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9.1.

From raw to semantic
frajectories




® From raw ...

m sequences of (x,y,1)
points, e.g., GPS feeds

= ... fTo meaningful
mobility tuples <where,
when, what/how/why>
= Semantic Trajectory:
T= {eﬁrsf """ elasf}
» Episode: e, = (STOP |
MOVE, t;om Tho Place,
tag)

A e,
i, ' B LR -
[8am, 9am] [6pm, 6:30am] [7:30pm, 8pm]
Road Train Sideway
(by bus) (by metro) (on foot)
é # 77777 >
Home Offl:ce Market Home
(relaxing) (working) (shopping) (relaxing)
[~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

Aagamen Lab

From “raw” to “semantic” trajectories T

-
A~
./



‘ Semantic trajectory o

®m An alternative (semantically-annotated) representation of the
motion path of a moving object

m Detection of homogenous fractions of movement,

m A trgjectory is reconstructed as a sequence of episodes (stops/
moves) along with appropriate tags

= Why semantfic frajectories? [8am,9am]  [6pm, 6:30am]  [7:30pm, 8pm]
Road Train Sideway
= Nof only O maftter Of (by bus) (by metro) (on foot)
downscaling the size of — S — 5 [ =
the database
= Mainly, towards enriched  Home Office Market Home
movement analysis and ~ (refaxing) (working) (shopping) (relaxing)
understa nding [~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]



‘ Semantic frajectory (cont.) o 22

m A trgjectory is reconstructed as a sequence of episodes (stops/
moves) along with appropriate tags

m Stops are the parts of the object’s frajectory during which the object
stays “static” at a place

® Moves are the parts of the object’s frajectory in between two Stops,
l.e. where the object is “moving”

. ) :
qus are meta-data associated (8am, 9am]  [6pm, 6:30am]  [7:30pm, 8pm]
with Stops and Moves. Road

Train Sideway
ACTUO”Y, information about (by bus) (by metro) (on foot)
> ——> |l >
= when?
= where? _

Home Office Market Home
= how? (relaxing) (working) (shopping) (relaxing)
= what? [~ 8am] [9am, 6pm] [6:30pm, 7:30pm]  [8pm,~]
= why?



9.2.

The semantic enrichment
process of raw
trajectories




‘ Semantic trajectory enrichment %

geent Lab

™~
™
e

m The process of adding application-oriented contextuadl
information to raw trajectories

L XY
Se
ooooooooooooooooo
.

® [nput: a ‘valid’ raw trajectory ...
m Recall Chap. 3

"f“
[8am, 9am] [6pm, 6:30am] [7:30pm, 8pm]
m .. plus a contextual Road Train Sideway
. (by bus) (by metro) (on foot)
data repository — s N >®
m Qutput: a semantic
. Home Office Market
TI'OJ ec’rory (relaxing) (working) (shopping)
[~, 8am] [9am, 6pm]

Home
(relaxing)
[6:30pm, 7:30pm]

[8pm,~]



et Lab

Semantic trajectory enrichment (cont.) .

®m Necessary infermediate step: frajectory segmentation
m parfition the trajectory into

sub-trajectories that : ST, N e
.o -r? $%ettetsacnscenssoncses®’ *
correspond to a specific RN
behavior or activity
m Examples: \H/
m Detecting stops and moves, [8am,9am]  [6pm, 6:30am]  [7:30pm, 8pm]
. . Road Train Sideway
m Detecting changes in (by bus) (by metro) (on foot)
movement pattern, —2> M ——2 >
m efc.
Ho’pe Off’:ce Market Home
(relaxing) (working) (shopping) (relaxing)
[~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

10



‘ Stop discovery T

® [ssue: How can Stop be detected in a raw trajectorye
m Solufions:

®m when the fragjectory intersects the geometry of a POl and the

duration of intersection is above a given temporal duration threshold:
SMoT technique (2007)

m when dense areas of the frajectory points are detected, using e.g. a

density-based clustering algorithm, and those areas are mapped to
a POIl: CB-SMoT technique (2008)

N/’

stops

11



‘ Stop discovery (cont.)

m Alfernative: velocity-based stop identification

35 -

Speed evolution

30

25

20

15

10

5

Tfo.

O
0o

12

b



‘ Online trajectory segmentation

1.

m Quite useful in traffic monitoring scenarios
m An approach: SeTraStream (2011). Works in 3 steps:

Cleaning and smoothing the incoming batch of status updates

3. Segmenting the

2. Compressing the batch by considering MVF characteristics

® status updates are described by Movement Feature Vectors (MVF)
batch by using

[ |
: Buffer of incoming batches
a MVF matrix O, of objects (arriving every 1)
Candidate Div Point
' O | ... | O
0, S
V Ay NN
e, e, WNyyW, "0 .
W, | Similar
V\}3, ' Pattern?
Oy

13
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‘ Semantic annotation of episodes o=

. a complete framework: SeMiTri (2011-12)

m Three layers:

1. Semantic regions: annotate frajectories with geographic regions of
interest - ROIs (using OpenStreetMaps)

2. Semantic lines: annotfate
trajectories with e.g. road
network

3. Semantic points: annotate
Stops with POI types instead
of POls (using Hidden
Markov Model)

Semantic Annotation Platform

Points of Interest
(semantic point)

Road Network
(semantic line)

Landuse data B
(semantic region) L.

— [ T

[Res ide t/'ls T Res idential i
Episodes ./ck—-O-s/.
(Stops, Moves)
Raw Data Frreeen, A «"".1 """"" "'I
.. g 3
I'é~~°:.'at jectory —— <~ — another trajectory

14



‘ The SeMiTri framework

Points of Interest Macolin \

(semantic point)  «, ¥

%
| A
S

Road Network
(semantic line)

Semantic Annotation Platform
HOME

CUSTOMER  pcTORY = _J@
\ SCHOOL
T MARKET

Market area Residential

area

ﬁ?esidential

Business area

s |
N == < J
Landuse data g ,r’ifﬁ
1 I li-ll.‘ \)f/ (x
(semantic region) sftt -—_—>
T
Sifks

Episodes
(Stops, Moves)

Raw Data

area

“‘s.,l

/1

st

<~ < another trajectory

15



9.4

Semantic frajectory
data management




STD management requirements Trfo.

et Lab

.
~™
Mt et

m Efficient support of both raw and semantic trajectory databases

(TD and STD, resp.)

® |[ndicative queries:

m “Search for people who follow the home - office — home pattern
every weekday”

m “Search for people who

cross the city center on [8am,9am]  [6pm, 6:30am]  [7:30pm, 8pm]
. . Road Train Sideway
their way from office (by bus) (by metro) (on foo!)
back to home” —2> il ———>>|III >
m “Search for people who
make long trips (e.g. Home Office Market Home
more than 20 km) on (relaxing) (working) (shopping) (relaxing)
their way from home to [~ 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

office without including
intermediate stops”

17



et Lab

STD management requirements (cont.) oo

m Such queries are innovative and cannot be handled effectively

and efficiently by existing approaches and corresponding MOD
engines

® Moreover, by maintaining a semantic trajectory data cube, we
are able to support analysis of type:

= “when, where and why

moving objects of a [8am,9am]  [6pm, 6:30am]  [7:30pm, 8pm]
.o . " Road Train Sideway
speC|f|c proflle STOp2 (by bus) (by metro) (on foot)
= “when, how and where —> i ——> 1 =
from/to moving objects
of a specific profile Home Office Market Home
move2" (relaxing) (working) (shopping) (relaxing)
[~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

® The ‘big picture’ of a semantic trajectory DB/DW infrastructure

18



| Urban Planning Traffic Analysis | Fleet Tracking |

Applications Web Interface /
[Trajectory Querying and Visualization ...]
.................................... X SR, Y A
Semantic Trajectory Database
(STD)
4 N .
B g| Similarity search Semantic OD matrix Semantic
g 3 Trajectory
'2 §' Semantic mining Cross-join operations DataWarehouse
g J (STD Cube)
.. ) ' N\
Si’:;:rnc E § Attribute Filtering | | Space/time derivatives P g ETL
E . O
& g‘ I:.‘i'vaﬁv“’ Semantic derivatives g' OLAP
\ J J
(. - )
E & Segmentation Semantic Annotation
°s° g' Trajectory cleaning Trajectory Compression
S et fe— A
Raw Trajectory Raw Trajectory Spatial Geographic Data
1 Database <xy.r Database (Road network,
ayer (TD) [ ai— N " (SD) POIL, ROI)

e 19



‘ A data type system for STD

= Two novel datatypes, ‘episode’ and ‘semantic trajectory’
m corresponding to raw sub-trajectory and raw trajectory, resp.

Py

m episode: a fuple (defineTag, MBB, episodeTag, activityTag, T-

link), where:
m defineTag: a flag in {Stop, Move}

= MBB: a fuple (MBR' Jrs’ror’r' 1-end)
corresponding to the 3D Road

[8am, 9am] [6pm, 6:30am] [7:30pm, 8pm]

) Train Sideway
coverage of the respective (by bus) (by metro) (on foot)
raw sub-trajectory —2> | —> >
m episodeTag and
activityTag: Home Office Market Home
LS . (relaxing) (working) h i .
semantic information (shopping) (relaxing)
) ) ) [~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]
m T-link: link fo the respective
raw sub-trajectory
20



Aagament Lab

‘ A data type system for STD (cont.) T

-
~™
Mt et

®» Two novel datatypes, ‘episode’ and ‘semantic trajectory’:
m corresponding to raw sub-trajectory and raw trajectory, resp.

= semantic trajectory: a tuple (o-id, semirgj-id, T.,,), where:
m O-id: the moving object identifier
® sem-iraj-id: the semantic trajectory identifier

m T ... asequence of (8am, 9am]  [6pm, 6:30am]  [7:30pm, 8pm]

episodes, {e;, ..., €.}, Road Train Sideway
ordered in time (by bus) (by metro) (on foot)
é # bt >
Home Offl:ce Market Home
(relaxing) (working) (shopping) (relaxing)
[~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

21



‘ A data type system for STD (cont.) o=

® Primifive methods and operators on ‘episode’ datatype:

® number duration (), number length (), number avg-speed (). returns
the duration, length, average speed, resp., of the episode

s geometry PAA (): returns the Potential Area of Activity (PAA) of the
episode

m boolean intersects (MBB b):
returns true or false, whether o, 9] (6pm, 6:30am]  [7:30pm, 8pm]
H 1 M am, 7am m, 6:5Vam N m, m
episode’s MBB infersects b Road Train Sideway

or not (by bus) (by metro) (on fooft)
——2> M| ——2> [ >

Home Office Market

. . Home
(relaxing) (working) (shopping)

(relaxing)
[~, 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

22



Aagament Lab

‘ A data type system for STD (cont.) T

= Primitive methods and operators on ‘semantic frajectory’
datatype:

= number num_of_episodes (string tag),

set[episode] episodes_with (string tag): returns the number of
episodes or the episodes themselves, resp., of the semantic
trajectory that include tags LIKE tag

m sem frajector nfin i
sem_irgjeciory co ed—ln [8am, 9am] [6pm, 6:30am] [7:30pm, 8pm]

(geomeﬂy a. ﬂmeperiOd. oF Road Train Sideway
string tagQ): returns a portion (by bus) (by metro) (on foot)
of the semantic trajectory > > i =
consisting of episodes that
. : Home Office Market
[ ] ) ) H
spatially ov§rlqp WIth 9. (refaxing) (working) (shooming) rotome
- TQmp0r0||Y intersect [~ 8am] [9am, 6pm] [6:30pm, 7:30pm]  [8pm,~]
with p, and

m fextually match with tag

23



‘ Querying STD

T

IUJ

= Having such methods and operators in our hands, several types

of queries can be defined:

m Q1 type: raw trajectory queries (involving TD)

m Example: “Search for
people who crossed
park X at night”

Applications

Urban Planning Traffic Analysis
Web Interface

\

[Trajectory Querying and Visualization ...]

¢ ¢

Fleet Tracking

/

m Q2 type: semantic

-~

Semantic Trajectory Database

v

: : | (3TD)
trajectory queries - B | prr— Semmanti
: - g 2 rajectory
(IﬂVO|VII’]g STD) .‘ i 6& Semantic mining Cross-join operations Da;aTVI\l)arCehguse
= Example: "Searchfor Lo
people who follow Syer | & §| Antbue Fiering_| | spactie deavs $5 | P
E - 5B
the pattern home - £ & Trjectory Semantic derivatives C& [ orap
office — home every -
Weekdoy” § 5 Segmentation Semantic Annotation
&5
[ | ‘ § &' Trajectory cleaning Trajectory Compression
. e — .
Raw Trajectory Raw Trajectory Spatial | Geographic Data
1 Database <x).r Database (Road network,
ayer  (p) @ . (SD) POL, ROI)

(D) "

...............

24



‘ Querying STD (cont.)

T

IUJ

= Having such methods and operators in our hands, several types

of queries can be defined:

[ |
" Q3 type: cross-over
semantic TrOJeCTory Applications Web Interface

\ [Trajectory Querying and Visualization ...]
4 4

/

queries (involving

v

Semantic Trajectory Database
(STD)

both TD and STD)

m Example: “Search | g 5| Similasity search Semantic OD matrix TSemartnic
§E rajectory
for people Who Cross _ ib& Semantic mining Cross-join operations DataWarehouse
the city center on ‘ (STD Cube)
their way from office Si’:;‘:r“c ' 2 &| Atribute Filtering | | Space/time derivatives o5 ETL
back to home” Iégwmy —— 3k
. & derivatives Semantic derivatives ‘ & OLAP
m Technically supported |
through T-link (recall ; £| Sgnensio Semantic Amnotation
The def Of eplSOde ‘ §8‘ Trajectory cleaning Trajectory Compression
datatype)
. e — .
Raw Trajectory Raw Trajectory Spatial | Geographic Data
1 Database <x).r Database (Road network,
ayer (TD) o — . (SD) PO, ROI)

25



‘ Indexing STD

Py

® [ssue: equally manage the spatio-temporal and the semantic
(textual) component of semantic trajectories

m Baseline solutions:

~
>

m Spatio-textual indexing structures (e.g. R-trees enhanced with textual
search capabilities)

m Trajectory data structures (e.g. TB-tfrees) along with text indexes (e.Q.
inverted files)

m A proposal: Semantic Trajectory Bundle (STB) tree

m Builds upon spatio-temporal information of episodes (TB-tree) ...

m ... also maintaining their textual information (inverted file)

26



‘ Indexing STD (cont.) o2

= STB-tree (2013)

® q [B-tree enhanced with textual information (right) ...
m ... along with an inverted file on tags (left)

bus

t home
car | car
/\‘_; e < | work
foot Sm——. 2 ) —
: <«—| bus
home ] ' «_|SPort
~ foot
sport —Qy
-
k ,
\ﬂ - car
_‘ home

27



9.4

Semantic frajectory
data exploration




‘ From raw to semantic TDW

m Extend TDW (recall Chap. 6) with dimensions and facts
about:

m STOPS: who made a stop? when and where? What did she do
during her stope

= MOVES: who made a movemente when and where from/to¢
How did she move and what did she do during her motione

OBJECT_PROFILE_DIM

PK | OBJPROFILE_ID

GENDER
BIRTHYEAR
PROFESSION
MARITAL_STATUS
DEVICE_TYPE

A

SPACE_DIM

FACT_TBL

PK

PARTITION_ID

PARTITION_GEOMETRY |4

DISTRICT
CITY
STATE
COUNTRY

PK,FK3
PK,FK2
PK,FK1

INTERVAL ID
PARTITION ID
OBJPROFILE ID

COUNT_TRAJECTORIES
COUNT_USERS
AVG_DISTANCE_TRAVELED
AVG_TRAVEL_DURATION
AVG_SPEED
AVG_ABS_ACCELER

TIME_DIM

PK

INTERVAL_ID

\ 4

INTERVAL_START
INTERVAL_END
HOUR

DAY

MONTH
QUARTER

YEAR
DAY_OF_WEEK
RUSH_HOUR

~
7 Manageuent Labs
-
No_c
S =

TIME_DIM SPACE_DIM MOVE_SEMS_DIM
PK | TIME_ID PK |POI_ID PK | MOVE_SEMS_ID
TIMEPOINT POI_GEOM ROUTE_TYPE
HOUR DISTRICT MOVE_MODE
DAY cITY MOVE_ACTIMITY
MONTH STATE 7'y
YEAR COUNTRY
EERID > QUARTER Y
PK |PERIOD ID > DAYOFWEEK
RUSHHOUR
PARTOFDAY  |g¢
FKI | TIME_ID_FROM
Fi2 | TIME_ID_TO
y MOVES_FACT
STOP_SEMS_DIM
PK,FK3 |PERIOD ID
PK | STOP_SEMS_ID PK,FK1 [FROM STOP SEMS ID
= PK,FK4 |TO STOP SEMS ID
STOP_NAME ki PK,FK5 |[USER PROFILE ID
STOPS_FACT STOP_TYPE PK,FK2 |MOVE SEMS ID
PK,FK1 | PERIOD_ID > N
] PERIOD_ID FK1 |POI_ID
PK.FK2 | STOP_SEMS_ID - N0 _SEM. TRAIECTORIES
PK,FK3 |USER_PROFILE_ID el

NUM_OF_SEM_TRAJECTORIES
NUM_OF_USERS
NUM_OF_ACTIVITIES
AVG_DURATION

USER_PROFILE_DIM

PK

RADIUS_OF_GYRATION
CROSST

USER_PROFILE_ID

A

DEVICE_TYPE
GENDER
BIRTHDAY
PROFESSION
MARITAL_STATUS

NUM_OF_ACTIVITIES
AVG_DISTANCE_TRAVELED
AVG_TRAVEL_DURATION
AVG_SPEED
AVG_ABS_ACCELERATION
RADIUS_OF_GYRATION
CROSST

29




‘ A semantic trajectory data cube Te-:

Aagamen Lab

m 5 dimensions:

m Space, Time, User_Profile

. DW TIME_DIM SPACE_DIM MOVE_SEMS_DIM
(OS N raw ) PK |TIME_ID PK |POI_ID PK | MOVE_SEMS_ID
n . TIMEPOINT POI_GEOM ROUTE_TYPE
Sfop_Sems, Move_Sems. HOUR DISTRICT MOVE_MODE
i DAY CITY MOVE_ACTIVITY
semantics about MONTH STATE 2
YEAR COUNTRY
Stops and Moves EERISH QUARTER i
PK |PERIOD ID | 3 DAYOFWEEK
RUSHHOUR
m ? fact tables: PARTOFDAY  |q
FKI | TIME_ID_FROM
FK2 | TIME_ID_TO
[ | e MOVES_FACT
STOPS—Fth STOP_SEMS_DIM 5
PK,FK3 | PERIOD ID
m MOVES FCICi' PK (STOP SEMS_ID PK,FK1 |FROM STOP SEMS ID
— PK,FK4 [TO _STOP SEMS ID
STOP_NAME < PK,FK5 |USER PROFILE ID
STOPS_FACT STOP_TYPE PK,FK2 |MOVE SEMS ID
L STOP_ACTMITY |j—i
PK,FK1 |EERIOD_ID FK1 |POI_ID NUM_OF _SEM_TRAJECTORIES
PK,FK2 |STOP_SEMS_ID NUM_OF USERS
PK,FK3 |USER_PROFILE_ID NUM ™ OF ACTIVITIES
NUM_OF_SEM_TRAJECTORIES gg—?gﬁgﬁ&gﬁ\’ghﬁ
s USER_PROFILE_DIM AVG_SPEED _
e AVG_ABS_ACCELERATION
AVG_DURATION ———p»{ PK | USER_PROFILE_ID [ RADIUS_OF_GYRATION
RADIUS_OF_GYRATION CROSST  ~
CROSST DEVICE_TYPE
GENDER
BIRTHDAY
PROF ESSION

MARITAL_STATUS

30




ETL in semantic trajectory data cubes T

Aagamen Lab

TIME_DIM SPACE_DIM MOVE_SEMS_DIM
o e . . PK | TIME_ID PK |POLID PK | MOVE_SEMS_ID
m (as usual) efficient ETL is an issue.
HOUR DISTRICT MOVE_MODE
. DAY CITY MOVE_ACTIVITY
For instance: o L 5
el o |QUARTER
° ° . . PK |PERIOD ID > DAYOFWEEK 4
= num-of-sem-trajectories is subject
M M FK1 ?lﬁg?g[)r-fgowl
to the distinct count prOblel I FI2 |[TIMEZID_TO
A STOP_SEMS_DIM MOVES ALT
- - PK,FK3 |PERIOD ID
(reCO” Cho p. 6) PK | STOP_SEMS_ID PK.FK1 |FROM STOP SEMS ID
. |PKFK4 |TO STOP SEMS ID
° STOPS_FACT sToPTYPE | KRS | MOWE S
. qvg -durqtlon a nd PIFK1, |PERIOD_ID P e gg?%ACTIVITY B NUM_OF_SEM_TRAJECTORIES
. PKFK3 |USERPROFILE D i} NUM_OF _USERS
avg-distance-traveled are iR R MO AT
. _OF: SEM. AVG_TRAVEL_DURATION
Q3 type queries S Tt A e socmsron
AYODURSTION. ity p|PK | USER_PROFILE_ID < RADIUS_OF_GYRATION
ZOF CROSST
CROSST DEVICE_TYPE
GENDER
BIRTHDAY
PROFESSION

Z duration (ep,. )

epiebcy,,

avg-duration (bcmp )

Z length (ep,)

epiebc

num-of -sem-trajectories (bcsmp )

move

MARITAL_STATUS

avg-distance-traveled (bcmove) -

num-of -sem-trajectories(bc,,,, )
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| Mining STD Yo

® Semantic frajectory mining is an infant, very challenging field,
for analysis purposes

m Example (from clustering):

® Try to discover a pattern like “this group of students (coming from
different origins) stopped at piazza P participating in a protest for an
hour; then walked to café C where they stayed for half an hour; and
finally they went by tram T to bar B where they partied until midnight”

m Constraints of types whoe when?¢ wheree whate how?e

m Critical technical objective: semantic trajectory similarity
function. Alternative roadmaps:

= Map semantic trajectories into vectors in a feature space (features
may include spatial, temporal, and textual aspects)

m Define an aggregate function between dissimilarity in spatio-
temporal and dissimilarity in semantic (textual) space.

32



9.5.

Semantic aspects of
privacy




LBS for sensitive semantic locations Tz

» What if an adversary is aware of the semantic whereabouts of a
territorye May be able 1o extract sensitive personal information

®m Hence, sensitive locations should be somehow protected

= An idea: semantic location cloaking along with I-diversity (2011)

m Location is generalized to a cloaked region (CR) that
includes at least K LBS users (recall Chap. 8) and °
at least | different POls (recall Chap. 2)

m However, we cannot avoid semantic location

Uas

HF
J'I'L

Hs
identification attacks UG. AsRofU1. JJ'_"fL Ha
= Anotheridea: maintain a set of strongly CRs & - oU
el T ’
(2012) we [T Ve
m Supports personalized privacy profile: duk Ha

m sensifive vs. non-sensitive POIs
® the maximum probability of linking a user with a sensitive place

34



Privacy in STD o

m Applying K-anonymity in semantic trajectories is not enough:
m Example: all K trajectories stop at a clinic (sensitive place)

= An ideq: C-safe Anonymization of Semantic Trajectories (CAST,
2011)

m Produces a sanitized (c-safe) version of a semantic trajectory ...
® by generalizing at the semantic level (place taxonomy)
m .. under the assumption that an adversary is aware of
m the utilized anonymization process
® the place taxonomy
m the presence of a user in the dataset
m the quasi-identifier sequence of visited places

35



9.6.

Summary




\Summcrizing Tios

-
~™
.

m (as for their raw counterparts) semantic aspects of mobility
data ask for effective and efficient modeling,

management, and knowledge discovery

® |n this chapter, we presented:

® How to model a semantic trajectory, from the abstract concept
to the datatype level

m The types of queries that are of
interest in a STD

® and how to index an STD for
efficient query processing

® The emerging challenges for
STD mining and privacy
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End of chapter



