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7.2. Moving Clusters for Capturing Collective Mobility Behavior
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Clustering in mobillity
data




Trajectory clustering Tos

m Technical objectives:

m Cluster trajectories w.r.t. similarity

m For each cluster, find its
‘centroid’ or ‘representative’

m Discover moving clusters (flocks),
outliers, etc.

m |[Ssues:

m Which distance between trajectories?e recall Chap. 6

m Which kind of clusteringe Partitioning (K-means-like) vs. Density-
based (DBSCAN- or OPTICS- like) solutions

m How does a cluster ‘centroid’ or ‘representative’ look like?



Trajectory clustering (cont.)

m General requirements:

m Tolerance to noise; Low computational cost; Applicability to
complex, possibly non-vectorial data; Non-spherical clusters; etc.

m E.g.: A fraffic jam along a road = "snake-shaped” cluster

m State-of-the-art

m Clustering on entire trajectories: T-OPTICS (2006), CenTR-I-FCM
(2009)

m Clustering on sub-trajectories: TRACLUS (2007), NEAT (2012)



‘T—OPTICS (Trajectory OPTICS) o

Time

m Builds upon OPTICS and the
DISSIM function between
trajectories

m Reachability plot (valleys and
hills)

m Valleys - clusters
m Hills 2 noise

K-axis

Time

e threshold

..
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CenlIR-I-FCM (Clustering under uncertainty) ‘ﬂ?mfo

® Builds upon Fuzzy-C-Means
(a variation of K-means
for uncertain data)

= Motivation:

m yncertainty of
trajectory data
should be taken
info account

® Three phases:

m Step 1. mapping of frajectories in an intuitionistic fuzzy vector space

m Step 2: discovering the centroid of a bundle of frajectories (algorithm
CenTra)

m Step 3: clustering trajectories under uncertainty (algorithm CenTR-I-FCM)



‘TRACLUS (Trajectory Clustering)

m Discovers similar portions of

TR,
TR
trajectories (sub-trajectories) ’

TR,

A common sub-trajectory
TR,
m Works in two phases
= partitioning

= grouping

TR
TR, '
(1) Partition

f m,

A set of trajectories

5 A representatlve trajectory

(2) Group %
} A cluster

A set of line segments



TRACLUS (cont.) %o

Algorithm TRACLUS
Input: A dataset of trajectories D={tr,, ..., r}
Output: (1) A set of clusters C={C,, ..., Cp}, (2) A set of representative trajectories
/* Partitioning phase */
1. foreach tr,in D do
2. Execute trajectory partitioning; Get a set S of line segments as the result;
3. Accumulate S into aset D’;
/* Grouping phase */
4. Execute Line Segment clustering

TR, TR,

for D'; L o
Get a set C of clusters as (1) Partition A set of trajectories
the result: r -

for each C in C do 2

o n

Execute RTG
Get a representative

A tative traject
trajectory as the result; representatiye rajedtory

r A cluster
A set of line segments




H

O
1o

m Clusters trajectories moving on road network.

m Works in three phases:

= base cluster formation: partitions trajectories into t-fragments,
where each one lies on a single road segment, and forms base
clusters, each containing the
t-fragments that lie on the same
road segment

= flow cluster formation: combines
base clusters w.r.t. merging
selectivity

= funcftion that takes into account . " L e
flow, density and road speed factors

m flow cluster refinement: compresses
flow clusters (DBSCAN variant)

Formation

2 clusters: 1
Cy={F3} 3 flow clusters:
13 Fy, F2, F3

10



NEAT example

Nyo

(1)

Base Cluster Form

>

Ns

(2)
n Flow Cluster
7 Formation
(3)
Flow Cluster Refinement
-
' "

2 clusters:
C‘ - {Fz}
Ca= {Fi, Fa)

Fa
Nz

3 flow clusters:
N3

Fy, F2, F3

11
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\Finding representatives

® .. in trgjectory datasets

m Recall one of the trajectory clustering issues:
m How does a cluster ‘centroid’ or ‘representative’ look like?

m Some of the frajectory clustering algorithms inherently

provide such ‘centroids’ or ‘representatives’ (actually,
artificial trajectory-like shapes)

m TRACLUS representatives
m CenlR-I-FCM cenftroids

Tfo.

O
0o

12
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\Finding representatives (cont.)

= TRACLUS representatives

m three thick lines (black, red, blue)

m compositions of segments (sub-
trajectories)

m g frajectory may be split into different
clusters

= CenTR-I-FCM centroids
m two sets of cells (green, red)

m catch the overall complex mobility
patterns

13



\Finding representatives (cont.)

~
S

™
[

O
m Another approach: T-sampling (2010, 2012)

m Samples the top-k most representative trajectories ...

m .. following a deterministic voting methodology

m Trajectory segmentation is neighborhood- rather than
geometry-aware!

.
T, I

" Example:

(b)

S1
(c)
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Moving clusters for
capfuring collective
mobility behavior




\Flocks and variants

Tfoo
® Flock: a large enough subset of objects moving
@ along paths close to each other for a certain time

t, d
\\I\

m Side-effect:
the lossy-flock problem

//_\\\
-~ / ///—r_@\\\
N N
SO =20 5 NN O
\ ,-7’?\ / ‘\\ ——~
[ IR B N / N % N
\ /:’/ \~/\/\‘\_L\ \\ \
\\‘ /—7, O O O { i@ @)
NN\ /
00 ANY

@)
t1 t2

ts

v
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Flocks and variants (cont.) g

o~
e

m |nteresting problems arise over the flock concept:
m |dentify long flock patterns (top-k longest flock pattern discovery)
m Discover meetings (fixed- vs. varying- versions)

m Discover convergences
m Discover leaders and followers O

convergence

17



\Moving clusters Tocx

® Moving cluster. a sequence of spatial clusters in consecutive
timepoints that keep a large percentage of common objects

= akind of varying flock / / /

C1
s ®@@\ €
_ . < \ @ G
Example: I\<_e_ ] / LN
\@ / CZ (@C@@\,
-~ \
0® )|©® O,
t1 P s
ty
m [ssue:
m The ‘consecutive time' constraint may result in the loss of interesting
patterns

18



\Convoys

Q0 fo

= Convoy: a group of objects that has at least m objects, which
are density-connected with respect to a distance threshold e,
during k consecutive fimepoints

Tl drararale

-
A~
—t et

19



Group patterns and Swarms .2

= Group pattern: a set of moving objects that travel within @
radius for certain fimestamps that maybe non-consecutive

m gctually, a time-relaxed flock pattern

= Swarm: a collection of moving objects with cardinality at least
m, that are part of the same cluster for at least k fimepoints

® timestamps are not required to be consecutive
i} | | , |

o o
—_— ~ 7
/ O*~~_®AO\ \\
7N /@Q \\\\\
O ~o--", \O\\Cﬁl
- s ~
\ _- y —O-
Q--0-~ Voo
t1 t s ts ts ts Q‘TJ
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Sequence pattern
Mining in mobility datao




Frequent pattern mining

m Technical objectives:

m [dentify ‘frequent’ or ‘popular’ patterns
m Discover hot spots, hot paths, etc.

= Two groups of approaches:

m fechniques that identify
regularities in the behavior
of a single user: Periodic patterns
(2007)

m techniques that reveal collective
sequential behavior of a set of
users: T-Patterns (2007)

22



T-patterns o 2

m T-pattern is a sequence of visited regions, frequently visited
In a specific order with similar transition times

m Example:
= TP1: <(), A> <(9,15), B> (supp:31)
m TP2: <(), A> <(4,20), C> (supp:26)
m TP3: <(), A><(9,12), B> <(10,56), D> (supp:21)

Algorithm T-Pattern (with stafic regions of interest - Rol)

Input: (1) a set of input trajectories T, (2) a grid G, (3) a minimum support/
density threshold &, (4) a radius of spatial neighborhoods €, (5) a temporal
threshold t .

Output: A set of pairs (S, A) of sequences of regions with temporal
annotations.

1. G=ComputeDensity(T, G,, €);

2. Rol=PopularRegions(G, & );

3. D=Translate(T, Rol);

4. TAS_mining(D, &, T);

23
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~ Prediction and
classification in mobility
data




\Predic’rion and Classification

m Goal: to predict the future location of a moving object
m Possible solutions:

m Naive : extrapolate w.r.t. current location and velocity vector
m Alternative: build a prediction model

m State-of-the-art technique:
= WhereNext (2009)

25



WhereNext ) T3

m Builds upon the T-pattern concept: extracts a set of T-
patterns and builds a T-pattern tfree
m the best path is found for a given frajectory

m the predicted future location
of the frajectory is the region Root

that corresponds to

the final node // \
of the best

path

(1,C,35) ( 4,A,31) ( 11, B, 28) ( 13,F,37 )
[15,2(/ \[10,121 [Mm,go] (9,15] (8,70] (2,51]
(2, B, 20)(3, D, 35)(5, A, 26)(6, C, 21) ( 9, B, 31)( 12, E, 38) ( 14, D, 37)

m Example: / \
[10,12] [15,20] [10,56]

( 7, D, 21)( 8, B, 10)( 10, E, 21)

26



Classification and Outlier detection Y.

-
~™
Mt et

m Classification aims to predict the class label of a moving
object based on its frajectories (and eventually other

features)

m State-of-the-art:
TRACLASS (2008)

= Qutlier detection aims to
detect among a set of
trajectories, those that
behave differently from
their neighbors

m State-of-the-art:
TRAOD (2008)

Container Port Refinery

Fishery

— ——» Container Ships - +» Tankers ——— Fishing Boats

TR,
A set of trajectories
X

fTRI TR- ‘\\’—\_
(1) Partition \‘\_‘_‘

(2) U@ft \‘\.\'\\:—7

Outlying t-partitions 27



TRACLASS

variant)

m TRACLASS (Trajectory Classification) works in three phases:
1. Partitions trajectories based on their shapes (using a TRACLUS

2. Discovers regions that contain sub-trajectories mostly from one
class (hierarchical region-based clustering)

m Tradeoff between homogeneity and conciseness
3. Discovers common movement patterns for each class of sub-
trajectories (tfrajectory-based clustering)
- Excmple: Container Port

Refinery

Fishery

» Tankers

—— Fishing Boats 28

Tfo.

O
0o
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TRAOD

Py

= TRAOD (Trajectory Outlier Detection) works in two phases:
m Partitioning phase: trajectories are segmented into t-partifions
(sub-trajectories); recall TRACLUS
m Detection phase: a trajectory is considered outlier if it contains @
sufficient number of outlying t-partitions

m Example:

TR,
A set of trajectories
TRjTR 4 i)
fTR ] TN
(1) Parti

g‘tion \\_\*\_—',_,

(2) Detect

\

—<

o W
Outlying t-’partitions

29
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Summary




\Summcrizing Thoc

m Knowledge discovery in trajectory databases discovers
behavioral patterns of moving objects

® |n this chapter, we presented state-of-the-art techniques for:
m Clustering a set of trajectories
m Discovering collective behaviors (flocks, moving clusters, etc.)
m Predicting the future location of moving objects

m Classification and
outlier detection

31



End of chapter



