(tau_tll.d timepoint sec (2007, 10, 22, 08, 00, 00), tau tll.d timepoint sec

(2007, 10, 22, 23, 59, 00)), 'STOP').episodes with ('working')

FROM belg sem trajs b
WHERE b.o id = void
AND b.semtraj id = vsemtrajid
) s

)

LOOP
sb mps := mp array (rc.sub mpoint);

u' || void || '_" Il 1

visualizer.movingpointtableZkml (sb mps, vsrid,
|| ' MOVPOINT.kml');
i :=1i+ 1;
END LOOP;
SELECT VALUE (s)
INTO semtraj
FROM belg sem trajs s
WHERE o_id = void
AND semtraj id = vsemtrajid;
visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE');
END;

WA STOP (actu ol

.STOFS‘Qactw\ty Working, MoyE (activity=car- driver)=

lMOVE (activity. caﬁr driver) >

§ VMOVE (acf\vﬂy car.[\dnver)
:)

v

In the above figures there is the semantic trajectory as a whole in blue color and in red episodes
returned by the query.

b) sELECT *

FROM TABLE (
SELECT b.confined in (NULL,
tau tll.d period sec (
tau tll.d timepoint sec (2007, 10, 22, 08, 00, 00), tau tll.d timepoint sec
(2007, 10, 22, 23, 59, 00)
), 'STOP+working') .episodes
FROM belg sem trajs b
WHERE b.o id = 216828
AND b.semtraj id = 2

);

Visualization

DECLARE
vsrid INTEGER := 4326;
i INTEGER := 0;
void INTEGER := 216828;
vsemtrajid INTEGER := 2;
sb _mps mp_array := mp array ();
semtraj sem trajectory;

BEGIN
FOR rc 1IN
(SELECT DEREF (tlink) .sub mpoint sub mpoint
FROM TABLE

(SELECT b.confined in (NULL,

tau tll.d period sec (

tau tll.d timepoint sec (2007, 10, 22, 08, 00, 00),
tau tll.d timepoint sec (2007, 10, 22, 23, 59, 00)

), 'STOP+working') .episodes
FROM belg sem trajs b
WHERE b.o_id = void

AND b.semtraj id = vsemtrajid
) s

)

LOOP
sb mps := mp array (rc.sub mpoint);
visualizer.movingpointtableZkml (sb mps, vsrid, 'u' || void || ' ' || 1
|| ' MOVPOINT.kml');
i =1+ 1;
END LOOP;

SELECT VALUE (s)

INTO semtraj

FROM belg sem trajs s

WHERE o id = void

AND semtraj id = vsemtrajid;

visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE');
END;

; S0P (aClyty: other)#

J OVE((activity caﬂr dr\ver" ¥ A
§ VMOVE (ac{\thy car.ﬁnver)
SO

\{45?Eﬁkadﬁ$%%%
d lt JUIY

} A i
e |

4

In the above figures there is the semantic trajectory as a whole in blue color and in red episodes
returned by the query.

8. Temporal range query with a text filter on STB-tree.

Description:

This query applies a temporal range query to retrieve and count only MOVE episodes, for which
it calculates their total duration.
Code:

SELECT DEREF (tlink).o id o id,

COUNT (tlink) total moves,

SUM (value(s).duration(). m Value) total duration
FROM TABLE

(SELECT std.stb range episodes ('MOVE', tau tll.d period sec
(tau_tll.d timepoint sec (2006, 01, 01, 00, 01, 00), tau tll.d timepoint sec
(2006, 12, 31, 23, 59, 00)), 'SEM INDX')

FROM DUAL

) s
GROUP BY DEREF (tlink) .o id
ORDER BY 2 DESC;

A 5) B8 soL | AllRows Fetched: 45in 0,78 seconds

o0 |§ ToTAL MOVES ||| TOTAL_DURATION

1 122151 13 17020
2 124344 1z ga847
3 127976 1z 10233
4 17096 11 42564
3 2794 10 9339
6 123043 4 4744
7 127776 9 11159
8 12811& 9 2181
9 122387 9 5620
10 135471 g gelz
11 126836 g 4138
12 15058) 2480
13 5938 7 43946
14 5238) 11780
15 4123 7 2023

L]
a
3
a
1
3
hl

A aman

9. Spatio-temporal range query with a text filter on STB-tree

Description:

This query applies a spatio-temporal range query to calculate the duration of ‘Work/School’ and
‘working’ STOP episodes that take place at a region for a period of time.

Code:

SELECT SUM (VALUE (s).DURATION ().m value) work duration,
DEREF (tlink).o id o id
FROM TABLE (SELECT std.stb range episodes
('STOP',
MDSYS.SDO GEOMETRY (2003, 4236, NULL,
MDSYS.sdo elem info array (1, 1003, 3),
MDSYS.sdo ordinate array (4.985388,
51.152885, 5.994323, 52.158382)),
tau tll.d period sec (tau tll.d timepoint sec (2007,
10, 22, 08, 00, 00),
tau tll.d timepoint sec (2008,
10, 22, 23, 00, 00)), 'SEM INDX') FROM DUAL) s
WHERE episode tag = 'Work/School' AND activity tag = 'working'
GROUP BY DEREF (tlink) .o id;

WORK_DURATION || o_ID |
1 1643 218411
2 36024 216828
3 16011 130049

10. Cross-over spatio-temporal range query with a text filter on STB-tree (filter step) and a
subsequent temporal restriction of the resulting moving points (refinement step).

Description:

This query restricts the sub-trajectories of STOP episodes (that exist inside a spatio-temporal
box), inside a temporal period.

Code:

SELECT DEREF (tlink).sub mpoint sub mpoint,
DEREF (tlink).sub mpoint.at period (tau tll.d period sec
(tau_tll.d timepoint sec (2007, 10, 22, 8, 00, 00), tau tll.d timepoint sec

(2007, 10, 22, 10, 00, 00))) restricted sub mpoint,
DEREF (tlink).o id o id
FROM TABLE

(SELECT std.stb range episodes ('STOP', MDSYS.SDO GEOMETRY (2003, 4326,
NULL, MDSYS.sdo elem info array (1, 1003, 3), MDSYS.sdo_ ordinate array

(4.981388, 51.152885, 4.994323, 51.162082)), tau tll.d period sec
(tau_tll.d timepoint sec (2007, 10, 22, 5, 00, 00), tau tll.d timepoint sec
(2007, 10, 28, 5, 00, 00)), 'SEM INDX')

FROM DUAL) s ;

Visualization

DECLARE
vsrid INTEGER 1= 4326;
i INTEGER := 0;

sb mps mp array mp_array ();
rsb mps mp array mp_array ();
vgeom MDSYS.SDO GEOMETRY := MDSYS.SDO GEOMETRY (2003, wvsrid, NULL,
MDSYS.sdo_elem info array (1, 1003, 3), MDSYS.sdo ordinate array (4.981388,
51.152885, 4.994323, 51.162082));
BEGIN
FOR rc IN
(SELECT DEREF (tlink) .sub mpoint sub mpoint,
DEREF (tlink) .subtraj id subtraj id,
DEREF (tlink).traj id traj id,
DEREF (tlink).sub mpoint.at period (tau tll.d period sec
(tau_tll.d timepoint sec (2007, 10, 22, 8, 00, 00), tau tll.d timepoint sec
(2007, 10, 22, 10, 00, 00))) restricted sub mpoint,
DEREF (tlink).o id o id,
MDSYS.sdo geom.sdo centroid (VALUE (s).mbb.getrectangle (vsrid), 0.01)
mbr centroid,
VALUE (s).mbb.getrectangle (vsrid) mbb,
activity tag,
episode tag,
defining tag
FROM TABLE
(SELECT std.stb range episodes ('STOP', vgeom, tau tll.d period sec
(tau_tll.d timepoint sec (2007, 10, 22, 5, 00, 00), tau tll.d timepoint sec

(2007, 10, 28, 5, 00, 00)), 'SEM INDX')
FROM DUAL
) s
)
LOOP
sb _mps := mp array (rc.sub mpoint);

IF rc.restricted sub mpoint IS NOT NULL THEN
rsb_mps := mp_array (rc.restricted sub mpoint);

visualizer.movingpointtableZkml (rsb mps, vsrid, 'u' || rc.o_ id || ' '
|| 1 || ' RMOVPOINT.kml');
END TIF;
visualizer.movingpointtableZkml (sb mps, vsrid, 'u' || rc.o id || "' " []|
i]| ' MOVPOINT.kml');
visualizer.placemark2kml (rc.mbr centroid, vsrid, 'u' || rc.o_id ||
'traj' || rc.traj id || 'subtraj' || rc.subtraj id || ' CENTROID.kml',
rc.defining tag || ' (activity: ' || rc.activity tag || ")', rc.subtraj id ||
' - ' || rc.episode tag);
visualizer.polygon2kml (rc.mbb, vsrid, 'u' || rc.o id || 'traj' [|
rc.traj id || 'subtraj' || rc.subtraj id || ' RECTANGLE.kml');
i =1+ 1;
END LOOP;
visualizer.polygon2kml (vgeom, vsrid, 'RECTANGLE.kml');
END;

rk|
’S/’LFOP t)actlwty wo kmg)

' .'2.*\':

%{if

In the above figure there are STOP episodes in blue color of the given time period and given
spatial confinement (in green). Part of the episode that exists inside time period declared in
at_period function is showed in red color.

11. Average duration of STOPS overlapping with a temporal period

Description:

This query finds the average duration of STOP episodes overlapping with a temporal period.

Code:

SELECT SUM (VALUE (s).DURATION ().m value) / COUNT (DEREF (tlink).traj id)
avg mbb stop duration

FROM TABLE

(SELECT std.stb range episodes ('STOP', MDSYS.SDO GEOMETRY (2003, 4326,
NULL, MDSYS.sdo elem info array (1, 1003, 3), MDSYS.sdo_ordinate array
(4.985388, 51.152885, 4.994323, 51.158382)), tau tll.d period sec

(tau_tll.d timepoint sec (2007, 10, 22, 08, 00, 00), tau tll.d timepoint sec
(2007, 10, 23, 08, 00, 00)), 'SEM INDX')

FROM DUAL

) s

AVG_MBB_STOP_DURATION
1 95263,5

12. Index-based range query on STB-tree to identify patterns of the form “from-to-via”

Description:

Retrieve objects (actually their MOVE episodes) that start from ‘Home’ and go to ‘Work/School’
between a given temporal period

Code:

select deref(tlink).o id mov_obj, activity tag from

table (std.stb_range episodes—mb=(

sem_episode ('STOP', 'Home',null,null,null),

sem_episode ('STOP', 'Work/School',null,null,null),

sem_episode ('MOVE',null,null,

sem _mbb (sem st point(5.503502,50.953662,

tau tll.d timepoint sec(2006,5,1,5,00,00)),sem st point (5.727093,51.026928, ta
u tll.d timepoint sec(2007,6,1,5,00,00)))

,null),

'SEM_INDX')) t;

[Query Result =
I 4 E i@ﬂ @ S0l | Al Rows Fetched: &in 0,5 seconds

MO'u'_OBJ| ACTIVITY TAG
137461 car REY driver

1374681 car FE" passendger
5238 bus

123166 car RE" driver

1

2

3

4 5238 subway underground
=

] 123166 car pE" driwer

How many and with what transportation mean start from ‘Home’ which are inside a given
region, between a given temporal period and their next STOP is for ‘working’.

Code:

SELECT COUNT (deref (tlink) .o _id) sum mov_obj,

activity tag
FROM TABLE (std.stb range episodes mbr(sem episode('STOP',
NULL,NULL,HERMES.SEM_MBB(HERMES.SEM_ST_POINT(4.938277,50.964135,TAU_TLL.D_TIM
EPOINT SEC(2007,1,1,7,00,00)),HERMES.SEM ST POINT(5.503228,51.204038, TAU TLL.
D TIMEPOINT SEC(2008,1,1,7,00,00))),NULL), sem episode('STOP',
NULL, 'working',NULL,NULL), NULL, 'SEM INDX')) t
GROUP BY activity tag;

SL.IM_MD'L-'_DBJ| ACTIVITY TAG

1 1 car BE" pazsenger

2 11 car BE" driwver

The same query as the previous one, this time without imposing the constraint that the next
STOP will be a ‘working’ one.

Code:

SELECT DEREF (tlink).o id o id,

DEREF (tlink).traj id traj id,

DEREF (tlink).sub mpoint mpoint,

DEREF (tlink).subtraj id subtraj id,

value (t) .mbb.getrectangle (4326),

MDSYS.sdo geom.sdo_centroid (VALUE (t).mbb.getrectangle (4326), 0.01)
mbr centroid,

activity tag,

defining tag
FROM TABLE (std.stb _range episodes mbr (sem episode ('STOP', NULL, NULL,
hermes.sem mbb (hermes.sem st point (5.162558,51.12519,
tau tll.d timepoint sec (2007, 1, 1, 7, 00, 00)), hermes.sem st point
(5.180134, 51.140135, tau tll.d timepoint sec (2007, 1, 31, 7, 00, 00))),
NULL), sem episode ('STOP', NULL, NULL, NULL, NULL), NULL, 'SEM INDX')) t

Visualization

DECLARE
stop mbb hermes.sem mbb := hermes.sem mbb (hermes.sem st point (5.162558,
51.12519, tau tll.d timepoint sec (2007, 1, 1, 7, 00, 00)),

hermes.sem st point (5.180134, 51.140135, tau tll.d timepoint sec (2007, 1,
31, 7, 00, 00)));
res mps mp_array := mp array ();
semtraj sem trajectory;
vsrid INTEGER := 4326;
BEGIN
FOR rc IN
(SELECT DEREF (tlink).o_id o_id,
DEREF (tlink).traj id traj id,
DEREF (tlink).sub mpoint mpoint,
DEREF (tlink) .subtraj id subtraj id,
VALUE (t) .mbb.getrectangle (vsrid) rect,
MDSYS.sdo geom.sdo centroid (VALUE (t).mbb.getrectangle (vsrid), 0.01)
mbr centroid,
activity tag,
defining tag
FROM TABLE (std.stb range episodes mbr (sem episode ('STOP', NULL, NULL,
stop mbb, NULL), sem episode ('STOP', NULL, NULL, NULL, NULL), NULL,
'"SEM INDX')) t
)

LOOP

res mps := mp array (rc.mpoint);

visualizer.movingpointtable2kml (res mps, vsrid, CONCAT ('u' || rc.o_ id
[l '"traj' || rc.traj id || 'subtraj' || rc.subtraj id, ' Q MOVPOINT.kml'));

visualizer.polygonz2kml (rc.rect, vsrid, rc.o_id || '"."'" || rc.traj id ||
'".'" || rc.subtraj id || ' RECTANGLE.kml');

visualizer.placemark2kml (rc.mbr centroid, vsrid, 'u' || rc.o_id ||
'traj' || rc.traj id || 'subtraj' || rc.subtraj id || ' CENTROID.kml',6 ' ',

rc.defining tag || '-'" || rc.activity tag);

END LOOP;

visualizer.polygon2kml (stop mbb.getrectangle (vsrid), vsrid,
'RECTANGLE.kml");
END;

& MOVE (car= driver)
MOVE (car Ydriver)

4

x 7

In the above figure in blue color are all MOVE episodes that have their starting Stop inside a
spatiotemporal box and end to another STOP episode. The spatiotemporal box is depicted in
green color.

13. Index-based pattern query on STB-tree to identify patterns of movement

Description:

Retrieve the identifiers of semantic trajectories that follow the pattern of episodes given as
input. The declared pattern includes objects that have an episode to a specific spatiotemporal
area with any textual attributes, then after an arbitrary number of episodes reach to an episode
defined as MOVE in any spatiotemporal area, where objects are using WALKING as
TRANSPORTATION and in the immediate next episode objects having a STOP in any named
place (null) where they are RELAXING in the specified spatiotemporal area.

Code:

select * from table(std.stb patterns(sem episode tab(

sem episode(null,null,null,sem mbb(sem st point(468993,4201747,tau tll.d time
point sec(2013,5,8,8,10,0)),sem st point(473993,4206747,tau_tll.d timepoint s
ec(2013,5,8,14,0,0))),null),
Sem_episode('MOVE','TRANSPORTATION','WALKING',null,null),

sem episode ('STOP',null, 'RELAXING', sem mbb (sem st point (468993,4201747,tau tl
1.d timepoint sec(2013,5,8,14,20,0)),sem st point(473993,4206747,tau _tll.d ti
mepoint sec(2013,5,8,23,0,0))),null)),

varchar ntab (null,'*','>"),

'attiki stbtree'));

D"Quew Resulk *
o LE] E’ﬂ % SoL | Al Rows Febched: 459 in 141 seconds

COLUMN_YALUE

442 338
443 345
444 345
445 346
446 345
447 351
445 36l
449 373
450 391
451 406
452 411
453 431
454 4355
455 445
456 450
457 457
455 455

459

Analyzing the Semantic Trajectory Database/Cube

14. Origin-Destination Matrix for Semantic Trajectories
Description:

We first split the space (by partitioning the X and Y axis in segments of some given length
(i.e.step)), so as to create the geometries (i.e. regions) of the OD-matrix. Then we calculate the
OD-matrix, by providing the table where the semantic trajectories reside.

Usage:

DECLARE
stepx BINARY INTEGER;
stepy BINARY INTEGER;
BEGIN
stepx := 0.5;
stepy := 0.5;
hermes.od matrix.populate rectangle tbl (stepx, stepy):;
COMMIT;
END;

SELECT *

FROM TABLE (hermes.od matrix.get odmatrix ('BELG SEM TRAJS'))

[g E E’ﬁ'} % SQL | Fetched 50 rows in 28,584 seconds
sTARTCELL ([EnDCELL [y TOTAL |

1 850692 859492 a5
2 B596E9 859489 70
3 859691 859491 46
4 BS96RE B596AE 25
5 B506EE B506E6 12
6 859685 B59685 11
7 850695 859495 5
8 859689 B59688 2
g B596RE 859489 2

10 850695 259491 1

11 859692 859491 1

12 850692 B59428 1

13 B59691 859494 1

14 859691 859492 1

15 859691 859489 1

16 5509639 B50686 1

15. Create and load DW
Description:

a) First we create the necessary DB objects by providing a prefix name for them. This prefix
corresponds to the DW name.

b) We load data to dimensions tables by providing: i) the DW name, ii) the POls table, the table
contatining metadata of the dataset (min/max values of the spatio-temporal axes), iii) the table
contacting users’ information, iv) the duration of the temporal periods that will be used for the
temporal dimension and v) the table containing the semantic trajectories.

c) We load the two fact tables by providing the table containing the semantic trajectories and
the prefix name of the STB-tree index that has been built upon the latter.

Code:

a)

begin
sdw.createsdw ('sem dw');
end;

b)

begin

sdw.loaddimensions ('sem dw', 'belg pois', 'belg dataset dimensions', 'belg users
',2592000, 'belg sem trajs');

end;

c)

begin
sdw.cellstopsload('sem dw', 'SEM_INDX") ;

end;

begin

sdw.cellmovesload('sem dw', 'SEM INDX');
end;

16. Join MOVES fact table and USERS profile dimension table
Description:
Find the number of users that moved per temporal period and profession.

Code:

SELECT sem dw period dim.period id, sem dw user profile dim.profession,
COUNT (sem dw moves fact.num of users) num of users
FROM sem dw moves fact, sem dw user profile dim, sem dw period dim

WHERE ((sem dw user profile dim.user profile id =
sem dw moves fact.user profile id)
AND (sem dw period dim.period id = sem dw moves fact.period id))

GROUP BY sem dw user profile dim.profession, sem dw period dim.period id
ORDER BY sem dw period dim.period id ASC,;

[l PERIOD_ID [[§ PROFESSION | NUM_OF_USERS

1 1 CLERK 4
2 1 HOUSEHOLD 1
3 1 STUDENT 1
4 2 RETIRED 1
5 4 CLERK 2
g 4 EXECUTIVE CLERK 1
7 5 CLERK 1
8 & CLERK 4
g &6 RETIRED 1

10 & (muall) 1

11 7 CLERK 3

12 7 LABORER 1

13 & SELF-EMFLOYED el

14 g STUDENT 2

15 10 RETIRED 1

17. Join MOVES fact table, USERS profile dimension table and MOVES semantic dimension table
Description:

Find the total average duration and travelled distance per gender and temporal period, for
those that moved by train.

Code:

SELECT sem dw period dim.period id, sem dw user profile dim.gender,
SUM (sem dw moves fact.avg travel duration) sum avg dur,
SUM (sem dw moves fact.avg distance traveled) sum _avg dist

FROM sem dw moves fact, sem dw user profile dim, sem dw move sems dim,
sem dw period dim
WHERE ((sem dw user profile dim.user profile id

=sem dw moves fact.user profile id)
AND (sem dw move sems dim.move sems id

=sem dw moves fact.move sems id)
AND (sem dw period dim.period id = sem dw moves fact.period id)
AND ((sem_dw move sems dim.move mode = 'TRAIN'))
) GROUP BY sem dw user profile dim.gender,

sem dw period dim.period id ORDER BY sem dw period dim.period id ASC

periop_ID ([cenper] sum_ave Dur [sum_ave_pist

1 1 MAN 5033 121811, 564507744846
2 1 WOMAN 1783 24741,87326075254
3 2 MBN 1472 21255,3924289534
4 4 MAN 3357 B9455,2482850577
3 4 WOMAN 647 B254,93104342971
B 5 MAN 923 11103,05883593071
7 & MAN 5854 T8477,9676656374
8 & WOMAHN 255 3343,6885730344857
9 7 MBN 2084 23325,38109972332
10 7 WOMRN 435 4433,284624313348
11 2 WOMRN 640 38%94,02341379328
12 10 MAN 337 6326,8623752163%9
13

10 {null) 676 6541,72758176443

L
.

18. Aggregate type of MOVES
Description:
For each period, find the number of users that moved with the same transportation mode.

Code:

SELECT sem dw moves fact.period id, sem dw move sems dim.move mode,
count (num_of users) total users
FROM sem dw moves fact, sem dw move sems dim
WHERE ((sem dw move sems dim.move sems_id = sem dw moves fact.move sems_ id

)
)

GROUP BY sem dw moves fact.period id, sem dw move sems dim.move mode

ORDER BY sem dw moves fact.period id ASC;

§ PERIOD_ID || MOVE_MODE | TOTAL_USERS
1 CAR BE" PASSENGER
1 TRAIN
2 TRAIN
4 OTHER
4 TRAIN
5 TRAIN
& OTHER
& TRAIN
7 TRAIN
8 CLE BE" PASSENGER
& TRAIN

10 TRLIN
11 TRLIN
13 OTHER
14 OTHER

a4 4 TTR TET

| I e L S L I T R % B e =

a

19. Join MOVES, STOPS fact tables

Description:

Find the number of users that move towards a destination and the number of users that are
already at the same destination during the same period of time.

Code:

WITH period stopsto AS

(SELECT sem dw stops fact.period id,COUNT (sem dw stops fact.num of users)
num_of stop users,sem dw stop sems dim.stop name

FROM sem dw_stops fact,sem dw stop sems_dim

WHERE ((sem dw stop sems dim.stop sems id = sem dw stops fact.stop sems id
))

GROUP BY sem dw stops fact.period id,sem dw stop sems dim.stop name

),

period movesto AS

(SELECT sem dw MOVES fact.period id,COUNT (sem dw MOVES fact.num of users)
num_of move users,sem dw STOP sems dim.stop name

FROM sem dw MOVES fact,sem dw STOP sems dim

WHERE ((sem dw stop sems dim.stop_ sems_id =
sem dw MOVES fact.to_ stop sems_id))

GROUP BY sem dw MOVES fact.period id,sem dw STOP sems dim.stop name

)
SELECT
period stopsto.period id,period stopsto.stop name,period stopsto.num of stop
users,period movesto.num of move users
FROM period stopsto FULL OUTER JOIN period movesto
ON (period stopsto.period id=period movesto.period id AND
period stopsto.stop name=period movesto.stop name) ORDER BY 1 DESC,2;

PERIOD_ID |[] STOP_NAME |8 NUM_OF_STOP_USERS |[§ NUM_OF_MOVE_USERS
25philips 1 {null)
25phillps 1 {nuall)
25 thuis [{nall)
24 apotheek 1 {nall})
24 carpet 1 {nall)
24 co 1 {null})
24 cevo 1 1
24 dochter 1 {null})
24 hengelen 1 {nuall)
24 ipk 1 {null)
24 kantoor 1 1
24 kliniek 1 {null)
24 moe poes 2 {null})
24 op3taan en eten 1 {nall)
24philips 1 {null)

24 achool 1 L |

20. Join STOPS fact table with semantic dimension and space dimension tables
Description:

For each time period, find the total average duration of all STOP episodes that take place at
‘banks’.

Code:

SELECT SUM (sem dw stops fact.avg duration) sum avg duration ,
sem dw stops fact.period id, sem dw stop sems dim.stop name
FROM sem dw_stops fact, sem dw_space dim, sem dw stop sems_dim
WHERE ((sem dw space dim.poi id = sem dw stop sems dim.poi id)
AND (sem dw stop sems dim.stop sems id =

sem dw stops fact.stop sems id
)
AND ((UPPER (sem dw stop sems dim.stop name) LIKE UPPER ('%bank%'))
)
)
GROUP BY sem dw stops fact.period id, sem dw stop sems dim.stop name
ORDER BY sem dw stop sems dim.stop name ASC;

SUM_AVG_DURATION || PERIOD_ID |[] STOP_NAME
a0l 10 axa bank
454 23 bank

21. STOPS at a given region
Description:
For each period, find the total average duration of those STOPs that are inside a given region.

Code:

DECLARE

vgeom MDSYS.SDO GEOMETRY := MDSYS.SDO GEOMETRY (2003, 4326, NULL,
MDSYS.sdo_elem info array (1, 1003, 3), MDSYS.sdo ordinate array (4.815388,
51.112885, 4.994323, 53.158382));

vsrid INTEGER := 4326;
BEGIN

FOR rc_pois IN

(SELECT poi id

FROM sem dw space_ dim

WHERE (sdo_geom.relate (MDSYS.SDO GEOMETRY (2003, wvsrid, NULL,
MDSYS.sdo elem info array (1, 1003, 3), MDSYS.sdo ordinate array (4.815388,

51.112885, 4.994323, 53.158382)), 'CONTAINS', sem dw space dim.poi geom,
0.01) = '"CONTAINS')

)

LOOP

FOR rc_dw IN
(SELECT SUM (sem dw stops fact.avg duration) sum duration,

sem dw stops fact.period id,sem dw space dim.district
FROM sem dw stops fact,sem dw space dim,sem dw_ stop sems dim
WHERE ((sem dw space dim.poi id = sem dw stop sems dim.poi id)
AND (sem dw stop sems dim.stop sems id sem dw stops fact.stop sems id)
AND (sem dw space dim.poi id = rc pois.poi id))
GROUP BY sem dw stops fact.period id,

sem dw space dim.district

)

LOOP
DBMS OUTPUT.put line ('Duration: ' || rc dw.sum duration || ' Period
id: " || rc dw.period id || ' District: ' || rc dw.district);
END LOOP;
END LOOP;

END;

Duration:
Duration:
Duration:
Duration:
Duration:
Duration:
Duration:
Duration:

85896 Period id: 17 District: Turnhout
28106 Period id: 22 District: Turnhout
85896 Period id: 17 District: Turnhout
73271 Period id: 24 District: Turnhout
227964 Period id: 20 District; Qud-Turnhout
20290 Period id: 21 District: Beerse

79027 Period id: 20 District: Oud-Turnhout
32905 Period id: 13 District: M-Breda

References

Pelekis N., Theodoridis, Y. (2013) Semantic Aspects on Mobility Data (chapter 8). In Mobility Data
Management and Exploration: Theory and Practice, Springer, 2013.

Pelekis N., Janssens D., Theodoridis, Y. (2013) On the Management and Analysis of our LifeSteps.
Submitted to SIGMOD Record.

Zimmermann M., Kirste T.,Spiliopoulou M., (2009) Finding stops in error-prone trajectories of moving
objects with time-based clustering. Communications in Computer and Information Science, Volume 53,
pp 275-286.

http://link.springer.com/bookseries/7899

