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“The only source of knowledge is experience.”
Albert Einstein
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6.1.

Mobillity data
warehousing




‘ Modeling trajectory data cubes -

= Dimensions should m Measures should include
include at least: at least:

m Space, Time, m Distinct count of
Object profile OBJECT_PROFILE_DIM trajectories, users, ...
(Q|Ong W|Th their PK | OBJPROFILE ID m A\/erqge distance
hierarchies) GENDER traveled, travel duration,

BIRTHYEAR
PROFESSION speed, (absolute)
MARITAL_STATUS .
DEVICE TYPE acceleration, ...
T TIME_DIM
FACT—TBL PK |[INTERVAL ID
SPACE_DIM PK,FK3 [INTERVAL ID
PK | PARTITION_ID PK,FK2 | PARTITION ID INTERVAL_START

PK,FK1 |OBJPROFILE ID INTERVAL_END

PARTITION GEOMETRY <_‘ HOUR

DISTRICT COUNT TRAJECTORIES [P DAY

CITY COUNT_USERS MONTH

STATE AVG_DISTANCE_TRAVELED QUARTER

COUNTRY AVG_TRAVEL_DURATION YEAR

AVG_SPEED DAY OF WEEK
AVG_ABS_ACCELER RUSH_HOUR




Issues to be resolved o2

-
™
Nt et

m During data cube design
m The effect of spatial / temporal resolution in data cube size

m An example: 1% of total extent (spatial resolution) X 10 min interval

(temporal resolution) X 10 object profiles for 3 years history = 1.5
frillion records fact table !!

m (as usual) fradeoff between quality and usage of resources

M o OBJECT_PROFILE_DIM
m During ETL:
PK | OBJPROFILE_ID
® L]
B how fo efficiently feed the GENDER
f 1_ 1_ bl 2 BIRTHYEAR
PROFESSION
ac a SE MARITAL_STATUS
. . DEVICE_TYPE
m A frajectory may contribute to
several cells T
TIME_DIM
FACT_TBL PK |[INTERVAL_ID
ERaCECM PK,FK3 |INTERVAL ID
PK | PARTITION ID PK,FK2 | PARTITION ID INTERVAL_START
PK,FK1 | OBJPROFILE ID INTERVAL_END
PARTITION_GEOMETRY 4— HOUR
DISTRICT COUNT_TRAJECTORIES | — DAY
CITY COUNT_USERS MONTH
STATE AVG_DISTANCE_TRAVELED QUARTER
COUNTRY AVG_TRAVEL_DURATION YEAR
AVG_SPEED DAY _OF WEEK
AVG_ABS_ACCELER RUSH_HOUR 6




\Looding the data cube

® | oading data into the
dimension tables =
straightforward 1

® Loading data into the fact 1
table = complex,

> time

expensive
m |n order to calculate the

measures of the fact table,
we have to extract the sub-
trajectories that fit into the
base cells

m cell- vs. tfrajectory-oriented
approach

space



\Looding the data cube (cont))

Algorithm Cell-oriented-ETL-approach

(COA)

Input: trajectory database T, space

partitioning S, time partitioning t

Output: measure matrix M

1. FOR each (spatiofemporal) base cell ¢;,
= (s, ) INnSxt

2. Search for sub-trajectories in T
that are contained in ¢
3. Compute measures MJj k]

Algorithm Trajectory-oriented-ETL-approach
(TOA)

Input: tfrajectory database T, space
partitioning S, time partitioning t

Output: measure matrix M

1. FOR each fragjectory T, in T

2. Find the (spatiotemporal) base
cell ¢y = (s, 5) in S x T, T;is contained in
3. Compute measures M[j.K]

> time

space



6.2.

OLAP analysis in
trajectory data cubes




\Mul’n dimensional (OLAP) analysis .

ment

)
~=
Nt et

m Typical OLAP operations: roll-up, drill-down, slice, cross-over

m Example of progressive analysis:

m “Display the number of users and their average speed, for each space
partition and per hour” (roll-up in table TIME_DIM)

m “Then, focus on downtown areq, night hours and young drivers, and display
their average speed” (roll-up in table SPACE_DIM, slice in table SPACE_DIM,
slice in table TIME_DIM, slice in table
OBJECT_PROFILE_DIM) OBJECT_PROFILE_DIM

PK |OBJPROFILE_ID

m “Then, refrieve those users that are

GENDER

‘responsible’ for average speed over BIRTHVERR
1 i MARITAL_STATUS
the speed limit and chec.k when o'nql apilaslla
where they exceeded this speed limit” T
(cross-over back to the MOD) D
FACT_TBL PK |INTERVAL_ID
SHAELL PK,FK3 [INTERVAL ID
PK | PARTITION_ID PK,FK2 [PARTITION ID INTERVAL_START
PK,FK1 [OBJPROFILE ID INTERVAL_END
< O
g%ﬁgré?N_GEOMETRY COUNT_TRAJECTORIES ‘ > gA\l(JR
CITY COUNT_USERS MONTH
STATE AVG_DISTANCE_TRAVELED QUARTER
COUNTRY AVG_TRAVEL_DURATION YEAR
AVG_SPEED DAY_OF_WEEK
AVG_ABS_ACCELER RUSH_HOUR '| O




Issues to be resolved during OLAP %

m The problem (informally): a trajectory may conftribute to
several cells; what happens when rolling-up<¢

m The so-called “distinct count problem”

m A frajectory may visit several cells or even the same cell multiple

fimes

m Hence, it contributes multiple
times in the measures (which
are then aggregated)

SPACE_DIM
PK | PARTITION_ID

DISTRICT
CITY
STATE
COUNTRY

OBJECT_PROFILE_DIM

PK |OBJPROFILE_ID

GENDER
BIRTHYEAR
PROFESSION
MARITAL_STATUS
DEVICE_TYPE

T

FACT TBL

TIME_DIM

PK,FK3
PK,FK2
PK,FK1

INTERVAL ID
PARTITION ID
OBJPROFILE ID

PK

INTERVAL_ID

PARTITION_GEOMETRY | g——

COUNT_TRAJECTORIES
COUNT_USERS
AVG_DISTANCE_TRAVELED
AVG_TRAVEL_DURATION
AVG_SPEED
AVG_ABS_ACCELER

INTERVAL_START
INTERVAL_END
HOUR

DAY

MONTH
QUARTER

YEAR

DAY_OF WEEK
RUSH_HOUR

—
)
-

11
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\The distinct count problem ) TR

-
A~
—t et

m The problem (formally): Given a space partitioning S, a time
partitioning T, and a measure matrix M of size |S| x| 1|, the distinct count
problem is to estimate as better as possible the resulting measure after
aggregating in space and time due to a roll-up operation.

= Example: what is the number of 1 2 3 4

trajectories at the union of cells > time
Cp, 1=1..42

m 3instead of 4 (= 0+2+1+1)

m How to calculate this number?

m Problem: we are not aware of the
contributing trajectory ids since they
are not stored in the data cube

m A (sub-optimal) solution: keep
a note on the borders between
base cells

® |In the above example, 4 -1 =31l

space 12



\Indexing for efficient OLAP

\U;'ufozgi;
m For performance reasons, aggregate data could be stored in
appropriate indexes.

= Main target: window aggregate query
m A proposal: a3DRB-tree

m g 3D R-tree for the spatiotemporal regions ...
m .. along with a forest of

, y
aggregate B-trees with ks ] Bves R,
the numeric measures R, 6
: 7 R

of each region Ry dies R, 1

at time 5 - R3

Rl'

R7 x

B-tree forR7
time

13



6.3.

Calculating similarity
between frajectories




Trajectory Similarity

m Key question: How do we measure distance or (dis-)
similarity between two trajectories?

m Not as simple as it sounds!

m A straightforward solution: (sum of) Euclidean distance(s)
between respective points

= The ‘average’
trajectory
can be
calculated
this way.

o 045

0,39

To.

00

et Lab

H
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Trajectory as a time-series o2

= Time-series similarity has been studied extensively

m Examples from the time-series domain

m Fuclidean distance, Chebyshev distance, Dynamic Time
Warping (DTW), Longest Common SubSequence (LCSS), Edit
Distance on Real sequences (EDR), Edit distance with Real
Penalty (ERP), Swale, etc.

Euclidean

m However, trajectories are not identical to fime-series! Both
where and when are important

16



Trajectory as a 3D polyline

m (extension of Euclidean distance)
DISSIM function:

DISSIM(R,S) = f tan(R(t),S(t))dt

Euclidean

m .. and ifs approximate computation:

n-l tk+1
DISSIM(R, S) =z f L, (R(), S(t))dt
k=1 "tk

1 n—1
DISSIMR,S) ~ 5 > ((L2(R(60), $)) + Lo (R(tess), S(tis)))
k=1

(s — )

17
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Trajectory as a 3D polyline (cont.)

J

]
O
@)

T
= The Earth Movers Distance (EMD)

= weighted sum of two energies: tfranslation d | (r, s;) + rofafion
d,(r s)

d | (rus)) =wi- (- —x)2 +wy - O — ¥5)2 — wy - (& — t5)?
dL(ri,sj) = min(|ri|, Isjl)- 16|
= The TRACLUS approach:

m weighted sum of three components (distances between
directed segments): perpendicular d, + parallel d, | + angular
d,

2.6

2 2

| di= [+

-::Z.E l_l_l + lJ_Z

;"::w lJ_2

di = MIN(lu1,112)
S——

do = |Lj|xsin(6)
[i2

18



Trajectory as a 3D polyline (cont.) e

J)

O
)]

® The Locality In-between Polylines (LIP) distance function

m Projects on the 2D space
(assuming equal starting
poinfts)

m Calculates the area
in between the two
(projected) routes

4

m ||P is meaningful when
the two objects move
(more or less) towards
the same direction -/

m Hence, it can be better
applied on pairs of sub-
trajectories of the original trajectories

19



Trajectory as a 3D polyline (cont.) Tioes

= The uncertain regions approach

m Trajectories are transformed

into sequences of cells (according to

some partitioning of space
and time)

m The distance between two
uncertain regions could be

= the minimum Euclidean distance d
between the regions’ MBRs

2

///
/

20



From an analyst point of view To.

m After all, why do we need a palette of different trajectory
(dis-)similarity functionse

m Answer: in order to perform quite
interesting analysis on MODs

B Examples:

m “Find groups of trajectories that
follow similar routes (i.e., projections —
of trajectories on 2-dimensional
plane) during the same fime interval (e.g. co-location and co-
existence from 3 pm to 6 pm)” (spatiotemporal similarity)

m “Find groups of trajectories by taking only their route into

considerafion (i.e., irespective of time)" (time-relaxed spatial-
only similarity)

m “Find groups of trajectories that follow a given direction pattern
(e.q. first NE and then W)" (derivative-based similarity)

2]



6.4.

Summary




\Summorizing

= On the way from data management to data exploration
® |n this chapter, we presented:
dimensional (OLAP) analysis

m How to design a mobility data warehouse and perform mulfti-

m Alternatives for calculating the (dis-)similarity between
trajectories of moving objects

23
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End of chapter



