
Mobility Data
Management &

Exploration

Ch. 06.
Preparing for Mobility Data

Exploration

Nikos Pelekis & Yannis Theodoridis

InfoLab | University of Piraeus | Greece
infolab.cs.unipi.gr

v.2014.05

2

“The only source of knowledge is experience.”
Albert Einstein

3

Chapter outline

6.1. Mobility Data Warehousing

6.2. OLAP Analysis in Trajectory Data Cubes

6.3. Calculating Similarity between Trajectories

6.4. Summary

6.1.
Mobility data
warehousing

4

Modeling trajectory data cubes

¡ Dimensions should
include at least:
¡  Space, Time,

Object profile
(along with their
hierarchies)

5

¡ Measures should include
at least:
¡  Distinct count of

trajectories, users, …

¡  Average distance
traveled, travel duration,
speed, (absolute)
acceleration, …

6

Issues to be resolved

¡ During data cube design
¡  The effect of spatial / temporal resolution in data cube size

¡  An example: 1% of total extent (spatial resolution) X 10 min interval
(temporal resolution) X 10 object profiles for 3 years history = 1.5
trillion records fact table !!

¡  (as usual) tradeoff between quality and usage of resources

¡ During ETL:
n how to efficiently feed the

fact table?
¡  A trajectory may contribute to

several cells

7

Loading the data cube

¡  Loading data into the
dimension tables è
straightforward

¡  Loading data into the fact
table è complex,
expensive
¡  In order to calculate the

measures of the fact table,
we have to extract the sub-
trajectories that fit into the
base cells

¡  cell- vs. trajectory-oriented
approach

1 2 3 4

4

3

2

1

space

time

8

Loading the data cube (cont.)

1 2 3 4

4

3

2

1

space

time

Algorithm Cell-oriented-ETL-approach
(COA)
Input: trajectory database T, space
partitioning S, time partitioning τ
Output: measure matrix M
1.  FOR each (spatiotemporal) base cell cjk

= (sj, τk) in S × τ
2.  Search for sub-trajectories in T

that are contained in cjk
3.  Compute measures M[j,k]

Algorithm Trajectory-oriented-ETL-approach
(TOA)
Input: trajectory database T, space
partitioning S, time partitioning τ
Output: measure matrix M
1.  FOR each trajectory Ti in T
2.  Find the (spatiotemporal) base

cell cjk = (sj, τk) in S × τ, Ti is contained in
3.  Compute measures M[j,k]

6.2.
OLAP analysis in

trajectory data cubes

9

10

Multi-dimensional (OLAP) analysis

¡  Typical OLAP operations: roll-up, drill-down, slice, cross-over

¡  Example of progressive analysis:
¡  “Display the number of users and their average speed, for each space

partition and per hour” (roll-up in table TIME_DIM)

¡  “Then, focus on downtown area, night hours and young drivers, and display
their average speed” (roll-up in table SPACE_DIM, slice in table SPACE_DIM,
slice in table TIME_DIM, slice in table
OBJECT_PROFILE_DIM)

¡  “Then, retrieve those users that are
‘responsible’ for average speed over
the speed limit and check when and
where they exceeded this speed limit”
(cross-over back to the MOD)

11

Issues to be resolved during OLAP

¡  The problem (informally): a trajectory may contribute to
several cells; what happens when rolling-up?

¡  The so-called “distinct count problem”
¡  A trajectory may visit several cells or even the same cell multiple

times

¡  Hence, it contributes multiple
times in the measures (which
are then aggregated)

12

The distinct count problem

¡  The problem (formally): Given a space partitioning S, a time
partitioning τ, and a measure matrix M of size |S|×|τ|, the distinct count
problem is to estimate as better as possible the resulting measure after
aggregating in space and time due to a roll-up operation.

¡  Example: what is the number of
trajectories at the union of cells
Ci2, i = 1..4?
¡  3 instead of 4 (= 0+2+1+1)

¡  How to calculate this number?
¡  Problem: we are not aware of the

contributing trajectory ids since they
are not stored in the data cube

¡  A (sub-optimal) solution: keep
a note on the borders between
base cells
¡  In the above example, 4 – 1 = 3 !!

1 2 3 4

4

3

2

1

space

time

13

Indexing for efficient OLAP

¡  For performance reasons, aggregate data could be stored in
appropriate indexes.

¡ Main target: window aggregate query

¡ A proposal: a3DRB-tree
¡  a 3D R-tree for the spatiotemporal regions …

¡  … along with a forest of
aggregate B-trees with
the numeric measures
of each region

6.3.
Calculating similarity
between trajectories

14

15

Trajectory Similarity

¡  Key question: How do we measure distance or (dis-)
similarity between two trajectories?
¡  Not as simple as it sounds!

¡ A straightforward solution: (sum of) Euclidean distance(s)
between respective points
¡  The ‘average’

trajectory
can be
calculated
this way. 0,45

0,56

0,61

0,39

0,45
0,56

0,61

0

1

0,45

0,56

0,61

0,39

0,45
0,56

0,61

0

0,39

0,39

16

Trajectory as a time-series

¡  Time-series similarity has been studied extensively

¡  Examples from the time-series domain
¡  Euclidean distance, Chebyshev distance, Dynamic Time

Warping (DTW), Longest Common SubSequence (LCSS), Edit
Distance on Real sequences (EDR), Edit distance with Real
Penalty (ERP), Swale, etc.

¡  However, trajectories are not identical to time-series! Both
where and when are important

¡  (extension of Euclidean distance)
DISSIM function:

¡  … and its approximate computation:

17

Trajectory as a 3D polyline

¡  The Earth Movers Distance (EMD)
¡  weighted sum of two energies: translation d⊥(ri, sj) + rotation
d∠(ri, sj)

¡  The TRACLUS approach:
¡  weighted sum of three components (distances between

directed segments): perpendicular d⊥ + parallel d|| + angular
d∠

18

Trajectory as a 3D polyline (cont.)

A cluster is a set of trajectory partitions. A trajectory par-
tition is a line segment p

i

p
j

(i < j), where p
i

and p
j

are the
points chosen from the same trajectory. Line segments that
belong to the same cluster are close to each other accord-
ing to the distance measure. Notice that a trajectory can
belong to multiple clusters since a trajectory is partitioned
into multiple line segments, and clustering is performed over
these line segments.

A representative trajectory is a sequence of points just like
an ordinary trajectory. It is an imaginary trajectory that in-
dicates the major behavior of the trajectory partitions (i.e.,
line segments) that belong to the cluster. Notice that a rep-
resentative trajectory indicates a common sub-trajectory.

Example 3. Figure 3 shows the overall procedure of trajec-
tory clustering in the partition-and-group framework. First,
each trajectory is partitioned into a set of line segments. Sec-
ond, line segments which are close to each other according
to our distance measure are grouped together into a cluster.
Then, a representative trajectory is generated for each clus-
ter. 2

TR5

TR1

TR2

TR3
TR4 TR5

TR1

TR2

TR3
TR4

A set of trajectories

A set of line segments
A cluster

(1) Partition

(2) Group

A representative trajectory

Figure 3: An example of trajectory clustering in the

partition-and-group framework.

2.2 The TRACLUS Algorithm
Figure 4 shows the skeleton of our trajectory clustering

algorithm TRACLUS. As illustrated in Figure 3, it goes
through the two phases. It executes three algorithms to
perform the subtasks (lines 2, 4, and 6). We explain these
algorithms in Sections 3.3, 4.2, and 4.3.

2.3 Distance Function
We now define the distance function used in clustering line

segments, which is composed of three components: (i) the
perpendicular distance (d?), (ii) the parallel distance (dk),
and (iii) the angle distance (d

µ

). These components are
adapted from similarity measures used in the area of pattern
recognition [4]. They are intuitively illustrated in Figure 5.

We formally define the three components through Defini-
tions 1ª3. Suppose there are two d -dimensional line seg-
ments L

i

= s
i

e
i

and L
j

= s
j

e
j

. Here, s
i

, e
i

, s
j

, and e
j

represent d-dimensional points. We assign a longer line seg-
ment to L

i

and a shorter one to L
j

without losing generality.

Definition 1. The perpendicular distance between L
i

and
L

j

is defined as Formula (1), which is the Lehmer mean 2 of
2The Lehmer mean of a set of n numbers (a

k

)n

k=1 is defined

by L
p

(a1, a2, · · · , a
n

) =
n
k=1 a

p
k

n
k=1 a

p°1
k

.

Algorithm TRACLUS (TRAjectory CLUStering)

Input: A set of trajectories I = {TR1, · · · , TR
numtra}

Output: (1) A set of clusters O = {C1, · · · , C
numclus}

(2) A set of representative trajectories
Algorithm:

/* Partitioning Phase */
01: for each (TR 2 I) do

/* Figure 8 */
02: Execute ApproximateTrajectoryPartitioning ;

Get a set L of line segments using the result;
03: Accumulate L into a set D;

/* Grouping Phase */
/* Figure 12 */

04: Execute Line SegmentClustering for D;
Get a set O of clusters as the result;

05: for each (C 2 O) do

/* Figure 15 */
06: Execute RepresentativeTrajectoryGeneration ;

Get a representative trajectory as the result;

Figure 4: The algorithm TRACLUS.

θ

iL

jL

is ie

je

js
1⊥l

2⊥l
θd

1||l 2||l
)sin(
),(MIN 2||1||||

21

2
2

2
1

θθ ×=

=

+

+
=

⊥⊥

⊥⊥
⊥

jLd
lld

ll
lld

sp ep

Figure 5: Three components of the distance function

for line segments.

order 2. Suppose the projection points of the points s
j

and
e

j

onto L
i

are p
s

and p
e

, respectively. l?1 is the Euclidean
distance between s

j

and p
s

; l?2 is that between e
j

and p
e

.

d?(L
i

, L
j

) =
l2?1 + l2?2

l?1 + l?2
(1)

Definition 2. The parallel distance between L
i

and L
j

is
defined as Formula (2). Suppose the projection points of the
points s

j

and e
j

onto L
i

are p
s

and p
e

, respectively. lk1 is
the minimum of the Euclidean distances of p

s

to s
i

and e
i

.
Likewise, lk2 is the minimum of the Euclidean distances of
p

e

to s
i

and e
i

.

dk(Li

, L
j

) = MIN(lk1, lk2) (2)

Remark: The parallel distance in Definition 2 is designed
to be robust to detection errors, especially broken line seg-
ments. If we use MAX(lk1, lk2) instead of MIN(lk1, lk2), the
parallel distance could be significantly perturbed by broken
line segments. For more information, refer to studies on the
distance measure [4] in the domain of pattern recognition.

Definition 3. The angle distance between L
i

and L
j

is de-
fined as Formula (3). Here, kL

j

k is the length of L
j

, and µ
(0± ∑ µ ∑ 180±) is the smaller intersecting angle between L

i

and L
j

.

d
µ

(L
i

, L
j

) =

(
kL

j

k £ sin(µ), if 0± ∑ µ < 90±

kL
j

k, if 90± ∑ µ ∑ 180±
(3)

¡  The Locality In-between Polylines (LIP) distance function
¡  Projects on the 2D space

(assuming equal starting
points)

¡  Calculates the area
in between the two
(projected) routes

¡  LIP is meaningful when
the two objects move
(more or less) towards
the same direction
¡  Hence, it can be better

applied on pairs of sub-
trajectories of the original trajectories

19

Trajectory as a 3D polyline (cont.)

Time Y

X

Ty

Tx

S

Q

Ss

Se

¡  The uncertain regions approach
¡  Trajectories are transformed

into sequences of cells (according to
some partitioning of space
and time)

¡  The distance between two
uncertain regions could be
¡  the minimum Euclidean distance

between the regions’ MBRs

20

Trajectory as a 3D polyline (cont.)

¡ After all, why do we need a palette of different trajectory
(dis-)similarity functions?

¡ Answer: in order to perform quite
interesting analysis on MODs

¡  Examples:
¡  “Find groups of trajectories that

follow similar routes (i.e., projections
of trajectories on 2-dimensional
plane) during the same time interval (e.g. co-location and co-
existence from 3 pm to 6 pm)” (spatiotemporal similarity)

¡  “Find groups of trajectories by taking only their route into
consideration (i.e., irrespective of time)” (time-relaxed spatial-
only similarity)

¡  “Find groups of trajectories that follow a given direction pattern
(e.g. first NE and then W)” (derivative-based similarity)

21

From an analyst point of view

Time Y

X

Ty

Tx

S

Q

Ss

Se

6.4.
Summary

22

23

Summarizing …

¡ On the way from data management to data exploration

¡  In this chapter, we presented:
¡  How to design a mobility data warehouse and perform multi-

dimensional (OLAP) analysis
¡  Alternatives for calculating the (dis-)similarity between

trajectories of moving objects

End of chapter

