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“The only source of knowledge is experience.” 
Albert Einstein  
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Chapter outline 

6.1. Mobility Data Warehousing 

6.2. OLAP Analysis in Trajectory Data Cubes 

6.3. Calculating Similarity between Trajectories 

6.4. Summary 



6.1.  
Mobility data 
warehousing 
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Modeling trajectory data cubes 

¡ Dimensions should 
include at least:  
¡  Space, Time,  

Object profile  
(along with their 
hierarchies) 
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¡ Measures should include 
at least:  
¡  Distinct count of 

trajectories, users, … 

¡  Average distance 
traveled, travel duration,  
speed,  (absolute) 
acceleration, … 
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Issues to be resolved 

¡ During data cube design 
¡  The effect of spatial / temporal resolution in data cube size 

¡  An example: 1% of total extent (spatial resolution) X 10 min interval 
(temporal resolution) X 10 object profiles for 3 years history = 1.5 
trillion records fact table !! 

¡  (as usual) tradeoff between quality and usage of resources 

¡ During ETL:  
n how to efficiently feed the  

fact table? 
¡  A trajectory may contribute to  

several cells 
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Loading the data cube 

¡  Loading data into the 
dimension tables è 
straightforward 

¡  Loading data into the fact 
table è complex, 
expensive 
¡  In order to calculate the 

measures of the fact table, 
we have to extract the sub-
trajectories that fit into the 
base cells  

¡  cell- vs. trajectory-oriented 
approach 
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Loading the data cube (cont.) 

1 2 3 4 
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time 

Algorithm Cell-oriented-ETL-approach 
(COA) 
Input: trajectory database T, space 
partitioning S, time partitioning τ 
Output: measure matrix M 
1.  FOR each (spatiotemporal) base cell cjk 

= (sj, τk) in S × τ 
2.   Search for sub-trajectories in T 

that are contained in cjk 
3.   Compute measures M[j,k] 
 

Algorithm Trajectory-oriented-ETL-approach 
(TOA) 
Input: trajectory database T, space 
partitioning S, time partitioning τ 
Output: measure matrix M 
1.  FOR each trajectory Ti in T 
2.   Find the (spatiotemporal) base 

cell cjk = (sj, τk) in S × τ, Ti is contained in 
3.   Compute measures M[j,k] 
 



6.2.  
OLAP analysis in 

trajectory data cubes 
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Multi-dimensional (OLAP) analysis 

¡  Typical OLAP operations: roll-up, drill-down, slice, cross-over 

¡  Example of progressive analysis:  
¡  “Display the number of users and their average speed, for each space 

partition and per hour” (roll-up in table TIME_DIM) 

¡  “Then, focus on downtown area, night hours and young drivers, and display 
their average speed” (roll-up in table SPACE_DIM, slice in table SPACE_DIM, 
slice in table TIME_DIM, slice in table  
OBJECT_PROFILE_DIM)  

¡  “Then, retrieve those users that are  
‘responsible’ for average speed over  
the speed limit and check when and  
where they exceeded this speed limit”  
(cross-over back to the MOD)  
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Issues to be resolved during OLAP 

¡  The problem (informally): a trajectory may contribute to 
several cells; what happens when rolling-up? 

¡  The so-called “distinct count problem” 
¡  A trajectory may visit several cells or even the same cell multiple 

times 

¡  Hence, it contributes multiple  
times in the measures (which  
are then aggregated)  
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The distinct count problem 

¡  The problem (formally): Given a space partitioning S, a time 
partitioning τ, and a measure matrix M of size |S|×|τ|, the distinct count 
problem is to estimate as better as possible the resulting measure after 
aggregating in space and time due to a roll-up operation. 

¡  Example: what is the number of  
trajectories at the union of cells  
Ci2, i = 1..4? 
¡  3 instead of 4 (= 0+2+1+1) 

¡  How to calculate this number? 
¡  Problem: we are not aware of the  

contributing trajectory ids since they  
are not stored in the data cube  

¡  A (sub-optimal) solution: keep  
a note on the borders between  
base cells 
¡  In the above example, 4 – 1 = 3 !! 
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Indexing for efficient OLAP 

¡  For performance reasons, aggregate data could be stored in 
appropriate indexes.  

¡ Main target: window aggregate query 

¡ A proposal: a3DRB-tree 
¡  a 3D R-tree for the spatiotemporal regions … 

¡  … along with a forest of  
aggregate B-trees  with  
the numeric measures  
of each region 



6.3.  
Calculating similarity 
between trajectories 

14 



15 

Trajectory Similarity 

¡  Key question: How do we measure distance or (dis-) 
similarity between two trajectories? 
¡  Not as simple as it sounds! 

¡ A straightforward solution: (sum of) Euclidean distance(s) 
between respective points 
¡  The ‘average’  

trajectory  
can be  
calculated  
this way.   0,45
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Trajectory as a time-series 

¡  Time-series similarity has been studied extensively  

¡  Examples from the time-series domain 
¡  Euclidean distance, Chebyshev distance, Dynamic Time 

Warping (DTW), Longest Common SubSequence (LCSS), Edit 
Distance on Real sequences (EDR), Edit distance with Real 
Penalty (ERP), Swale, etc. 

¡  However, trajectories are not identical to time-series! Both 
where and when are important 



¡  (extension of Euclidean distance)  
DISSIM function:  

¡  … and its approximate computation: 
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Trajectory as a 3D polyline 



¡  The Earth Movers Distance (EMD)  
¡  weighted sum of two energies: translation d⊥(ri, sj)  + rotation 
d∠(ri, sj)  

¡  The TRACLUS approach:  
¡  weighted sum of three components (distances between 

directed segments): perpendicular d⊥ + parallel d|| + angular 
d∠ 
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Trajectory as a 3D polyline (cont.) 

A cluster is a set of trajectory partitions. A trajectory par-
tition is a line segment p

i

p
j

(i < j), where p
i

and p
j

are the
points chosen from the same trajectory. Line segments that
belong to the same cluster are close to each other accord-
ing to the distance measure. Notice that a trajectory can
belong to multiple clusters since a trajectory is partitioned
into multiple line segments, and clustering is performed over
these line segments.

A representative trajectory is a sequence of points just like
an ordinary trajectory. It is an imaginary trajectory that in-
dicates the major behavior of the trajectory partitions (i.e.,
line segments) that belong to the cluster. Notice that a rep-
resentative trajectory indicates a common sub-trajectory.

Example 3. Figure 3 shows the overall procedure of trajec-
tory clustering in the partition-and-group framework. First,
each trajectory is partitioned into a set of line segments. Sec-
ond, line segments which are close to each other according
to our distance measure are grouped together into a cluster.
Then, a representative trajectory is generated for each clus-
ter. 2

TR5

TR1

TR2

TR3
TR4 TR5

TR1

TR2

TR3
TR4

A set of trajectories

A set of line segments
A cluster

(1) Partition

(2) Group

A representative trajectory

Figure 3: An example of trajectory clustering in the

partition-and-group framework.

2.2 The TRACLUS Algorithm
Figure 4 shows the skeleton of our trajectory clustering

algorithm TRACLUS. As illustrated in Figure 3, it goes
through the two phases. It executes three algorithms to
perform the subtasks (lines 2, 4, and 6). We explain these
algorithms in Sections 3.3, 4.2, and 4.3.

2.3 Distance Function
We now define the distance function used in clustering line

segments, which is composed of three components: (i) the
perpendicular distance (d?), (ii) the parallel distance (dk),
and (iii) the angle distance (d

µ

). These components are
adapted from similarity measures used in the area of pattern
recognition [4]. They are intuitively illustrated in Figure 5.

We formally define the three components through Defini-
tions 1ª3. Suppose there are two d -dimensional line seg-
ments L

i

= s
i

e
i

and L
j

= s
j

e
j

. Here, s
i

, e
i

, s
j

, and e
j

represent d-dimensional points. We assign a longer line seg-
ment to L

i

and a shorter one to L
j

without losing generality.

Definition 1. The perpendicular distance between L
i

and
L

j

is defined as Formula (1), which is the Lehmer mean 2 of
2The Lehmer mean of a set of n numbers (a

k

)n

k=1 is defined

by L
p

(a1, a2, · · · , a
n

) =
n
k=1 a

p
k

n
k=1 a

p°1
k

.

Algorithm TRACLUS (TRAjectory CLUStering)

Input: A set of trajectories I = {TR1, · · · , TR
numtra}

Output: (1) A set of clusters O = {C1, · · · , C
numclus}

(2) A set of representative trajectories
Algorithm:

/* Partitioning Phase */
01: for each (TR 2 I) do

/* Figure 8 */
02: Execute ApproximateTrajectoryPartitioning ;

Get a set L of line segments using the result;
03: Accumulate L into a set D;

/* Grouping Phase */
/* Figure 12 */

04: Execute Line SegmentClustering for D;
Get a set O of clusters as the result;

05: for each (C 2 O) do

/* Figure 15 */
06: Execute RepresentativeTrajectoryGeneration ;

Get a representative trajectory as the result;

Figure 4: The algorithm TRACLUS.
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Figure 5: Three components of the distance function

for line segments.

order 2. Suppose the projection points of the points s
j

and
e

j

onto L
i

are p
s

and p
e

, respectively. l?1 is the Euclidean
distance between s

j

and p
s

; l?2 is that between e
j

and p
e

.

d?(L
i

, L
j

) =
l2?1 + l2?2

l?1 + l?2
(1)

Definition 2. The parallel distance between L
i

and L
j

is
defined as Formula (2). Suppose the projection points of the
points s

j

and e
j

onto L
i

are p
s

and p
e

, respectively. lk1 is
the minimum of the Euclidean distances of p

s

to s
i

and e
i

.
Likewise, lk2 is the minimum of the Euclidean distances of
p

e

to s
i

and e
i

.

dk(Li

, L
j

) = MIN(lk1, lk2) (2)

Remark: The parallel distance in Definition 2 is designed
to be robust to detection errors, especially broken line seg-
ments. If we use MAX(lk1, lk2) instead of MIN(lk1, lk2), the
parallel distance could be significantly perturbed by broken
line segments. For more information, refer to studies on the
distance measure [4] in the domain of pattern recognition.

Definition 3. The angle distance between L
i

and L
j

is de-
fined as Formula (3). Here, kL

j

k is the length of L
j

, and µ
(0± ∑ µ ∑ 180±) is the smaller intersecting angle between L

i

and L
j

.

d
µ

(L
i

, L
j

) =

(
kL

j

k £ sin(µ), if 0± ∑ µ < 90±

kL
j

k, if 90± ∑ µ ∑ 180±
(3)



¡  The Locality In-between Polylines (LIP) distance function 
¡  Projects on the 2D space  

(assuming equal starting  
points) 

¡  Calculates the area  
in between the two  
(projected) routes 

¡  LIP is meaningful when  
the two objects move  
(more or less) towards  
the same direction 
¡  Hence, it can be better  

applied on pairs of sub- 
trajectories of the original trajectories 
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Trajectory as a 3D polyline (cont.) 
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¡  The uncertain regions approach 
¡  Trajectories are transformed  

into sequences of cells (according to  
some partitioning of space  
and time) 

¡  The distance between two  
uncertain regions could be 
¡  the minimum Euclidean distance  

between the regions’ MBRs 
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Trajectory as a 3D polyline (cont.) 



¡ After all, why do we need a palette of different trajectory 
(dis-)similarity functions? 

¡ Answer: in order to perform quite  
interesting analysis on MODs 

¡  Examples: 
¡  “Find groups of trajectories that  

follow similar routes (i.e., projections  
of trajectories on 2-dimensional  
plane) during the same time interval (e.g. co-location and co-
existence from 3 pm to 6 pm)” (spatiotemporal similarity) 

¡  “Find groups of trajectories by taking only their route into 
consideration (i.e., irrespective of time)” (time-relaxed spatial-
only similarity) 

¡  “Find groups of trajectories that follow a given direction pattern 
(e.g. first NE and then W)” (derivative-based similarity) 

21 

From an analyst point of view 
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6.4.  
Summary 
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Summarizing … 

¡ On the way from data management to data exploration  

¡  In this chapter, we presented: 
¡  How to design a mobility data warehouse and perform multi-

dimensional (OLAP) analysis 
¡  Alternatives for calculating the (dis-)similarity between 

trajectories of moving objects 



End of chapter 


