

Mobility Data Management & Exploration

Ch. 07. Mobility Data Mining and Knowledge Discovery

Nikos Pelekis & Yannis Theodoridis

InfoLab | University of Piraeus | Greece infolab.cs.unipi.gr

v.2014.05

Chapter outline

- 7.1. Clustering in Mobility Data
- 7.2. Moving Clusters for Capturing Collective Mobility Behavior
- 7.3. Sequence Pattern Mining in Mobility Data
- 7.4. Prediction and Classification in Mobility Data
- 7.5. Summary

7.1. Clustering in mobility data

Trajectory clustering

- Technical objectives:
 - Cluster trajectories w.r.t. similarity
 - For each cluster, find its 'centroid' or 'representative'
 - Discover moving clusters (flocks), outliers, etc.

Issues:

- Which distance between trajectories? recall Chap. 6
- Which kind of clustering? Partitioning (K-means-like) vs. Density-based (DBSCAN- or OPTICS- like) solutions
- How does a cluster 'centroid' or 'representative' look like?

Trajectory clustering (cont.)

- General requirements:
 - Tolerance to noise; Low computational cost; Applicability to complex, possibly non-vectorial data; Non-spherical clusters; etc.
 - E.g.: A traffic jam along a road = "snake-shaped" cluster

- State-of-the-art
 - Clustering on entire trajectories: T-OPTICS (2006), CenTR-I-FCM (2009)
 - Clustering on sub-trajectories: TRACLUS (2007), NEAT (2012)

T-OPTICS (Trajectory OPTICS)

- Builds upon OPTICS and the DISSIM function between trajectories
- Reachability plot (valleys and hills)
 - Valleys → clusters
 - Hills → noise

CenTR-I-FCM (Clustering under uncertainty)

 Builds upon Fuzzy-C-Means (a variation of K-means for uncertain data)

- Motivation:
 - uncertainty of trajectory data should be taken into account

- Three phases:
 - Step 1: mapping of trajectories in an intuitionistic fuzzy vector space
 - Step 2: discovering the centroid of a bundle of trajectories (algorithm CenTra)
 - Step 3: clustering trajectories under uncertainty (algorithm CenTR-I-FCM)

TRACLUS (Trajectory Clustering)

 Discovers similar portions of trajectories (sub-trajectories)

- Works in two phases:
 - partitioning
 - grouping

TRACLUS (cont.)

Algorithm TRACLUS

Input: A dataset of trajectories $D=\{tr_1, ..., tr_N\}$

Output: (1) A set of clusters $C=\{C_1, ..., C_O\}$, (2) A set of representative trajectories /* Partitioning phase */

- 1.for each tr_i in D do
- 2. Execute trajectory partitioning; Get a set S of line segments as the result;
- Accumulate S into a set D';
 /* Grouping phase */
- Execute Line Segment clustering for D';

Get a set C of clusters as the result;

- 5. for each C_i in C do
- Execute RTG;
 Get a representative trajectory as the result;

NEAT

- Clusters trajectories moving on road network.
- Works in three phases:
 - base cluster formation: partitions trajectories into t-fragments, where each one lies on a single road segment, and forms base clusters, each containing the t-fragments that lie on the same
 To a segment
 12 base Cluster Formation
 12 base Cluster Formation
 12 base Cluster Formation
 - flow cluster formation: combines base clusters w.r.t. merging selectivity
 - function that takes into account flow, density and road speed factors
 - flow cluster refinement: compresses flow clusters (DBSCAN variant)

NEAT example

Finding representatives

- ... in trajectory datasets
- Recall one of the trajectory clustering issues:
 - How does a cluster 'centroid' or 'representative' look like?
- Some of the trajectory clustering algorithms inherently provide such 'centroids' or 'representatives' (actually, artificial trajectory-like shapes)
 - TRACLUS representatives
 - CenTR-I-FCM centroids

Finding representatives (cont.)

■ TRACLUS representatives

- three thick lines (black, red, blue)
- compositions of segments (subtrajectories)
- a trajectory may be split into different clusters

■ CenTR-I-FCM centroids

- two sets of cells (green, red)
- catch the overall complex mobility patterns

Finding representatives (cont.)

- Another approach: **T-sampling** (2010, 2012)
 - Samples the top-k most representative trajectories ...
 - ... following a deterministic voting methodology

Example:

7.2.

Moving clusters for capturing collective mobility behavior

Flocks and variants

■ Flock: a large enough subset of objects moving along paths close to each other for a certain time

Side-effect: the lossy-flock problem

Flocks and variants (cont.)

- Interesting problems arise over the flock concept:
 - Identify long flock patterns (top-k longest flock pattern discovery)
 - Discover **meetings** (fixed- vs. varying- versions)
 - Discover convergences

Moving clusters

■ Moving cluster: a sequence of spatial clusters in consecutive timepoints that keep a large percentage of common objects

a kind of varying flock

Example:

- Issue:
 - The 'consecutive time' constraint may result in the loss of interesting patterns

Convoys

■ Convoy: a group of objects that has at least *m* objects, which are density-connected with respect to a distance threshold *e*, during *k* consecutive timepoints

Group patterns and Swarms

- Group pattern: a set of moving objects that travel within a radius for certain timestamps that maybe non-consecutive
 - actually, a time-relaxed flock pattern
- **Swarm**: a collection of moving objects with cardinality at least m, that are part of the same cluster for at least k timepoints
 - timestamps are not required to be consecutive

7.3.

Sequence pattern mining in mobility data

Frequent pattern mining

- Technical objectives:
 - Identify 'frequent' or 'popular' patterns
 - Discover hot spots, hot paths, etc.
- Two groups of approaches:
 - techniques that identify regularities in the behavior of a single user: Periodic patterns (2007)
 - techniques that reveal collective sequential behavior of a set of users: T-Patterns (2007)

T-patterns

- **T-pattern** is a sequence of visited regions, frequently visited in a specific order with similar transition times
- Example:
 - TP1: <(), A> <(9,15), B> (supp:31)
 - TP2: <(), A> <(4,20), C> (supp:26)
 - TP3: <(), A> <(9,12), B> <(10,56), D> (supp:21)

<u>Algorithm T-Pattern (with static regions of interest - Rol)</u>

Input: (1) a set of input trajectories T, (2) a grid G_0 , (3) a minimum support/density threshold δ , (4) a radius of spatial neighborhoods ε , (5) a temporal threshold τ .

Output: A set of pairs (S, A) of sequences of regions with temporal annotations.

- 1. G=ComputeDensity(T, G_0 , ε);
- 2. Rol=PopularRegions(G, δ);
- 3. D=Translate(T, RoI);
- 4. TAS_mining(D, δ , τ);

7.4.
Prediction and classification in mobility data

Prediction and Classification

- Goal: to predict the future location of a moving object
- Possible solutions:
 - Naïve : extrapolate w.r.t. current location and velocity vector
 - Alternative: build a prediction model
- State-of-the-art technique:
 - WhereNext (2009)

WhereNext

- Builds upon the T-pattern concept: extracts a set of Tpatterns and builds a T-pattern tree
 - the best path is found for a given trajectory

Classification and Outlier detection

 Classification aims to predict the class label of a moving object based on its trajectories (and eventually other

features)

- State-of-the-art: TRACLASS (2008)
- Outlier detection aims to detect among a set of trajectories, those that behave differently from their neighbors
 - State-of-the-art: TRAOD (2008)

TRACLASS

- TRACLASS (Trajectory Classification) works in three phases:
 - Partitions trajectories based on their shapes (using a TRACLUS variant)
 - 2. Discovers regions that contain sub-trajectories mostly from one class (hierarchical region-based clustering)
 - Tradeoff between homogeneity and conciseness
 - 3. Discovers common movement patterns for each class of subtrajectories (trajectory-based clustering)
- Example:

TRAOD

- TRAOD (Trajectory Outlier Detection) works in two phases:
 - Partitioning phase: trajectories are segmented into t-partitions (sub-trajectories); recall TRACLUS
 - Detection phase: a trajectory is considered outlier if it contains a sufficient number of outlying t-partitions

Example:

7.5. Summary

Summarizing ...

- Knowledge discovery in trajectory databases discovers behavioral patterns of moving objects
- In this chapter, we presented state-of-the-art techniques for:
 - Clustering a set of trajectories
 - Discovering collective behaviors (flocks, moving clusters, etc.)
 - Predicting the future location of moving objects
 - Classification and outlier detection

