

From Trajectories
to Semantic Mobility Networks -

Hands-On SBO survey dataset

UNIPI-InfoLab-TR-2015-02, Technical Report Series

Information Management Lab (InfoLab)

Department of Informatics

University of Piraeus

Stelios Sideridis
Nikos Pelekis

Yannis Theodoridis

March 2015

Table of Contents

From Diaries and GPS logs to Semantic Mobility Timelines ... 4

The ‘GPS data’ ... 4

The Semantic Trajectory Database ... 7

Semantic reconstruction in Hermes MOD .. 10

The ‘Diaries’ .. 12

The Semantic Trajectory Cube .. 17

On the classification/prediction of episodes’ tags ... 19

Exploring SBO survey dataset ... 20

Querying the Semantic Trajectory Database .. 20

Analyzing the Semantic Trajectory Database/Cube .. 34

References .. 41

From Diaries and GPS logs to Semantic Mobility Timelines

This document describes the SBO survey dataset, its transformation to semantic mobility timelines

(NOTE: in the sequel, we may use the term semantic trajectory (episode) but we mean semantic

mobility timeline (semantic trajectory, respectively)), as defined by (Pelekis et al. 2013). The report also

includes a case study upon this unique dataset that also stands as a hands-on experience describing the

framework of a data-type system for semantic trajectories with its associated query language, as

envisioned in (Pelekis et al. 2013).

All the work has been done by extending the HERMES MOD environment (URL:

http://infolab.cs.unipi.gr/hermes/).

The initial dataset is composed of two sources of data. The ‘GPS data’, which are GPS records per user

derived from their gps-enabled devices; and ‘Diaries’ in which each user documented semantic

information about his/her trips. A trip for a user is a movement from a point A to another point B for a

specific purpose. This document focuses on a subset from the above sources that corresponds to 186

users who documented their trips.

The ‘GPS data’

The total number of unprocessed (raw) gps records is 7698808, meaning an average of 41391.44 gps

records per user. These gps records covering a period of 730 days, from 13-4-2006 to 14-4-2008.Each

gps record is tagged with a number showing the trip in which the gps record belongs to. The gps records

were already tagged with trip numbers. The total number of trips is 3474 meaning an average of 18.677

trips per user. Moreover every gps record has a gps validity letter (‘A’ for valid gps records and ‘V’ for

not valid, validity had to do with the number of satellites being at least 3 for signal stability.

These gps records were processed to produce trajectories as follows:

We take into account only valid gps records so we have 7599702 gps records to process. Then a simple

reconstruction algorithm was used to group gps records into trajectories (meaningful subsequences of

gps records) per user. In detail, a new trajectory for the user is created when a spatial or a temporal

threshold is exceeded, when examining successive gps records. Obviously these thresholds identify

corresponding spatial or temporal gaps between successive gps records. The used parameters were

5000 meters for spatial threshold, and 4 hours for temporal threshold. This simple algorithm orders in

time gps records for each user. Then iterates through these gps records and if space or time constraint

between two consecutive gps records is met then a new trajectory is formed. Additionally, any

consecutive gps records that have the same spatial position (or temporal, more rarely) are discarded.

The above is executed through the following procedure code (its explanation follows in the next

section):

begin

 sem_reconstruct.reconstructtrajectories(‘belg_users_gps’, 4326, ‘sem_mpoint’, 5000, 14400);

end;

http://infolab.cs.unipi.gr/hermes/

The algorithm outputted 1709 trajectories consisting of 3542205 gps records, meaning that we had

many consecutive gps records that had the same spatial position. From those trajectories only 1698

were valid (i.e. those having more than one gps records) corresponding to 3542194 gps records. This

gives an average of2086.0977 points per trajectory. Total number of segments is 3540496. The above

trajectories give an average of 9.129 trajectories for each user. The total length of the 1698 trajectories

is 50313133.007449 meters meaning an average of 29630.82038 meters per trajectory. The average

speed for the 1698 trajectories is 7.000565 m/s.

Those trajectories cover a rectangle space with Minimum Bounding Rectangle (MBR): [(2.598423,

49.926288), (5.878673, 52.351493)].

The following diagrams give a more graphical/statistical description of the produced raw trajectory

database.

The Semantic Trajectory Database

Before describing the ‘Diaries’ dataset and the way we processed it, let us first describe the Semantic

Trajectory Database, and the required data types that were used in our schema. A semantic trajectory is

considered as a time-ordered set of objects called episodes. Each episode is characterized as a MOVE

when the person of the trajectory is moving from a place to another or as a STOP when the person is

considered stationery. Additionally, each episode has semantic information about the person's activity

during the episode. Also there is a link between each episode and the corresponding raw sub-trajectory

(sequences of <x, y, t>). The word sub-trajectory emphasizes the fact that the whole person's trajectory

is broken into sub-trajectories (episodes).

In the above diagram we see two object tables 'BELG_SEM_TRAJS' and 'BELG_SUB_MPOINTS' along with

the definitions of the objects, holding all the produced information. Every object has already a number

of useful methods that will be continuously expanded.

 SUB_MOVING_POINT: has all the methods of MOVING_POINT object (i.e. the trajectory

datatype in HERMES) plus a method getsemmbb() which returns its MBB as a SEM_MBB object.

 SEM_MBB has the following methods:

o sem_mbb(geomsdo_geometry, period tau_tll.d_period_sec): This function takes as input

a geometry object (other than point or line) and a time period. It constructs a sem_mbb

instance that is returned. Default constructor also has two parameters so be careful.

o area(srid): returns the spatial area of the MBB

o duration(): returns the temporal area of the MBB

o getrectangle(srid): returns the MBR as an MDSYS.GEOMETRY object

o intersects(inmbbsem_mbb): This function takes as input another sem_mbb object. It

checks whether the intersection between the two sem_mbb objects in all dimensions

(i.e. x, y, t) is the empty set or not. If not, it returns true otherwise it returns false.

 SEM_EPISODE:

o duration(): returns the temporal area of the episode

Figure 1: Semantic Trajectory Database Schema

o sim_episodes(e sem_episode, dbtable varchar2, indxprefix varchar2:=null, lamda

number:=0.5, weight number_array:=(0.333,0.333,0.333)): This function takes as input

another sem_episode object, a dataset table for calculating required global values, an

optional index prefix if such an index (i.e. STB-tree) has been built, an optional value for

the λ (i.e. lamda) parameter and an optional 3 number array for the w (i.e. weight)

parameter. It returns a number that defines the distance between this episode object

and the input episode e.

 SEM_TRAJECTORY

o num_of_stops(): returns the number of STOP episodes it contains

o num_of_moves(): returns the number of MOVE episodes it contains

o num_of_episodes(tag varchar2, distinct varchar2): This function takes as input a "tag"

string (less than 1000 chars) of the form "tag1+tag2+....+tagn" (i.e. implying a

concatenated set of (sub-)strings), and a "distinct" string that can be either "yes" or "no"

(i.e. implying a boolean flag). It returns the number of episodes (distinct or not,

depending on the use of the flag) of the semantic trajectory that includes tags LIKE the

given ones. In this case, “LIKE” implies pattern-matching per input tag#.

o getMBB(): returns the MBB of the semantic trajectory

o sem_stops(): returns the STOP episodes as a nested table object

o sem_moves():returns the MOVE episodes as a nested table object

o episodes_with(tag varchar2) return sem_episode_tab: This function takes as input a

"tag" string (less than 1000 chars) of the form "tag1+tag2+....+tagn" (i.e. implying a

concatenated set of (sub-)strings). It returns a nested table of those episodes that have

tags LIKE the given ones. In this case, “LIKE” implies pattern-matching per input tag#. In

case where an episode matches multiple times with some input tags, thisis returned

only once. A null collection is returned when none episode is found.

o confined_in(geomsdo_geometry, period tau_tll.d_period_sec, tag varchar2): This

function takes as input a spatial geometry, a temporal period and a "tag" string (less

than 1000 chars) of the form "tag1+tag2+....+tagn" (i.e. implying a concatenated set of

(sub-)strings). It returns a sem_trajectory object, whose episodes are overlapping: a)

spatially with the “geom” parameter, b) temporally with “period” parameter and

textually with the “tag” parameter. If one or more of the three paramaters is null, then

the function assumes that no confinement is requested in the corresponding dimension,

as such it continues with the rest. In other words, if (for instance) the “geom” is null

then the function uses it as the user gave the MBR of the whole semantic trajectory.

Similarly, if the “period” is null then the function uses it as the user gave the period of

the whole lifespan of the semantic trajectory. If “tag” is null, it is like the user requests

for all possible tag matchings (i.e. like giving the “%” wild character as input) If none

such episode is found, then a semantic trajectory is returned with an empty nested

table of episodes.

o sim_trajectories (trsem_trajectory, dbtable varchar2,indxprefix varchar2:=null, lamda

number:=0.5, weight number_array:=(0.333,0.333,0.333)): This function takes as input

another sem_trajectory object, a dataset table for calculating required global values, an

optional index prefix if such an index (i.e. STB-tree) has been built, an optional value for

the λ (i.e. lamda) parameter and an optional 3 number array for the w (i.e. weight)

parameter. It returns a number that defines the spatio-textual distance between this

semantic trajectory object and the input semantic trajectory.

Note that with a slight modification each episode may hold multiple values on its semantic fields (e.g.

episode_tag and activity_tag, or even a sequence of probabilities). With this Semantic Trajectory

Database (STD) in hand, we can pose many useful queries and apply many algorithms that contain any

combination of spatial, temporal and semantic predicates. For the moment we have implemented the

following variations of range queries:

 stb_range_episodes(episodeType, geometry): returns episodes of type episodeType (e.g. STOP

or MOVE) that intersect the given geometry.

 stb_range_episodes(episodeType, temporalPeriod): returns episodes of type episodeType (e.g.

STOP or MOVE) that intersect the given temporal period.

 stb_range_episodes(episodeType, geometry, temporalPeriod): returns episodes of type

episodeType (STOP or MOVE) that intersect a geometry and a temporal period.

 stb_range_episodes(fromGeometry, toGeometry, temporalPeriod): returns MOVE episodes that

started (ended) from (to) the fromGeometry (toGeometry) geometry, respectively, inside the

given temporal period.

 stb_range_episodes(from_stopsem_episode, to_stopsem_episode,

via_movesem_episode, stbtreeprefix varchar2) return sem_episode_tab: This method returns

MOVE episodes. It takes as input arguments three episodes. The returned MOVE episodes obey

to the input parameters, that is, they begin from the from_stop episode, they end to the to_stop

episode and they have similar attributes as the via_move episode. Input episodes can be null,

meaning that the corresponding constraint is not applied. For example, if the from_stop episode

is null, then this method would return all move episodes from the dataset that ended to the

to_stop episode, after having moved according to the via_move episode. Moreover, each input

episode can have its text or its spatio-temporal attributes set to null, meaning again that no

corresponding constraint is applied. For example,the from_stop episode parameter can have its

spatiotemporal attribute (sem_mbb) set to null and the to_stop episode can have all or some of

its text attributes (i.e. defining_tag, episode_tag or activity_tag) set to null, while the via_move

is null. In this case, the method returns MOVE episodes that began from the from_stop episode,

where only text constraints are applied (e.g. Home, eating), went to the to_stop episode, where

only spatiotemporal and some text constraints are applied (e.g.areaX, Work), using any in-

between existing MOVE episode in the dataset.

 stb_patterns (inputepisodes, inputchars, stbtreeprefix) return integer_nt: This method returns

integers corresponding to semantic trajectory identifiers that follow a spatio-temporal-textual

pattern. The returned semantic trajectories follow the movement pattern described by the

arguments inputepisodes and inputchars. The argument inputepisodes holds the sequence of

episodes in time order that constitute the pattern to be examined (e.g. episode1, episode2,

episode5). Each episode in the sequence may have its textual attributes or its spatiotemporal

attributes set or not (null), meaning that an attribute must be taken or not into account when

current episode is examined. Additionally, between two consecutive episodes in the input

sequence, others episodes that need not to be examined may exist. This is realized with the use

of the inputchars argument, which is an array of characters each of which can be either ‘>’ or ‘*’.

This array is synchronized with the array of episodes (i.e. inputepisodes), as it implies whether

two given episodes should be consecutive or not (i.e. others are in-between them). More

specifically, when the ‘>’ character is found, then the two episodes must be consecutive in the

returned trajectory, while when the ‘*’ character is present, then between the two episodes

other episodes may exist.

The above range queries can be run efficiently in our STD as we have defined and implemented a

specialized index for semantic trajectories named STB-tree (Pelekis and Theodoridis, 2013).

Semantic reconstruction in Hermes MOD

In order to support semantic reconstruction in Hermes, we have developed a special library (package),

called sem_reconstruct (for semantic reconstruction), which supports this goal and is composed of the

following procedures and functions:

 reconstructtrajectories(sourcetblgps, srid, targettblmpoints, spacegapmet, timegapsec): This

procedure takes as input a table with gps points which should have at least columns about user

id, longitude, latitude and timestamp and reconstructs trajectories (that will be stored in

targettblmpoints table with srid as its spatial reference system) by producing a new trajectory

whenever a space gap and a time gap pair of thresholds between succesive gps points are

exceeded.

 belgdiariestosemtrajs: This procedure is made particularly for SBO-survey dataset. It takes input

from the imported excel files and produces semantic trajectories and the corresponding sub

trajectories.

 stopfinderinputfile(o_id, traj_id, mpoint, subtraj_id): This procedure takes as input a trajectory

mpoint with its object_id, trajectory_id and an optional sub-trjectory_id. It outputs a .dat file in

the IO directory (where user must have read-write rights) in the form that is required by T-

Optics Stop detection algorithm. It can be called multiple times inside a pl/sql loop block, to

output many trajectories (as will be exemplified in the subsequent section) .

 stopfinder(dir, conf): This procedure calls the T-Optics (i.e. stopfinder) algorithm (Zimmerman et

al. 2009).

 rawtrajs2semtrajs(inputtblstopseqs, inputtblmpoints, outputtblsubmpoints,

outputtblsemmpoints): This procedure takes as input a table of Stops found from T-optics

algorithm, a table name of raw trajectories on which T-Optics run and two output tables for sub-

trajectories and semantic trajectories, respectively. It transforms raw trajectories to semantic

trajectories based on the T-Optics findings.

 stops2semtrajs(inputtblstopseqs, inputtblsemmpoints, outputtblsubmpoints,

outputtblsemmpoints): This procedure takes as input a table of Stops found from T-optics

algorithm and a table name of semantic trajectories upon the MOVE episodes of which the T-

Optics run. There are also two output tables for sub-trajectories and semantic trajectories,

respectively. It modifies the given semantic trajectories and returns again semantic trajectories

based on the T-Optics findings on the MOVE episodes of the initial ones.

 pois_probability (mbb, srid, is4visualize, poitable, out bestpoitag): Finds (and visualizes) POIs,

each of which is annotated with a probability of being the POI that a Stop activity took place.

The returned POIs are within some given MBB. The function also returns the bestpoitag

parameter with the tag that corresponds to the POI having the biggest probability.

 nn_pois(mbb, k, is4visualize): Find the K -Nearest-Neighbor (K-NN) Points-Of-Interest (POI) w.r.t.

the centroid of the MBR of an episode.

 annotate_episodes(semtrajs, poitable): This procedure takes a table of semantic trajectories and

a table of POIs as input and then updates tags of episodes for each semantic trajectory.

The ‘Diaries’

Diaries are in the form of trips with semantic information for each trip. This information is spread into a

number of excel files. The dataset contains 881 trips for the 186 users. This gives an average of 4.73655

trips per user or 2.93 trips per user per day. If we group those trips per user and per day then we get 300

groups of trips. Moreover each trip has a connection with the trip number found in ‘GPS data’ source for

each user, thus we can match gps records with trips in the diaries. Additionally, for every trip there is

semantic information about origin and destination, the activity at destination and the used

transportation mean.

Those diaries were processed to produce semantic trajectories as follows:

Procedure ‘diaries to semantic trajectories’ combine initially, information from the above sources and

for each user iterates through his trips. A diary trip is considered a MOVE episode, so STOP episodes

must be inserted before and after that trip. Semantic trajectories are created each time a new user or a

new day is met (also when there is discontinuity between trip numbers). The above procedure results in

creating 300 semantic trajectories, which is 1.6129 semantic trajectories in average per user.

Additionally, by combining information from the ‘GPS data’ source, for every episode it builds a

corresponding trajectory (a sub-trajectory if you like). This can be done, as we know for each trip (MOVE

episode) the beginning and ending gps record ids. In the following figure the distribution of the number

of users w.r.t. number of trips is shown.

The total number of episodes is 2062 (881 MOVE and 1181 STOP episodes), an average of 6.87333

episodes for each semantic trajectory. There exist 14 categories for STOP episode activities (due to

different purposes at destination) and 10 for MOVE episode activities (due to different transportation

means). Below we see how the number of trips per activity is distributed.

For STOP episodes the distribution of activities (STOP purposes) and the distribution of transportation

mean for MOVE episodes, are shown in the following two figures.

The following chart shows the distribution between (origin, destination) types of MOVE episodes.

Each episode has a corresponding sub-trajectory (either STOP or MOVE episode). Those sub-trajectories,

2062 in number, have a total of 1050492 segments (509.4529 in average per sub-trajectory) which are

separated in 196675 for STOP episodes and 853817 for MOVE episodes. That gives an average of

166.5326 segments for STOP episodes and of 969.1452 segments for MOVE episodes. Below is a table

with statistics about STOP and MOVE episodes.

 STOP MOVE

Distance Covered (meters) 2224655.2036 14445367.99321
Average 1883.70466 16396.558

Duration (seconds) 29576280 1016626
Average 25043.4208 1153.9455

Average Speed (m/s) 0.22406 12.9139

Home->
Work/School

15%

Work/School->
Family/friends/a

cquaintances
1%
Family/friends/a
cquaintances->

Home
6%

Home-> Home
3%

others->
Family/friends/a

cquaintances
2%

Work/School->
Work/School

5%

Home-> others
14%

Family/friends/a
cquaintances->

Family/friends/a
cquaintances

3%

others-> others
10% Work/School->

others
3%

Family/friends/a
cquaintances->

others
2%

others->
Work/School

2%

Home->
Family/friends/a

cquaintances
5%

Work/School->
Home
15%

others-> Home
15%

The above described semantic trajectory database is based solely on users’ diaries. To put differently,

the destination of a trip corresponds to an ActivitySTOP, as there is a declared purpose for this. The next

step is to include incident STOP episodes into the semantic trajectories found from the above

procedure. Towards this direction, we have employed the T-Optics algorithm (Zimmermann et al. 2009).

T-Optics is a “STOP-finder” algorithm that takes as input one raw trajectory and outputs sequences of

successive points from that trajectory that form areas where the object is considered stationery. Thus in

our setting, when T-Optics is applied on a raw trajectory it discovers sub-trajectoriesthat correspond to

STOP episodes. Giving as input to T-Optics all trajectories that correspond to MOVE episodes from the

semantic trajectories, we discover intermediate STOP areas. In other words, we break each MOVE

episode to more than one MOVE episodes, if the T-Optics algorithm identifies intermediate STOP areas.

The number of semantic trajectories in the database is still 300 but now these consist of 4634 episodes

in total (2530 STOPs and 2104 MOVEs). Similarly the corresponding sub-trajectories have a total of

1050492 segments (226.69 in average per sub-trajectory),which are separated in 226747 for STOP

episodes and 823745 for MOVE episodes.

The above procedure takes place in a series of steps. First, for each MOVE episode we output

corresponding trajectories to a T-Optics format, by calling the following procedure:

declare

begin

for cur in (select b.object_id,b.traj_id,b.mpoint

 from stopfinder_mpoints b) loop

 sem_reconstruct.stopfinderinputfile(cur.object_id,cur.traj_id,cur.mpoint,null);

end loop;

end;

Then we call the T-Optics algorithm on the directory (mydir) where we outputed the previous files:

declare

mydir varchar2(2000);

begin

select directory_path into mydir from dba_directories where directory_name='IO';

sem_reconstruct.stopfinder(mydir,'config.ini');--procedure

end;

where the file config.ini is the configuration file needed by the algorithm.

Figure 2: Configuration file for T-Optics stop detection algorithm

The algorithm outputs a file per trajectory consisting of points belonging to stops (a trajectory may have

multiple stops). These files are imported in the HERMES MOD. For every point of a stop the trajectory

identifier and the stop identifier must be known. Finally, we call the following procedure to transform

the original semantic trajectories to new semantic trajectories based on T-Optics results:

declare

begin

sem_reconstruct.stops2semtrajs('stops_found', 'in_trajs','out_submpoints','out_semtrajs')

end;

 STOP MOVE

Distance Covered (meters) 2337682.39476 14332340.8021
Average 923.9851 6811.949

Duration (seconds) 29698205 894701
Average 11738.4209 425.2381

Average Speed (m/s) 1.7534 10.93021

The number of POIs (Point Of Interest) in the ‘Diaries’ source is 638 and are categorized in 4 categories

(Home,Work/School,Family/friends/acquaintances,others). These POIs are spread across 289

municipalities (NOTE that for us, a municipality is simply the MBR of all points inside a municipality, as

we do not have such a spatial database). The following figures show the distribution of POIs.

The Semantic Trajectory Cube

Having designed such a database for semantic trajectories we move one step further to introduce a data

warehouse for semantic trajectories. As we saw the main entities of a semantic trajectory are their stop

and move episodes. Quite naturally those two entities become our facts in the new data warehouse

scheme.

The new data warehouse schema (see Figure 2) is a constellation scheme consisting of five dimensions

and two fact tables. The dimensions are space, time, user’s profile, stop-semantics and move-semantics.

Note that this relational representation of the DW corresponds to an instantiation of a Semantic

Mobility Network (Graph), as this is defined by (Pelekis et al. 2013).

Figure 3: The Semantic Trajectory Data Warehouse schema

Measures in the above scheme are basic measures that can be easily extended. Such a DW mayenable

the following kinds of analysis:

• who made a stop? when and where? what did she do during her stop?

• who made a movement? When and from/to where? How did she move and what did she do

during her motion?

All these have been implemented in HERMES MOD where we deal with issues concerning the ETL

process as well as other issues related to OLAP operations in the cube. Let us explain the above schema

in more detail. First we define two base cells (bc) one for each fact table. For stops-fact-table we define

bcstopcomposed of three dimensions (time, user-profile and stop-semantics) and for moves-fact-table we

define bcmoves composed of five dimensions (time, user-profile, move-semantics, from-stop-semantics

and to-stop-semantics). These two base cells are the basis for splitting our multidimensional space of

semantic trajectories and form the base cuboid of our lattice. As an example, we discuss three basic

measures named num-of-sem-trajectories which is calculated by counting all distinct semantic

trajectories that found inside a base cell, num-of-users which is the number of different objects that are

found inside the cell and num-of-activities which is the number of distinct activities of the moving

objects in the base cell.

Let’s describe the produced (so far) API of HERMES with which the user can manage the above DW

scheme:

 sdw.createSDW(sourceTablePrefix) where parameter is a prefix for the necessary

database objects that will be created. In different words, this procedure creates a graph (with

the described relational representation), which is one of the graphs in the lattice of our

semantic mobility cube, according to (Pelekis et al. 2013).

Similarly, with procedure sdw.dropSDW(sourceTablePrefix)user can drop the created data

warehouse scheme.

To load dimensions, the user invokes procedure:

 sdw.loaddimensions(sourceTablePrefix, poitable, rawtable,

intervalsecs)where the user must provide the DW prefix, the source for POIs for splitting

the space dimension, the source for the minimum and maximum timestamp of the data

(rawtable) and the interval between two times for splitting the temporal dimension.

Then when all dimension tables are filled in, the user can invoke ETL procedures to load data into the

fact tables, from a semantic trajectory database. The ETL procedures are divided in two categories, one

for loading every cell of the fact table for all semantic trajectories in STD and another for loading every

semantic trajectory into the cells of the fact tables. Moreover for efficiency reasons these ETL

procedures make use of the STB-TREE index already defined in STD. Thus for the first category user can

call procedure:

 sdw.cellstopsload(sdwTablePrefix, stbtreenodes, stbtreeleafs)where
parameters define the DW tables, the STB-TREE nodes table and STB-TREE leaves table.

which load the stops-fact-table. Loading the moves-fact-table can be loaded by calling the procedure:

 sdw.cellmovesload(sdwTablePrefix, stbtreenodes, stbtreeleafs)where
parameters define the DW tables, the STB-TREE nodes table and STB-TREE leaves table.

If the user wants to use the second approach for the ETL process, that is to load every semantic

trajectory in the cells of the fact tables, then user can call the following procedure to load stops-fact-

table:

 sdw.semtrajstopsload(sdwTablePrefix, semtrajs) where the first parameter
defines the DW scheme and the second the table where semantic trajectories are stored.

Similarly to load the moves-fact-table user can call procedure:

 sdw.semtrajmovesload(sdwTablePrefix, semtrajs) where the first parameter
defines the DW scheme and the second the table where semantic trajectories are stored.

After successful loading of the fact tables, the user must invoke two other procedures which compute
some auxiliary measures that will be used later on the OLAP operations. These are:

 sdw.updateauxiliarystops(sdwTablePrefix)for the stops-fact-table, where the
parameter defines the DW scheme.

and

 sdw.updateauxiliarymoves(sdwTablePrefix)for the moves-fact-table, where the
parameter defines the DW scheme.

On the classification/prediction of episodes’ tags

In order to support classification/prediction tasks taken into advantage of the synchronized nature of

this unique dataset, we may transform each episode to a multi-dimensional vector (as such producing a

feature space), with dimensions derived properties from the episode such as: (1) the distance covered

by the moving object in the episode, (2) episode’s duration, (3) episode’s top speed, (4) episode’s

average speed, (5) speed variation, (6) road type, (7) starting POI type, (8) end POI type, (9) episode’s

area (10) episode’s radius of gyration, etc. The classification label of such a vector may be the tags

annotating that episode (e.g. STOP, MOVE, CAR, WALK etc. The list of features can be easily extended

with new features that may aid the discrimination process of the classifier.

The classification model is built from episodes features for the available semantic trajectories (training

set). For the moment, features are calculated by the following procedure:

 std.calcfeatures(outputtblfeatures, intblsemtrajs) where the first

parameter is the table to hold episodes properties and second parameter gives the input table

of the available semantic trajectories..

Exploring SBO survey dataset

This section includes a case study upon the above described unique dataset that also stands as a hands-

on experience upon the data-type system for semantic trajectories with its associated query language

(Pelekis et al. 2013), the API of which we presented in the previous sections.

Querying the Semantic Trajectory Database

1. Find NN POI inside an episode

Description:

Find the K-Nearest-Neighbor (K-NN) Points-Of-Interest (POI) w.r.t. the centroid of the MBR of an

episode. The returned POI (visualized in the subsequent figure) should be inside the MBR. Depending on

this topological filter, the function may return less than (if any) K neighbors.

Code:

DECLARE

 sembb sem_mbb := sem_mbb (sem_st_point (5.503502, 50.953662,

tau_tll.d_timepoint_sec (2006, 5, 1, 5, 00, 00)), sem_st_point (5.727093,

51.026928, tau_tll.d_timepoint_sec (2007, 6, 1, 5, 00, 00)));

BEGIN

 sem_reconstruct.nn_pois (sembb, 10, 'TRUE');

 COMMIT;

END;

2. Probability of POIS within episode ΜΒΒ

Description:

This function finds the POI that exist inside the MBR of an episode and for each of them it returns the

probability of being the POI where the moving object performed an activity. The probability is inverse

proportional to the distance of the POI from the centroid of the episode’s MBR.

Code:

DECLARE

sembb sem_mbb := sem_mbb (hermes.sem_st_point (4.415422, 51.218345,

tau_tll.d_timepoint_sec (2007, 9, 4, 6, 27, 17)), hermes.sem_st_point

(4.634043, 51.24343, tau_tll.d_timepoint_sec (2007, 9, 5, 5, 44, 37)));

outtag varchar2(50);

BEGIN

 sem_reconstruct.pois_probability (sembb, 4326, 'TRUE', ‘belg_pois’,

outtag);

 COMMIT;

END;

3. Count STOP and MOVES of semantic trajectories

Description:

This function counts the number of Stops and Moves for all semantic trajectories in the table.

Code:

SELECT o_id,

 semtraj_id,

 VALUE (t).num_of_stops () num_of_stops,

 VALUE (t).num_of_moves () num_of_moves,

 (VALUE (t).num_of_stops () + VALUE (t).num_of_moves ()) AS num_of_episodes

FROM belg_sem_trajs t

ORDER BY 4 DESC;

4. Visualize a semantic trajectory

Description:

This operation visualizes a given semantic trajectory, i.e. the MBRs of its episodes and the corresponding

raw sub-trajectories.

Code:

DECLARE

 semtraj sem_trajectory;

 void INTEGER := 123043;

 vsemtrajid INTEGER := 1;

BEGIN

 SELECT VALUE (s)

 INTO semtraj

 FROM belg_sem_trajs s

 WHERE o_id = void AND semtraj_id = vsemtrajid;

 visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE');

END;

5. Sum of MOVE durations per transportation mode

Description:

This query finds the summation of the durations of the MOVE episodes per transportation mode, for a

given semantic trajectory.

Code:

SELECT SUM (value(s).duration(). m_Value) duration,

 defining_tag, activity_tag, COUNT (defining_tag) num_of_episodes

 FROM TABLE (SELECT t.episodes_with ('MOVE')

 FROM belg_sem_trajs t

 WHERE t.o_id = 5238 AND t.semtraj_id = 1) s

GROUP BY defining_tag, activity_tag;

6. MOVEs duration with that of some MOVEs having specific tags

Description:

Identify those MOVE episodes whose duration is less than the average duration of MOVE episodes

whose activity is ‘working’. This function demonstrates how one can filter episodes with multiple tags.

Code:

SELECT VALUE (ext_s).DURATION ().m_value DURATION,

 defining_tag,

 activity_tag

FROM TABLE

 (SELECT t.episodes_with ('MOVE')

 FROM belg_sem_trajs t

 WHERE t.o_id = 5238

 AND t.semtraj_id = 2

) ext_s

WHERE (VALUE (ext_s).DURATION ().m_value) <
 (SELECT AVG (VALUE (s).DURATION ().m_value)

 FROM TABLE

 (SELECT t.episodes_with ('working')

 FROM belg_sem_trajs t

 WHERE t.o_id = 5238

 AND t.semtraj_id = 2

 AND t.episodes_with ('MOVE') IS NOT NULL

) s

);

7. Confine a semantic trajectory in temporal dimension as well as by filtering its textual

component

Description:

a. Restrict a given semantic trajectory inside a temporal period and then return only the STOP

episodes that the user was working.

b. This query is a variant of the previous one that restricts a given semantic trajectory inside a

temporal period and then returns either STOP or WORKING episodes.

Code:

a) SELECT *
 FROM TABLE (

SELECT b.confined_in (NULL,

tau_tll.d_period_sec (

tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00),

tau_tll.d_timepoint_sec (2007, 10, 22, 23, 59, 00)

), 'STOP').episodes_with ('working')

FROM belg_sem_trajs b

WHERE b.o_id = 216828

AND b.semtraj_id = 2

);

Visualization

DECLARE

 vsrid INTEGER := 4326;

 i INTEGER := 0;

 void INTEGER := 216828;

 vsemtrajid INTEGER := 2;

 sb_mps mp_array := mp_array ();

 semtraj sem_trajectory;

BEGIN

 FOR rc IN

 (SELECT DEREF (tlink).sub_mpoint sub_mpoint

 FROM TABLE

 (SELECT b.confined_in (NULL, tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 22, 23, 59, 00)), 'STOP').episodes_with ('working')

 FROM belg_sem_trajs b

 WHERE b.o_id = void

 AND b.semtraj_id = vsemtrajid

) s

)

 LOOP

 sb_mps := mp_array (rc.sub_mpoint);

 visualizer.movingpointtable2kml (sb_mps, vsrid, 'u' || void || '_' || i

|| '_MOVPOINT.kml');

 i := i + 1;

 END LOOP;

 SELECT VALUE (s)

 INTO semtraj

 FROM belg_sem_trajs s

 WHERE o_id = void

 AND semtraj_id = vsemtrajid;

 visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE');

END;

In the above figures there is the semantic trajectory as a whole in blue color and in red episodes
returned by the query.

b) SELECT *
 FROM TABLE (

SELECT b.confined_in (NULL,

tau_tll.d_period_sec (

tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 22, 23, 59, 00)

), 'STOP+working').episodes

FROM belg_sem_trajs b

WHERE b.o_id = 216828

AND b.semtraj_id = 2

);

Visualization

DECLARE

 vsrid INTEGER := 4326;

 i INTEGER := 0;

 void INTEGER := 216828;

 vsemtrajid INTEGER := 2;

 sb_mps mp_array := mp_array ();

 semtraj sem_trajectory;

BEGIN

 FOR rc IN

 (SELECT DEREF (tlink).sub_mpoint sub_mpoint

 FROM TABLE

 (SELECT b.confined_in (NULL,

 tau_tll.d_period_sec (

 tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00),

tau_tll.d_timepoint_sec (2007, 10, 22, 23, 59, 00)

), 'STOP+working').episodes

 FROM belg_sem_trajs b

 WHERE b.o_id = void

 AND b.semtraj_id = vsemtrajid

) s

)

 LOOP

 sb_mps := mp_array (rc.sub_mpoint);

 visualizer.movingpointtable2kml (sb_mps, vsrid, 'u' || void || '_' || i

|| '_MOVPOINT.kml');

 i := i + 1;

 END LOOP;

 SELECT VALUE (s)

 INTO semtraj

 FROM belg_sem_trajs s

 WHERE o_id = void

 AND semtraj_id = vsemtrajid;

 visualizer.semtrajectory2kml (semtraj, 'TRUE', 'TRUE', 'TRUE');

END;

In the above figures there is the semantic trajectory as a whole in blue color and in red episodes
returned by the query.

8. Temporal range query with a text filter on STB-tree.

Description:

This query applies a temporal range query to retrieve and count only MOVE episodes, for which
it calculates their total duration.
Code:

SELECT DEREF (tlink).o_id o_id,

 COUNT (tlink) total_moves,

 SUM (value(s).duration(). m_Value) total_duration

FROM TABLE

 (SELECT std.stb_range_episodes ('MOVE', tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2006, 01, 01, 00, 01, 00), tau_tll.d_timepoint_sec

(2006, 12, 31, 23, 59, 00)), 'SEM_INDX')

 FROM DUAL

) s

GROUP BY DEREF (tlink).o_id

ORDER BY 2 DESC;

9. Spatio-temporal range query with a text filter on STB-tree

Description:

This query applies a spatio-temporal range query to calculate the duration of ‘Work/School’ and
‘working’ STOP episodes that take place at a region for a period of time.

Code:

SELECT SUM (VALUE (s).DURATION ().m_value) work_duration,

 DEREF (tlink).o_id o_id

 FROM TABLE (SELECT std.stb_range_episodes

 ('STOP',

 MDSYS.SDO_GEOMETRY (2003, 4236, NULL,

 MDSYS.sdo_elem_info_array (1, 1003, 3),

 MDSYS.sdo_ordinate_array (4.985388,

51.152885, 5.994323, 52.158382)),

 tau_tll.d_period_sec (tau_tll.d_timepoint_sec (2007,

10, 22, 08, 00, 00),

 tau_tll.d_timepoint_sec (2008,

10, 22, 23, 00, 00)), 'SEM_INDX') FROM DUAL) s

 WHERE episode_tag = 'Work/School' AND activity_tag = 'working'

GROUP BY DEREF (tlink).o_id;

10. Cross-over spatio-temporal range query with a text filter on STB-tree (filter step) and a

subsequent temporal restriction of the resulting moving points (refinement step).

Description:

This query restricts the sub-trajectories of STOP episodes (that exist inside a spatio-temporal
box), inside a temporal period.

Code:

SELECT DEREF (tlink).sub_mpoint sub_mpoint,

 DEREF (tlink).sub_mpoint.at_period (tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2007, 10, 22, 8, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 22, 10, 00, 00))) restricted_sub_mpoint,

 DEREF (tlink).o_id o_id

FROM TABLE

 (SELECT std.stb_range_episodes ('STOP', MDSYS.SDO_GEOMETRY (2003, 4326,

NULL, MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array

(4.981388, 51.152885, 4.994323, 51.162082)), tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2007, 10, 22, 5, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 28, 5, 00, 00)), 'SEM_INDX')

 FROM DUAL) s ;

Visualization

DECLARE

 vsrid INTEGER := 4326;

 i INTEGER := 0;

 sb_mps mp_array := mp_array ();

 rsb_mps mp_array := mp_array ();

 vgeom MDSYS.SDO_GEOMETRY := MDSYS.SDO_GEOMETRY (2003, vsrid, NULL,

MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array (4.981388,

51.152885, 4.994323, 51.162082));

BEGIN

 FOR rc IN

 (SELECT DEREF (tlink).sub_mpoint sub_mpoint,

 DEREF (tlink).subtraj_id subtraj_id,

 DEREF (tlink).traj_id traj_id,

 DEREF (tlink).sub_mpoint.at_period (tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2007, 10, 22, 8, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 22, 10, 00, 00))) restricted_sub_mpoint,

 DEREF (tlink).o_id o_id,

 MDSYS.sdo_geom.sdo_centroid (VALUE (s).mbb.getrectangle (vsrid), 0.01)

mbr_centroid,

 VALUE (s).mbb.getrectangle (vsrid) mbb,

 activity_tag,

 episode_tag,

 defining_tag

 FROM TABLE

 (SELECT std.stb_range_episodes ('STOP', vgeom, tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2007, 10, 22, 5, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 28, 5, 00, 00)), 'SEM_INDX')

 FROM DUAL

) s

)

 LOOP

 sb_mps := mp_array (rc.sub_mpoint);

 IF rc.restricted_sub_mpoint IS NOT NULL THEN

 rsb_mps := mp_array (rc.restricted_sub_mpoint);

 visualizer.movingpointtable2kml (rsb_mps, vsrid, 'u' || rc.o_id || '_'

|| i || '_RMOVPOINT.kml');

 END IF;

 visualizer.movingpointtable2kml (sb_mps, vsrid, 'u' || rc.o_id || '_' ||

i || '_MOVPOINT.kml');

 visualizer.placemark2kml (rc.mbr_centroid, vsrid, 'u' || rc.o_id ||

'traj' || rc.traj_id || 'subtraj' || rc.subtraj_id || '_CENTROID.kml',

rc.defining_tag || ' (activity: ' || rc.activity_tag || ')', rc.subtraj_id ||

' - ' || rc.episode_tag);

 visualizer.polygon2kml (rc.mbb, vsrid, 'u' || rc.o_id || 'traj' ||

rc.traj_id || 'subtraj' || rc.subtraj_id || '_RECTANGLE.kml');

 i := i + 1;

 END LOOP;

 visualizer.polygon2kml (vgeom, vsrid, 'RECTANGLE.kml');

END;

In the above figure there are STOP episodes in blue color of the given time period and given
spatial confinement (in green). Part of the episode that exists inside time period declared in
at_period function is showed in red color.

11. Average duration of STOPS overlapping with a temporal period

Description:

This query finds the average duration of STOP episodes overlapping with a temporal period.

Code:

SELECT SUM (VALUE (s).DURATION ().m_value) / COUNT (DEREF (tlink).traj_id)

avg_mbb_stop_duration

FROM TABLE

 (SELECT std.stb_range_episodes ('STOP', MDSYS.SDO_GEOMETRY (2003, 4326,

NULL, MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array

(4.985388, 51.152885, 4.994323, 51.158382)), tau_tll.d_period_sec

(tau_tll.d_timepoint_sec (2007, 10, 22, 08, 00, 00), tau_tll.d_timepoint_sec

(2007, 10, 23, 08, 00, 00)), 'SEM_INDX')

 FROM DUAL

) s

12. Index-based range query on STB-tree to identify patterns of the form “from-to-via”

Description:

Retrieve objects (actually their MOVE episodes) that start from ‘Home’ and go to ‘Work/School’
between a given temporal period

Code:

select deref(tlink).o_id mov_obj, activity_tag from

table(std.stb_range_episodes_mbr(

sem_episode('STOP', 'Home',null,null,null),

sem_episode('STOP', 'Work/School',null,null,null),

sem_episode('MOVE',null,null,

sem_mbb(sem_st_point(5.503502,50.953662,

tau_tll.d_timepoint_sec(2006,5,1,5,00,00)),sem_st_point(5.727093,51.026928,ta

u_tll.d_timepoint_sec(2007,6,1,5,00,00)))

,null),

'SEM_INDX')) t;

How many and with what transportation mean start from ‘Home’ which are inside a given
region, between a given temporal period and their next STOP is for ‘working’.

Code:

SELECT COUNT(deref(tlink).o_id) sum_mov_obj,

 activity_tag

FROM TABLE(std.stb_range_episodes_mbr(sem_episode('STOP',

NULL,NULL,HERMES.SEM_MBB(HERMES.SEM_ST_POINT(4.938277,50.964135,TAU_TLL.D_TIM

EPOINT_SEC(2007,1,1,7,00,00)),HERMES.SEM_ST_POINT(5.503228,51.204038,TAU_TLL.

D_TIMEPOINT_SEC(2008,1,1,7,00,00))),NULL), sem_episode('STOP',

NULL,'working',NULL,NULL), NULL, 'SEM_INDX')) t

GROUP BY activity_tag;

The same query as the previous one, this time without imposing the constraint that the next
STOP will be a ‘working’ one.

Code:

SELECT DEREF (tlink).o_id o_id,

 DEREF (tlink).traj_id traj_id,

 DEREF (tlink).sub_mpoint mpoint,

 DEREF (tlink).subtraj_id subtraj_id,

 value(t).mbb.getrectangle(4326),

 MDSYS.sdo_geom.sdo_centroid (VALUE (t).mbb.getrectangle (4326), 0.01)

mbr_centroid,

 activity_tag,

 defining_tag

FROM TABLE (std.stb_range_episodes_mbr (sem_episode ('STOP', NULL, NULL,

hermes.sem_mbb (hermes.sem_st_point (5.162558,51.12519,

tau_tll.d_timepoint_sec (2007, 1, 1, 7, 00, 00)), hermes.sem_st_point

(5.180134, 51.140135, tau_tll.d_timepoint_sec (2007, 1, 31, 7, 00, 00))),

NULL), sem_episode ('STOP', NULL, NULL, NULL, NULL), NULL, 'SEM_INDX')) t

Visualization

DECLARE

 stop_mbb hermes.sem_mbb := hermes.sem_mbb (hermes.sem_st_point (5.162558,

51.12519, tau_tll.d_timepoint_sec (2007, 1, 1, 7, 00, 00)),

hermes.sem_st_point (5.180134, 51.140135, tau_tll.d_timepoint_sec (2007, 1,

31, 7, 00, 00)));

 res_mps mp_array := mp_array ();

 semtraj sem_trajectory;

 vsrid INTEGER := 4326;

BEGIN

 FOR rc IN

 (SELECT DEREF (tlink).o_id o_id,

 DEREF (tlink).traj_id traj_id,

 DEREF (tlink).sub_mpoint mpoint,

 DEREF (tlink).subtraj_id subtraj_id,

 VALUE (t).mbb.getrectangle (vsrid) rect,

 MDSYS.sdo_geom.sdo_centroid (VALUE (t).mbb.getrectangle (vsrid), 0.01)

mbr_centroid,

 activity_tag,

 defining_tag

 FROM TABLE (std.stb_range_episodes_mbr (sem_episode ('STOP', NULL, NULL,

stop_mbb, NULL), sem_episode ('STOP', NULL, NULL, NULL, NULL), NULL,

'SEM_INDX')) t

)

 LOOP

 res_mps := mp_array (rc.mpoint);

 visualizer.movingpointtable2kml (res_mps, vsrid, CONCAT ('u' || rc.o_id

|| 'traj' || rc.traj_id || 'subtraj' || rc.subtraj_id, '_Q_MOVPOINT.kml'));

 visualizer.polygon2kml (rc.rect, vsrid, rc.o_id || '.' || rc.traj_id ||

'.' || rc.subtraj_id || '_RECTANGLE.kml');

 visualizer.placemark2kml (rc.mbr_centroid, vsrid, 'u' || rc.o_id ||

'traj' || rc.traj_id || 'subtraj' || rc.subtraj_id || '_CENTROID.kml', ' ',

rc.defining_tag || '-' || rc.activity_tag);

 END LOOP;

 visualizer.polygon2kml (stop_mbb.getrectangle (vsrid), vsrid,

'RECTANGLE.kml');

END;

In the above figure in blue color are all MOVE episodes that have their starting Stop inside a
spatiotemporal box and end to another STOP episode. The spatiotemporal box is depicted in
green color.

13. Index-based pattern query on STB-tree to identify patterns of movement

Description:

Retrieve the identifiers of semantic trajectories that follow the pattern of episodes given as
input. The declared pattern includes objects that have an episode to a specific spatiotemporal
area with any textual attributes, then after an arbitrary number of episodes reach to an episode
defined as MOVE in any spatiotemporal area, where objects are using WALKING as
TRANSPORTATION and in the immediate next episode objects having a STOP in any named
place (null) where they are RELAXING in the specified spatiotemporal area.

Code:

select * from table(std.stb_patterns(sem_episode_tab(

sem_episode(null,null,null,sem_mbb(sem_st_point(468993,4201747,tau_tll.d_time

point_sec(2013,5,8,8,10,0)),sem_st_point(473993,4206747,tau_tll.d_timepoint_s

ec(2013,5,8,14,0,0))),null),

sem_episode('MOVE','TRANSPORTATION','WALKING',null,null),

sem_episode('STOP',null,'RELAXING',sem_mbb(sem_st_point(468993,4201747,tau_tl

l.d_timepoint_sec(2013,5,8,14,20,0)),sem_st_point(473993,4206747,tau_tll.d_ti

mepoint_sec(2013,5,8,23,0,0))),null)),

varchar_ntab(null,'*','>'),

'attiki_stbtree'));

Analyzing the Semantic Trajectory Database/Cube

14. Origin-Destination Matrix for Semantic Trajectories

Description:

We first split the space (by partitioning the X and Y axis in segments of some given length

(i.e.step)), so as to create the geometries (i.e. regions) of the OD-matrix. Then we calculate the

OD-matrix, by providing the table where the semantic trajectories reside.

Usage:

DECLARE

 stepx BINARY_INTEGER;

 stepy BINARY_INTEGER;

BEGIN

 stepx := 0.5;

 stepy := 0.5;

 hermes.od_matrix.populate_rectangle_tbl (stepx, stepy);

 COMMIT;

END;

SELECT *

 FROM TABLE (hermes.od_matrix.get_odmatrix('BELG_SEM_TRAJS'))

 ;

15. Create and load DW

Description:

a) First we create the necessary DB objects by providing a prefix name for them. This prefix

corresponds to the DW name.

b) We load data to dimensions tables by providing: i) the DW name, ii) the POIs table, the table

contatining metadata of the dataset (min/max values of the spatio-temporal axes), iii) the table

contacting users’ information, iv) the duration of the temporal periods that will be used for the

temporal dimension and v) the table containing the semantic trajectories.

c) We load the two fact tables by providing the table containing the semantic trajectories and

the prefix name of the STB-tree index that has been built upon the latter.

Code:

a)
begin

sdw.createsdw('sem_dw');

end;

b)
begin

sdw.loaddimensions('sem_dw','belg_pois','belg_dataset_dimensions','belg_users

',2592000,'belg_sem_trajs');

end;

c)
begin

 sdw.cellstopsload('sem_dw','SEM_INDX');
end;

begin

 sdw.cellmovesload('sem_dw','SEM_INDX');

end;

16. Join MOVES fact table and USERS profile dimension table

Description:

Find the number of users that moved per temporal period and profession.

Code:

SELECT sem_dw_period_dim.period_id, sem_dw_user_profile_dim.profession,

COUNT(sem_dw_moves_fact.num_of_users) num_of_users

FROM sem_dw_moves_fact, sem_dw_user_profile_dim, sem_dw_period_dim

WHERE ((sem_dw_user_profile_dim.user_profile_id =

sem_dw_moves_fact.user_profile_id)

AND (sem_dw_period_dim.period_id = sem_dw_moves_fact.period_id))

GROUP BY sem_dw_user_profile_dim.profession, sem_dw_period_dim.period_id

ORDER BY sem_dw_period_dim.period_id ASC;

17. Join MOVES fact table, USERS profile dimension table and MOVES semantic dimension table

Description:

Find the total average duration and travelled distance per gender and temporal period, for

those that moved by train.

Code:

SELECT sem_dw_period_dim.period_id, sem_dw_user_profile_dim.gender,

 SUM (sem_dw_moves_fact.avg_travel_duration) sum_avg_dur,

 SUM (sem_dw_moves_fact.avg_distance_traveled) sum_avg_dist

 FROM sem_dw_moves_fact, sem_dw_user_profile_dim, sem_dw_move_sems_dim,

sem_dw_period_dim

 WHERE ((sem_dw_user_profile_dim.user_profile_id

=sem_dw_moves_fact.user_profile_id)

 AND (sem_dw_move_sems_dim.move_sems_id

=sem_dw_moves_fact.move_sems_id)

 AND (sem_dw_period_dim.period_id = sem_dw_moves_fact.period_id)

 AND ((sem_dw_move_sems_dim.move_mode = 'TRAIN'))

) GROUP BY sem_dw_user_profile_dim.gender,

sem_dw_period_dim.period_id ORDER BY sem_dw_period_dim.period_id ASC

18. Aggregate type of MOVES

Description:

For each period, find the number of users that moved with the same transportation mode.

Code:

SELECT sem_dw_moves_fact.period_id, sem_dw_move_sems_dim.move_mode,

count(num_of_users) total_users

 FROM sem_dw_moves_fact, sem_dw_move_sems_dim

 WHERE ((sem_dw_move_sems_dim.move_sems_id = sem_dw_moves_fact.move_sems_id

)

)

GROUP BY sem_dw_moves_fact.period_id, sem_dw_move_sems_dim.move_mode

ORDER BY sem_dw_moves_fact.period_id ASC;

19. Join MOVES, STOPS fact tables

Description:

Find the number of users that move towards a destination and the number of users that are

already at the same destination during the same period of time.

Code:

WITH period_stopsto AS

 (SELECT sem_dw_stops_fact.period_id,COUNT (sem_dw_stops_fact.num_of_users)

num_of_stop_users,sem_dw_stop_sems_dim.stop_name

 FROM sem_dw_stops_fact,sem_dw_stop_sems_dim

 WHERE ((sem_dw_stop_sems_dim.stop_sems_id = sem_dw_stops_fact.stop_sems_id

))

 GROUP BY sem_dw_stops_fact.period_id,sem_dw_stop_sems_dim.stop_name

),

 period_movesto AS

 (SELECT sem_dw_MOVES_fact.period_id,COUNT (sem_dw_MOVES_fact.num_of_users)

num_of_move_users,sem_dw_STOP_sems_dim.stop_name

 FROM sem_dw_MOVES_fact,sem_dw_STOP_sems_dim

 WHERE ((sem_dw_stop_sems_dim.stop_sems_id =

sem_dw_MOVES_fact.to_stop_sems_id))

 GROUP BY sem_dw_MOVES_fact.period_id,sem_dw_STOP_sems_dim.stop_name

)

SELECT

period_stopsto.period_id,period_stopsto.stop_name,period_stopsto.num_of_stop_

users,period_movesto.num_of_move_users

FROM period_stopsto FULL OUTER JOIN period_movesto

ON (period_stopsto.period_id=period_movesto.period_id AND

period_stopsto.stop_name=period_movesto.stop_name) ORDER BY 1 DESC,2;

20. Join STOPS fact table with semantic dimension and space dimension tables

Description:

For each time period, find the total average duration of all STOP episodes that take place at

‘banks’.

Code:

SELECT SUM (sem_dw_stops_fact.avg_duration) sum_avg_duration ,

 sem_dw_stops_fact.period_id, sem_dw_stop_sems_dim.stop_name

 FROM sem_dw_stops_fact, sem_dw_space_dim, sem_dw_stop_sems_dim

 WHERE ((sem_dw_space_dim.poi_id = sem_dw_stop_sems_dim.poi_id)

 AND (sem_dw_stop_sems_dim.stop_sems_id =

sem_dw_stops_fact.stop_sems_id

)

 AND ((UPPER (sem_dw_stop_sems_dim.stop_name) LIKE UPPER ('%bank%'))

)

)

GROUP BY sem_dw_stops_fact.period_id, sem_dw_stop_sems_dim.stop_name

ORDER BY sem_dw_stop_sems_dim.stop_name ASC;

21. STOPS at a given region

Description:

For each period, find the total average duration of those STOPs that are inside a given region.

Code:

DECLARE

 vgeom MDSYS.SDO_GEOMETRY := MDSYS.SDO_GEOMETRY (2003, 4326, NULL,

MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array (4.815388,

51.112885, 4.994323, 53.158382));

 vsrid INTEGER := 4326;

BEGIN

 FOR rc_pois IN

 (SELECT poi_id

 FROM sem_dw_space_dim

 WHERE (sdo_geom.relate (MDSYS.SDO_GEOMETRY (2003, vsrid, NULL,

MDSYS.sdo_elem_info_array (1, 1003, 3), MDSYS.sdo_ordinate_array (4.815388,

51.112885, 4.994323, 53.158382)), 'CONTAINS', sem_dw_space_dim.poi_geom,

0.01) = 'CONTAINS')

)

 LOOP

 FOR rc_dw IN

 (SELECT SUM (sem_dw_stops_fact.avg_duration) sum_duration,

 sem_dw_stops_fact.period_id,sem_dw_space_dim.district

 FROM sem_dw_stops_fact,sem_dw_space_dim,sem_dw_stop_sems_dim

 WHERE ((sem_dw_space_dim.poi_id = sem_dw_stop_sems_dim.poi_id)

 AND (sem_dw_stop_sems_dim.stop_sems_id = sem_dw_stops_fact.stop_sems_id)

 AND (sem_dw_space_dim.poi_id = rc_pois.poi_id))

 GROUP BY sem_dw_stops_fact.period_id,

 sem_dw_space_dim.district

)

 LOOP

 DBMS_OUTPUT.put_line ('Duration: ' || rc_dw.sum_duration || ' Period

id: ' || rc_dw.period_id || ' District: ' || rc_dw.district);

 END LOOP;

 END LOOP;

END;

References

Pelekis N., Theodoridis, Y. (2013) Semantic Aspects on Mobility Data (chapter 8). In Mobility Data

Management and Exploration: Theory and Practice, Springer, 2013.

Pelekis N., Janssens D., Theodoridis, Y. (2013) On the Management and Analysis of our LifeSteps.

Submitted to SIGMOD Record.

Zimmermann M., Kirste T.,Spiliopoulou M., (2009) Finding stops in error-prone trajectories of moving

objects with time-based clustering. Communications in Computer and Information Science, Volume 53,

pp 275-286.

http://link.springer.com/bookseries/7899

