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Mobile devices and services

m Large diffusion of mobile devices, mobile services and location-based
services = location- and mobility-aware data

Which data? Thoa

= Location data from mobile phones
o i.e., cell positions in the GSM/UMTS network

= Location (and trajectory) data from GPS-equipped devices
o Humans (pedestrians, drivers) with GPS-equipped smartphones
o Vessels with AIS transmitters (due to maritime regulations )

m Location data from indoor posistioning systems

o RFIDs (radio-frequency ids) A .
o Wi-Fiaccess p

0 Bluetooth sen:s
58



GPS Data )

= Raw data: GPS recordings

objectlID, trajectoryID, timestamp, longitude, latitude
201100024,1,2009-01-02 08:54:07,24.609728324369,38.013503319816
201100024,1,2009-01-02 08:54:25,24.6094016577037,38.0127699864845

201100024,1,2009-01-02 08:55:06,24.6086749910399,38.011116653155
201100024,1,2009-01-02 08:55:56,24.6076299910435,38.0092066531597
201100024,1,2009-01-02 08:56:16,24.6071983243782,38.0084733198281
201100034,1,2009-01-02 04:19:26,23.1092366579214,38.5853616531322
201100034,1,2009-01-02 04:19:36,22.9272199909328,38.8922416526431
201100034,1,2009-01-02 04:19:45,23.0359933243564,38.7788549861265
201100034,1,2009-01-02 04:19:55,22.9355449909622,38.868204986019
201100034,1,2009-01-02 04:20:05,23.0638616578755,38.6383849863914

ens
..........................

ARASSe. . ettt e et
RRRAECC P .

--------
.................................

. .
........

GPS Data Toles

o Q: where is (24.6071983243782, 38.0084733198281) located ?

o A:inthe short sea passage between Euboea and Andros islands,
Greece




What is a (GPS-based) trajectory? o

~=
o Y

= Atrajectory is a model for a motion path of a moving object (animal,
car, human, ...)

0 (due to discretization) a sequence of sampled time-stamped locations

-’
.
.

(p;, t,) where p, is a 2D point (x;, y;) and t; is the recording timestamp of p,

-----
ceec

.....
.........................

. o8 Ve
.......
................................

What is a (GPS-based) trajectory? T2

= A common representation in MOD is a 3D polyline in the plane
where vertices correspond to time-stamped locations (p,, t;)

o and linear interpolation is assumed between (p, t;) and (p;,4, t.\;)

- == r
Mstm)

\ 7D

10



From “raw” to “semantic” trajectories T

raw mob“ity data . -_:- J eenresseneenan, ; . :'{".-'
sequence (x,y,t) points T, e
e.g., GPS feeds )

meaningful mobility tuples

. ) [8am, 9am] [6pm, 6:30am] [7:30pm, 8pm]
<place, time,, time_,, tags> @ Sidewa
(bus) (metro) (walk) :

Home (breakfast) office (work)

Market (shopping) Home (relax)
[~ 8am]

[9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

» Semantic Trajectory: T={ey;,s...,€/a5:}

* Episode: e; = (STOP | MOVE, t; .., t,, place, tag)

11

Examples of GPS trajectory data o2

= “Milano dataset”: vehicles moving in Milan

o ~2M GPS recordings from 17241 distinct objects (7 days period) =
214,780 trajectories

12



Examples of GPS trajectory data

Y

= “IMIS3days” dataset: vessels sailing in Mediterranean sea

o (only a small subset of the dataset at hand) ~4.5M GPS recordings
from 1753 distinct objects (3 days period) =» 1503 trajectories

......

13

II/III[I//I:/I

g 30:37 ==

ﬁ\n\\\\lhﬁ

356 =

Google My Tracks

RunKeeper

Goggle = ©

14



What can we do with / learn from
mobility data ...

Vehicles datasets...

m (global) Traffic monitoring

o How many cars are in the ring of
the town?

Once an accident is discovered,
immediately send

alarm to the nearest police and
ambulance cars

16
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Vehicles datasets... T2

m (personalized) Location-aware
gueries

o Where is my nearest Gas station?

o What are the fast food restaurants
within 3 miles from my location?

o Let me know if | am near to a
restaurant while any of my friends
are there

Vessels datasets... Trfoe2

(requirements from Greek Maritime Conservation Agencies)

= Querying and mining trajectories:

o Extract / draw the ship tracks (detailed vs. simplified)
o Calculate average and minimum distance from shore; where and when

0 Calculate the number of ships in the vicinity of the ship (e.g. 10 n.m.
radius)

o Find whether (and how many times) a ship goes through narrow
passages or biodiversity boxes

o Calculate the number of sharp changes in direction

o Find ships following typical routes vs. outliers




Vessels datasets... Tfo.c3

Application- oriented analysis:
Improving safety

o Analyze the accuracy of data provided by base stations

Traffic optimization

o Calculate metrics from the traffic: traffic density, mean distance
between ships, number of trajectories that are close to the
‘optimal’ departure — arrival path

o Devise new sea routes to handle traffic increase
o Measure the activity of each ship: number of intermediate stops
Environmental considerations

o Compare trajectories with environmental considerations (fuel
consumption, noise pollution),

More ambitious: “Mobile Landscapes” Tfoc?
[Ratti et al. 2005]

MIT senseable project: http://senseable.mit.edu/grazrealtime/

19
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More ambitious: “Trajectory patterns”
[Giannotti et al. 2007]

“Google’
oject: http://www.geopkdd.eu

21

The big picture

22



@,

s ¢ s Raw
88 5 8 e
Moblllty manager e > ositioning data
or planner é
Social Networks
and Interactions

Progressiv

mining 1

Semantic Trajectory
: database
C )

Patterns interpretation
and visualization

Trajectory
summarization
Semantic-enriched Trajectory -':
Data mining :l
“ am e
- CCiLict
) Semantic Trajectory
Mobility .~
Patterns

Data Warehouse

The modules of our architecture

raw data producers

ﬁwb& ;
om YT
Iﬂl

~
=
*
*
*
*
*
*
*
/ *

Mobility Data
. Querying
*
*
Raw location
recordings
(DB)

Mobility Data
Visualization
*

Trajectories

Mobility Data
Mining

Trajectory

*
*
P :
*
Mobility Data
. OLAP
‘0
reconstruction Trajectory ",
Extract- aggregations *s
Transform- (DW) *s
Load (ETL)

24



From data to information to knowledge T3

name| date|y|x
Prinzessin|08.20.1998]52.118|12.087
Prinzessin|08.23.1998|51.019]15.309
Prinzessin|08.26.1998(47.723(22.786
Prinzessin|08.29.1998(43.040(27.119
Prinzessin|08.31.1998|38,715|32.165
Prinzessin|09.01.1998|37,195|35.255
Prinzessin|09.03.1998|32.979|36.021
Prinzessin|09.05.1998|28.513|33.437
Prinzessin|09.06.1998|23.961|32.937
Prinzessin|09.07.1998(19.418|33.446
Prinzessin|09.12.1998|15.823|34.094
Prinzessin|10.11.1998|14.685|32. 848
Prinzessin|11.03.1998|11.510|32. 591
Prinzessin|1l.24.1998|13.888]35.667
Prinzessin|l12.08.1998|12.562|34.777
Prinzessinll12.10.1998]9.124|

Mobility Pattern

Raw Data

25

Key questions that arise ) A3

= How to reconstruct a trajectory from raw logs?
= How to store trajectories in a DBMS?
o Is atrajectory simply a sequence of (x, y, t) tuples?
m  What kind of analysis is suitable for mobility data?
o In particular, trajectories of moving objects?
o How does infrastructure (e.g. road network) affect this analysis?
= Which patterns / models can be extracted out of them?
o Clusters, frequent patterns, anomalies / outliers, etc.
0 How to compute such patterns / models efficiently?
= How to protect privacy / anonymity?

o trade-off between privacy protection and quality of analysis

26



Course outline Tfo!

¢

I. Background - GPS infrastructure; Spatial database management;
Spatial OLAP and data mining

Il. Mobility-aware applications and tools - Location-based
services and tools; Algorithms and operations for LBS

lll. Mobility data management (storage and querying) -
Acquiring trajectories from raw data; Location-aware querying;
Efficient trajectory indexing and storage in MODs

IV. Mobility data exploration (OLAP analysis and mining) -
Trajectory warehousing and OLAP; Mobility data mining and
reasoning; Visual analytics for mobility data

V. Privacy aspects - Preserving user traces’ anonymity

VI. Outlook - Open issues; Future Challenges

Reading list

27



Project overviews, manifesto papers, etc. Tz

RS

Atzori, P. (2007) Privacy and anonymity in location and movement-aware data
analysis — the GeoPKDD approach. Proceedings of ISI.

Giannotti, F. and Pedreschi, D. (2008) Mobility, Data Mining, and Privacy: A
Vision of Convergence. In Mobility, Data Mining and Privacy — Geographic
Knowledge Discovery. Springer.

Giannotti, F. et al. (2008) Mobility, Data Mining, and Privacy — the Experience
of the GeoPKDD Project. Proceedings of PinKDD.

Lopez, X. (2003) The Future of GIS: Real-time, Mission Critical, Location
Services. Proceedings of Cambridge Conference.

Nabian, N. et al. (2009) MIT GEOblog: A Platform for Digital Annotation of
Space and Collective Community Based Digital Story Telling. Proceedings of
IEEE-DEST.

Ratti, C. et al. (2005) Mobile Landscapes: Graz in Real Time. Proceedings of LBS
& TeleCartogrqgaphy.

End of section
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Trfo.c3

Background on
Positioning technologies

Geo-positioning Tfolc3

Positioning technologies (all standardized in early 2000’s)

o Using the mobile telephone network

RTT

Time of Arrival (TOA), UpLink TOA (UL-TOA) Circle

Antenna

o Using information from satellites

- Estimated
Global Positioning System (GPS) pa— / Region

Assisted (A-GPS), Differential GPS (D-GPS) i

Il
U-TDOA
hyperboloid

source: http://www.3gpp.org

source: ESA

32



Geo-positioning (cont.) T3

Uplink - Time Difference of Arrival (U-TDOA)

0 At least 3 receivers (located together with antennas) get signals from a
user’s mobile, triangulate, and
estimate its position
o Accuracy: 30-120 m RTT Circle
o Standardized by the 3GPP
(3rd Generation Partnership Project)
o Problem: Requires great El_sotggﬁf;d
investment in infrastructure Regon
"”
hyperboloid
source: 3gpp.org
33
Satellite-supported positioning Tfoe3

GPS (Global Positioning System)

a

a

Fully operational since 1994

24-satellite constellation

monitored by 5 monitoring stations and 4 ground antennas; handled with
(extremely precise) atomic clocks

At least 5 satellites are in view from every point on the globe

GPS receiver gathers information from 4
(or 3, the minimum) satellites and

(a) triangulates to position itself; :
(b) fixes its (non-atomic) clock gt

Position accuracy: ~20m

34



Geo-positioning (cont.) To2

= Assisted GPS (A-GPS)

0 provides pre-
calculated satellite
orbits to the receiver

o Accuracy 10-20 m
= Differential GPS (D-GPS)

Mobile subscriber

™ General measurement unit:
provides assistance data

0 accuracy downto 1m

Serving base

station Differential GPS corrections

Satellite data ephemeris
almanac info

source: (Swedberg, 1999)

35

Geo-positioning (cont.) Trole

m  GPS competitors

0 Glonass (Russia) — currently, semi-operational

= 24-satellite constellation; 1-10m accuracy

o Galileo (EU) - fully operational by 2019

= 30-satellite constellation; 1m accuracy

o Beidou (China) - fully operational by 2020

= 35-satellite constellation; 10m accuracy

* ¢

GALILEO

36



Tfo.e3

Background on

Spatial database management

Geographical data models

37

Tfo.e3

o Representation of reality:
Raster vs. Vector

O R N WA UOON

raster

= [= o |=

reality

vector

bridge @ house

0 400 800



Vector model

\ﬂ%fo:gi
= Geographical space = a set of entities
o 0-d: points °
o 1-d: line segments, polylines
vertexN
edge /'\/ _O'
Open line Closed line
o 2-d: polygons, polygons with holes
Simple Non-simple Convex Polygon
polygon polygon polygon with hole(s)
8Y)
Spatial relationships

) 739

= Topological vs. directional relationships between spatial objects

o Topological relationships are invariant to topological transformations
Shift, Rotation, Scaling

40



Topological relationships TR

= Egenhofer’s 4- and 9- ‘ o
intersection model O
(Egenhofer and disjoint contain
colleagues, 1989-93)

0 Based on the set % @
intersections between

objects’ interior, meet

covered-by
boundary and exterior
overlap cover
inside equal
Egenhofer’s Nine-Intersection Model To.o

A°NB® A°naB A°NB~
MNe(A,B)=| dANB° dANJIB JANB~
ATNB° A nNaB A NB™

42
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Example of a geo-DB o

= Entities: countries, cities, rivers, etc.

o Relationships between entities: capital-of-country, ...

= How can we model and manage such information?
o Country is of polygon shape
o Riveris of polyline shape (?)
o City is of point shape (?)

m Spatial operations:

o area of a country, length of
borderline between 2 countries, ...

Example: World Database Yoz

m At the conceptual level
o 3 Entities: Country, City, River
0 2 Relationships: capital-of, originates-in

COMTIMENT

Comm
Qs>
he CAPITAL-OF Zl @ /

44



Example: World Database (cont.)

= At the logical level: 3 relations (Country, City, River)

Tfoc?

| COUNTRY Name Cont Pop (millions) | GDP ibillions) | Life-Exp Shape
Canada NAM 0.1 6G58.0 77.08 Polygoaid-1
Mexioon NAM 167.5 694.3 6935 Polygoaid-2
Brazil SAM 1833 1004.0 65.60 Polygoaid-3
Cuba NAM 11.7 16.9 75.95 Polygoaid-4
LISA NAM 2700 R003.0 75.75 Polygoaid-5
Argentina SAM 5.3 348.2 .75 Polygoaid-6
y Couantry
| CITY Name Country Pop (millionsy | Capital Shape
Havana Cuba 2.1 Y Pointid-1
Washington, D.C. USA 3.2 Y Pointid-2
Monterrey Mexico 2.0 N Pomnd-3
Toronto Canada A4 N Pointid-4
Brasiha Brazil 1.5 Y Poimnd-3
Rosario Arsentina 1.1 N Pointid-6
Ottawa Canada o8 Y Pomnd-7
Mexioo City Mexico 14.1 Y Pointid-8
Buenos Alres Argentina 1o7s Y Pomnd-Y
by City
| RIVER Name Origin | Length (kilomelters) Shape
Rio Parana Brazil 2600 LineStringid-1
St. Lawrence LUISA 1200 LineString 2
Rio Grande LISA 000 LineStringid-3
Mississippi LUISA OO0 LineStringid-4
() River

How do we implement spatial DBs

= An example Spatial DBMS:
PostgreSQL

o Geometric data types

Point

Line segment = 2 points
Box = 2 points

Path = sequence of points

Polygon = sequence of
points

Circle = point + number
(radius)

o Spatial indexing techniques

m  GiST — generalized search

trees

= Special case: R-tree

o Geometric functions and
operators

= Avariety ...

46



‘ PostgreSQL geometric data types

| Geometry |——{ SpatialReferenceSystem |

— Point | | Curve | |Surface | | GeometryCollection |

LineString

Polygon| | MultiSurface |  [MultiCurve | | MultiPoint |

[MultiPolygon | [MultiLineString|

{ Composed
A Type
— Relationship

‘ PostgreSQL geometric operators

47

‘ Description

| Operator \ Example

| + ‘Translation ‘box '({0,0),(1,1) + point '{2.0,0)

| - ‘Translation ‘box ({0,0),(1,1)' - point '(2.0,0Y

’ * ’Scalinglrotation ’box "({0,03,{1,13) * point'{2.0,0)

| 7 ’Scalingfrotation ‘box '({0,03,(2,2)) / point '(2.0,0)

| 3 ‘Point or box of intersection "((1,-1 L1 B0, -1,-0

| ® ‘Number of points in path or polygon ‘# ((1,0),(0,1),(-1,00)

| -@ ’Length ot circumference ’@-@ path '((0,0,(1,0))

‘ e ’Center ’@@ circle '({0,0),10Y

| it ‘Close st point to first operand on second operand ‘point (0,0 it 1seq '((2,01,(0,2))

’ <> ’Distance between ’circle (0,0),1) <= circle '{(5,0),1)

| 8& ’Overlaps? ’box (0,0,(1,1)) && box '({0,0),(2,2))
‘ &< ’Does not extend to the right of? ‘bOX ({0,0),(1,1)) &< hox '((0,0),(2,2))
| & ‘Does not extend to the left of? ‘box ({0,0),(3,3)) & hox '({0,0),(2,2))

48



‘ PostgreSQL geometric operators (cont.) Toc3

‘ Description

A

‘Same as?

| Operator ’ Example

r << —W ’cm:le (0,0),1) << circle '((5,0),1)

’ >> ‘Is right of? ‘cucle (5,03,17 => circle '({0,0),1)'

‘ < ‘Is below? ‘cucle (0,0),1) < circle '{(0,5),1)

’ > ‘Is above? ’ ircle '((0,5),1 = circle '({0,0),1)

’ W ‘Intersects? ’Iseg ((-1,00,(1,0)) 28 box '((-2,2),2,2)]
’ ?- ‘Is horizontal? ‘?- Iseq '{(-1,0),(1,0))

‘ ?- ‘Are horizontally aligned? ‘point (1,0 ?- paint '(0,0Y

‘ 2| ‘Is vertical? “?| Iseg '({-1,0),(1,0))

’ ?| ‘Are vertically aligned? ’point'(0,1 12| point '{0,0Y

’ H ‘Is perpendicular? ’Iseg ({0,00,{0,1)) ?-| Iseg '((0,0),(1,0))

’ 2 ‘Axe parallel? ‘Iseg ((-1,00,(1,00 2|l Iseq '((-1,2),(1,2))
‘ ~ ‘Contains? ‘circle ((0,03,2 ~ point (1,1}

’ @ {Contained in ot on? ’point'(1,1 1 @ circle '((0,0),2}

|

’PNYQO“ (10,0),(1, 1)) ~= palygon *((1,1),(0,0)y

49

‘ PostgreSQL Examples

A table of areas (zones)

CREATE TABLE zones (poly_id integer, name varchar(30), sector polygon);
INSERT INTO zones VALUES (1, 'PARK’, '(479243, 4204000,

A table of points (locations)

477728, 4202750, 477559, 4202100, 476271, 4204750)" ::

polygon);

CREATE TABLE locations (point_id integer, name varchar(30), pos point);
INSERT INTO locations VALUE_S (52, 'Freedom Sq.',

'(476600, 4202800)' ::

50



PostgreSQL Examples

Tnfo

0O

)

V)

= Objects within distance from a given point
SELECT point_id,(pos<->Point '(475750, 4201500)') as distance
FROM locations
WHERE (pos <-> Point '(475750, 4201500)' ) <= 200

=  Objects within a given region
SELECT point_id, name
FROM locations
WHERE (pos @ box '(476271, 4204000, 479243, 4204750)') = TRUE

SELECT point_id, name
FROM locations
WHERE (pos @ (SELECT sector FROM zones WHERE name = 'PARK"))

SDBMS physical level

m Issue:

o How to store and efficiently process this
kind of information?

= Relational DBMS support traditional
(alphanumeric, etc.) data types

o Low complexity =» relational tables are
efficient

o Total ordering =» search trees (e.g. B*-
trees) for fast search

0 400

= Unfortunately, spatial objects
o (a) are of high complexity and

o (b) lack total ordering

51

52



SDBMS physical level Tole

= Unfortunately, spatial objects
o (a) are of high complexity and (b) lack total ordering
= Nevertheless, can we do something?
o Regarding (a): use spatial data approximations of low complexity

o Regarding (b): adopt multi-dimensional search techniques

| n MIT '

France

R,

N ‘
n No

5 [ =] [~ B [ [
- NN N

53

Spatial data approximations Thols

= Minimum (Orthogonal) Bounding Rectangle (MBR)

o MBR(obj) is the minimum orthogonal rectangle that covers obj

v

France

= Unfortunately, approximations are not identical to the original
shapes they origin from ®

o Need for a filter and refinement procedure to support typical spatial
gueries

54



‘ (parenthesis: “typical spatial queries”)  Toiss

= Typical spatial queries are the following:
o Point (D, p): find objects in dataset D covering point p

o Range (D, r): find objects in dataset D that lie inside (or overlapping)
region r

o NN (D, p, k): find the (k-) object(s) in
dataset D that lie nearest to point p

o Spatialloin (D1, D2): find all pairs
(01,02) of objects in datasets D1, D2,
that satisfy a spatial condition
(usually, overlap)

The Filter-Refinement procedure Toc2

m Processing a spatial query Q

o Filter step: find a set S that contains (for sure) the answer set of Q
using MBR approximations

o Refinement step: find the exact answer set of Q by geometrically
processing S

FilterStep. ... ----Refinement Step_____________._____________
| Query | | |
Local Object Geometry
; v
Spatial Index | \Fest on exact Geometry/

Candidate Set ®

56



An example of filter - refinement TfoLe3

Range query processing

o filter step: find object MBRs overlapping Q

o refinement step: find objects overlapping Q

Indexing spatial objects TfoLe3

Problem:

o Cannot adopt “total ordering” in multi-dimensional space

If this was the case, we would have adopted the anilasiiasilas
well-known B+-tree (A L

. mn Il il Bl

Solutions: < L
1 || 1

o Adopt partial ordering (using space filling curves, NE n p niy nE

e.g. Hilbert), transform 2D objects in 1D intervals, M L-I IrJ M

and exploit on e.g. B*-trees, or

o ) ) Hilbert curve
o Invent novel spatial indexing techniques:

R-trees, Quadtrees, etc. \_' ] |’_ A,
A ]

R2
o |

o

57
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Space filling curves )

—T ] | A |
— — I ]
———— —— ] \
— ——— [ I 4 R
|
— 5 \
— J,, |
— ] | \
Row Row-prime Z-Order (Morton)
un Bl un BN un Bl B =
L L
L1
H . ]
S N ny A §
L E ] o
M 1 M ||
11 J 1 J 11 L
Hilbert Cantor diagonal Spiral
59
Z- vs. Hilbert curve Toc2
x=0 0
Z-curve:
o Produced by interleaving bits
"~ I~
° T~ T~
n=0 n=1 n=2 n=3
D | | | | A |
INTY NTYNTQ
JANAN N
\
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Z- vs. Hilbert curve TrfoLs3

Hilbert curve:

o Produced by interleaving bits
A A
o ...and rotating A
E—— [N ]
o (-]
> <
[ ] ]
n=0 n=1 n=2 n=3
F | ] mn BN pm BE un BN mn
N | | | | | |
mm Bl mu Bl gl BN mm
N By . - | 1 L
u EE pp ARy &
i E ] N
| 1 [ |
B 11 I
61
R-tree (and family) Tfoc3

The basic idea: extends B-tree to multi-dimensional space
Basic properties:

o Nodes correspond to disk pages; Balanced tree; Nodes consist of MBRs
covering the entries of the lower level

n ‘
4 fio

o Implemented in Oracle, IBM DB2, PostgreSQL, etc.

o Finds many applications: spatial, image, multimedia, time-series
databases, OLAP, etc. (Manolopoulos et al. 2005)
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~

Point / Range query processing in R-trees Tho.e3
[Guttman, 1984]

= Query window: Q
= Root level: Q overlaps R;, R,
= Depth-first propagation: node R, = node R, node R, = node R; > overlapsr,

= Answer set: r,

Iy R‘
r'l
Is
r
) _ R, %
0] =~
A
fy
fr lo
L Re
R, C
NN query processing in R-trees Tho.o3

[Roussopoulos et al. 1995]

= Query point: Q
= Root level: R;, R, are candidates (at the moment...) for containing the answer

= Depth-first propagation (ask yourselves why...): node R; = node R; > r, and ry
are candidate answers

o side-effect: R, is pruned!

. ; NN I
MINMAXIﬂSTAnswer set: r,, ry (two candidates for the 1-NN 1)

| P
\ I
I
(A 0 R, ¢
R,
Iy
/ 7 o

MINMAXDIST



Spatial DB + Time = Spatio-temporal DB Tz

= Including time dimension in spatial data is not straightforward
(Koubarakis et al. 2003)

o time is not simply a 3" dimension (monotonicity, etc.)

= Adding motion in spatial objects (points, lines, regions)
o Novel data types, e.g. “moving points” (Gliting et al. 2000)

o Spatio-temporal extensions of R-trees for indexing (Theodoridis et al.
1998)

An example of spatio-temporal DB o

6
102

= Vessel traffic:
o Entities: vessels, ports, coastlines, narrow passages, etc.
o Relationships between entities: vessels’ scheduled trips (port-to-port)

o Spatial operations:
when does a
vessel approach
(pass through)

a port (narrow
passage), how
close (and when)
do two vessels
approach each
other,...

2,
o S

Live information: vesseltracker.com 7

_IRENAV



Background on
Spatial data exploration

Aggregating DB information: Data Cubes =3

m  Aggregated information from DBs
is stored in data cubes
[Gray et al. DMKD "97]

o Feeded from DB via an
Extract-Transform-Load (ETL)

o Technically, a collection of relations
(if relational model is adopted)

= Typical structure: star schema

a

m}

Q

procedure

Location

Branch-id
downtown
City
Region
Country

Several dimension tables with their hierarchies

One fact table with measures

Variation: constellation schema
(more than one fact tables)

Time
Time-id
Hour
Fact-table Date
day-of-week
when Month
where Year
what
how-much
Product
Product-id
Type
Category
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ETL example

7~

0

102

= DB schema
product

Operational
DBs

(product 1ID,
type, category)
location (branch ID,
downtown, city,
region, country)

Extract
Transform
Load
Refresh

sales-transaction (
timestamp, product ID,
branch ID, units sold,
unit price)

= ETL query

INSERT INTO sales
( SELECT datetime (timestamp) AS when,

branch ID AS where, product ID AS what,

sum(units_ sold*unit price) AS how-much

FROM sales-transaction
GROUP BY when, where,
HAVING how-much > 0 )

what

Data

Warehouse

- fole3
OLAP operations on data cubes
= A sequence of operations: Location Ut
- Time-id
o (roll-up) “What was the total Branch-Id el
turnover (“how-much” measure) dC‘;EW”tOW” E— Date
per month and per city?” Re}gl;ion - day-of-week
. u - . when
o (slice) “Especially in March, Country where :\(A::rth
what was the turnover per city?” what
o (drill-down) “Especially in March, O TED
what was the turnover on
weekdays vs. weekends?”
o (cross-over) “Display the DB records
that support the above result.” Product
Product-id
Type
= Degree of efficiency of OLAP operations Category

depends on the type of measures
o distributive vs. algebraic vs. holistic
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Data cubes for spatial data

= Spatial data cubes
[Han et al. PAKDD’98]

o Dimensions

Spatial (e.g. Geography) vs.

non-spatial /thematic
(e.g. Time, Product)

o Measures:

Numerical vs. Spatial

< Geometry

Geography

| Geo-id—_|

1ty

Region

Country

Time
Time-id
Hour
Fact-table Date
day-of-week
when Month
Where Year
what
how-much
Product
Product-id
Type
Category
Tfo.c3

Cluster analysis (and outlier detection)

= The settings:

o A dataset of entities D = {e,, e,,

s €7}

o For each pair of entities, a distance Dist(e;;) can be measured (hence, a
NxN distance matrix is potentially formed)

(hopefully) the distance measure Dist(e;) should be a metric.

= The objective goal:

o Partition entities of D into K groups (clusters), G, ..., G, with the
following properties:

UG =D,GNG=0

(maximized, resp.), as better as possible

The intra-cluster (inter-cluster) distance between entities is minimized

71
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What is Cluster Analysis?

original slide from (Tan et al. 2004)

= Finding groups of objects such that:

a

o the objects in a group will be similar (or related) to one another and

... different from (or unrelated to) the objects in other groups

Intra-cluster

Inter-cluster
distances are
distances are maximized
minimized Th
OO(S)Oo
Types of Clusterings Toea
original slide from (Tan et al. 2004) o
m A clustering is a set of clusters
|
of clusters

Important distinction between hierarchical and partitional sets

Hierarchical clustering

o A set of nested clusters organized as a hierarchical tree
Partitional Clustering

o A division data objects into non-overlapping subsets (clusters) such
that each data object is in exactly one subset



Partitional Clustering ToLos
original slide from (Tan et al. 2004) o

o [ ]
e .. * L]
e
[ ]
[ ]
[ L ]
®
Original Points A Partitional Clustering
Hierarchical Clustering Yiocs

original slide from (Tan et al. 2004)

N N

pl p2 p3 p4
Traditional Hierarchical Traditional Dendrogram
Clustering ‘

pl p2  p3p4
Non-traditional Hierarchical Non-traditional Dendrogram

Clustering



Cl

ustering Algorithms T,

original slide from (Tan et al. 2004)

Partitional algorithm

o K-means and its variants

Hierarchical clustering
o Agglomerative vs. divisive approaches

o Issue: how to measure distance between two clusters?

Density-based clustering

o DBSCAN, OPTICS, etc.

K-means Clustering To

origi

nal slide from (Tan et al. 2004)

Partitional clustering approach

Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest centroid
Number of clusters, K, must be specified

The basic algorithm is very simple

: Select K points as the initial centroids.

repeat
Form K clusters by assigning all points to the closest centroid.
Recompute the centroid of each cluster.

until The centroids don’t change




K-means example, step 1
original slide from (Piatetsky-Shapiro 2003)

Pick 3
nitial
cluster
centers
(randomly)

K-means example, step 2
original slide from (Piatetsky-Shapiro 2003)

Assign

each point

to the closest
cluster
center




K-means example, step 3 Tfo.c3
original slide from (Piatetsky-Shapiro 2003)
o
° @)
e,
k, ke
Y
o
o
Move ¢ k, o ®
each cluster / ° ®
center X3 .k ke
to the mean ’, 2
of each cluster *o ‘k ®
3
K-means example, step 4 Tfoe2

original slide from (Piatetsky-Shapiro 2003)

Reassign
points
closest to a
different new
cluster center

Q: Which
points are
reassigned?




K-means example, step 4 ...

original slide from (Piatetsky-Shapiro 2003)

o
2 ‘0‘
e %o ©
©® <@
L 4
A: three /1//*
. —_— ]
points with ° ¢
animation ¢ X3
o © ke
o Kk o *
L 4
L X 4 °
X
K-means example, step 4b Thoa
original slide from (Piatetsky-Shapiro 2003)
o o
L 2 - ’0‘
@ o
ke
Y
L 4
re-compute ®
cluster X3 ¢ ® o
* N
means ¢
* ©® J ke
* Kk *
° ¢ ‘
L X 4 L 4 N
X




K-means example, step 5
original slide from (Piatetsky-Shapiro 2003)

o ® o
L 2 ®) o
o
okl ¢
<@
Y
L 2
o . ¢
L 4
¢ Tk ®
move cluster ® @
centers to ® R k, ®
cluster means PN ¢ o © R
X
Hierarchical Clustering Trfoe2
original slide from (Tan et al. 2004)
= Two main types of hierarchical clustering
o Agglomerative:

pair of clusters until only one cluster (or k clusters) left
| |

Start with the points as individual clusters; At each step, merge the closest
o Divisive:

Start with one, all-inclusive cluster; At each step, split a cluster until each
cluster contains a point (or there are k clusters)

= Traditional hierarchical algorithms use a similarity or distance
matrix

o Merge or split one cluster at a time



Hierarchical Clustering — an example
original slide from (Tan et al. 2004)

T;wfo |

16}

0.2

0.15-

1
0.1+

0.05-

6 2
Nested Clusters

Dendrogram

DBSCAN

a

DBSCAN (Ester et al. KDD’96) is a density-based algorithm.
Density = number of points within a specified radius (Eps)

The notion of density reachability

a

Directly Density-Reachable

a

Density-Reachable

o Density-Connected
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DBSCAN

m Core vs. Border vs. Noise points.

A point is characterized as:

0 core point, if it has at least MinPts points within its Eps neighborhood
= Core points are expected to be the cores of clusters

o border point, ifitis not a
core point, but it lies in the
neighborhood of a core
point
= Border points are expected

to be included in the
clusters of their cores

0 noise point, otherwise

= Noise points are expected to
be excluded from clusters
(hence, outliers)

DBSCAN: Core, Border, and Noise Points

original slide from (Tan et al. 2004)
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DBSCAN: Core, Border and Noise Points ..

original slide from (Tan et al. 2004)

Original Points

Point types: core,
border and noise

Eps =10, MinPts =4

OPTICS: Ordering Points To Identify the Clustering Structure T”f Fela)

= Addresses DBSCAN's major weakness: Reachability plot

0 the problem of detecting meaningful
clusters in data of varying density

= OPTICS methodology

o Points are (linearly) ordered according
to their closeness

o A special distance is stored (“reachability”)’
for each point that represents the density
to be accepted for a cluster in order to have
both points belong to the same cluster

UNDEFINED if |N:(p)| < MinPts
distance to the MinPts-th point otherwise

UNDEFINED if | N:(0)| < MinPts

max (core-distance. i, pes(0), distance(o, p)) otherwise

core-distance. yrinpts(p) = {

reachability-distance, g, pi (P, 0) = {



Conclusions Trfo.

= Assumptions

o Wireless networks infrastructures are the nerves of our territory

o besides offering their services, they gather highly informative traces
about human (animal, etc.) mobile activities

o Ubiquitous computing infrastructure will further push this
phenomenon

m Therefore,
o Mobility data collections will be more and more popular ...

o ... asking for effective and efficient management and exploration

= ... while, in parallel, taking privacy issues into consideration

93

‘ Questions Trfois

16}
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Online Resources TfoLa2

O
U

m Positioning technologies

= 3GPP specifications, http://www.3gpp.org/specs/specs.htm

m  ETSI - European Telecommunication Standards Institute. http://www.etsi.org

= Open GIS Consortium, OpenGIS® Location Services (OpenLS): Core Services,
http://www.openls.org

Open Mobile Alliance (OMA), http://www.openmobilealliance.org

OpenPrivacy Initiative, http://www.openprivacy.org
Trimble: All About GPS, http://www.trimble.com/gps

m Spatio-temporal database management

= ChoroChronos.org. A portal of datasets and algorithms for mobility data
management. http://www.chorochronos.org
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End of section



