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From Diaries and GPS logs to Semantic Mobility Timelines 
 

This document describes the SBO survey dataset, its transformation to semantic mobility timelines 

(NOTE: in the sequel, we may use the term semantic trajectory (episode) but we mean semantic 

mobility timeline (semantic trajectory, respectively)), as defined by (Pelekis et al. 2013). The report also 

includes a case study upon this unique dataset that also stands as a hands-on experience describing the 

framework of a data-type system for semantic trajectories with its associated query language, as 

envisioned in (Pelekis et al. 2013).  

All the work has been done by extending the HERMES MOD environment (URL: 

http://infolab.cs.unipi.gr/hermes/). 

The initial dataset is composed of two sources of data. The ‘GPS data’, which are GPS records per user 

derived from their gps-enabled devices; and ‘Diaries’ in which each user documented semantic 

information about his/her trips. A trip for a user is a movement from a point A to another point B for a 

specific purpose. This document focuses on a subset from the above sources that corresponds to 186 

users who documented their trips. 

The ‘GPS data’ 
 

The total number of unprocessed (raw) gps records is 7698808, meaning an average of 41391.44 gps 

records per user. These gps records covering a period of 730 days, from 13-4-2006 to 14-4-2008.Each 

gps record is tagged with a number showing the trip in which the gps record belongs to. The gps records 

were already tagged with trip numbers. The total number of trips is 3474 meaning an average of 18.677 

trips per user. Moreover every gps record has a gps validity letter (‘A’ for valid gps records and ‘V’ for 

not valid, validity had to do with the number of satellites being at least 3 for signal stability. 

These gps records were processed to produce trajectories as follows: 

We take into account only valid gps records so we have 7599702 gps records to process. Then a simple 

reconstruction algorithm was used to group gps records into trajectories (meaningful subsequences of 

gps records) per user. In detail, a new trajectory for the user is created when a spatial or a temporal 

threshold is exceeded, when examining successive gps records. Obviously these thresholds identify 

corresponding spatial or temporal gaps between successive gps records. The used parameters were 

5000 meters for spatial threshold, and 4 hours for temporal threshold. This simple algorithm orders in 

time gps records for each user. Then iterates through these gps records and if space or time constraint 

between two consecutive gps records is met then a new trajectory is formed. Additionally, any 

consecutive gps records that have the same spatial position (or temporal, more rarely) are discarded. 

The above is executed through the following procedure code (its explanation follows in the next 

section): 

begin 

            sem_reconstruct.reconstructtrajectories(‘belg_users_gps’, 4326, ‘sem_mpoint’, 5000, 14400); 

end; 

 

http://infolab.cs.unipi.gr/hermes/


The algorithm outputted 1709 trajectories consisting of 3542205 gps records, meaning that we had 

many consecutive gps records that had the same spatial position. From those trajectories only 1698 

were valid (i.e. those having more than one gps records) corresponding to 3542194 gps records. This 

gives an average of2086.0977 points per trajectory. Total number of segments is 3540496. The above 

trajectories give an average of 9.129 trajectories for each user. The total length of the 1698 trajectories 

is 50313133.007449 meters meaning an average of 29630.82038 meters per trajectory. The average 

speed for the 1698 trajectories is 7.000565 m/s. 

Those trajectories cover a rectangle space with Minimum Bounding Rectangle (MBR): [(2.598423, 

49.926288), (5.878673, 52.351493)]. 

The following diagrams give a more graphical/statistical description of the produced raw trajectory 

database. 

 

 

 

 

 



 

 

 

 

 

  



The Semantic Trajectory Database 
 

Before describing the ‘Diaries’ dataset and the way we processed it, let us first describe the Semantic 

Trajectory Database, and the required data types that were used in our schema. A semantic trajectory is 

considered as a time-ordered set of objects called episodes. Each episode is characterized as a MOVE 

when the person of the trajectory is moving from a place to another or as a STOP when the person is 

considered stationery. Additionally, each episode has semantic information about the person's activity 

during the episode. Also there is a link between each episode and the corresponding raw sub-trajectory 

(sequences of <x, y, t>). The word sub-trajectory emphasizes the fact that the whole person's trajectory 

is broken into sub-trajectories (episodes). 

 

In the above diagram we see two object tables 'BELG_SEM_TRAJS' and 'BELG_SUB_MPOINTS' along with 

the definitions of the objects, holding all the produced information. Every object has already a number 

of useful methods that will be continuously expanded. 

 SUB_MOVING_POINT: has all the methods of MOVING_POINT object (i.e. the trajectory 

datatype in HERMES) plus a method getsemmbb() which returns its MBB as a SEM_MBB object. 

 SEM_MBB has the following methods: 

o sem_mbb(geomsdo_geometry, period tau_tll.d_period_sec): This function takes as input 

a geometry object (other than point or line) and a time period. It constructs a sem_mbb 

instance that is returned. Default constructor also has two parameters so be careful. 

o area(srid): returns the spatial area of the MBB 

o duration(): returns the temporal area of the MBB 

o getrectangle(srid): returns the MBR as an MDSYS.GEOMETRY object 

o intersects(inmbbsem_mbb): This function takes as input another sem_mbb object. It 

checks whether the intersection between the two sem_mbb objects in all dimensions 

(i.e. x, y, t) is the empty set or not. If not, it returns true otherwise it returns false. 

 SEM_EPISODE:  

o duration(): returns the temporal area of the episode 

Figure 1: Semantic Trajectory Database Schema 



o sim_episodes(e sem_episode, dbtable varchar2, indxprefix varchar2:=null, lamda 

number:=0.5, weight number_array:=(0.333,0.333,0.333)): This function takes as input 

another sem_episode object, a dataset table for calculating required global values, an 

optional index prefix if such an index (i.e. STB-tree) has been built, an optional value for 

the λ (i.e. lamda) parameter and an optional 3 number array for the w (i.e. weight) 

parameter. It returns a number that defines the distance between this episode object 

and the input episode e. 

 SEM_TRAJECTORY 

o num_of_stops(): returns the number of STOP episodes it contains 

o num_of_moves(): returns the number of MOVE episodes it contains 

o num_of_episodes(tag varchar2, distinct varchar2): This function takes as input a "tag" 

string (less than 1000 chars) of the form "tag1+tag2+....+tagn" (i.e. implying a 

concatenated set of (sub-)strings), and a "distinct" string that can be either "yes" or "no" 

(i.e. implying a boolean flag). It returns the number of episodes (distinct or not, 

depending on the use of the flag) of the semantic trajectory that includes tags LIKE the 

given ones. In this case, “LIKE” implies pattern-matching per input tag#. 

o getMBB(): returns the MBB of the semantic trajectory 

o sem_stops(): returns the STOP episodes as a nested table object 

o sem_moves():returns the MOVE episodes as a nested table object 

o episodes_with(tag varchar2) return sem_episode_tab: This function takes as input a 

"tag" string (less than 1000 chars) of the form "tag1+tag2+....+tagn" (i.e. implying a 

concatenated set of (sub-)strings). It returns a nested table of those episodes that have 

tags LIKE the given ones. In this case, “LIKE” implies pattern-matching per input tag#. In 

case where an episode matches multiple times with some input tags, thisis returned 

only once. A null collection is returned when none episode is found. 

o confined_in(geomsdo_geometry, period tau_tll.d_period_sec, tag varchar2): This 

function takes as input a spatial geometry, a temporal period and a "tag" string (less 

than 1000 chars) of the form "tag1+tag2+....+tagn" (i.e. implying a concatenated set of 

(sub-)strings). It returns a sem_trajectory object, whose episodes are overlapping: a) 

spatially with the “geom” parameter, b) temporally with “period” parameter and 

textually with the “tag” parameter. If one or more of the three paramaters is null, then 

the function assumes that no confinement is requested in the corresponding dimension, 

as such it continues with the rest. In other words, if (for instance) the “geom” is null 

then the function uses it as the user gave the MBR of the whole semantic trajectory. 

Similarly, if the “period” is null then the function uses it as the user gave the period of 

the whole lifespan of the semantic trajectory. If “tag” is null, it is like the user requests 

for all possible tag matchings (i.e. like giving the “%” wild character as input) If none 

such episode is found, then a semantic trajectory is returned with an empty nested 

table of episodes. 

o sim_trajectories (trsem_trajectory, dbtable varchar2,indxprefix varchar2:=null, lamda 

number:=0.5, weight number_array:=(0.333,0.333,0.333)): This function takes as input 

another sem_trajectory object, a dataset table for calculating required global values, an 

optional index prefix if such an index (i.e. STB-tree) has been built, an optional value for 



the λ (i.e. lamda) parameter and an optional 3 number array for the w (i.e. weight) 

parameter. It returns a number that defines the spatio-textual distance between this 

semantic trajectory object and the input semantic trajectory. 

Note that with a slight modification each episode may hold multiple values on its semantic fields (e.g. 

episode_tag and activity_tag, or even a sequence of probabilities). With this Semantic Trajectory 

Database (STD) in hand, we can pose many useful queries and apply many algorithms that contain any 

combination of spatial, temporal and semantic predicates. For the moment we have implemented the 

following variations of range queries: 

 stb_range_episodes(episodeType, geometry): returns episodes of type episodeType (e.g. STOP 

or MOVE) that intersect the given geometry. 

 stb_range_episodes(episodeType, temporalPeriod): returns episodes of type episodeType (e.g. 

STOP or MOVE) that intersect the given temporal period. 

 stb_range_episodes(episodeType, geometry, temporalPeriod): returns episodes of type 

episodeType (STOP or MOVE) that intersect a geometry and a temporal period. 

 stb_range_episodes(fromGeometry, toGeometry, temporalPeriod): returns MOVE episodes that 

started (ended) from (to) the fromGeometry (toGeometry) geometry, respectively, inside the 

given temporal period. 

 stb_range_episodes(from_stopsem_episode, to_stopsem_episode, 

via_movesem_episode, stbtreeprefix varchar2) return sem_episode_tab: This method returns 

MOVE episodes. It takes as input arguments three episodes. The returned MOVE episodes obey 

to the input parameters, that is, they begin from the from_stop episode, they end to the to_stop 

episode and they have similar attributes as the via_move episode. Input episodes can be null, 

meaning that the corresponding constraint is not applied. For example, if the from_stop episode 

is null, then this method would return all move episodes from the dataset that ended to the 

to_stop episode, after having moved according to the via_move episode. Moreover, each input 

episode can have its text or its spatio-temporal attributes set to null, meaning again that no 

corresponding constraint is applied. For example,the from_stop episode parameter can have its 

spatiotemporal attribute (sem_mbb) set to null and the to_stop episode can have all or some of 

its text attributes (i.e. defining_tag,  episode_tag or activity_tag) set to null, while the via_move 

is null. In this case, the method returns MOVE episodes that began from the from_stop episode, 

where only text constraints are applied (e.g. Home, eating), went to the to_stop episode, where 

only spatiotemporal and some text constraints are applied (e.g.areaX, Work ), using any in-

between existing MOVE episode in the dataset. 

 stb_patterns (inputepisodes, inputchars, stbtreeprefix) return integer_nt: This method returns 

integers corresponding to semantic trajectory identifiers that follow a spatio-temporal-textual 

pattern. The returned semantic trajectories follow the movement pattern described by the 

arguments inputepisodes and inputchars. The argument inputepisodes holds the sequence of 

episodes in time order that constitute the pattern to be examined (e.g. episode1, episode2, 

episode5). Each episode in the sequence may have its textual attributes or its spatiotemporal 

attributes set or not (null), meaning that an attribute must be taken or not into account when 

current episode is examined. Additionally, between two consecutive episodes in the input 

sequence, others episodes that need not to be examined may exist. This is realized with the use 

of the inputchars argument, which is an array of characters each of which can be either ‘>’ or ‘*’. 



This array is synchronized with the array of episodes (i.e. inputepisodes), as it implies whether 

two given episodes should be consecutive or not (i.e. others are in-between them). More 

specifically, when the ‘>’ character is found, then the two episodes must be consecutive in the 

returned trajectory, while when the ‘*’ character is present, then between the two episodes 

other episodes may exist. 

The above range queries can be run efficiently in our STD as we have defined and implemented a 

specialized index for semantic trajectories named STB-tree (Pelekis and Theodoridis, 2013). 

 

Semantic reconstruction in Hermes MOD 
 

In order to support semantic reconstruction in Hermes, we have developed a special library (package),  

called sem_reconstruct (for semantic reconstruction), which supports this goal and is composed of the 

following procedures and functions: 

 reconstructtrajectories(sourcetblgps, srid, targettblmpoints, spacegapmet, timegapsec): This 

procedure takes as input a table with gps points which should have at least columns about user 

id, longitude, latitude and timestamp and reconstructs trajectories (that will be stored in 

targettblmpoints table with srid as its spatial reference system) by producing a new trajectory 

whenever a space gap and a time gap pair of thresholds between succesive gps points are 

exceeded. 

 belgdiariestosemtrajs: This procedure is made particularly for SBO-survey dataset. It takes input 

from the imported excel files and produces semantic trajectories and the corresponding sub 

trajectories. 

 stopfinderinputfile(o_id, traj_id, mpoint, subtraj_id): This procedure takes as input a trajectory  

mpoint with its object_id, trajectory_id and an optional sub-trjectory_id. It outputs a .dat file in 

the IO directory (where user must have read-write rights) in the form that is required by T-

Optics Stop detection algorithm. It can be called multiple times inside a pl/sql loop block, to 

output many trajectories (as will be exemplified in the subsequent section) . 

 stopfinder(dir, conf): This procedure calls the T-Optics (i.e. stopfinder) algorithm (Zimmerman et 

al. 2009). 

 rawtrajs2semtrajs(inputtblstopseqs, inputtblmpoints, outputtblsubmpoints, 

outputtblsemmpoints): This procedure takes as input a table of Stops found from T-optics 

algorithm, a table name of raw trajectories on which T-Optics run and two output tables for sub-

trajectories and semantic trajectories, respectively. It transforms raw trajectories to semantic 

trajectories based on the T-Optics findings. 

 stops2semtrajs(inputtblstopseqs, inputtblsemmpoints, outputtblsubmpoints, 

outputtblsemmpoints): This procedure takes as input a table of Stops found from T-optics 

algorithm and a table name of semantic trajectories upon the MOVE episodes of which the T-

Optics run. There are also two output tables for sub-trajectories and semantic trajectories, 

respectively. It modifies the given semantic trajectories and returns again semantic trajectories 

based on the T-Optics findings on the MOVE episodes of the initial ones. 



 pois_probability ( mbb, srid, is4visualize, poitable, out bestpoitag): Finds (and visualizes) POIs, 

each of which is annotated with a probability of being the POI that a Stop activity took place. 

The returned POIs are within some given MBB. The function also returns the bestpoitag 

parameter with the tag that corresponds to the POI having the biggest probability. 

 nn_pois( mbb, k, is4visualize): Find the K -Nearest-Neighbor (K-NN) Points-Of-Interest (POI) w.r.t. 

the centroid of the MBR of an episode. 

 annotate_episodes(semtrajs, poitable): This procedure takes a table of semantic trajectories and 

a table of POIs as input and then updates tags of episodes for each semantic trajectory. 



The ‘Diaries’ 
 

Diaries are in the form of trips with semantic information for each trip. This information is spread into a 

number of excel files. The dataset contains 881 trips for the 186 users. This gives an average of 4.73655 

trips per user or 2.93 trips per user per day. If we group those trips per user and per day then we get 300 

groups of trips. Moreover each trip has a connection with the trip number found in ‘GPS data’ source for 

each user, thus we can match gps records with trips in the diaries. Additionally, for every trip there is 

semantic information about origin and destination, the activity at destination and the used 

transportation mean. 

Those diaries were processed to produce semantic trajectories as follows: 

Procedure ‘diaries to semantic trajectories’ combine initially, information from the above sources and 

for each user iterates through his trips. A diary trip is considered a MOVE episode, so STOP episodes 

must be inserted before and after that trip. Semantic trajectories are created each time a new user or a 

new day is met (also when there is discontinuity between trip numbers). The above procedure results in 

creating 300 semantic trajectories, which is 1.6129 semantic trajectories in average per user. 

Additionally, by combining information from the ‘GPS data’ source, for every episode it builds a 

corresponding trajectory (a sub-trajectory if you like). This can be done, as we know for each trip (MOVE 

episode) the beginning and ending gps record ids. In the following figure the distribution of the number 

of users w.r.t. number of trips is shown. 

 

The total number of episodes is 2062 (881 MOVE and 1181 STOP episodes), an average of 6.87333 

episodes for each semantic trajectory. There exist 14 categories for STOP episode activities (due to 

different purposes at destination) and 10 for MOVE episode activities (due to different transportation 

means). Below we see how the number of trips per activity is distributed. 



 

For STOP episodes the distribution of activities (STOP purposes) and the distribution of transportation 

mean for MOVE episodes, are shown in the following two figures. 

 

 

 

 

 

 

 



The following chart shows the distribution between (origin, destination) types of MOVE episodes. 

 

Each episode has a corresponding sub-trajectory (either STOP or MOVE episode). Those sub-trajectories, 

2062 in number, have a total of 1050492 segments (509.4529 in average per sub-trajectory) which are 

separated in 196675 for STOP episodes and 853817 for MOVE episodes. That gives an average of 

166.5326 segments for STOP episodes and of 969.1452 segments for MOVE episodes. Below is a table 

with statistics about STOP and MOVE episodes. 

 STOP MOVE 

Distance Covered (meters) 2224655.2036 14445367.99321 
Average 1883.70466 16396.558 

Duration (seconds) 29576280 1016626 
Average 25043.4208 1153.9455 

Average Speed (m/s) 0.22406 12.9139 
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The above described semantic trajectory database is based solely on users’ diaries. To put differently, 

the destination of a trip corresponds to an ActivitySTOP, as there is a declared purpose for this. The next 

step is to include incident STOP episodes into the semantic trajectories found from the above 

procedure. Towards this direction, we have employed the T-Optics algorithm (Zimmermann et al. 2009). 

T-Optics is a “STOP-finder” algorithm that takes as input one raw trajectory and outputs sequences of 

successive points from that trajectory that form areas where the object is considered stationery. Thus in 

our setting, when T-Optics is applied on a raw trajectory it discovers sub-trajectoriesthat correspond to 

STOP episodes. Giving as input to T-Optics all trajectories that correspond to MOVE episodes from the 

semantic trajectories, we discover intermediate STOP areas. In other words, we break each MOVE 

episode to more than one MOVE episodes, if the T-Optics algorithm identifies intermediate STOP areas. 

The number of semantic trajectories in the database is still 300 but now these consist of 4634 episodes 

in total (2530 STOPs and 2104 MOVEs). Similarly the corresponding sub-trajectories have a total of 

1050492 segments (226.69 in average per sub-trajectory),which are separated in 226747 for STOP 

episodes and 823745 for MOVE episodes. 

The above procedure takes place in a series of steps. First, for each MOVE episode we output 

corresponding trajectories to a T-Optics format, by calling the following procedure: 

declare 

begin 

for cur in ( select b.object_id,b.traj_id,b.mpoint 

                   from stopfinder_mpoints b) loop 

 sem_reconstruct.stopfinderinputfile(cur.object_id,cur.traj_id,cur.mpoint,null); 

end loop; 

end; 

Then we call the T-Optics algorithm on the directory (mydir) where we outputed the previous files: 

declare 

mydir varchar2(2000); 

begin 

select directory_path into mydir from dba_directories where directory_name='IO'; 

sem_reconstruct.stopfinder(mydir,'config.ini');--procedure 

end; 

where the file config.ini is the configuration file needed by the algorithm.  

 
Figure 2: Configuration file for T-Optics stop detection algorithm 

 



The algorithm outputs a file per trajectory consisting of points belonging to stops (a trajectory may have 

multiple stops). These files are imported in the HERMES MOD. For every point of a stop the trajectory 

identifier and the stop identifier must be known. Finally, we call the following procedure to transform 

the original semantic trajectories to new semantic trajectories based on T-Optics results: 

declare 

begin 

sem_reconstruct.stops2semtrajs('stops_found', 'in_trajs','out_submpoints','out_semtrajs') 

end; 

 STOP MOVE 

Distance Covered (meters) 2337682.39476 14332340.8021 
Average 923.9851 6811.949 

Duration (seconds) 29698205 894701 
Average 11738.4209 425.2381 

Average Speed (m/s) 1.7534 10.93021 
 

The number of POIs (Point Of Interest) in the ‘Diaries’ source is 638 and are categorized in 4 categories 

(Home,Work/School,Family/friends/acquaintances,others). These POIs are spread across 289 

municipalities (NOTE that for us, a municipality is simply the MBR of all points inside a municipality, as 

we do not have such a spatial database). The following figures show the distribution of POIs. 

 

 

 

 



The Semantic Trajectory Cube 
 

Having designed such a database for semantic trajectories we move one step further to introduce a data 

warehouse for semantic trajectories. As we saw the main entities of a semantic trajectory are their stop 

and move episodes. Quite naturally those two entities become our facts in the new data warehouse 

scheme. 

The new data warehouse schema (see Figure 2) is a constellation scheme consisting of five dimensions 

and two fact tables. The dimensions are space, time, user’s profile, stop-semantics and move-semantics. 

Note that this relational representation of the DW corresponds to an instantiation of a Semantic 

Mobility Network (Graph), as this is defined by (Pelekis et al. 2013). 

 

Figure 3: The Semantic Trajectory Data Warehouse schema 

Measures in the above scheme are basic measures that can be easily extended. Such a DW mayenable 

the following kinds of analysis: 

• who made a stop? when and where? what did she do during her stop? 

• who made a movement? When and from/to where? How did she move and what did she do 

during her motion? 

All these have been implemented in HERMES MOD where we deal with issues concerning the ETL 

process as well as other issues related to OLAP operations in the cube. Let us explain the above schema 

in more detail. First we define two base cells (bc) one for each fact table. For stops-fact-table we define 

bcstopcomposed of three dimensions (time, user-profile and stop-semantics) and for moves-fact-table we 

define bcmoves composed of five dimensions (time, user-profile, move-semantics, from-stop-semantics 

and to-stop-semantics). These two base cells are the basis for splitting our multidimensional space of 



semantic trajectories and form the base cuboid of our lattice. As an example, we discuss three basic 

measures named num-of-sem-trajectories which is calculated by counting all distinct semantic 

trajectories that found inside a base cell, num-of-users which is the number of different objects that are 

found inside the cell and num-of-activities which is the number of distinct activities of the moving 

objects in the base cell. 

Let’s describe the produced (so far) API of HERMES with which the user can manage the above DW 

scheme: 

 sdw.createSDW(sourceTablePrefix) where parameter is a prefix for the necessary 

database objects that will be created. In different words, this procedure creates a graph (with 

the described relational representation), which is one of the graphs in the lattice of our 

semantic mobility cube, according to (Pelekis et al. 2013). 

Similarly, with procedure sdw.dropSDW(sourceTablePrefix)user can drop the created data 

warehouse scheme.  

To load dimensions, the user invokes procedure: 

 sdw.loaddimensions(sourceTablePrefix, poitable, rawtable, 

intervalsecs)where the user must provide the DW prefix, the source for POIs for splitting 

the space dimension, the source for the minimum and maximum timestamp of the data 

(rawtable) and the interval between two times for splitting the temporal dimension. 

Then when all dimension tables are filled in, the user can invoke ETL procedures to load data into the 

fact tables, from a semantic trajectory database. The ETL procedures are divided in two categories, one 

for loading every cell of the fact table for all semantic trajectories in STD and another for loading every 

semantic trajectory into the cells of the fact tables. Moreover for efficiency reasons these ETL 

procedures make use of the STB-TREE index already defined in STD. Thus for the first category user can 

call procedure: 

 sdw.cellstopsload(sdwTablePrefix, stbtreenodes, stbtreeleafs)where 
parameters define the DW tables, the STB-TREE nodes table and STB-TREE leaves table. 

which load the stops-fact-table. Loading the moves-fact-table can be loaded by calling the procedure: 

 sdw.cellmovesload(sdwTablePrefix, stbtreenodes, stbtreeleafs)where 
parameters define the DW tables, the STB-TREE nodes table and STB-TREE leaves table. 

If the user wants to use the second approach for the ETL process, that is to load every semantic 

trajectory in the cells of the fact tables, then user can call the following procedure to load stops-fact-

table: 

 sdw.semtrajstopsload(sdwTablePrefix, semtrajs) where the first parameter 
defines the DW scheme and the second the table where semantic trajectories are stored. 

Similarly to load the moves-fact-table user can call procedure: 

 sdw.semtrajmovesload(sdwTablePrefix, semtrajs) where the first parameter 
defines the DW scheme and the second the table where semantic trajectories are stored. 

After successful loading of the fact tables, the user must invoke two other procedures which compute 
some auxiliary measures that will be used later on the OLAP operations. These are: 



 sdw.updateauxiliarystops(sdwTablePrefix)for the stops-fact-table, where the 
parameter defines the DW scheme. 

and  

 sdw.updateauxiliarymoves(sdwTablePrefix)for the moves-fact-table, where the 
parameter defines the DW scheme. 

On the classification/prediction of episodes’ tags 
 

In order to support classification/prediction tasks taken into advantage of the synchronized nature of 

this unique dataset, we may transform each episode to a multi-dimensional vector (as such producing a 

feature space), with dimensions derived properties from the episode such as: (1) the distance covered 

by the moving object in the episode, (2) episode’s duration, (3) episode’s top speed, (4) episode’s 

average speed, (5) speed variation, (6) road type, (7) starting POI type, (8) end POI type, (9) episode’s 

area (10) episode’s radius of gyration, etc. The classification label of such a vector may be the tags 

annotating that episode (e.g. STOP, MOVE, CAR, WALK etc. The list of features can be easily extended 

with new features that may aid the discrimination process of the classifier. 

The classification model is built from episodes features for the available semantic trajectories (training 

set). For the moment, features are calculated by the following procedure: 

 std.calcfeatures(outputtblfeatures, intblsemtrajs) where the first 

parameter is the table to hold episodes properties and second parameter gives the input table 

of the available semantic trajectories.. 

 

 



Exploring SBO survey dataset  
 

This section includes a case study upon the above described unique dataset that also stands as a hands-

on experience upon the data-type system for semantic trajectories with its associated query language 

(Pelekis et al. 2013), the API of which we presented in the previous sections. 

Querying the Semantic Trajectory Database 
 

1. Find NN POI inside an episode 

Description: 

Find the K-Nearest-Neighbor (K-NN) Points-Of-Interest (POI) w.r.t. the centroid of the MBR of an 

episode. The returned POI (visualized in the subsequent figure) should be inside the MBR. Depending on 

this topological filter, the function may return less than (if any) K neighbors. 

Code: 

 

DECLARE 

  sembb sem_mbb := sem_mbb (sem_st_point (5.503502, 50.953662, 

tau_tll.d_timepoint_sec (2006, 5, 1, 5, 00, 00) ), sem_st_point (5.727093, 

51.026928, tau_tll.d_timepoint_sec (2007, 6, 1, 5, 00, 00) ) ); 

BEGIN 

  sem_reconstruct.nn_pois (sembb, 10, 'TRUE'); 

  COMMIT; 

END; 

 

 
 

 

2. Probability of POIS within episode ΜΒΒ 

Description: 



This function finds the POI that exist inside the MBR of an episode and for each of them it returns the 

probability of being the POI where the moving object performed an activity. The probability is inverse 

proportional to the distance of the POI from the centroid of the episode’s MBR. 

Code: 

DECLARE 

sembb sem_mbb := sem_mbb (hermes.sem_st_point (4.415422, 51.218345, 

tau_tll.d_timepoint_sec (2007, 9, 4, 6, 27, 17 ) ), hermes.sem_st_point 

(4.634043, 51.24343, tau_tll.d_timepoint_sec (2007, 9, 5, 5, 44, 37 ) ) ); 

outtag varchar2(50); 

BEGIN 

  sem_reconstruct.pois_probability (sembb, 4326, 'TRUE', ‘belg_pois’, 

outtag); 

  COMMIT; 

END; 

 

 
 

3. Count STOP and MOVES of semantic trajectories 

Description: 

This function counts the number of Stops and Moves for all semantic trajectories in the table. 

Code: 

SELECT o_id, 

  semtraj_id, 

  VALUE (t).num_of_stops () num_of_stops, 

  VALUE (t).num_of_moves () num_of_moves, 

  (VALUE (t).num_of_stops () + VALUE (t).num_of_moves () ) AS num_of_episodes 

FROM belg_sem_trajs t 

ORDER BY 4 DESC; 

 

 

 

4. Visualize a semantic trajectory 

Description: 



This operation visualizes a given semantic trajectory, i.e. the MBRs of its episodes and the corresponding 

raw sub-trajectories. 

Code: 

DECLARE 

   semtraj      sem_trajectory; 

   void         INTEGER        := 123043; 

   vsemtrajid   INTEGER        := 1; 

BEGIN 

   SELECT VALUE (s) 

     INTO semtraj 

     FROM belg_sem_trajs s 

    WHERE o_id = void AND semtraj_id = vsemtrajid; 

 

   visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE'); 

END; 

 

 

5. Sum of MOVE durations per transportation mode 

Description: 

This query finds the summation of the durations of the MOVE episodes per transportation mode, for a 

given semantic trajectory. 

Code: 

SELECT   SUM (value(s).duration(). m_Value ) duration, 

         defining_tag, activity_tag, COUNT (defining_tag) num_of_episodes 

    FROM TABLE (SELECT t.episodes_with ('MOVE') 

                  FROM belg_sem_trajs t 

                 WHERE t.o_id = 5238 AND t.semtraj_id = 1) s 

GROUP BY defining_tag, activity_tag; 
 

 
 

6. MOVEs duration with that of some MOVEs having specific tags 



Description: 

Identify those MOVE episodes whose duration is less than the average duration of MOVE episodes 

whose activity is ‘working’. This function demonstrates how one can filter episodes with multiple tags. 

Code: 

SELECT VALUE (ext_s).DURATION ().m_value DURATION, 

  defining_tag, 

  activity_tag 

FROM TABLE 

  (SELECT t.episodes_with ('MOVE') 

  FROM belg_sem_trajs t 

  WHERE t.o_id     = 5238 

  AND t.semtraj_id = 2 

  ) ext_s 

WHERE (VALUE (ext_s).DURATION ().m_value) < 
  (SELECT AVG (VALUE (s).DURATION ().m_value) 

  FROM TABLE 

    (SELECT t.episodes_with ('working') 

    FROM belg_sem_trajs t 

    WHERE t.o_id                  = 5238 

    AND t.semtraj_id              = 2 

    AND t.episodes_with ('MOVE') IS NOT NULL 

    ) s 

  ); 

 
 

7. Confine a semantic trajectory in temporal dimension as well as by filtering its textual 

component 

Description: 

a. Restrict a given semantic trajectory inside a temporal period and then return only the STOP 

episodes that the user was working. 

b. This query is a variant of the previous one that restricts a given semantic trajectory inside a 

temporal period and then returns either STOP or WORKING episodes. 

Code: 

a)  SELECT * 
  FROM TABLE ( 

SELECT b.confined_in  (NULL,  

tau_tll.d_period_sec ( 

tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00 ), 

tau_tll.d_timepoint_sec (2007, 10, 22, 23, 59, 00 )  

), 'STOP' ).episodes_with ('working') 

FROM belg_sem_trajs b 

WHERE b.o_id = 216828 

AND b.semtraj_id = 2 

  ); 



 

Visualization 
 
DECLARE 

  vsrid      INTEGER := 4326; 

  i          INTEGER := 0; 

  void       INTEGER := 216828; 

  vsemtrajid INTEGER := 2; 

  sb_mps mp_array    := mp_array (); 

  semtraj sem_trajectory; 

BEGIN 

  FOR rc IN 

  (SELECT DEREF (tlink).sub_mpoint sub_mpoint 

  FROM TABLE 

    (SELECT b.confined_in (NULL, tau_tll.d_period_sec 

(tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 22, 23, 59, 00 ) ), 'STOP' ).episodes_with ('working') 

    FROM belg_sem_trajs b 

    WHERE b.o_id     = void 

    AND b.semtraj_id = vsemtrajid 

    ) s 

  ) 

  LOOP 

    sb_mps := mp_array (rc.sub_mpoint); 

    visualizer.movingpointtable2kml (sb_mps, vsrid, 'u' || void || '_' || i 

|| '_MOVPOINT.kml' ); 

    i := i + 1; 

  END LOOP; 

  SELECT VALUE (s) 

  INTO semtraj 

  FROM belg_sem_trajs s 

  WHERE o_id     = void 

  AND semtraj_id = vsemtrajid; 

  visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE'); 

END; 

 

  



In the above figures there is the semantic trajectory as a whole in blue color and in red episodes 
returned by the query. 
 

b) SELECT * 
  FROM TABLE ( 

SELECT b.confined_in  (NULL,  

tau_tll.d_period_sec ( 

tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 22, 23, 59, 00 )  

), 'STOP+working' ).episodes 

FROM belg_sem_trajs b 

WHERE b.o_id = 216828 

AND b.semtraj_id = 2 

  ); 

 

Visualization 
 
DECLARE 

  vsrid      INTEGER := 4326; 

  i          INTEGER := 0; 

  void       INTEGER := 216828; 

  vsemtrajid INTEGER := 2; 

  sb_mps mp_array    := mp_array (); 

  semtraj sem_trajectory; 

BEGIN 

  FOR rc IN 

  (SELECT DEREF (tlink).sub_mpoint sub_mpoint 

  FROM TABLE 

    (SELECT b.confined_in  (NULL,  

    tau_tll.d_period_sec ( 

    tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00 ), 

tau_tll.d_timepoint_sec (2007, 10, 22, 23, 59, 00 )  

    ), 'STOP+working' ).episodes 

    FROM belg_sem_trajs b 

    WHERE b.o_id     = void 

    AND b.semtraj_id = vsemtrajid 

    ) s 

  ) 

  LOOP 

    sb_mps := mp_array (rc.sub_mpoint); 

    visualizer.movingpointtable2kml (sb_mps, vsrid, 'u' || void || '_' || i 

|| '_MOVPOINT.kml' ); 

    i := i + 1; 

  END LOOP; 

  SELECT VALUE (s) 

  INTO semtraj 

  FROM belg_sem_trajs s 

  WHERE o_id     = void 

  AND semtraj_id = vsemtrajid; 

  visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE'); 

END; 



  

In the above figures there is the semantic trajectory as a whole in blue color and in red episodes 
returned by the query. 
 

8. Temporal range query with a text filter on STB-tree. 

 
Description: 
 
This query applies a temporal range query to retrieve and count only MOVE episodes, for which 
it calculates their total duration. 
Code: 

SELECT DEREF (tlink).o_id o_id, 

  COUNT (tlink) total_moves, 

  SUM (value(s).duration(). m_Value) total_duration 

FROM TABLE 

  (SELECT std.stb_range_episodes ('MOVE', tau_tll.d_period_sec 

(tau_tll.d_timepoint_sec (2006, 01, 01, 00, 01, 00 ), tau_tll.d_timepoint_sec 

(2006, 12, 31, 23, 59, 00 ) ), 'SEM_INDX' ) 

  FROM DUAL 

  ) s 

GROUP BY DEREF (tlink).o_id 

ORDER BY 2 DESC; 
 



 
 

 
9. Spatio-temporal range query with a text filter on STB-tree 

 
Description: 
 
This query applies a spatio-temporal range query to calculate the duration of ‘Work/School’ and 
‘working’ STOP episodes that take place at a region for a period of time. 
 
Code: 

SELECT   SUM (VALUE (s).DURATION ().m_value) work_duration, 

         DEREF (tlink).o_id o_id 

    FROM TABLE (SELECT std.stb_range_episodes 

                       ('STOP', 

                        MDSYS.SDO_GEOMETRY (2003, 4236, NULL, 

                             MDSYS.sdo_elem_info_array (1, 1003, 3), 

                                          MDSYS.sdo_ordinate_array (4.985388, 

51.152885, 5.994323, 52.158382) ), 

                        tau_tll.d_period_sec (tau_tll.d_timepoint_sec (2007, 

10, 22, 08, 00, 00), 

                                              tau_tll.d_timepoint_sec (2008, 

10, 22, 23, 00, 00) ), 'SEM_INDX' ) FROM DUAL ) s 

   WHERE episode_tag = 'Work/School' AND activity_tag = 'working' 

GROUP BY DEREF (tlink).o_id; 

 

 

 

 
 
 



10. Cross-over spatio-temporal range query with a text filter on STB-tree (filter step) and a 

subsequent temporal restriction of the resulting moving points (refinement step). 

 
Description: 
 
This query restricts the sub-trajectories of STOP episodes (that exist inside a spatio-temporal 
box), inside a temporal period. 
 
Code:   

SELECT DEREF (tlink).sub_mpoint sub_mpoint, 

  DEREF (tlink).sub_mpoint.at_period (tau_tll.d_period_sec 

(tau_tll.d_timepoint_sec (2007, 10, 22, 8, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 22, 10, 00, 00 ) ) ) restricted_sub_mpoint, 

  DEREF (tlink).o_id o_id 

FROM TABLE 

  (SELECT std.stb_range_episodes ('STOP', MDSYS.SDO_GEOMETRY (2003, 4326, 

NULL, MDSYS.sdo_elem_info_array (1, 1003, 3 ), MDSYS.sdo_ordinate_array 

(4.981388, 51.152885, 4.994323, 51.162082 ) ), tau_tll.d_period_sec 

(tau_tll.d_timepoint_sec (2007, 10, 22, 5, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 28, 5, 00, 00 ) ), 'SEM_INDX' ) 

  FROM DUAL) s ; 

 
Visualization 
 
DECLARE 

  vsrid INTEGER            := 4326; 

  i     INTEGER            := 0; 

  sb_mps mp_array          := mp_array (); 

  rsb_mps mp_array         := mp_array (); 

  vgeom MDSYS.SDO_GEOMETRY := MDSYS.SDO_GEOMETRY (2003, vsrid, NULL, 

MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array (4.981388, 

51.152885, 4.994323, 51.162082 ) ); 

BEGIN 

  FOR rc IN 

  (SELECT DEREF (tlink).sub_mpoint sub_mpoint, 

    DEREF (tlink).subtraj_id subtraj_id, 

    DEREF (tlink).traj_id traj_id, 

    DEREF (tlink).sub_mpoint.at_period (tau_tll.d_period_sec 

(tau_tll.d_timepoint_sec (2007, 10, 22, 8, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 22, 10, 00, 00 ) ) ) restricted_sub_mpoint, 

    DEREF (tlink).o_id o_id, 

    MDSYS.sdo_geom.sdo_centroid (VALUE (s).mbb.getrectangle (vsrid), 0.01 ) 

mbr_centroid, 

    VALUE (s).mbb.getrectangle (vsrid) mbb, 

    activity_tag, 

    episode_tag, 

    defining_tag 

  FROM TABLE 

    (SELECT std.stb_range_episodes ('STOP', vgeom, tau_tll.d_period_sec 

(tau_tll.d_timepoint_sec (2007, 10, 22, 5, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 28, 5, 00, 00 ) ), 'SEM_INDX' ) 

    FROM DUAL 

    ) s 

  ) 

  LOOP 

    sb_mps                      := mp_array (rc.sub_mpoint); 

    IF rc.restricted_sub_mpoint IS NOT NULL THEN 

      rsb_mps                   := mp_array (rc.restricted_sub_mpoint); 



      visualizer.movingpointtable2kml (rsb_mps, vsrid, 'u' || rc.o_id || '_' 

|| i || '_RMOVPOINT.kml' ); 

    END IF; 

    visualizer.movingpointtable2kml (sb_mps, vsrid, 'u' || rc.o_id || '_' || 

i || '_MOVPOINT.kml' ); 

    visualizer.placemark2kml (rc.mbr_centroid, vsrid, 'u' || rc.o_id || 

'traj' || rc.traj_id || 'subtraj' || rc.subtraj_id || '_CENTROID.kml', 

rc.defining_tag || ' (activity: ' || rc.activity_tag || ')', rc.subtraj_id || 

' - ' || rc.episode_tag ); 

    visualizer.polygon2kml (rc.mbb, vsrid, 'u' || rc.o_id || 'traj' || 

rc.traj_id || 'subtraj' || rc.subtraj_id || '_RECTANGLE.kml' ); 

    i := i + 1; 

  END LOOP; 

  visualizer.polygon2kml (vgeom, vsrid, 'RECTANGLE.kml'); 

END; 
 

 
In the above figure there are STOP episodes in blue color of the given time period and given 
spatial confinement (in green). Part of the episode that exists inside time period declared in 
at_period function is showed in red color. 
 

11. Average duration of STOPS overlapping with a temporal period 

 
Description: 
 
This query finds the average duration of STOP episodes overlapping with a temporal period. 
 
Code: 

SELECT SUM (VALUE (s).DURATION ().m_value) / COUNT (DEREF (tlink).traj_id) 

avg_mbb_stop_duration 

FROM TABLE 

  (SELECT std.stb_range_episodes ('STOP', MDSYS.SDO_GEOMETRY (2003, 4326, 

NULL, MDSYS.sdo_elem_info_array (1, 1003, 3 ), MDSYS.sdo_ordinate_array 

(4.985388, 51.152885, 4.994323, 51.158382 ) ), tau_tll.d_period_sec 



(tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00 ), tau_tll.d_timepoint_sec 

(2007, 10, 23, 08, 00, 00 ) ), 'SEM_INDX' ) 

  FROM DUAL 

  ) s 
 

 
 

12. Index-based range query on STB-tree to identify patterns of the form “from-to-via” 

 
Description: 
 
Retrieve objects (actually their MOVE episodes) that start from ‘Home’ and go to ‘Work/School’ 
between a given temporal period 
 
Code: 

select deref(tlink).o_id mov_obj, activity_tag from 

table(std.stb_range_episodes_mbr( 

sem_episode('STOP', 'Home',null,null,null), 

sem_episode('STOP', 'Work/School',null,null,null), 

sem_episode('MOVE',null,null, 

sem_mbb(sem_st_point(5.503502,50.953662, 

tau_tll.d_timepoint_sec(2006,5,1,5,00,00)),sem_st_point(5.727093,51.026928,ta

u_tll.d_timepoint_sec(2007,6,1,5,00,00))) 

,null), 

'SEM_INDX')) t; 

 

 

 
 
How many and with what transportation mean start from ‘Home’ which are inside a given 
region, between a given temporal period and their next STOP is for ‘working’. 
 
Code: 

SELECT COUNT(deref(tlink).o_id) sum_mov_obj, 

  activity_tag 

FROM TABLE(std.stb_range_episodes_mbr( sem_episode('STOP', 

NULL,NULL,HERMES.SEM_MBB(HERMES.SEM_ST_POINT(4.938277,50.964135,TAU_TLL.D_TIM

EPOINT_SEC(2007,1,1,7,00,00)),HERMES.SEM_ST_POINT(5.503228,51.204038,TAU_TLL.

D_TIMEPOINT_SEC(2008,1,1,7,00,00))),NULL), sem_episode('STOP', 

NULL,'working',NULL,NULL), NULL, 'SEM_INDX'))   t 

GROUP BY activity_tag; 



 

 
 
The same query as the previous one, this time without imposing the constraint that the next 
STOP will be a ‘working’ one. 
 
Code: 

SELECT DEREF (tlink).o_id o_id, 

  DEREF (tlink).traj_id traj_id, 

  DEREF (tlink).sub_mpoint mpoint, 

  DEREF (tlink).subtraj_id subtraj_id, 

  value(t).mbb.getrectangle(4326), 

  MDSYS.sdo_geom.sdo_centroid (VALUE (t).mbb.getrectangle (4326), 0.01 ) 

mbr_centroid, 

  activity_tag, 

  defining_tag 

FROM TABLE (std.stb_range_episodes_mbr (sem_episode ('STOP', NULL, NULL, 

hermes.sem_mbb (hermes.sem_st_point (5.162558,51.12519, 

tau_tll.d_timepoint_sec (2007, 1, 1, 7, 00, 00 ) ), hermes.sem_st_point 

(5.180134, 51.140135, tau_tll.d_timepoint_sec (2007, 1, 31, 7, 00, 00 ) ) ), 

NULL ), sem_episode ('STOP', NULL, NULL, NULL, NULL ), NULL, 'SEM_INDX' ) ) t 

 

 
Visualization 
 
DECLARE 

  stop_mbb hermes.sem_mbb := hermes.sem_mbb (hermes.sem_st_point (5.162558, 

51.12519, tau_tll.d_timepoint_sec (2007, 1, 1, 7, 00, 00 ) ), 

hermes.sem_st_point (5.180134, 51.140135, tau_tll.d_timepoint_sec (2007, 1, 

31, 7, 00, 00 ) ) ); 

  res_mps mp_array        := mp_array (); 

  semtraj sem_trajectory; 

  vsrid INTEGER := 4326; 

BEGIN 

  FOR rc IN 

  (SELECT DEREF (tlink).o_id o_id, 

    DEREF (tlink).traj_id traj_id, 

    DEREF (tlink).sub_mpoint mpoint, 

    DEREF (tlink).subtraj_id subtraj_id, 

    VALUE (t).mbb.getrectangle (vsrid) rect, 

    MDSYS.sdo_geom.sdo_centroid (VALUE (t).mbb.getrectangle (vsrid), 0.01 ) 

mbr_centroid, 

    activity_tag, 

    defining_tag 

  FROM TABLE (std.stb_range_episodes_mbr (sem_episode ('STOP', NULL, NULL, 

stop_mbb, NULL ), sem_episode ('STOP', NULL, NULL, NULL, NULL ), NULL, 

'SEM_INDX' ) ) t 

  ) 

  LOOP 

    res_mps := mp_array (rc.mpoint); 

    visualizer.movingpointtable2kml (res_mps, vsrid, CONCAT ( 'u' || rc.o_id 

|| 'traj' || rc.traj_id || 'subtraj' || rc.subtraj_id, '_Q_MOVPOINT.kml' ) ); 

    visualizer.polygon2kml (rc.rect, vsrid, rc.o_id || '.' || rc.traj_id || 

'.' || rc.subtraj_id || '_RECTANGLE.kml' ); 

    visualizer.placemark2kml (rc.mbr_centroid, vsrid, 'u' || rc.o_id || 

'traj' || rc.traj_id || 'subtraj' || rc.subtraj_id || '_CENTROID.kml', ' ', 

rc.defining_tag || '-' || rc.activity_tag ); 



  END LOOP; 

  visualizer.polygon2kml (stop_mbb.getrectangle (vsrid), vsrid, 

'RECTANGLE.kml' ); 

END; 

 

 
In the above figure in blue color are all MOVE episodes that have their starting Stop inside a 
spatiotemporal box and end to another STOP episode. The spatiotemporal box is depicted in 
green color. 
 
 

13. Index-based pattern query on STB-tree to identify patterns of movement 

 
Description: 
 
Retrieve the identifiers of semantic trajectories that follow the pattern of episodes given as 
input. The declared pattern includes objects that have an episode to a specific spatiotemporal 
area with any textual attributes, then after an arbitrary number of episodes reach to an episode 
defined as MOVE in any spatiotemporal area, where objects are using WALKING as 
TRANSPORTATION and in the immediate next episode objects having a STOP in any named 
place (null) where they are RELAXING in the specified spatiotemporal area. 
 
Code: 

select * from table(std.stb_patterns(sem_episode_tab( 

sem_episode(null,null,null,sem_mbb(sem_st_point(468993,4201747,tau_tll.d_time

point_sec(2013,5,8,8,10,0)),sem_st_point(473993,4206747,tau_tll.d_timepoint_s

ec(2013,5,8,14,0,0))),null), 

sem_episode('MOVE','TRANSPORTATION','WALKING',null,null), 

sem_episode('STOP',null,'RELAXING',sem_mbb(sem_st_point(468993,4201747,tau_tl

l.d_timepoint_sec(2013,5,8,14,20,0)),sem_st_point(473993,4206747,tau_tll.d_ti

mepoint_sec(2013,5,8,23,0,0))),null)), 

varchar_ntab(null,'*','>'), 

'attiki_stbtree')); 

 

 



 
 
 
 
 
 



  

Analyzing the Semantic Trajectory Database/Cube 
 

14. Origin-Destination Matrix for Semantic Trajectories 

Description: 

We first split the space (by partitioning the X and Y axis in segments of some given length 

(i.e.step)), so as to create the geometries (i.e. regions) of the OD-matrix. Then we calculate the 

OD-matrix, by providing the table where the semantic trajectories reside. 

Usage: 

DECLARE 

   stepx   BINARY_INTEGER; 

   stepy   BINARY_INTEGER; 

BEGIN 

   stepx := 0.5; 

   stepy := 0.5; 

   hermes.od_matrix.populate_rectangle_tbl (stepx, stepy); 

   COMMIT; 

END; 

 
SELECT * 

  FROM TABLE (hermes.od_matrix.get_odmatrix('BELG_SEM_TRAJS')) 

 ; 

 

  
 
 
 
 



15. Create and load DW 

Description: 

a) First we create the necessary DB objects by providing a prefix name for them. This prefix 

corresponds to the DW name. 

b) We load data to dimensions tables by providing: i) the DW name, ii) the POIs table, the table 

contatining metadata of the dataset (min/max values of the spatio-temporal axes), iii) the table 

contacting users’ information, iv) the duration of the temporal periods that will be used for the 

temporal dimension and  v) the table containing the semantic trajectories. 

c) We load the two fact tables by providing the table containing the semantic trajectories and 

the prefix name of the STB-tree index that has been built upon the latter. 

Code: 

a)  
begin  

sdw.createsdw('sem_dw'); 

end; 

b)  
begin  

sdw.loaddimensions('sem_dw','belg_pois','belg_dataset_dimensions','belg_users

',2592000,'belg_sem_trajs'); 

end; 

c)  
begin 

  sdw.cellstopsload('sem_dw','SEM_INDX'); 
end; 
 
begin 

  sdw.cellmovesload('sem_dw','SEM_INDX'); 

end; 

 
16. Join MOVES fact table and USERS profile dimension table 

Description: 

Find the number of users that moved per temporal period and profession. 

Code: 

SELECT sem_dw_period_dim.period_id, sem_dw_user_profile_dim.profession, 

COUNT(sem_dw_moves_fact.num_of_users) num_of_users 

FROM sem_dw_moves_fact,  sem_dw_user_profile_dim,  sem_dw_period_dim 

WHERE ( (sem_dw_user_profile_dim.user_profile_id = 

sem_dw_moves_fact.user_profile_id ) 

AND (sem_dw_period_dim.period_id = sem_dw_moves_fact.period_id) ) 

GROUP BY sem_dw_user_profile_dim.profession, sem_dw_period_dim.period_id 

ORDER BY sem_dw_period_dim.period_id ASC; 
 



 
 

17. Join MOVES fact table, USERS profile dimension table and MOVES semantic dimension table 

Description: 

Find the total average duration and travelled distance per gender and temporal period, for 

those that moved by train. 

Code: 

SELECT sem_dw_period_dim.period_id, sem_dw_user_profile_dim.gender, 

         SUM (sem_dw_moves_fact.avg_travel_duration) sum_avg_dur, 

         SUM (sem_dw_moves_fact.avg_distance_traveled) sum_avg_dist 

    FROM sem_dw_moves_fact, sem_dw_user_profile_dim, sem_dw_move_sems_dim, 

sem_dw_period_dim 

   WHERE ((sem_dw_user_profile_dim.user_profile_id 

=sem_dw_moves_fact.user_profile_id) 

          AND (sem_dw_move_sems_dim.move_sems_id 

=sem_dw_moves_fact.move_sems_id) 

          AND (sem_dw_period_dim.period_id = sem_dw_moves_fact.period_id) 

          AND ((sem_dw_move_sems_dim.move_mode = 'TRAIN')) 

         ) GROUP BY sem_dw_user_profile_dim.gender, 

sem_dw_period_dim.period_id ORDER BY sem_dw_period_dim.period_id ASC 



 
 

18. Aggregate type of MOVES 

Description: 

For each period, find the number of users that moved with the same transportation mode. 

Code: 

 

SELECT   sem_dw_moves_fact.period_id, sem_dw_move_sems_dim.move_mode, 

count(num_of_users) total_users 

    FROM sem_dw_moves_fact, sem_dw_move_sems_dim 

   WHERE ((sem_dw_move_sems_dim.move_sems_id = sem_dw_moves_fact.move_sems_id 

          ) 

         ) 

GROUP BY sem_dw_moves_fact.period_id, sem_dw_move_sems_dim.move_mode 

ORDER BY sem_dw_moves_fact.period_id ASC; 

 

 
 

19. Join  MOVES, STOPS fact tables 



Description: 

Find the number of users that move towards a destination and the number of users that are 

already at the same destination during the same period of time. 

Code: 

WITH period_stopsto AS 

  (SELECT sem_dw_stops_fact.period_id,COUNT (sem_dw_stops_fact.num_of_users) 

num_of_stop_users,sem_dw_stop_sems_dim.stop_name 

  FROM sem_dw_stops_fact,sem_dw_stop_sems_dim 

  WHERE ((sem_dw_stop_sems_dim.stop_sems_id = sem_dw_stops_fact.stop_sems_id 

) ) 

  GROUP BY sem_dw_stops_fact.period_id,sem_dw_stop_sems_dim.stop_name 

  ), 

  period_movesto AS 

  (SELECT sem_dw_MOVES_fact.period_id,COUNT (sem_dw_MOVES_fact.num_of_users) 

num_of_move_users,sem_dw_STOP_sems_dim.stop_name 

  FROM sem_dw_MOVES_fact,sem_dw_STOP_sems_dim 

  WHERE ((sem_dw_stop_sems_dim.stop_sems_id = 

sem_dw_MOVES_fact.to_stop_sems_id) ) 

  GROUP BY sem_dw_MOVES_fact.period_id,sem_dw_STOP_sems_dim.stop_name 

  ) 

SELECT 

period_stopsto.period_id,period_stopsto.stop_name,period_stopsto.num_of_stop_

users,period_movesto.num_of_move_users 

FROM period_stopsto FULL OUTER JOIN period_movesto 

ON (period_stopsto.period_id=period_movesto.period_id AND 

period_stopsto.stop_name=period_movesto.stop_name) ORDER BY 1 DESC,2; 

 

 
 

20. Join STOPS fact table with semantic dimension and space dimension tables 

Description: 

For each time period, find the total average duration of all STOP episodes that take place at 

‘banks’. 



Code: 

SELECT   SUM (sem_dw_stops_fact.avg_duration) sum_avg_duration , 

         sem_dw_stops_fact.period_id, sem_dw_stop_sems_dim.stop_name 

    FROM sem_dw_stops_fact, sem_dw_space_dim, sem_dw_stop_sems_dim 

   WHERE (    (sem_dw_space_dim.poi_id = sem_dw_stop_sems_dim.poi_id) 

          AND (sem_dw_stop_sems_dim.stop_sems_id = 

                                                

sem_dw_stops_fact.stop_sems_id 

              ) 

          AND ((UPPER (sem_dw_stop_sems_dim.stop_name) LIKE UPPER ('%bank%')) 

              ) 

         ) 

GROUP BY sem_dw_stops_fact.period_id, sem_dw_stop_sems_dim.stop_name 

ORDER BY sem_dw_stop_sems_dim.stop_name ASC; 

 

 
 

21. STOPS at a given region 

Description: 

For each period, find the total average duration of those STOPs that are inside a given region. 

Code: 

DECLARE 

  vgeom MDSYS.SDO_GEOMETRY := MDSYS.SDO_GEOMETRY (2003, 4326, NULL, 

MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array (4.815388, 

51.112885, 4.994323, 53.158382 ) ); 

  vsrid INTEGER            := 4326; 

BEGIN 

  FOR rc_pois IN 

  (SELECT poi_id 

  FROM sem_dw_space_dim 

  WHERE (sdo_geom.relate (MDSYS.SDO_GEOMETRY (2003, vsrid, NULL, 

MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array (4.815388, 

51.112885, 4.994323, 53.158382 ) ), 'CONTAINS', sem_dw_space_dim.poi_geom, 

0.01 ) = 'CONTAINS' ) 

  ) 

  LOOP 

    FOR rc_dw IN 

    (SELECT SUM (sem_dw_stops_fact.avg_duration) sum_duration, 

      sem_dw_stops_fact.period_id,sem_dw_space_dim.district 

    FROM sem_dw_stops_fact,sem_dw_space_dim,sem_dw_stop_sems_dim 

    WHERE ( (sem_dw_space_dim.poi_id       = sem_dw_stop_sems_dim.poi_id ) 

    AND (sem_dw_stop_sems_dim.stop_sems_id = sem_dw_stops_fact.stop_sems_id ) 

    AND (sem_dw_space_dim.poi_id           = rc_pois.poi_id) ) 

    GROUP BY sem_dw_stops_fact.period_id, 

             sem_dw_space_dim.district 

    ) 

    LOOP 

      DBMS_OUTPUT.put_line ( 'Duration: ' || rc_dw.sum_duration || '  Period 

id: ' || rc_dw.period_id || '  District: ' || rc_dw.district ); 

    END LOOP; 

  END LOOP; 

END; 
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